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Abstract

This paper investigates the relationship between the quarterly opinion poll lead of UK
governments over the period 1955-1996, and a set of economic indicators. The hypothesis of
a causal link between these variables often debated, but there is a difficulty in testing the link
by conventional econometric methods. These require either stationarity or the I(1) property,
but there is strong evidence from a number of different studies that opinion poll series are
fractionally integrated, being nonstationary but also mean-reverting.
This paper tests the hypothesis of fractional cointegration using bootstrap methods. It

first discusses the problem of defining a cointegrating relationship between series that may
not have the same order of integration, and suggests a generalized cointegration model that
might account for this case. The bootstrap tests of the regular and generalized cointegration
hypotheses make use of a size correction that compensates for the biases due to estimating
the parameters of the model for the bootstrap replications.
The tests reveal no evidence of a link between the political and economic cycles, a conclu-

sion that reinforces the results of earlier work suggesting that the political cycle is generated
by the internal dynamics of the opinion formation process. The findings are reinforced by
a Monte Carlo study, showing that the methods have ample power to detect cointegrating
relations, even in cases where the residuals are noisy and persistent

1 Introduction

A substantial literature has accumulated over recent decades, seeking both theoretical and econo-
metric links between economic conditions and the popularity of democratic governments. Leading
contributions are Goodhart and Bhansali (1970), Nordhaus (1975), Frey and Schneider (1978),
Pissarides (1980), Minford and Peel (1982), Holden and Peel (1985), Rogoff and Sibert (1989).
The evidence from econometric studies, treating this as a conventional time series modelling prob-
lem, has been at best equivocal. For example, Pissarides (1980) uses the time series techniques
suggested by Davidson et. al. (1978) and finds some nominally significant correlation between
government popularity and economic indicators (growth, inflation, unemployment, the exchange
rate and tax rate). However, his equation does not have much predictive power. While plenty of
anecdotal evidence can be cited in support of either view, whether government popularity follows
the economic cycle remains an unresolved question.

More recent research has found that for a wide range of countries and democratic political
systems, party support is a fractionally integrated process. See for example Byers, Davidson and
Peel (1997, 2000), Box-Steffensmeier and Smith (1996), and Dolado, Gonzalo and Mayoral (2000).
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Byers et. al. (1997), henceforth referred to as BDP, show that for the UK that the monthly
Gallup series for Conservative and Labour support can be well modelled as ARFIMA(0,d,0) with
d around 0.75. In other words, the series is covariance nonstationary, but also not a random walk,
tending to return from excursions away from the median.1 In their paper, BDP propose a model
to account for these findings based on the aggregation of heterogeneous poll responses, appealing
to a well-known result of Granger (1980). The model accounts for the magnitude and duration of
swings in aggregate opinion as due to the particular mix of committed and floating voters in the
population. The innovations in the process are assumed to be news, of both the economic and
non-economic variety. The BDP model therefore accounts for the cyclical behaviour of opinion
by the internal dynamics of the aggregate opinion-formation process.

This explanation contradicts the view that swings in support follow economic indicators over
the cycle. BDP suggest instead that the impact of economic variables be tested by examining
the correlations between the innovations in the support series (the fractional differences) with
innovations in economic indicators, and perform a test of this type. They find, at best, very slight
effects of this kind; see BDP’s Table 7. BDP explain this finding by noting that opinion polls
aggregate the heterogeneous opinions of voters who perceive economic circumstances differently.
Borrowers and depositors take a different view of the interest and inflation rates, for example.
The so-called ‘North-South divide’ in the UK, and the contrasting fortunes of manufacturing and
service industries, show how unemployment may fail to move the employed majority however
distressing it may be for the unemployed themselves.

However, a formal test of the relationship still remains wanting. Of the two statistical ap-
proaches to testing for time series relationships in common use, the correlation approach and
the cointegration approach, neither is valid when the data in question are fractionally inte-
grated. Since the support series is nonstationary, ordinary tests of significance are subject to
the well-known ‘spurious correlation’ critique. On the other hand, cointegration analysis relies
on tabulations of the distribution of certain functionals of Brownian motion, and accordingly are
based on the assumption that the time series have variances diverging at the rate n. In the case
of a fractionally integrated or I(d) process, this rate is n1−2d, and the limit processes are not
Brownian motion but fractional Brownian motion. The Brownian functionals defining the limit
distributions depend on d, and the usual cointegration tests are inappropriate. In fact, it is not
possible to generate asymptotically pivotal tests unless d is known.

The present paper gives a test of the hypothesis using the bootstrap to overcome the problems
with conventional tests. The theory of the tests reported here is discussed at length in Davidson
(2000). Section 2 of the paper presents the data set to be analysed. Section 3 considers some
issues in the modelling of relationships in such data. Sections 4 and 5 describe the bootstrap test
procedure, and Section 6 interprets the results. Section 7 gives the results of an extended power
evaluation, and Section 8 concludes.

2 The data set

The data for the present study are quarterly observations for the period 1955:2 to 1996:4. They
are shown in raw form in Figure 1, and in Figure 2 as deviations from linear trend, fitted by
least squares. The party support data are taken from the monthly Gallup poll series, and ‘Lead’
is measured as the difference between Conservative and Labour percentage support in periods

1BDP model the series for log[X̄t/(1 − X̄t)] where X̄t is the sample average support. This process is defined
on (−∞,+∞) and a random walk is a logically feasible representation. In practice the range of variation of the
X̄t series is such that the logistic transformation is nearly linear, and the same model explains either series equally
well.
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Dependent Variable: Lead Sample: 1955:2 1996:4
Coefficient Std. Error t-Statistic

Inflation 0.093 0.155 0.600
Real Earnings 0.074 0.372 0.200
Real GDP 0.268 0.575 0.467
TB Rate 1.578 0.318 4.948

Unemployment 2.867 0.686 4.179
Constant -21.56 18.79 -1.147
Trend -0.432 0.220 -1.960

R-squared 0.342 Adjusted R-squared 0.317
Durbin-Watson 0.575 F-statistic 13.89
Residual ADF -4.512 F-statistic excl. Trend 13.54

Table 1: Regression of Lead on Economic Indicators

of Conservative government, and the difference between Labour and Conservative in periods of
Labour government.

Five indicators have been chosen as possible economic explanations of support. A linear trend
is added to the data set on the grounds, both theoretical and from inspection of the series, that it
is the trend deviations that would be likely to influence support for better or worse. The results
of running the ‘cointegrating’ regression appear in Table 1 and Figure 3.

The null hypothesis to be tested is, in effect, the BDP hypothesis. The only relation between
Lead and economic variables, according to this hypothesis, is that the innovations of the processes
may be correlated. As noted, the available evidence gives grounds to doubt even this connection.
The alternative hypothesis is that the stochastic trend in Lead is driven by, and hence cointegrated
with, the trends in the measured economic indicators. There is a third hypothesis, that Lead
does not follow the BDP model but is driven by other, unmeasured, economic variables. This
possibility must remain unresolved by the present analysis, though it remains open to test by the
methods of this paper if the variables can be identified.

Since there could be a temptation to treat this as a conventional cointegration analysis, it is
worth noting the outcome in this case. The residual ADF statistic in Table 1 (computed with
4 lags) is not far from the 10% critical value, according to MacKinnon’s (1991) tables. While
the hypothesis of non-cointegration could not be rejected in the conventional I(1) framework, the
margin would be slender enough to leave room for doubt. One may guess that the p-value for
this test would be no more than 12-15% which, taken at face value, might be construed as weak
evidence for the alternative.

However, both the I(0) and I(1) assumptions are contradicted by the results of the univariate
ARFIMA modelling exercises reported in Table 2. This table shows ARFIMA(p, d, q) models for
each series in the data set, chosen to maximise the Schwarz selection criterion, subject to the side
condition that residual autocorrelation is insignificant by the Box-Pierce Q test for 12 lags. Each
of these estimates was computed by differencing the data to satisfy the stationarity/invertibility
condition |d|< 0.5, and then adding 1 to the estimate of d so obtained. The second Box-Pierce test
provides evidence of possible ARCH-type nonlinear dependence (McLeod and Li 1983), which of
course the ARFIMA framework cannot account for. However, these models are generally adequate
and parsimonious. The Lead variable, in particular, is well represented by the ARFIMA(0, d, 0)
model with d significantly exceeding 0.5, indicating the series to be nonstationary, but also
significantly less than unity. The conventional cointegration test is therefore also in doubt.
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Figure 1: Data
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Figure 2: Data as deviations from trend
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Figure 3: Regression of Lead on Indicators

Lead Unempl Infl. TBR GDP RE
d 0.765 1.169 0.664 0.626 0.978 0.920

(0.066) (0.150) (0.092) (0.107) (0.060) (0.079)
p 0 2 1 2 0 0
q 0 0 0 1 0 0

ARMA Coefficients: - 0.518 0.473 0.397 - -
(0.16) (0.135) (0.105)

- 0.208 - 0.466 - -
(0.107) (0.094)

- - - 0.814 - -
(0.038)

Constant 0.084 -0.22 5.942 4.924 38.98 46.59
Trend -0.061 0.062 0.007 0.037 0.401 0.353

Q(12) - levels 12.09 17.76 19.90 12.32 17.58 12.92
Q(12) - squares 11.40 19.80 17.61 9.20 9.85 12.71

Table 2: Best ARFIMA(p,d,q) models of the data set (std. errors in parentheses)
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3 Models of Fractional Cointegration

From the point of view of establishing a relationship, the results of Table 2 present some un-
expected problems. While unemployment, the interest rate and earnings all have estimated d
insignificantly different from unity, this is not true of either lead or the interest or inflation rates.
These are significantly mean-reverting, although nonstationary (1/2 < d < 1). Is it possible that
variables with different orders of integration can be cointegrated?

To answer this question, consider the fractional vector ECM model given in Davidson (2000).
This takes the form £

B(L) +αβ0(K (L)−1 − I)¤∆(L)xt = D(L)εt. (3.1)

where

∆(L) = diag{(1− L)d1 , . . . , (1− L)dN} (3.2)

K (L) = diag{(1− L)b1 , . . . , (1− L)bN} (3.3)

where d1, . . . , dN are any nonnegative reals (assume d1 ≥ · · · ≥ dN without loss of generality),
0 ≤ bi ≤ di, and B(L) and D(L) are N ×N polynomial matrices whose characteristic roots are
strictly outside the unit circle. In the usual way, α and β are N × r matrices with rank r. This
system generates N series integrated to orders d1, . . . , dN , such that

∆(L)xt = wt ∼ I(0) (3.4)

(defining wt). If α = β = 0 these are noncointegrated, but if r > 0 it is required, to balance the
equation, that

β0K (L)−1wt ∼ I(0). (3.5)

If bi > 0 for one or more i, this implies cointegration. This set-up encompasses a wide range of
possible models. If bi = b and di = d for all i it corresponds to the system proposed in Granger
(1986), and if b = d = 1 then it reduces to the Johansen (1988, 1991) style VECM. More generally,
we can pick out a number of other cases yielding a possible modelling framework.

The first of these is where di − bi = a ≥ 0 for each i, which implies that

β0xt ∼ I(a). (3.6)

If a > 0, this is the case often called fractional cointegration, in which the cointegrating residual
is long memory and possibly even nonstationary, but has a lower order of integration than its
constituent variables. It is clear that with bi > 0, this model cannot have property (3.6) except
subject to additional restrictions. As discussed in Davidson (2000), either d1 = d2 or the top row
of β must be equal to 0, so that x1t is not cointegrated with the other variables. It is possible
that this set-up could describe the present case, since the data set contains three (plausibly) I(1)
series. In other words, the trends in GDP, unemployment and real earnings cannot individually
drive the trend in Lead, but a combination of these could, at least in principle, do so. We do not
yet consider whether such a model would be behaviourally plausible, merely note the possibility.

A second case where model (3.1) could generate cointegated series is where bi = b ≤ min1≤i≤N di
for all i, which, to ensure the equation balances, implies that

[(1− L)−b − 1]β0wt ∼ I(0). (3.7)
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Dependent Variable: Lead Sample: 1955:2 1996:4
Coefficient Std. Error t-Statistic

Inflation −0.117 0.154 −0.759
Real Earnings* 0.129 0.496 0.259
Real GDP* 0.162 0.900 0.179
TB Rate 1.566 0.328 4.948

Unemployment* 3.988 1.723 2.314
Constant −19.11 30.42 −0.628
Trend −0.472 0.395 −1.193

R-squared 0.263 Adjusted R-squared 0.235
Durbin-Watson 0.496 F-statistic 9.52
Residual ADF −.235 F-statistic excl. Trend 8.63

Table 3: The generalized cointegration model

This model has the peculiarity that the cointegrated series are not the elements of xt themselves,
but the fractional differences of orders di − b.2 This case will be referred to as generalised
cointegration, to make the distinction with simple cointegration in which linear combinations of
the measured variables have a lower order of integration, as in (3.6). This set-up allows imposes no
restrictions on β to ensure cointegration. It allows cointegration to be defined between arbitrary
sets of I(d) variables, and so resolves the main limitation of the fractional model as an econometric
modelling device.

Again, whether this is economically and behaviourally plausible is a matter for consideration.
There is nothing unusual in having the simple difference of a variable appear in an economic
relationship. For example, the (log-) price level contains (at least) the same information as the
level of inflation, but the latter variable is customarily assumed relevant to agents’ decisions.
While economic models do not normally assign the same role to fractional differences, this is
simply because such a modelling strategy has never been entertained. There seems to be no
inherent reason why they should not do so. Just as the price level is relevant to some decisions and
its rate of change to others, in a representative-agent framework, so may the fractional difference of
a trending variable contain the relevant information for a decision involving a particular planning
horizon. In turn, this could be reflected in the degree of persistence of the target variable. The
question of primary interest must be whether such relationships are discoverable in the data.

The result of running the regression on the present data after semi-differencing is shown in
Table 3. The variables marked with a * have been semi-differenced to have a d of 0.765, based on
the models in Table 2. The filtered (and also detrended) series are shown, with the originals for
comparison, in Figure 4. On the conventional criteria, this regression is actually somewhat inferior
to the original in Table 1, and offers little support for the generalized cointegration approach in
the present context. It will nevertheless be of some interest to apply the test in this setting, one
in which the cointegration hypothesis presents at least no logical difficulties.

4 Test Procedure

The bootstrap tests applied here are described in detail in Davidson (2000). The main feature
of the procedure is to draw bootstrap replications of the model in (3.1) under H0, such that
α = β = 0, and so generate the null distributions of two regression-based test statistics, the

2Note that the orders of integration of the cointegrated series are indeterminate unless we impose that the linear
combination is I(0).
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Figure 4: Semi-differenced series, d = 0.765
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F statistic for goodness of fit (excluding trend) and the Durbin-Watson statistic. The actual
statistics yielded by the regression in Table 1 are located in these empirical distributions to yield
asymptotically valid p-values. The estimated value of d, from the first column of Table 2, is
used to generate the I(d) series representing Lead, which is non-cointegrated with the regressors
by construction, but whose increments reproduce the observed correlation structure with those
of the regressors under H0. The bootstrap draws are conditioned on the actual sample values
of the regressors. This yields potentially more powerful tests than would bootstrapping the
complete data set, noting that the conditional distributions must have smaller dispersion than
the unconditional ones.

The test statistics employed are not asymptotically pivotal, meaning that they depend on
nuisance parameters under H0; specifically, the values of d and the autocovariances of the data
increments. While there exist well known fixes to correct for these nuisance parameters in tests
for conventional I(1)/I(0) cointegration, of which the ‘augmentation’ of the Dickey-Fuller statistic
is the best-known, there are no such fixes that can generate statistics not depending on the d
values. A bootstrapping approach is therefore unavoidable. In this framework, the dependence on
the covariance parameters is allowed for, not by computing a modified statistic, but by generating
the appropriate bootstrap distribution, by estimating the DGP of the increments of Lead under
H0.

Let wt be the I(0) vector defined in (3.4). Because the regressors x2t = (x2t, . . . , xNt)0 are to
be held conditionally fixed, it is necessary to estimate a dynamic equation for w1t containing both
w1,t−1, . . . and . . . ,w2,t+1,w2t,w2,t−1, . . . , where the ellipses represent lags of total length to be
specified. The inclusion of the leads as well as lags of the regressors is to allow for the fact that
w1t could Granger-cause w2t, which is not ruled out even if the regressors were weakly exogenous.
With this structure, however, with lags suitably chosen, the residuals from the regression should
be, asymptotically, both serially independent and totally independent of the regressors. Resam-
pling from the empirical distribution of these residuals, and then passing them back through
the same filter in reverse, should yield a bootstrap sample having the same correlation structure
under H0 as the original series, asymptotically, and the resulting test distributions should depend
on the nuisance parameters in just the right way.

There is one caveat to be observed in this procedure. The test as described, in which the
best-fitting dynamic equation is chosen by the usual consistent model selection criteria, should be
correctly sized asymptotically, because if H0 is true the correct model is chosen with probability
1 in the limit. However, such a test would have limited power, because when cointegration does
exist, this long-run relation willl contaminate the short-run dynamics, and the best model must
contain a large number of leads and lags. The problem is avoided by choosing a deliberately
parsimonious model, with short leads and lags, which should capture the weak dependence under
H0 but avoid this contamination. In practice, there is a trade-off of advantages between size and
power that can only be resolved in the light of experience and simulation studies.

Another feature of these tests is the opportunity to test different null hypotheses. Being
regression based, these tests may appear directly comparable with the Engle-Granger or Phillips-
Perron residual-based tests. This is true in the sense they can only test for cointegrating rank
0 against cointegrating rank > 0, but since they entail structural modelling of the short-run
dynamics, they have much in common with system-based tests like Johansen’s eigenvalue tests.
If the null hypothesis is simulated by imposing independence between w1t and w2t – in effect,
by excluding w2t and its leads and lags from the dynamic regression – the test distributions
generated are appropriate to the hypothesis that x1t and x2t are independent, not merely non-
cointegrated. A similar test would be obtained by enforcing block-diagonality of the short-run
component in the Johansen VECM.

We refer to the hypothesis of non-cointegration, with short-run correlation unrestricted, as
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the weak null, and the hypothesis of independence, with no relationship at all frequencies, as the
strong null. The ability to test alternative dependence hypotheses promises to make these test
procedures more informative than their conventional counterparts. This is one reason why they
may be useful even when the latter are available, in the context of I(1) data.

5 Size Correction

The tests are consistent and asymptotically correctly sized, subject to the dynamic model under
the null being correctly specified. In finite samples, however, there is evidence from simulations of
fairly severe bias. To demonstrate the problem, let Pn0 denote the probability measure associated
with the distribution of a test statistic t when H0 is true. If tn is the realized value of the statistic,
the bootstrap procedure estimates the p-value gn = P ∗n0(t ≤ tn), where P ∗n0 is the distribution of
t in the bootstrap replications. Note that P ∗n0 6= Pn0, because various nuisance parameters have
been replaced by estimates in the bootstrap computation of tn.

Defining the p-value corresponding to an exact test as

hn = Pn0(t ≤ tn)

note that gn and hn are both random variables whose distribution is derived from that of tn.
However, for any choice of Pn0 the relation

Pn0(hn < x) = x (5.1)

holds by construction, because tn is a random drawing from Pn0. In other words, hn is uniformly
distributed on [0, 1]. Let Hn denote the c.d.f. of gn, such that

Pn0(gn ≤ x) = Hn(x). (5.2)

If the distributions are continuous, then Hn : [0, 1] 7→ [0, 1] is an increasing homeomorphism with
Hn(0) = 0 and Hn(1) = 1, and from (5.2) it has the property

hn = Hn(gn). (5.3)

Suppose the distribution of the data under H0 were known, and random drawings could be taken
from it. Hn could be computed, as accurately as desired, by the empirical c.d.f. of gn in Monte
Carlo replications of the whole bootstrap procedure, including the fitting of the ARFIMA model
of yt and the estimation of the short-run dynamics. In view of (5.1), by using hn computed from
(5.3) in place of gn an exact α-level test could be constructed, given sufficient replications to
estimate the distributions with arbitrary accuracy.

Of course, the distribution of the data is unknown, but since the DGP can be given parametric
form and consistently estimated, Monte Carlo can also be used to construct a c.d.f. Ĥn (say)
by taking drawings from this estimated distribution. The test based on Ĥn(gn) is not exact and
is still only an asymptotic approximation. However, it would be exact, in finite samples, in the
case where the estimates of the nuisance parameters were identical with those of the true DGP
generating Pn0.

We call this a size correction since, by construction, the test criterion ‘reject if Ĥn(gn) < α’
must lead to rejection with probability α in Monte Carlo draws from the estimated DGP used to
generate Ĥn. This fact is useful in evaluating the power estimation carried out below in Section
7, since the DGPs under the alternative hypotheses reduce to the same null DGP by setting the
parameters to their null values. However, the method is effectively equivalent to the prepivoting
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procedure of Beran (1988).3 The statistic gn can be thought of as an asymptotically pivotal
statistic, given that its asymptotic distribution is U(0, 1) on H0, regardless of the distribution
of the underlying statistic. The statistic Ĥn(gn) represents the proportion of bootstrap draws
falling below gn, and so is, in effect, the bootstrap p-value corresponding to gn. Following Beran’s
analysis, the corrected test can therefore be said to have a true rejection probability on H0 that
differs from the nominal rejection probability by an error of o(n−1/2).

6 Results

Using the fitted univariate ARFIMA models reported in Table 2 to provide estimates of the d
parameters, bootstrap tests were perfomed of each of the four hypotheses, in other words, the
strong and weak forms of regular and generalized cointegration. In the latter case, the three
regressors with estimated d values exceeding 0.765 were partially differenced to match this value,
as in Figure 4, while the other two were left in their original form. To estimate the short-run
dynamics under H0, the system dynamics are convoluted with the univariate time series models
in Table 2 for the sake of parsimony, as described in Davidson (2000). Thus, to test the strong
null hypothesis the ARFIMA residuals for Lead were resampled and back-filtered through the
ARFIMA model to give the bootstrap samples. In the test of the weak null, the ARFIMA
residuals were further modelled by regression on the lags of the regressors of orders −2 through
+2, as well as 2 own-lags. This distribution was resampled, and passed back through the same
filter in reverse.

The tests were performed with 5000 bootstrap replications, although note that this relatively
large number does not imply a precisely estimated p-value. The test is asymptotic and the
approximation depends on sample size, with T = 167 in this case. It does however render the
sampling error small enough to ignore, so that the tests are directly comparable with conventional
asymptotic tests.

To obtain the corrected p-values, the following procedure was replicated 5000 times. A sample
drawing from the estimated distribution of Lead was obtained, from the distribution used to
construct the bootstrap test under either the true null or the weak null hypotheses, as appropriate.
Treating this as the ‘true’ data set, the bootstrap test was carried out using 500 replications. This
test includes the steps of estimating the value of d for the series by maximum likelihood using
the ARFIMA(0, d, 0) specification, and fitting the short-run dynamics. The empirical c.d.f. of
p-values so obtained represents the function Ĥn defined in the last section, and is used to read
off the entries in the second of the two columns in Table 4. Figure 5 shows these estimates for
each model, the broken line indicating the uniform c.d.f.

To perform the generalized cointegration test, the series for unemployment, real GDP and real
earnings were semi-differenced, as described in Section 3. It should be emphasized here that the
choice of common d value adopted here is arbitrary, to the extent that fractionally integrating
Lead and the other variables ‘up’ to a larger common value (such as 1.16) is observationally
equivalent. The only difference would be that the putative cointegrating residual would have
longer memory than otherwise.4

It is evident that, on all these measures, there is not even slender evidence of a cointegrating
relationship. The set of economic indicators chosen may be incomplete, and for example the

3The only difference is that in the present implementation the empirical c.d.f. Ĥn and the bootstrap p value gn
are computed in successive runs, instead of simultaneously. This is solely a matter of programming convenience,
since the extra time needed to compute gn is trivial.

4The test distributions would of course be different in the two cases. It is a reasonable conjecture that the test
power should be invariant to this choice, but whether this is so would require further research to establish.
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Figure 5: Ĥn functions, estimated from 5000 Monte Carlo replications.

F DW
raw corrected raw corrected

Regular Observed value 13.54 0.575
cointegration p-value, strong null 0.518 0.533 0.524 0.451

p-value, weak null 0.635 0.544 0.687 0.572
Generalized Observed value 16.04 0.64
cointegration p-value, strong null 0.492 0.511 0.297 0.208

p-value, weak null 0.594 0.475 0.453 0.285

Table 4: Cointegration test results
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tax rate and exchange rate indicators used by Pissarides (1980) have not been considered here.
However, the variables included should on any basis be regarded as important. One would expect
at least some mild evidence of a relationship, if in fact it existed. While alternative models are
clearly open to test on the same lines, this evidence clearly favours either the dominance of purely
non-economic factors, in explaining the trend, or an explanation on the lines proposed by BDP.

7 Power Evaluation

One of the virtues of the bootstrap approach is that a power evaluation can be undertaken relevant
to the specific model under test. This is done by essentially the same procedure used to construct
the size corrections of Section 5. In this case, however, artificial processes are constructed to
represent a residual, to which is added a linear combination of the regressors to form a data
set for which the null hypothesis is false. These models are chosen to be as close as possible to
the null cases for which the size corrections were constructed, the same model of the fractional
difference component being used in each case.

The experimental procedure is as follows:

1. As for the bootstrap procedure, the Lead variable is fractionally differenced according the
model in Table 2. The differences are whitened and projected on the differenced regressors,
as described in Section 4, to generate a shock series.

2. In each Monte Carlo replication, the shock series is randomly resampled. In a test of
the weak null, it is back-filtered through the estimated VAR from step 1 to simulate the
correlation structure. These steps are also identical to those performed in the bootstrap
test.

3. Letting the series generated at step 2 be denoted {et}, the artificial dependent variable is
constructed as

yt(s, d) = s(1− L)−det + z 0tb (7.1)

where b is an arbitrary vector to form the ‘explained’ part of the model, and d and s are
values to be varied experimentally. In practice, b was chosen as the coefficients from the
regression on the observed yt, from Table 1 or Table 3, as appropriate. d is set in the range
from 0 up to 1, and

s = C
SD(et)

SD(w 02tb)

(recall that w2t are the I(0) fractional differences of zt) where SD denotes the sample
standard deviation and C a proportionality factor, to be varied.

4. The bootstrap test is performed on the artificial model, using the size corrections. The
actual procedure is simulated to the point of estimating d for the dependent variable by
maximum likelihood, although using the ARFIMA(0, d, 0) model rather than by a specifi-
cation search.

Steps 2-4 were replicated 1000 times, and the power of the test estimated by the proportion
of cases in which the estimated p-value fell below 0.05. There are four cases to consider, the
strong and weak hypotheses, for the regular cointegration and generalized cointegration models,
respectively, and for each of these cases, five values of d and four values of C were used. The
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C= 1 C= 2 C= 4 C= 8

d F DW R2 F DW R2 F DW R2 F DW R2

1 1 0.11 0.84 0.98 0.12 0.59 0.61 0.12 0.29 0.19 0.10 0.10
0.75 1 0.7 0.96 1 0.65 0.88 0.98 0.46 0.64 0.55 0.23 0.32
0.5 1 1 0.99 1 1 0.95 1 0.98 0.84 0.98 0.75 0.57
0.25 1 1 0.99 1 1 0.97 1 1 0.90 1 1 0.69
0 1 1 1 1 1 0.98 1 1 0.91 1 1 0.71

Table 5: Test powers: regular cointegration, strong null

C= 1 C= 2 C= 4 C= 8

d F DW R2 F DW R2 F DW R2 F DW R2

1 0.80 0.44 0.97 0.42 0.29 0.59 0.15 0.19 0.27 0.08 0.15 0.08
0.75 1 0.95 0.96 0.94 0.84 0.88 0.43 0.50 0.65 0.14 0.19 0.33
0.5 1 1 0.99 1 1 0.96 0.97 0.99 0.84 0.50 0.61 0.58
0.25 1 1 0.99 1 1 0.97 1 1 0.90 0.95 0.96 0.69
0 1 1 0.99 1 1 0.98 1 1 0.91 1 1 0.72

Table 6: Test powers: regular cointegration, weak null

C= 1 C= 2 C= 4 C= 8

d F DW R2 F DW R2 F DW R2 F DW R2

1 0.99 0.04 0.61 0.64 0.06 0.29 0.23 0.08 0.09 0.10 0.09 0.02
0.75 1 0.35 0.88 0.99 0.30 0.66 0.59 0.15 0.32 0.19 0.07 0.11
0.5 1 0.99 0.95 1 0.96 0.85 0.98 0.72 0.58 0.61 0.18 0.24
0.25 1 1 0.97 1 1 0.90 1 1 0.70 0.99 0.80 0.36
0 1 1 0.98 1 1 0.91 1 1 0.72 1 1 0.40

Table 7: Test powers: generalized cointegration, strong null

C= 1 C= 2 C= 4 C= 8

d F DW R2 F DW R2 F DW R2 F DW R2

1 0.15 0.18 0.58 0.05 0.12 0.25 0.05 0.09 0.06 0.07 0.09 0.01
0.75 0.64 0.58 0.87 0.12 0.23 0.64 0.07 0.10 0.30 0.08 0.06 0.07
0.5 0.99 0.99 0.96 0.40 0.74 0.85 0.14 0.28 0.57 0.13 0.08 0.22
0.25 1 1 0.97 0.87 0.99 0.90 0.49 0.77 0.70 0.44 0.30 0.35
0 1 1 0.98 0.99 1 0.91 0.94 1 0.73 0.93 0.85 0.40

Table 8: Test powers: generalized cointegration, weak null
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powers are shown in Tables 5—8, which also give the average values of the R2 from the 1000
regressions, to give an idea how well these regressions are fitting in each case.

A number of considerations need to be borne in mind in reviewing these results. First, they
are of course entirely specific to the data set and sample size in question, noting that zt in
(7.1) represents the observed data, on which all simulations are conditioned, just as for the tests
themselves. The point is of course that the same evaluation can be performed, in principle, for
any empirical problem.

Second, the strong and weak hypotheses have been set up in such a way that the nulls are
exactly true in the cases b = 0. Thus, for the weak hypothesis (Tables 6 and 8), the fractional
differences of yt in (7.1) are correlated with those of zt whether or not b = 0. In the strong
null cases (Tables 5 and 7), they are independent when the null is true. Comparison of the two
cases aims to show the cost in terms of test power of the need to take account of high-frequency
correlation under the null.

Third, in the results in Tables 5 and 6, since the regressors are close to I(1) the same will be
true of the artificial dependent variables. The alternatives investigated here might be thought
of as corresponding to that state of the world in which the d for Lead has been mismeasured.
Fourth, finally, note that the results in Tables 7 and 8 do not tell us anything about the generalized
cointegration model, as such, but merely about the ability of the test to detect cointegration in
fractionally integrated processes, where the common d is 0.765.

The main features of these results are the generally good power of both the tests to detect
cointegration in this setting, and also the equal or superior power of the F test in nearly every
case. The asymptotic analysis given in Davidson (2000) has a bearing on these findings. It
is shown there that the DW-type test has power against alternatives with the residual d < 1.
Remarkably, the F test can in some cases detect a relationship even when the disturbance is I(1),
provided the shocks are small enough.

8 Conclusion

This paper has sought evidence for a connection between the popularity of governments and
economic indicators over the business cycle, and has failed to find any. Since negative findings of
any sort can leave readers in doubt about the quality of the evidence, it is as well to emphasize
what conclusions can be drawn here.

First, note that the strong null hypothesis is that of independence. The statistics will in
general will have their distributions shifted to the right in the presence of correlation between
the increments of the processes, even in the absence of cointegration.5 The test is not consistent
against such alternatives, but such correlations should at least shift the median of the test dis-
tribution. In the present case, Table 4 shows that the observed statistics lie close to the medians
of the strong-null distributions.

Second, while these may not be exact tests in finite samples, exact tests of level α can be
constructed by rejecting only if the largest possible p-value, by choice of the unknown nuisance
parameters, is less than α (see Dufour 1999). Clearly, no such test can reject the non-cointegration
hypothesis, and we can therefore treat these results as exact at any chosen significance level. Even
by admitting type 1 error probabilities as large as 20%, the hypothesis cannot be rejected.

Third, while the set of economic series chosen for the test may omit some important ones,
those included are undeniably important. It has been shown that these tests have power against
alternatives in which the residuals are long-memory or nonstationary – even I(1). The main

5These properties is demonstrated in Davidson (2000).
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implication of these properties is that omission of important factors should not in general mask
an existing relationship. If any economic trend factors are omitted, we are forced to the conclusion
that they must be orthogonal to those included, and it is not at all obvious what these factors
might be.

Fourth, in focusing on the formalities of cointegration testing we have not commented on the
numerical magnitudes of the regression coefficients in Tables 1 and 3, but obviously these have
dubious implications. Of the coefficients with large t values, the positive relationship between
unemployment and popularity appears bizarre, although we can account for it anecdotally by
pointing to, for example, the catastrophic collapse of the 1992-97 Conservative government’s
popularity, in step with recovery from recession. Historians of the period will explain this decline
in terms of misbehaviour by politicians, internal divisions, and a loss of confidence following the
exit from the ERM. We know that such intangible factors matter. What the present results show
is that objective economic conditions have an insignificant role by comparison.

In summary, then, this study can be claimed to provide clear evidence in support of the BDP
hypothesis, that local trends in popularity have quite different causes relating to the aggregation
of sampled opinions. Economic events send different messages to different individual voters, and
aggregating their reactions to them has unpredictable effects. Minor events are important if voters
agree about them, major events may be appear to be ignored in the aggregate if voters disagree.
Whatever the actual mechanism of opinion filtering, the effect is to scramble the original message
so effectively that it is undetectable in statistical tests The message for governments may be that
while the economy is undoubtedly important, the constituencies of winners and losers under any
change of policy have to be offset against one another, and the effects are hard to disentangle.
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