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1. Introduction

Economic theories frequently imply moment conditions of the form ( )[ ] 0,ZE 0 =θψ  where

( )θψ ,Z  is a 1r ×  vector of moment functions and θ  is an unknown 1q ×  parameter vector of

interest with true value 0θ . Z denotes a random vector including both dependent and ex-

planatory variables with a joint probability distribution function. Well known examples of

such moment conditions can be found in the empirical literature on asset pricing theories (cf.

e.g. Tauchen, 1986, and Kocherlakota, 1990). Suppose the data { } n,,1i:Z i L=  consist of a

random sample of Z. Throughout the paper it is assumed that the data are independent and

identically (i.i.d.) distributed according to some unknown distribution function ( )zF0 . The

interest focuses on the estimation of 0θ  using sample information and knowledge about the

population moment condition. Rewrite the moment restriction as

( ) ( ) ( ) 0zFd ,z,FR 0000 =θψ=θ ∫ .  (1.1)

By application of the analogy principle (cf. Manski, 1988, ch. 1.2), an estimate θ̂  of 0θ  can

be obtained by substituting the unknown distribution function ( )zF0  with the empirical distri-

bution function ( )zFn . The latter is ‘feasible’ if it provides a solution to the equation

( ) 0ˆ,FR n =θ  (1.2)

subject to Θ∈θ , where Θ  is some space of possible parameter values. A prominent example

for (1.2) is the method of moments (MM) estimator as a special case of the generalized

method of moments principle (GMM; cf. Hansen, 1982) with qr =  moment functions. It is

well known that (1.2) generally can not be solved in the presence of overidentifying restric-

tions, i.e. qr > . However, in this case a direct extension of the analogy principle (cf. Manski,

1988, ch. 1.2.2) allows solving

( )( )θ=θ
Θ∈θ

,FRdminargˆ
n ,              (1.3)

where ( )⋅d  maps values of ( )⋅⋅,R  into the non-negative real half-line. The GMM estimator is

the best known example for (1.3). Alternatively, Manski (1988, ch. 1.2.1) suggests solving

( )( ) 0ˆ,FR n =θπ  (1.4)
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where the function ( )⋅π  projects the empirical distribution on the space of feasible distribution

functions. This procedure has recently attracted much interest in GMM literature. In particu-

lar, an estimate ( ) ( )zF̂F nn ≡π  of the distribution function ( )zF0  was developed by Back and

Brown (1993), Qin and Lawless (1994), Brown and Newey (1995, 1998) and Imbens (1997)

which is feasible in the sense of providing a solution to (1.4) and embodies the semi-

parametric restriction (1.1). The latter classifies ( )zF̂n  as a semiparametric estimate of ( )zF0

in contrast to the nonparametric distribution estimate ( )zFn . The estimate ( )zF̂n  results from

different approaches and the references given above follow different routes to introduce this

distribution function estimate. For example, Imbens (1997) shows that ( )zF̂n  is implied by

ML estimation of the points of finite support of a discrete multinomial distribution character-

izing a sample analog of the moment condition (1.1). The finite support is not restrictive be-

cause any distribution function ( )zF0  can be approximated arbitrarily well by a multinomial

distribution. Back and Brown (1993) show that ( )zF̂n  is the implied distribution function es-

timate of efficient GMM estimators and Brown and Newey (1998) introduce ( )zF̂n  in the

context of semiparametric estimation of expectations. This paper follows Qin and Lawless

(1994), Brown and Newey (1995) and Imbens (1997) and presents the empirical likelihood

approach to ( )zF̂n  which has a particularly simple interpretation: ( )zF̂n  is the discrete multi-

nomial distribution with n support points which has the highest probability of generating the

observed sample subject to a sample counterpart of the moment condition (1.1).

The reason for considering ( )zF̂n  in combination with (1.4) as an alternative to the usual

GMM approach (1.3) is the semiparametric efficiency of ( )zF̂n  in the class of regular estima-

tors accounting for the moment condition (1.1). One might expect that this efficiency advan-

tage of the distribution estimator carries over to the resulting parameter estimate. However,

the semiparametric efficiency bound for estimators exploiting moment conditions of the form

(1.1) as the only distributional assumption has been established by Chamberlain (1987) and it

is well known that a GMM estimator using an optimal weight matrix attains this bound. In-

deed, this efficient GMM estimator and the estimator solving (1.4) with ( ) ( )zF̂F nn =π  share

the same first order asymptotic properties. Nevertheless, Brown and Newey (1998) conjecture

that efficiency gains of higher order for the parameters of interest could be realized by using

the efficient estimate ( ) ( )zF̂F nn =π . In addition, they show that any expectation

( ) ( ) ( )zFd ,zm,FT 0000 ∫ θ=θ .  (1.5)
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can be efficiently estimated subject to the semiparametric restriction (1.1) by

( )θ̂,F̂T n  (1.6)

given the semiparametric efficiency of θ̂ . This property will be used later with (1.5) being the

optimal weight matrix for GMM estimators. The estimate (1.6) of this weight matrix is sug-

gested by Back and Brown (1993) and Brown and Newey (1998).

This paper compares the finite sample properties of three versions of the conventional

GMM and empirical likelihood based GMM (GMM_EL) estimators in the presence of overi-

dentifying restrictions. All have in common that they reach the semiparametric efficiency

bound for given moment conditions (1.1). The first pair of estimators are two-step estimators

solving (1.3) in a second step with a first step estimate of the optimal weight matrix. The

GMM estimator uses an estimate of this weight matrix based on the empirical distribution

function )z(Fn , the GMM_EL estimator rests on ( )zF̂n  using an estimate of the form (1.6).

The second pair of estimators are one-step estimators solving (1.3) in the case of GMM and

(1.4) in the case of GMM_EL. The GMM estimator is the continuous updating estimator in-

troduced by Hansen, Heaton and Yaron (1996). The third pair consists of bootstrap estimators

solving (1.3) where the nonparametric and semiparametric distribution estimates )z(Fn and

( )zF̂n  describe the respective resampling probabilities for the GMM and GMM_EL bootstrap

estimators. These bootstrap approaches were introduced by Hall and Horowitz (1996; GMM)

and Brown and Newey (1995; GMM_EL).

The one-step and bootstrap alternatives to the usual two-step GMM estimator are attrac-

tive as possible solutions to the well known small sample shortcomings of the two-step GMM

estimator. Summarizing the small sample evidence obtained by Tauchen (1986), Kocherla-

kota (1990), Ferson and Foerster (1994), Hansen, Heaton and Yaron (1996) for asset pricing

models, Altonji and Segal (1996) and Clark (1996) for covariance structures, and Arellano

and Bond (1991), Ziliak (1997), and Blundell and Bond (1998) for dynamic panel data mod-

els, a number of finite sample problems appear to be very robust: The bias of the two-step

GMM estimator increases with the number of overidentifying restrictions, the coverage prob-

abilities of confidence intervals could be heavily distorted and the size of the J test may devi-

ate from its nominal value. The one-step approaches could solve the first problem because

results from Altonji and Segal (1996) suggest that the weight matrix estimate introduces a

correlation between the moment functions and the weight matrix which creates finite sample
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bias. The one-step approaches circumvent the weight matrix estimation step and therefore

solve this source of potential bias. In addition, the one-step continuous updating GMM esti-

mator is proven to be consistent under Bekker’s (1994) large instruments asymptotics which

renders the two-step GMM estimator inconsistent (in the framework of a linear simultaneous

equation model with conditional homoskedasticity). The bootstrap methods may improve

upon the inference in small samples because they provide asymptotic refinements for the cov-

erage probabilities of confidence intervals and the size of the J test of overidentifying restric-

tions (cf. Hall and Horowitz, 1996). However, the motivation of the bootstrap is a pure as-

ymptotic one and small sample experiments are necessary to evaluate the bootstrap based in-

ference in comparison to inference based on conventional first order asymptotic theory for

GMM estimation.

Hence, the aims of this paper are twofold: One the on hand it compares conventional and

empirical likelihood approaches to efficient GMM estimation, on the other hand it provides

evidence on the relative performance of one-step, two-step and bootstrap estimators. This is

done by means of a Monte Carlo investigation using a specification suggested by Wooldridge

(1997) which exploits sequential conditional moment restrictions for binary panel data with

multiplicative latent effects. The Monte Carlo experiments suggest that the empirical likeli-

hood based two-step GMM estimator may improve upon the reliability of the J test of overi-

dentifying restrictions while the bootstrap methods are recommended for obtaining more reli-

able coverage rates of symmetric confidence intervals which are much too small if they are

based on conventional asymptotic theory. The one-step continuous updating GMM estimator

exhibits fat tails which prevents an useful application while the one-step empirical likelihood

estimator performs similar to the conventional two-step GMM estimator.

The outline of the paper is as follows. Section 2 introduces the nonparametric distribution

estimate ( )zFn  of ( )zF0  and the resulting one-step, two-step and bootstrap GMM estimators.

Section 3 derives the semiparametric distribution estimate ( )zF̂n  of ( )zF0  and describes the

corresponding one-step, two-step and bootstrap GMM_EL estimators. Section 4 presents the

Monte Carlo experiments and Section 5 concludes.
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2. Conventional approaches to efficient GMM estimation

2.1 Nonparametric distribution estimation

Conventional GMM estimators apply the analogy principle (1.3) using the empirical distribu-

tion function

( ) ( )∑
=

≤=
n

1i
in

1
n zZ1zF                       (2.1.1)

as a nonparametric estimate of ( )zF0 , where ( )⋅1  denotes the indicator function. nF  is a dis-

crete distribution function which places equal probability 1/n on each observation such that

the sample equivalent of the population moment condition becomes a sample average.

2.2 Two-step GMM estimation

The GMM estimator θ̂  of the unknown parameter vector 0θ  is defined as the vector mini-

mizing the objective function

( ) ( ) ( )






 θψ
′








 θψ=θ ∑∑
==

n

1i
in

1
n

1i
in

1
n ,ZŴ,ZĴ           (2.2.1)

subject to Θ∈θ , where Θ  denotes the set of possible parameter values and Ŵ  is a positive

semidefinite weight matrix of dimension rr ×  which converges in probability to W. Note that

(2.2.1) is a special case of (1.3). Under regularity conditions (cf. Newey and McFadden,

1994) the GMM estimator is consistent and the asymptotic distribution of the stabilizing

transformation is normal.

The Cramér-Rao efficiency bound for estimators using (1.1) as the only substantive dis-

tributional assumption is derived by Chamberlain (1987) as

( ) 1

0

1

00 GVG
−−′=Λ            (2.2.2)

with ( ) ( )[ ]' ,Z ,ZEV 000 θψθψ=  and
( )







θ∂
θψ∂

= 0
0

,Z
EG .

A necessary and sufficient condition for the GMM estimator attaining the lower bound Λ  is

1
000 VGFWG −′⋅=′  for any nonsingular matrix F (cf. Hansen, 1982). The necessary condition

1
0VW −=  is the origin of the usual two–step GMM estimation principle which consists of

minimizing (2.2.1) using a parameter independent weight matrix such as rIŴ =  in a first



7

step, computing a weight matrix with the first step estimates which converges in probability

to 1
0VW −= , and finally minimizing (2.2.1) again using this optimal weight matrix. Replacing

the population moment 0V  by a sample equivalent based on (2.1.1) and noting the continuity

of matrix inversion, a consistent estimate 1
1V̂Ŵ −=  of the optimal weight matrix is

( ) ( ) ,ˆ,Z ˆ,ZV̂
1n

1i
1i1in

11
1

−

=

−





 ′
θψθψ= ∑               (2.2.3)

where 1θ̂  is the consistent first step GMM estimate. Denote the second step GMM estimate as

2θ̂ . A consistent estimate Λ̂  of the asymptotic variance-covariance matrix of 2θ̂  is obtained

by replacing 1
0V−  in (2.2.2) with 1

1V̂−  and 0G  with its corresponding sample moment evalu-

ated at 2θ̂ . Choosing 1
1V̂Ŵ −= , ( )2n

ˆĴn θ⋅  is asymptotically 2
qr−χ  distributed suggesting a test

of the overidentifying restrictions (cf. Hansen, 1982) which has become known as the J test.

2.3 One-step GMM estimation

Hansen, Heaton and Yaron (1996) introduce the continuous updating GMM estimator which

results from altering the optimal weight matrix in each iteration step to embody the restric-

tions of the model. The GMM objective function is modified to

( ) ( ) ( ) ( ) ( )





 θψ



 ′θψθψ

′






 θψ=θ ∑∑∑

=

−

==

n

1i
in

1

1n

1i
iin

1
n

1i
in

1
n ,Z,Z ,Z,ZĴ           (2.3.1)

which follows immediately from combining (2.2.1) with (2.2.3) evaluated at θ  instead of 1θ̂ .

The objective function is again a special case of (1.3). The authors point out that the asymp-

totic distribution of the GMM estimator remains unchanged by this modification although the

first order conditions for a minimum of (2.3.1) contain an additional derivative term for the

parameter dependent weight matrix.

For systems of linear simultaneous equations under conditional homoskedasticity the

continuous updating estimator becomes the limited information maximum likelihood (LIML)

estimator with its known advantages over the two-stage least squares (2SLS) estimator which

is the linear simultaneous equations model counterpart of the two-step GMM estimator. In

particular, the LIML estimator remains consistent under Bekker’s (1994) large instruments

asymptotic theory which renders 2SLS inconsistent. Therefore one might argue that the con-

tinuous updating estimator could outperform the two-step GMM estimator if the number of
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overidentifying restrictions is large. Note that by definition of (2.3.1) the corresponding J test

is more conservative than the J test based on the usual two-step GMM estimator. Hansen,

Heaton and Yaron (1996) report results from Monte Carlo experiments which indicate an im-

proved size performance of the continuous updating J test over the conventional J test.

2.4 Bootstrap GMM estimation

The bootstrap is a resampling method for estimating the distribution of an estimator or statis-

tic. The bootstrap method treats the sample data as if they were the population and estimates

the distribution of interest using the empirical distribution of the relevant estimator or test

statistic generated by randomly resampling the sample data. The reasons for using the boot-

strap are twofold: On the one hand the bootstrap offers a simple way to compute the distribu-

tion of estimators or test statistics in those cases in which an analytical derivation or approxi-

mation is difficult. On the other hand the bootstrap often provides a more accurate approxi-

mation of the distribution of interest than the usual approximation obtained from first order

asymptotic theory. The latter argument is particularly well documented in Horowitz (1997)

who presents some examples in which the bootstrap yields asymptotic refinements.

The application of the bootstrap to overidentified GMM estimators is affected by one se-

rious problem: The GMM principle rests on the main assumption that the estimation data

{ } n,,1i:Z Z id L== is a random sample of the population distribution of the random vector

Z which satisfies the orthogonality condition ( )[ ] 0,ZE 0 =θψ . The bootstrap treats dZ  as if it

were the population and draws random samples { } n,,1i:Z Z b
ib L==  from dZ  with re-

placement by placing probability 1/n on each observation. Thus, the bootstrap does not im-

plement a semiparametric restriction on dZ  which corresponds to the orthogonality condition

under bootstrap sampling. In other words, the bootstrap would impose a moment condition

which does not hold in the population from which the bootstrap samples. As a consequence,

the bootstrap either does not improve upon conventional first order asymptotic approxima-

tions or does even worse. As far as the estimation of confidence intervals is concerned, the

bootstrap produces the same approximation error of the coverage probability as the asymp-

totic theory as shown by Brown and Newey (1995) for the bootstrap-t method and by Hahn

(1996) for the percentile method. Regarding the bootstrap estimate of the critical value of the

J test of overidentifying restrictions, the bootstrap produces the wrong size, even asymptoti-

cally (cf. Brown and Newey, 1995). These problems would be solved if the bootstrap imposed
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a moment condition on the original sample which corresponds to the population orthogonality

condition. Using the two-step GMM estimate 2θ̂  as the sample counterpart of the population

parameter 0θ , the bootstrap counterpart of the orthogonality condition can be written as

( )[ ] 0ˆ,ZE 2B =θψ   ⇔ ( ) 0ˆ,Z
n

1i
2in

1
2 =θψ≡ψ ∑

=

,                              (2.4.1)

where [ ]⋅BE  denotes the expectation under bootstrap sampling. Obviously, (2.4.1) generally

does not hold in the presence of overidentifying restrictions. However, (2.4.1) suggests re-

centering the original moment functions around their sample mean 2ψ  to implement a sample

orthogonality condition. This procedure was proposed by Hall and Horowitz (1996) and im-

plies the following recentered moment functions

( ) ( ) 2ii
* ,Z,Z ψ−θψ≡θψ           (2.4.2)

which, evaluated at 2θ̂ , satisfy the bootstrap counterpart

( )[ ] 0ˆ,ZE 2
*

B =θψ             (2.4.3)

of the population orthogonality condition ( )[ ] 0,ZE 0 =θψ . Hence, for any bootstrap sample

bZ  the bootstrap version of the two-step GMM estimator solves

( ) ( )






 θψ
′








 θψ=θ ∑∑
==Θ∈θ

n

1i

b
i

*
n
1

n

1i

b
i

*
n
1

b1 ,ZŴ,Zminargˆ           (2.4.4)

in the first estimation step using some parameter independent weight matrix Ŵ . For the sec-

ond estimation step the optimal weight matrix is computed according to (2.2.3) as

( ) ( )
1n

1i
b1

b
i

*
b1

b
i

*
n
11

b
ˆ,Z ˆ,ZV̂

−

=

−





 ′
θψθψ= ∑ .           (2.4.5)

Finally, the bootstrap version of the second step GMM estimator minimizes

( ) ( ) ( )






 θψ
′








 θψ=θ ∑∑
=

−

=

n

1i

b
i

*
n
11

b

n

1i

b
i

*
n
1

b ,ZV̂,ZĴ           (2.4.6)

and yields the bootstrap GMM estimate bθ̂  in replication b. Denote the qr ×  Jacobian matrix
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of the recentered moments by ( ) ( )[ ]θ∂θψ∂=θ ,Z,ZG ** . Then the asymptotic variance-

covariance matrix of the stabilizing transformation of bθ̂  is consistently estimated by

( ) ( ) .ˆ,ZGV̂ˆ,ZGˆ

1
n

1i
b

b
i

*
n
11

b

n

1i
b

b
i

*
n
1

b

−

=

−

= 



















 θ
′








 θ=Λ ∑∑           (2.4.7)

Replicating the estimation steps (2.4.4) – (2.4.7) B times generates an empirical distribution

function of the relevant statistics from which the bootstrap estimates can be derived. The fol-

lowing paragraphs discuss the bootstrap estimate of the bias, the bootstrap estimate of sym-

metric confidence intervals and the bootstrap estimate of the size of the J test of overidenti-

fying restrictions. In all cases the bootstrap treats the estimation data as if it were the popula-

tion and therefore replaces the population parameter vector 0θ  with the sample estimate 2θ̂

and the latter with bθ̂ . Hence, the bootstrap estimate of the bias is defined as

 2BB
ˆˆb̂ θ−θ= ,     where ∑

=

θ=θ
B

1b
bB

1
B

ˆˆ           (2.4.8)

is the expected parameter estimate under bootstrap sampling because the empirical distribu-

tion of the bθ̂  places probability B1  on each estimate. Using (2.4.8) a bootstrap estimated

bias corrected estimate B2B2
c
2

ˆˆ2b̂ˆˆ θ−θ=−θ≡θ  is readily available (cf. Horowitz, 1998).

For the bootstrap estimation of confidence intervals two different approaches can be dis-

tinguished by their respective representation of the coverage probability. Let ( ) kk
0

k
2 ŝˆt̂ θ−θ=

denote the t statistic based on the kth element of the two-step GMM estimator with kŝ , the kth

diagonal element of ( ) 2/1
nΛ̂ . The optimal situation for statistical inference would be de-

scribed by the knowledge of the quantile αt  such that ( ) α−=≤ α 1t|t̂|Pr  holds exactly in

small samples. However, αt  is not known and is therefore usually replaced with the 21 α−

quantile 2/zα  of the standard normal distribution which is the limiting distribution of the t

statistic using asymptotic theory. The bootstrap provides alternative estimates of αt . Rewrite

the coverage probability of the exact confidence interval as

( )( ) α−=≤θ−θ≤− αα 1tŝˆtPr kk
0

k
2           (2.4.9)

⇔ ( ) α−=⋅≤θ−θ≤⋅− αα 1ŝtˆŝtPr kk
0

k
2

k ,

⇔ ( ) α−=θ≤θ−θ≤θ− αα 1ˆPr k
0

k
2 ,                        (2.4.10)
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with kŝt ⋅=θ αα . The first bootstrap method for the estimation of confidence intervals is

based on (2.4.10) and replaces the unknown distribution of k
0

k
2

ˆ θ−θ  with the empirical distri-

bution of the corresponding bootstrap statistic k
2

k
b

ˆˆ θ−θ . Thus, the bootstrap estimate of αθ  can

be derived as the α−1  quantile

( )α−=θ −α 1Fˆ 1
nB ,       where ( ) ( )∑

=

θ≤θ−θ=θ
B

1b

k
2

k
bB

1
n

ˆˆ1F         (2.4.11)

is the relevant empirical distribution function generated by the bootstrap and ( )⋅−1
nF  its in-

verse. The corresponding bootstrap estimate BΙ  of the confidence interval for k
0θ  with nomi-

nal coverage probability α−1  results from (2.4.10) as

( )αα θ+θθ−θ= B
k
2B

k
2B

ˆˆ,ˆˆI .                      (2.4.12)

This procedure is known as the percentile approach to bootstrap confidence intervals (cf. e.g.

Efron and Tibshirani, 1993,  Section 13.3). The coverage error of this confidence interval for

k
0θ  defined as the difference between the true and nominal coverage probability,

( ) ( )α−−∈θ 1IPr B0 , has the same size as the coverage error of the confidence interval based

on first order asymptotic theory as point out by Hall and Horowitz (1996) and Horowitz

(1998). Thus, the bootstrap does not yield an asymptotic refinement in this case. Hahn (1996)

proves that this result holds as well for an uncentered version of the GMM bootstrap which

uses the uncentered moment functions ( ) ( )θψ≡θψ ,Z,Z*  throughout the estimation steps

(2.4.4) – (2.4.7).

However, recentering the moment functions becomes necessary in order for the second

bootstrap approach to the estimation of confidence intervals to achieve asymptotic refine-

ments upon asymptotic theory. This method is known as the bootstrap-t (or percentile-t)

method (cf. e.g. Efron and Tibshirani, 1993,  Section 12.5) and is based on an approximation

to (2.4.9). The bootstrap-t method replaces the unknown distribution of ( ) kk
0

k
2 ŝˆt̂ θ−θ=  with

the empirical distribution of the corresponding bootstrap statistic ( ) k
b

k
2

k
bb ŝˆˆt̂ θ−θ=  where k

bŝ

is the kth diagonal element of ( ) 2/1

b nΛ̂ . Thus, the bootstrap estimate of the exact critical

value αt  can be derived as the α−1  quantile

( )α−= −α 1Ft̂ 1
nB ,       where ( ) ( )∑

=

≤=
B

1b
bB

1
n t|t̂|1tF                     (2.4.13)
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is the relevant empirical distribution function generated by the bootstrap. The corresponding

bootstrap estimate BΙ  of the confidence interval for k
0θ  with nominal coverage probability

α−1  results from (2.4.9) as

( )k
B

k
2

k
B

k
2B ŝt̂ˆ,ŝt̂ˆI ⋅+θ⋅−θ= αα .                      (2.4.14)

Hall and Horowitz (1996, Theorem 3) show that the coverage error of the symmetric boot-

strap-t confidence interval is ( )1no −  and therefore smaller than the size ( )1nO −  of the confi-

dence interval which uses the asymptotic approximation 2/zα  of αt . Hall (1992, chap. 3.6)

and Horowitz (1997, 1998) point out that the coverage error of the bootstrap-t confidence in-

terval is usually of the order ( )2nO − . Hall shows that this result depends on the symmetry of

the bootstrap-t confidence interval. A two-sided equal-tailed bootstrap-t confidence interval

does not improve upon the asymptotic approximation of the coverage probability.

Horowitz (1997, 1998) explains the superiority of the bootstrap-t method over the per-

centile method in the sense of providing an asymptotic refinement by the fact that the former

method samples the asymptotically pivotal statistic ( ) kk
0

k
2 ŝˆ θ−θ  while the latter method sam-

ples the statistic k
0

k
2

ˆ θ−θ  which converges to a limiting distribution which depends on un-

known population parameters.

The J test statistic ( )2n
ˆĴn θ⋅  is asymptotically pivotal as well. Hence, it is not surprising

that the bootstrap improves upon the accuracy of the asymptotic approximation of the exact

rejection probability ( )( ) α=>θ⋅ αJˆĴnPr 2n . The conventional J test replaces the unknown

critical value αJ  with the α−1  quantile of the 2
qr−χ  distribution which is the limiting distri-

bution of the test statistic ( )2n
ˆĴn θ⋅  using first order asymptotic theory. The bootstrap-J

method  replaces αJ  with the α−1  quantile

( )α−= −α− 1FĴ 1
n

1
B ,        where ( ) ( )( )∑

=

≤θ⋅=
B

1b
bbB

1
n JˆĴn1JF         (2.4.15)

is the relevant empirical distribution function. Hall and Horowitz (1996, Theorem 3) prove

that the size approximation error of the bootstrap is of order ( )1no −  and therefore converges

faster to zero than the size approximation error using the critical value implied by asymptotic

theory which is of order ( )1nO − .

Hall and Horowitz (1996) report the results of some Monte Carlo experiments using a

data generating process which resembles an asset pricing model with a single overidentifying
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restriction. For sample sizes of 50 and 100 the empirical levels of the conventional t test and J

test turn out to be much larger than their nominal values. The bootstrap-t and bootstrap-J

methods usually reduce these approximation errors without completely eliminating the small

sample size distortions. Further small sample evidence on the performance of the Hall and

Horowitz GMM bootstrap appears to be very limited. One exception is the work by

Bergström, Dahlberg and Johansson (1997) who also find an improved size performance of

the Hall and Horowitz bootstrap-J test over the conventional J test based on asymptotic the-

ory. Horowitz (1998) presents Monte Carlo experiments for the finite sample performance of

confidence intervals obtained by the bootstrap-t method. Using the data generating process

analyzed before by Altonji and Segal (1996) for the estimation of covariance structures he

finds a substantial improvement of the empirical coverage probability over conventional con-

fidence intervals.

One question which has not been addressed in this section concerns the choice of the

number of bootstrap replications B. Horowitz (1998) recommends increasing B until a further

increase has no further impact on the bootstrap statistics of interest. This principle requires

repeated computation of these statistics and a stopping rule which defines ‘no impact’ in a

mathematical sense. Andrews and Buchinsky (1997) suggest a three-step method that yields

such a stopping rule in terms of an approximate percentage deviation of the bootstrap estimate

from the ideal bootstrap estimate with an infinite number of replications. They provide some

Monte Carlo evidence that points in favor of their method. However, in most applications of

the bootstrap the number of replications is chosen ad hoc. The above mentioned applications

of the Hall and Horowitz GMM bootstrap method rely on numbers between 100 and 500 rep-

lications.

3. Empirical likelihood approaches to efficient GMM estimation

3.1 Semiparametric distribution estimation

The empirical likelihood principle introduced by Owen (1988, 1990) and applied to GMM by

Qin and Lawless (1994) and Imbens (1997) is based on the optimization program

∑
=

θπ
π

n

1i
i,

lnmax  s.t. 1 
n

1i
i =π∑

=

, 0i ≥π ,                    (3.1.1)

    ( ) 0,Z 
n

1i
ii =θψπ∑

=

,           (3.1.2)



14

with ( )′ππ=π n1 ,,L . Solving this ( )qn +  dimensional optimization problem implies search-

ing for a discrete probability distribution function which places probability iπ  on observation

i and guarantees that the sample version (3.1.2) of the moment condition (1.1) is satisfied.

Note that solving (3.1.1) without noting (3.1.2) yields the estimate n
1

i
ˆ =π  of iπ  and implies

the empirical distribution function (2.1.1). The optimization problem can be solved by using a

Lagrange approach. Let γ  denote a scalar Lagrange parameter associated with the first re-

striction in (3.1.1) and λ  be a 1r ×  vector of Lagrange multipliers associated with restriction

(3.1.2). Then the Lagrange function to be maximized over λγθπ ,,,  can be written as

( )∑ ∑∑
= ==

θψπλ′−





 π−γ+π=

n

1i

n

1i
ii

n

1i
ii ,Zn1lnL            (3.1.3)

and implies the following first order conditions for the empirical likelihood estimates

    0
L

=
γ∂

∂
⇒ 1ˆ

n

1i

el
i =π∑

=

,

    0
L

=
λ∂

∂
⇒ ( ) 0ˆ,Z ˆ

n

1i
eli

el
i =θψπ∑

=

,           (3.1.4)

    0
L

=
θ∂

∂
⇒

( )
0 

ˆ,Z
ˆˆ

n

1i

eliel

iel =
θ∂

θψ∂
πλ′ ∑

=

,           (3.1.5)

0
Ln

1i i

i =
π∂

∂
π∑

=

⇒ nˆ
el =γ ,

    0
L

i

=
π∂

∂
⇒ ( )( )eliel

el

i ˆ,Zˆ1n

1
ˆ

θψλ′+
=π .           (3.1.6)

The resulting semiparametric distribution estimate places probability el

iπ̂  on each observation

( ) ( )∑
=

≤π=
n

1i
i

el
i

el
n zZ1 ˆzF̂ .                       (3.1.7)

The probabilities el

iπ̂  have a simple interpretation. From (3.1.6) it is obvious that the weights

decrease with an increasing estimated Lagrange parameter elλ̂  or alternatively, with an in-

creasing departure of the sample moment condition from zero. Substitution of (3.1.6) into the

first order conditions (3.1.4) and (3.1.5) of the Lagrange approach suggest an alternative way

of obtaining empirical likelihood estimates of the parameters of interest θ  and λ  by a just

identified moment estimator
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( ) 0ˆ,ˆ,Z
n

1i
eleliel =λθψ∑

=

          (3.1.8)

with ( ) ( ) ( )( )
( )( ) ( )( )






θψλ′+θ∂θψ∂λ′

θψλ′+θψ
=λθψ

,Z1,Z

,Z1,Z
,,Zel .

This allows reducing the number of unknown parameters from ( )qn +  in the original optimi-

zation program to ( )qr + . Imbens (1997) shows that the estimated Lagrange parameters con-

verge in probability to zero and elθ̂  shares the first order asymptotic properties of the conven-

tional two-step GMM estimator 2θ̂  and is therefore semiparametric efficient for given mo-

ment restrictions (1.1).

The latter results suggest an alternative formulation of the empirical likelihood approach

by replacing the unknown θ  in (3.1.2) with the two-step GMM estimate 2θ̂  and optimizing

(3.1.1) only with respect to π . This approach was suggested by Brown and Newey (1995) and

will be referred to as modified empirical likelihood (subscript elm) in the following. The La-

grange function is altered correspondingly which eliminates (3.1.5) and simplifies (3.1.8) to

( ) 0ˆ,ˆ,Z
n

1i
elm2ielm =λθψ∑

=

with ( ) ( ) ( )( )222elm
ˆ,Z1ˆ,Z,ˆ,Z θψλ′+θψ=λθψ .           (3.1.9)

The corresponding semiparametric distribution estimate relies on probabilities elm
iπ̂  of the

form (3.1.6) with ( )elel
ˆ,ˆ λθ  replaced by ( ) .ˆ,ˆ

elm2 λθ  The moment function (3.1.9) can be

thought of as being the first order condition to the optimization problem

( )( )∑
=λ

θψλ′+=λ
n

1i
2ielm

ˆ,Z1lnmaxargˆ ,                             (3.1.10)

s.t. ( ) 0ˆ,Z1 2i >θψλ′+  which was proposed by Brown and Newey. They show that the modi-

fied empirical likelihood estimates in (3.1.9) and (3.1.10) describe just one special case of a

general class of semiparametric distribution estimates of the form

( )( )
( )( )∑

=

θψλ′∇

θψλ′∇
=π n

1j

*

j

*

i
i

ˆ,ZˆT

ˆ,ZˆT
ˆ        with ( )( )∑

=λ
θψλ′=λ

n

1i

*
i

ˆ,ZTmaxargˆ ,         (3.1.11)

where ( )vT  is a differentiable concave function with scalar argument v and with domain that

is an open interval containing zero, ( ) ( ) dvvdTvT =∇ , and *θ̂  is any semiparametric effi-
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cient parameter estimate. (3.1.11) includes the (modified) empirical likelihood estimator with

( )2

* ˆˆ θ=θ  el

* ˆˆ θ=θ  and ( ) ( )v1lnvT += . A second example given by Brown and Newey which

results from ( ) ( )vexpvT −=  yields the exponential tilting estimator considered by Imbens

(1997), Imbens, Spady and Johnson (1998), and Kitamura and Stutzer (1997). A third exam-

ple based on the choice ( ) ( )2v1vT +−=  is particularly convenient because it leads to a closed

form solution for λ̂ . In this case, with 2

* ˆˆ θ=θ , the first order conditions for λ  from (3.1.11)

imply the estimated Lagrange parameters1

2
1

2V̂ˆ ψ−=λ −         (3.1.12)

with ( ) ( )
1

n

1i
2i2in

11

2
ˆ,Z ˆ,ZV̂

−

=

−






 ′
θψθψ= ∑

and 2ψ  defined in (2.4.1). The associated probabilities of the semiparametric distribution es-

timate follow from (3.1.11) as

( )
( )2

1
22

2i
1

22
i

V̂1n

ˆ,ZV̂1
ˆ

ψψ′−

θψψ′−
=π

−

−

        (3.1.13)

and were in similar form (ignoring the term in parentheses in the denominator) also obtained

from different approaches by Back and Brown (1993) and Brown and Newey (1998). These

authors prove that under regularity conditions the resulting distribution function estimate is

semiparametric efficient for given moment restrictions (1.1) which holds as well for any other

probability estimates derived from (3.1.11) as shown by Brown and Newey (1995).

3.2 Two-step GMM_EL estimation

Back and Brown (1993) and Brown and Newey (1998) recommend using a semiparametric

efficient estimate of the optimal weight matrix 1
0V−  instead of the estimate (2.2.3) for the

usual two-step GMM estimation procedure. Following (1.6) such an estimate requires a semi-

parametric efficient distribution estimate ( )zF̂n  and an initial parameter estimate attaining the

lower bound (2.2.2). Back and Brown (1993) and Brown and Newey (1998) use the semi-

parametric distribution estimate resulting from (3.1.13) and the two-step GMM estimate 2θ̂  as

an initial estimate. Brown and Newey prove that the resulting estimate of the optimal weight

                                               
1 These Lagrange parameter estimates are also obtained by the log Euclidean likelihood estimator considered

by Owen (1991), Qin and Lawless (1994), and Imbens, Spady and Johnson (1998).
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matrix is asymptotically efficient relative to the usual estimate (2.2.3) if the third moments of

( )0,Z θψ  are not zero. Here, the modified empirical likelihood approach (3.1.9) is chosen to

obtain the estimated probabilities elm
iπ̂  and the two-step GMM estimates 2θ̂  as initial esti-

mates. Thus, the semiparametric efficient estimate (1.6) of 1
0V−  becomes

( ) ( )
1n

1i
2i2i

elm
i

1.
3

ˆ,Z ˆ,ZˆV̂
−

=





 ′
θψθψ⋅π= ∑               (3.2.1)

and is used as a replacement for Ŵ  in (2.2.1). The asymptotic properties of the resulting pa-

rameter estimates as well as the J test remain unchanged from using 1

3V̂−  instead of 1

1V̂− .

3.3 One-step GMM_EL estimation

The one-step GMM_EL estimator was already introduced in Section 3.1 and results from

solving (3.1.8) which is a special case of the analogy principle (1.4) with ( ) ( )zF̂F nn ≡π . The

usual J test of overidentifying restrictions is not available in this case because the minimized

objective function always attains zero. However, by definition of the Lagrange function

(3.1.3), a test of the null hypothesis 0:H 0 =λ  provides a test of the overidentifying restric-

tions and is therefore an alternative to the J test in the conventional GMM framework. Con-

trary to the J test, this test procedure also allows testing a subset of the overidentifying re-

strictions. Imbens, Spady and Johnson (1998) suggest three different Lagrange multiplier

(LM) tests of 0:H 0 =λ  which can be written as λλ′= ˆRˆLM  and only differ by the respec-

tive choice of R. These LM tests share the asymptotic 2
qr−χ  distribution of the J test. They

compare these test statistics in some Monte Carlo experiments with the J tests based on the

two-step and continuous updating GMM estimators and find that the LM test using

( ) ( ) ( ) ( ) ( ) ( ) 







π

′
θψθψ





π

′
θψθψ








π

′
θψθψ= ∑∑∑

=

−

==

n

1i
iii

1n

1i

2
iii

n

1i
iii ˆˆ,Z ˆ,Zˆˆ,Z ˆ,Zˆˆ,Z ˆ,ZR        (3.3.1)

outperforms all other tests with respect to the empirical size. While the authors base their evi-

dence on the exponential tilting estimator, a corresponding LM test is also available for the

empirical likelihood estimator with ( ) ( )el
ieleli

ˆ,ˆ,ˆˆ,ˆ,ˆ πλθ=πλθ . Further evidence on the small

sample performance of this estimator is limited. One exception is the Monte Carlo experiment

conducted by Imbens (1997) who compares the two-step and the iterated optimally weighed

GMM estimators with the empirical likelihood estimator using a data generating process for a
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linear model of covariance structures similar to the one analyzed by Abowd and Card (1989).

In these experiments the empirical likelihood estimator exhibits about half of the bias created

by the two GMM estimators. Similar small sample experiments conducted by Qian and

Schmidt (1999), who focus on the efficiency gains of additional, parameter independent mo-

ment functions, do not reveal any systematic differences between the two-step GMM and em-

pirical likelihood estimators regarding bias and mean squared error performance.

3.4 Bootstrap GMM_EL estimation

The empirical likelihood approach to GMM estimation implements a moment condition on

the sample data which corresponds to the population orthogonality condition. Therefore the

GMM bootstrap methods described in detail in Section 2.4 can be applied to the moment

functions

( ) ( )θψ⋅π≡θψ ,Zˆ,Z i
elm
ii

*               (3.4.1)

which serve as an alternative to the recentered moment functions (2.4.2) suggested by Hall

and Horowitz (1996). This empirical likelihood based GMM bootstrap was suggested by

Brown and Newey (1995). By definition of the modified empirical likelihood (3.1.3) in con-

nection with (3.1.9) the moment functions (3.4.1) satisfy the sample moment condition

(2.4.3). Thus, the GMM bootstrap methods documented above can be used without any modi-

fication. Brown and Newey expect that using the moment functions (3.4.1) instead of the re-

centered moment functions suggested by Hall and Horowitz should translate into an improved

large sample accuracy of the GMM bootstrap.

Brown and Newey provide some Monte Carlo evidence on the small sample performance

of the moment restricted bootstrap for a dynamic linear panel data model with fixed effects.

For sample sizes of 50 and 100 they show that the bootstrap-t confidence intervals achieve a

better approximation to the nominal coverage probability than the confidence intervals based

on first order asymptotic theory. Other applications of the Brown and Newey GMM bootstrap

include Ziliak (1997) who replaces the modified empirical likelihood probabilities elm
iπ̂  in

(3.4.1) with the probabilities iπ̂  given in (3.1.13) and uses the bootstrap as a Monte Carlo

experiment for a particular data set. He compares different GMM and instrumental variable

estimators for panel data models with weakly exogenous instruments. Bergström, Dahlberg

and Johansson (1997) seem to provide the only currently existing comparison of the Hall and
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Horowitz (1996) and Brown and Newey (1995) bootstrap approaches. They conduct a Monte

Carlo experiment with 100 observations and focus on the small sample size properties of the

bootstrap-J tests of overidentifying restrictions in the dynamic linear panel data model. The

authors conclude that both methods provide an improvement over the conventional J test

whereby the Brown and Newey bootstrap clearly dominates the Hall and Horowitz method.

4. Monte Carlo Investigation

4.1 Experimental Setup

This section tries to shed some light on the small sample performance of the one-step, two-

step and bootstrap GMM and GMM_EL estimators. This is done by a number of Monte Carlo

experiments using a data generating process for binary panel data with multiplicative unob-

served time-constant effects and weakly exogenous instruments suggested by Wooldridge

(1997). Following Chamberlain (1992), GMM estimators are considered which are based on a

set of sequential conditional moment restrictions of the form

( )[ ] 0X,ZE t10t =θρ , T,,1t L= ,           (4.1.1)

where ( )θρ ,Zt  denotes a scalar conditional moment function and ( )′′′= t1t1 X,,XX L  a set of

conditioning variables with 1K ×  elements sX , t,,1s L= , which expands with increasing t.

Wooldridge (1997) considers a class of conditional moment functions [ ]≡φ t1t X,|YE

( ) ( ) 00t0t ,Z,Z φθµ=θτ  involving a nonlinear conditional mean function ( )θµ ,Zt  and a multi-

plicative latent effect φ  which may be correlated with the explanatory variables in ( )θµ ,Zt . A

special case in this class of conditional moment functions is defined by ( ) ( )θ′=θµ tt Xexp,Z

and was suggested before by Chamberlain (1992) for count data. In order to apply (4.1.1),

both authors eliminate φ  by a quasi-differencing method which leads to the transformed con-

ditional moment function

( ) ( )
( )

( )
( )θµ

θµ
−=

θτ
θτ

−=θρ
+

+
+

+ ,Z

,Z
YY

,Z

,Z
YY,Z

1t

t
1tt

1t

t
1ttt , 1T,,1t −= L .           (4.1.2)

The GMM and GMM_EL estimators presented in Section 2 and 3 can be applied to the

1K)1T(T2
1 ×−  vector of unconditional moment functions ( ) ( ) ( )θρ=θψ ,ZXA,Z  with

( ) ( ) ( )( )′θρθρ=θρ − ,Z,,,Z,Z 1T1 L  and
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( )















=

−1T1

11

X00

00

00X

XA O           (4.1.3)

which satisfies ( )[ ] 0,ZE 0 =θψ  by the law of iterated expectations.2

The standard normal cumulative distribution function, )(⋅Φ , is an obvious candidate for

the specification of the conditional mean function for binary data, ( ) ( )θ′Φ=θµ tt X,Z , assum-

ing that the variance of the error term of the underlying latent equation is one in all periods.3

A corresponding data generating process which is used throughout the subsequent Monte

Carlo experiments is defined as follows:

itit0it0
*
it DCY ε+β+α= , iid~itε N(0,1),    n,,1i L= ,    T,,1t L= ,

iti
*
it AA ξ+= , iid~A i N(2,2),   iid~itξ N(0,1),

( )0A,0Y1Y *
it

*
itit >>= ,           (4.1.4)

( ) it1iti1itit A15.0C5.0C η+ε++= −− , iid~itη U[-1,1],

( )0D1D *
itit >= , iid~D*

it N(0,1),

with ( )′βα=θ , , ( )′−=θ 1,10  and ( )′= ttt D,CX  in the notation used before. The data gener-

ating process starts at t = -10 with 0C 1it1it =ε= −− . The observability rule (4.1.4) for binary

panel data was suggested by Wooldridge (1997) and implies the conditional mean function

[ ] ( ) ( ) ( ) 00t0tt1t ,ZAXX,A|YE φθµ≡Φθ′Φ=  which is of the multiplicative form that initiated

the quasi-differencing approach employed in (4.1.2). Four experiments are distinguished by

the magnitude of n an T as shown in Table 1.

Table 1.
Description of the Monte Carlo Experiments

MC1 MC2 MC3 MC4

number of individuals (n) 100 200 100 200

number of periods (T) 3 3 4 4

number of orthogonality conditions (r) 6 6 12 12

                                               
2 This choice of instruments is suboptimal. GMM estimation with optimal instruments for given sequential

conditional moment functions is discussed in Chamberlain (1992) and Hahn (1997). In this section the con-
ditional moment approach is just seen as a mean to generate unconditional moment functions for which all
estimators under consideration are efficient.

3 This assumption can be weakened as shown in Inkmann (1999) who considers conditional moment estima-
tors for the panel probit model with heteroskedasticity over time.
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The estimators under consideration are those described in Sections 2.2 – 2.4 and 3.2 – 3.4.

The number of Monte Carlo replications is 1,000. The dummy and continuous regressors are

regenerated in each replication. The bootstrap estimators are based on 400 bootstrap samples

in each replication of the Monte Carlo experiments. All calculations were performed with

Gauss using the optimization package with user supplied first and second (except for the one-

step estimators) analytical derivatives of the respective criterion functions.

4.2 Results

Tables A1 – A4 in the appendix contain summary statistics of the four different Monte Carlo

experiments. For the two bootstrap estimators the summary statistics refer to the bias cor-

rected parameter estimates using the correction described below (2.4.8). The COVER rows

contain the empirical coverage of the 95% confidence interval around the true parameter

value using the asymptotic critical values for the one-step and two-step estimators and the

bootstrap-t critical values for the bootstrap estimators given in the T-CRIT row. Similar,

LEVEL denotes the empirical rejection probability for the J test (or LM test for the empirical

likelihood estimator) of overidentifying restrictions using the asymptotic 95% critical value

for the one-step and two-step estimators and the bootstrap-J critical values for the bootstrap

estimators given in the J-CRIT row. The content of the remaining rows is obvious.

All estimators exhibit a considerable amount of bias in the MC1 and MC2 experiments

which imply 6 orthogonality conditions and 4 overidentifying restrictions. Increasing the

number of observations from 100 in MC1 to 200 in MC2 reduces the bias of the dummy re-

gressor coefficient α  but does not improve upon the bias of the coefficient β  of the continu-

ous regressor. Doubling the number of orthogonality conditions from 6 in MC1 and MC2 to

12 in MC3 and MC4 increases the small sample bias of the one-step and two-step estimators.

The bootstrap bias corrections for the two-step GMM estimates work in the wrong direction

in all experiments and amplify the bias. This holds for both the Hall/Horowitz GMM boot-

strap and the Brown/Newey GMM_EL bootstrap whereby the latter always performs worse.

The harmful impact of the bias correction is much less severe in MC2 and MC4 which sug-

gests that the bias correction may become effective in larger sample sizes.

Efron and Tibshirani (1993, p. 138) point out that bias correction can be dangerous in

practice because of the high variability of the estimated correction term. This is obviously the

case in the experiments considered here as can be seen from the standard errors of the bias
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corrected estimates which always exceed the standard error of the underlying two-step GMM

estimates. The continuous updating estimator exhibits the largest variation with standard er-

rors around two times of the magnitude of the conventional two-step GMM estimates. Similar

findings were reported before by Hansen, Heaton and Yaron (1996) and Imbens, Spady and

Johnson (1998) who attribute this problem to flat sections of the objective function. In accor-

dance to previous results obtained by the first group of authors, the continuous updating esti-

mator leads to the smallest median bias of all estimators. The empirical likelihood estimator

produces standard errors in the magnitude of the two-step GMM estimator in the experiments

involving the larger sample size but performs worse on the smaller samples. The two-step

GMM_EL estimator creates smaller standard errors than the two-step GMM estimator for T =

3 but larger standard errors for T = 4. This pattern is reflected in terms of RMSE performance

but the differences between the two-step estimators are always small.

The empirical coverage rates of the symmetric confidence intervals with nominal cover-

age probability 0.95 are much too small for all estimators which rely on the percentiles of the

asymptotic distribution of the t statistic for the construction of the confidence interval. The

empirical likelihood estimator and the two two-step estimators lead to coverage rates around

0.85 while the continuous updating estimator performs worse and only reaches about 0.70 in

MC3. Using the bootstrap-t method for the construction of the confidence intervals improves

upon these findings and produces empirical coverage rates up to 0.90 whereby the

Brown/Newey bootstrap method has a minor advantage over the Hall/Horowitz bootstrap. An

explanation for the remaining coverage error could be an underestimation of the asymptotic

standard errors as reported by Inkmann (1999) for the two-step GMM estimator of the random

effects panel probit model. The coverage rates of the confidence interval around the true coef-

ficient of the continuous regressor are always less distorted than the corresponding rates for

the dummy regressor coefficient. The underlying average bootstrap-t critical value for the

coefficient of the dummy variable is in the magnitude of 2.9 while it is around 3.4 for the co-

efficient of the continuous regressor.

While the bootstrap-t method improves upon the conventional t statistic, the bootstrap-J

method turns out to be inferior to the conventional J test of overidentifying restrictions using

the asymptotic distribution in all experiments whereby the Brown/Newey bootstrap performs

slightly worse than the Hall/Horowitz bootstrap. The conventional J test for the two-step

GMM estimator underrejects the null hypothesis in all experiments and the bootstrap-J meth-
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ods do not yield an increase in the empirical size. The continuous updating estimator ampli-

fies this underrejection by definition of its criterion function. The best size performance is

obtained by the J test using the two-step GMM_EL estimator for T = 3. However, for T = 4

this J test overrejects. The LM test of overidentifying restrictions employed in combination

with the empirical likelihood estimator performs best in MC4 where it reaches a very accurate

empirical size of 0.051 but underrejects in MC1/MC2 and overrejects in MC3.

Summarizing these results, the two two-step estimators and the one-step empirical likeli-

hood estimator show a similar overall performance. The continuous updating estimator can

not be recommended because of the fat tails of its Monte Carlo distribution. Bootstrapping is

useful to obtain more reliable empirical coverage probabilities but does not completely elimi-

nate the coverage distortion of the conventional GMM approach. The bootstrap bias correc-

tion and the bootstrap-J method do not reveal the asymptotic refinements of these methods

over the conventional approaches in small samples. As always, these results have to be seen

conditional on the experimental setup employed in this Monte Carlo investigation.

5. Conclusion

This paper compares GMM estimators which rely on the empirical likelihood approach to the

semiparametric efficient estimation of the unknown distribution of the data to conventional

GMM estimators which are based on the empirical distribution function as a nonparametric

estimate. One-step, two-step and bootstrap empirical likelihood and conventional approaches

to efficient GMM estimation are distinguished. The estimators are subject to a Monte Carlo

investigation using a specification which exploits sequential conditional moment restrictions

for binary panel data with multiplicative latent effects. The Monte Carlo experiments suggest

that the empirical likelihood based two-step GMM estimator may improve upon the reliability

of the J test of overidentifying restrictions whereas the bootstrap-J method does not lead to a

small sample size improvement. The bootstrap-t method is recommended for obtaining more

reliable coverage rates of confidence intervals which are much too small if they are computed

using the percentiles of the asymptotic distribution of the t statistic. The one-step continuous

updating GMM estimator exhibits fat tails which prevents an useful application while the one-

step empirical likelihood estimator performs similar to the conventional two-step GMM esti-

mator.
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Appendix: Tables

Table A1.
Results from 1,000 Monte Carlo Replications of the MC1 Experiment (T = 3, n = 100)

Estimators: Two-step One-step Bootstrap

Probabilities: n1 elmπ̂ n1 elπ̂ n1 elmπ̂

α MEAN -0.9360 -0.9355 -1.1437 -0.9480 -0.8606 -0.8409

BIAS 0.0640 0.0645 -0.1437 0.0520 0.1394 0.1591

MEDIAN -0.8570 -0.8660 -0.9389 -0.8883 -0.7275 -0.7266

SE 0.3959 0.3768 1.0069 0.4272 0.5773 0.5609

RMSE 0.4011 0.3823 1.0171 0.4304 0.5939 0.5830

COVER 0.8610 0.8660 0.7880 0.8670 0.8700 0.8720

T-CRIT 1.9600 1.9600 1.9600 1.9600 2.8436 2.8365

β MEAN 1.0128 1.0088 1.1926 1.0245 0.7078 0.6983

BIAS 0.0128 0.0088 0.1926 0.0245 -0.2922 -0.3017

MEDIAN 0.8177 0.8144 0.8845 0.8307 0.5220 0.5207

SE 0.8323 0.7972 1.3105 0.8643 1.2314 1.2023

RMSE 0.8324 0.7973 1.3246 0.8646 1.2655 1.2396

COVER 0.8650 0.8620 0.7690 0.8460 0.9000 0.9020

T-CRIT 1.9600 1.9600 1.9600 1.9600 3.6851 3.7732

LEVEL 0.0250 0.0450 0.0090 0.0320 0.0260 0.0030

J-CRIT 9.4877 9.4877 9.4877 9.4877 9.7374 10.9426

Note: The probabilities given in the second row of the table refer to the weight which is placed on a single ob-
servation using either the nonparametric (GMM) or semiparametric (GMM_EL) distribution function estima-
tors. The summary statistics given in the Bootstrap columns refer to the bias corrected parameter estimates.
COVER denotes the empirical coverage rate of a symmetric confidence interval with nominal coverage prob-
ability 0.95. LEVEL denotes the empirical rejection rate of the test of overidentifying restrictions with nominal
size 0.05. T-CRIT and J-CRIT refer to the corresponding percentiles of the asymptotic and bootstrap distribu-
tions of the t and J test statistics.
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Table A2.
Results from 1,000 Monte Carlo Replications of the MC2 Experiment (T = 3, n = 200)

Estimators: Two-step One-step Bootstrap

Probabilities: n1 elmπ̂ n1 elπ̂ n1 elmπ̂

α MEAN -0.9557 -0.9564 -1.1253 -0.9682 -0.9292 -0.9123

BIAS 0.0443 0.0454 -0.1253 0.0318 0.0708 0.0877

MEDIAN -0.8929 -0.8939 -0.9572 -0.9119 -0.8218 -0.8079

SE 0.3203 0.3182 0.6388 0.3202 0.4838 0.4731

RMSE 0.3233 0.3214 0.6509 0.3217 0.4889 0.4811

COVER 0.8530 0.8510 0.7850 0.8580 0.8740 0.8710

T-CRIT 1.9600 1.9600 1.9600 1.9600 3.1340 3.1076

β MEAN 0.9367 0.9374 1.1379 0.9353 0.8082 0.7895

BIAS -0.0633 -0.0626 0.1379 -0.0647 -0.1918 -0.2105

MEDIAN 0.8304 0.8372 0.9183 0.8310 0.7120 0.6862

SE 0.6544 0.6482 1.2487 0.6605 0.9635 0.9403

RMSE 0.6575 0.6512 1.2563 0.6636 0.9824 0.9636

COVER 0.8440 0.8540 0.7670 0.8420 0.8980 0.9080

T-CRIT 1.9600 1.9600 1.9600 1.9600 3.6243 3.7815

LEVEL 0.0380 0.0490 0.0200 0.0220 0.0380 0.0210

J-CRIT 9.4877 9.4877 9.4877 9.4877 9.7271 10.1195

Note: cf. Table A1.
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Table A3.
Results from 1,000 Monte Carlo Replications of the MC3 Experiment (T = 4, n = 100)

Estimators: Two-step One-step Bootstrap

Probabilities: n1 elmπ̂ n1 elπ̂ elπ̂ elmπ̂

α MEAN -0.8814 -0.8879 -1.1535 -0.9051 -0.8464 -0.8254

BIAS 0.1186 0.1121 -0.1535 0.0949 0.1536 0.1746

MEDIAN -0.8435 -0.8453 -0.9219 -0.8771 -0.7804 -0.7765

SE 0.2712 0.2850 0.8422 0.3705 0.3629 0.3405

RMSE 0.2960 0.3062 0.8561 0.3824 0.3941 0.3826

COVER 0.7890 0.7890 0.7140 0.8290 0.8300 0.8170

T-CRIT 1.9600 1.9600 1.9600 1.9600 3.0669 2.7466

β MEAN 0.8986 0.8856 1.1440 0.9379 0.7391 0.7367

BIAS -0.1014 -0.1144 0.1440 -0.0621 -0.2609 -0.2633

MEDIAN 0.8536 0.8187 -0.8685 0.8777 0.6867 0.6956

SE 0.4843 0.4919 1.2675 0.5926 0.6614 0.6310

RMSE 0.4948 0.5051 1.2756 0.5958 0.7109 0.6837

COVER 0.8610 0.8360 0.6900 0.8480 0.9030 0.8940

T-CRIT 1.9600 1.9600 1.9600 1.9600 3.3817 3.1501

LEVEL 0.0250 0.1450 0.0110 0.1410 0.0200 0.0040

J-CRIT 18.3070 18.3070 18.3070 18.3070 19.6408 22.5342

Note: cf. Table A1.
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Table A4.
Results from 1,000 Monte Carlo Replications of the MC4 Experiment (T = 4, n = 200)

Estimators: Two-step One-step Bootstrap

Probabilities: n1 elmπ̂ n1 elπ̂ elπ̂ elmπ̂

α MEAN -0.9049 -0.9057 -1.1031 -0.9229 -0.9033 -0.8834

BIAS 0.0951 0.0943 -0.1031 0.0771 0.0967 0.1166

MEDIAN -0.8731 -0.8723 -0.9417 -0.8838 -0.8471 -0.8316

SE 0.2176 0.2217 0.6279 0.2237 0.2922 0.2724

RMSE 0.2374 0.2409 0.6363 0.2367 0.3078 0.2963

COVER 0.8230 0.8180 0.7520 0.8340 0.8500 0.8400

T-CRIT 1.9600 1.9600 1.9600 1.9600 2.9802 2.7299

β MEAN 0.8794 0.8809 1.0631 0.8778 0.8259 0.8100

BIAS -0.1206 -0.1191 0.0631 -0.1222 -0.1741 -0.1900

MEDIAN 0.8523 0.8492 0.9207 0.8497 0.8001 0.7758

SE 0.3613 0.4009 0.8070 0.3753 0.4819 0.4546

RMSE 0.3809 0.4182 0.8095 0.3947 0.5124 0.4927

COVER 0.8640 0.8510 0.7390 0.8500 0.8980 0.9020

T-CRIT 1.9600 1.9600 1.9600 1.9600 3.1473 3.0197

LEVEL 0.0430 0.0870 0.0240 0.0510 0.0380 0.0110

J-CRIT 18.3070 18.3070 18.3070 18.3070 18.9673 20.5410

Note: cf. Table A1.
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