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Abstract

Granger (1980) summarizes his personal viewpoint on testing for causality, and outlines what
he considers to be a useful operational version of his original definition of causality (Granger
(1969)), which he notes was partially alluded to in Wiener (1958). This operational version is
based on a comparison of the 1-step ahead predictive ability of competing models. However,
Granger concludes his discussion by noting that it is common practice to test for Granger
causality using in-sample F-tests. The practice of using in-sample type Granger causality tests
continues to be prevalent. In this paper we develop simple (nonlinear) out-of-sample predictive
ability tests of the Granger non-causality null hypothesis. In addition, Monte Carlo experiments
are used to investigate the finite sample properites of the test. An empirical illustration shows
that the choice of in-sample versus out-of-sample Granger causality tests can crucially affect the
conclusions about the predictive content of money for output.
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1 Introduction

Granger’s original 1969 definition of noncausality (Granger (1969)) has received so much attention
in economics that it scarcely needs any introduction (see e.g. the papers by Dufour and Renault
(1998), Geweke, Meese and Dent (1983), Liitkepohl (1991), Newbold(1982), Pierce and Haugh
(1977), and Sims (1972), for surveys, related results, and relevant references). One aspect of
Granger’s original definition which hasn’t received as much attention, however, is the issue of
whether or not standard in-sample implementations of Granger’s definition are wholly in the spirit
originally intended by Granger, and whether out-of-sample implementations might also be useful.
Arguments in favor of using out-of-sample implementations are given in Granger (1980), and are
summarized nicely in Ashley, Granger, and Schmalensee (1980), where it is stated on page 1149 that:
“... a sound and natural approach to such tests [Granger causality tests] must rely primarily on the
out-of-sample forecasting performance of models relating the original (non-prewhitened) series of
interest.” In this paper we develop simple (nonlinear) out-of-sample predictive ability tests of the
Granger noncausality null hypothesis. Our approach is to first study the asymptotic behavior of the
tests, and then to investigate the finite sample behavior via a series of Monte Carlo experiments.
Finally, an empirical illustration is used to show that the choice of in-sample versus out-of-sample
Granger causality tests can crucially affect conclusions based on an empirical investigation of the
marginal predictive content of money for output.

It is quite standard to say that x; (Granger) causes y;, if the past of z; (or the present in the
case of contemporaneous causality) helps to predict y;. Thus, it is natural to perform causality
tests before constructing forecasting models, and indeed causality tests can be viewed as tests
of predictive ability. However, although it is true that both in-sample and out-of-sample lack of
predictive ability hypotheses can be formulated in terms of zero restrictions, there is no reason why
in-sample and out-of-sample tests should yield the same answers when moderate sample sizes are
used. Thus, if we are interested in constructing forecasting models, for example, it is natural to
compare out-of-sample predictive ability and hence to construct out-of-sample causality tests!.

One of the most popular tests for evaluating the predictive ability of two competing forecast-

ing models is the Diebold Mariano test (DM, 1995), and the version thereof which accounts for

!Meese and Rogoff (1983) is an important example of the application of out-of-sample model evaluation in the

spirit of Granger’s definition of non causality.



parameter estimation error (West (1996)). White (1999) further extends the DM test by allowing
for the comparison of several models against one benchmark model (For discussion of these and
related tests, see Ashley (1998), Clark (1999), Harvey, Leybourne and Newbold (1998), Mizrach
(1992), and the references contained therein.) However, all of these tests are constructed in a
nonnested modelling framework, and in the strictly nested modelling framework associated with
testing for Granger noncausality we cannot directly implement these tests. The reason for this is
quite intuitive. Consider the DM test. In the context of strictly nested models, and when parame-
ter estimation error vanishes, the DM test does not have a normal limiting distribution under the
null of non causality, but instead approaches zero in probability. In addition, even when West’s
(1996) version of the test which accounts for parameter estimation error is used, then as long as the
out-of-sample period, P, grows at the same rate as the in-sample period R (i.e. 0 < 7 < 0o, where
L — ), Clark and McCracken (1999) and McCracken (1999) show that although various Granger
causality type out-of-sample predictive ability test statistics can be constructed in the usual way
(e.g. encompassing tests, DM tests, etc.), they no longer have normal limiting distributions, but
instead converge to functionals of Brownian motion. We suggest a number of tests which have stan-
dard (normal) limiting distributions, which account for parameter estimation error when m > 0,
and which allow for the case where m = 0. In addition, our tests are very easy to compute.

One feature of our tests is that they are formed using one-step ahead prediction errors. It should
be noted, though, that in-sample implementations of the definition of noncausality to predictive
ability at any period have been introduced by Liitkepohl (1993) and Dufour and Renault (1996).
Dufour and Renault also provide a set of testable sufficient conditions for which non causality
one-step ahead implies non causality at any period, and discuss implementing the test. While it
is possible to extend our out-of-sample tests to the evaluation of noncausality at any period, this

task is left for future research.

This rest of the paper is organized as follows. Section 2 outlines the asymptotic properties of a
simple linear out-of-sample Granger causality test. In addition, an extension of the test which allows
for the evaluation of the linear and nonlinear-out-of sample predictive content of X; for Y;, and
which is similar in spirit to the nonlinearity test of Lee, White and Granger (1993), is discussed.
Section 3 reports the findings of a series of finite sample Monte Carlo experiments, where it is
concluded that the simple tests perform reasonably well even when P and R are relatively small.

In Section 4 an example in which we analyze the marginal predictive content of money for output



is given. The example serves to illustrate the potential for in-sample and out-of-sample Granger

causality tests to lead to different conclusions. All proofs are gathered in an Appendix.

2 Linear and Nonlinear Out- of-Sample Granger Causality Tests

Consider the restricted model?,

q
Yt = Zﬁ;ytﬂ' + € (1)
j=1
and the unrestricted model?,
q k
Y = Z Biye—j + Z G + (2)
j=1 J=1

One implementation of Granger’s definition of non causality involves forming a test of the following
hypotheses,

Hy: af =0,Vj versus Hp : «j # 0 for some j

An approach in this context is to construct a Wald type statistic which has a limiting X% distribution
under the null and diverges under the alternative. For example, in the case of iid errors under the

null, and given a maintained assumption of conditional homoskedasticity, one commonly constructs

(RRSS — URSS)/k
URSS/(T — k)

where RRSS and URSS are the sum of least squares residuals from the restricted and the unre-
stricted models, respectively, and kF 4, X% under Hg, while it diverges under the alternative. In
general, these type of tests are used to evaluate in sample predictive ability, although an out-of-
sample analog is proposed by Clark and McCracken (1999).

Our objective is to construct a direct test for out of sample predictive ability. Suppose we
estimate (1) and (2) using observations ¢t = 1,2,... R, and compute €gy1 = Yyr+1 — Z?;é BR,jyt—j
and Upt1 = Yre1 — Z';;é BR,jyt_j — Z;?;é QR ;xri—j. We then re-estimate the model using R + 1

observations and construct Bry1 j, QR,j, €r+2 and Ug41. This procedure is repeated until sequences

2Hereafter 8* denotes the best linear predictor of y; given its past history. Analogously in the sequel §* = (8%, a*)’

denotes the best linear predictor of y; given its past and the past of z;_1.
3All of our results generalize straightforwardly to the case where both the restricted and unrestricted models

contain the past of other explanatory variables. Here, we simplify the exposition of the test, however, by focusing on

the bivariate case.



of P ex ante forecast errors (i.e. (€r41,€Rr+2,-.-€r+p) and (Uri1,UR4t2,-.-Ur+p)) have been

constructed. Typically, tests for out of sample predictive ability (e.g. DM test) are based on

Z (€+1) — f(Ue+1)) (3)

where f is some given loss function, and the null hypothesis of equal predictive ability is formulated

HY : B(f(ets1)) — B(f(ur1)) = 0

It follows immediately that if Hy is true, then H{) should also be true. In fact if o = 0,Vj, then
ut = ¢, and so E(f(e+1)) — E(f(ut41)) = 0. In this sense, if X; has in sample predictive power, it
should also have out-of-sample predictive power. Thus, asymptotically we should obtain the same
answer regardless of whether the test is performed in-sample or out-of-sample. However, analyses
of finite samples may lead to different answers depending on whether in-sample or out-of-sample
inference is carried out. This suggests that if we are interested in out-of-sample predictive ability, a
natural approach is to construct an out-of-sample predictive ability test. If (3) is expanded around

the ”true” parameter values we obtain

1 T—1 R T—
(€ Ut + —= Vaflz(6: — 3 Vsf —6%), 4
Z +1) — flut41)) \/]_Dt;R S5 :ZR sfla( ) (4)

t=R

where B € (B, 3%), 6 € (8,6%), and 3* = (6, .. -B83), 6 = (B, a*)". If the loss function is quadratic
orif P/R — 0, as T' — o0, then the two last term in (4) are o,(1), while the first term is zero under
the null (given that ours models are strictly nested.) Thus, we cannot use DM type predictive ability
tests in the case of strictly nested models. McCracken (1999) proposes a DM type test for the case
of nested models. He does not scale (3) and thus considers >0z (f(€41) — f(@i+1)) - In addition,
he shows that if as P/R — 7 # 0,as T — oo, then the parameter estimation error component does
not vanish, even if the loss function is quadratic, and the limiting distribution of the DM test is non
standard under the null hypothesis, and is dependent on the nuisance parameter 7. One feature of
the test which we propose is that it does not require 7 > 0. In addition, our statistic has a standard
limiting distribution.

Consider the following statistic:



where €11 = Y41 — Z?;é Btyjyt_j, X¢ = (x¢,x4—1, ... 2k—1). We shall formulate the null and the

alternative as
Hy E(et+124-5) =0, =0,1,k —1 and Hy E(err12—4) # 0 for some j,j =0,1,...k—1

Under the null, mp has a normal limiting distribution, while under the alternative FE(e;4+1X;) # 0,
and so the statistic diverges at rate v/P. As we require neither the restricted model (under the
null) nor the unrestricted to be dynamically correctly specified we need to allow for non martingale
difference sequence scores. For the case of conditionally homoskedastic errors under the null, we
could have used a regression based test (along the lines of West and McCracken, Theorem 7.1
(1998)). In particular, we could have regressed €.y; on past values of X; and tested whether
the regression coefficients are zero. In addition, Wooldridge (1990, 1991) proposes a regression
based testing framework which allows for conditionally heteroskedasticity and/or non martingale
difference errors. However, the extension of Wooldridge’s set up to the case of recursively estimated
parameters and hence out-of-sample predictive ability tests is not immediate. In the sequel we shall
require the following assumption.

Assumption A. (y:,x:) are strictly stationary, strong mixing processes, with size ﬂ;ﬁl’ for
some § > 0, and E(y;)® < 00, E(24)® < 00, E(ey1—;) =0, 1 =1,2,...q.

Note that we require E(ey;—;) = 0, j = 1,2,...q. Thus, even if we do not require correct
dynamic specification, we need to choose ¢ large enough so that the error is not correlated with the
regressors. A natural approach is to estimate ¢ using the model selection approach. Alternatively,
we could require the lag order, g, to grow at an appropriate rate relative to the sample size. However,
such an extension for the case of recursive parameter estimation is not straightforward.

Theorem 1. Let Assumption A hold. As T'— oo, PR — 00, P/R — m,0 < 7 < oo, (i) under
flo,for0<7r<oo,

mp N(0,S11 +2(1 — 7 In(1 + 7)) F' M Soo MF — 2(1 — 7~ ' In(1 + 7)) (F' M Sy2 + Sty MF)).
In addition, for m = 0,
mp % N(0,S11)
where F = E(Y;X}), M =plim (% >, Yij’)*1 Y= (j_1,--.Yj—q), so that Misaqxq, Fisa

gxkYjisakx1, Sipisak xk, Si2isaqxk,and Sy is a ¢ X ¢ matrix, with

S = Z K ((Xt5t+1 - M)(Xt*jgtJrl—j _ M)l)

j=—00



where p = E(X¢er41),

o

Sep= Y E((Yi1er)(Yim1—jei—;)') and

j=—00

o= > E((e11Xs — p)(Yio1-jer—5)")

j=—0o0
and (ii),
lim Pr ( Ty

P—oo

0> =1, under I;TA,

Corollary 2. Let Assumption A hold. As T — oo, P,R — o00,P/R — 7,0 < 7 < 00,

Iy — o0, lp/TY* — 0,(i) under Hy, for 0 < 7 < 0o,
m(Si1 +2(1 — 7 In(1 + 7)) F MSon MF — 2(1 — 77 In(1 + 7)) (F MSa + S, MEF)) "'my, % 12

R -1
where F = LT L v,X/, M (% i }%Yth) , and

—_
>_|

Su = 3 (5t+1Xt — i) (€1 Xt — i)’

"U

It T—1
Z > @1 Xy — i) @ q1-r Xomr — i)’
t=T1 t=R+T1
T-1

+—= ZwT Z (Gr1—rXt—r — 1) (E1 Xt — [11)’
t T t=R+T1

~ 1 T—1~
where 11 = 5 >, €4+1X¢, and

T-1
Sy = = Z wr Z (Cr41—rXi—r — 1) (Yie1&)'
7=0 t=R+T
| b T-1

+F Z wr Z (E41Xe — 1) (Yim1—r6—r)

T=1 t=R+T

T-1
Sgo = —Z Yioie) (Yio1&) + — Zwr Z (Yio1&) (Yie1—r6—r)
= t=R+T
T-1
+—= ZwT Z Y;ﬁ—l—’rgt—T) (Y;f—l/e\t)/

T=1 t=R+T1



with w, =1 — In addition, for m = 0,

l +1
I d 2
mpSnmp — Xk

and (i) under the alternative (when 0 < 7 < 00),

D m (S +2(1 — 7= In(1 + 7)) ' MSau MF — 2(1 — 7= In(1 + 7)) (F MSya + S1, MF))~'m
11m T

P—oo P

=1

while for m =0,

1 —~
lim Pr (Fmp:Sﬂlmp > 0) =1

P—oo

Thus far we have focused on a test for the null of linear non causality. We can instead use a
more general test function, such as the exponential (as in Bierens (1990)), a neural network with
sigmoidal activation function, or a generically comprehensive function (as defined in Stinchcombe
and White (1998)) and then construct a test for nonlinear out-of-sample predictive ability based on
# ZtT: R €+1h(7y' X¢) , where v € T is a nuisance parameter unidentified under the null hypothesis
(for a detailed survey of nonlinearity tests used in economics, see Granger and Terédsvirta (1993)).
Under mild conditions it is straightforward to establish that the statistic above converges to a
Gaussian process, with covariance kernel that depends on v, under the null hypothesis. However,
it is not a trivial task to form bootstrap critical values which take parameter estimation error into
account, particularly as the parameters are estimated recursively. Thus, we confine our attention to
a finite grid of values for the nuisance parameter . More precisely we shall follow the approach sug-
gested by Lee, White and Granger (1993, LWG) in the context of (in-sample) testing for neglected

nonlinearities, and set

h(y'X1) ="' X; + (1 + exp(—/ X)) !

where v is a k x 1 vector?. In this context, consider the following statistic®,

Z +1h ’YXt
t=R

4Different sets of weights, say 71 and 72 can be chosen for the linear and nonlinear components of the model.
5Lee, White and Granger (1993) construct their test statistic using the in-sample correlation of the estimated

residuals from a linear model and a nonlinear (neural network) component.



In the sequel, we specify the null and the alternative as,
H{ : E(et1h(v' X)) =0, and H} : E(er11h(v' X1)) #0
Corresponding to the above results, we have that,

Proposition 3. Let Assumption A hold. As T' — oo, PR — o0,P/R — 7,0 < 7 < o0,

Iy — 00,lp/TY* — 0, (i) under H¢, for 0 < 7 < oo, and for any given 7,
2/(8i1+ (1= 7 Yn(1 + 7)) F M8 MF — 2(1 — 7 In(1 4 1)) (F' MSha + Sy MF)) % 2

R 1
where F = % Z?ZRY;JL(’)//X,:) ]\/_[ = ( RYY/) R and

Sn = Z €17 Xy) — ) (€11 h(v' X)) — fn)’
=

T-1

ZwT > (Erh(YXe) = i) (Er1-rh(Y Xir) — i)'
t T t=R+T
T-1

+> ZUJT Y @1—rh(V Xi—r) = 1) (@1 k(v X)) = fin)'
t T t=R-+T

where fiy = > @r1h(Y X1),

T-1
2 = 5 ZwT > @ h(T' X r) = i) (Yia@)'
7=0 t=R+T
| b T-1
—+— Z Wy Z (€t+1h(7'/Xt) - ﬁl) (thflfTEth)la and

~ 1 1=l | b T-1
S = = (Y@ Yia&) + 5> we > (Yie1&) (Yi1r6r)
P P =
=R =1 =Rt
| T-1
+F Z Wr Z (Y;fflngth) (Yz‘flgt)/ ’

T=1 t=R+T1

with w, =1 — In addition, for m = 0,

Ir+1 +1
2/8 4 2
SP/Sll—>Xlw

and (ii) under the alternative (when 0 < 7 < 00),

lim Pr
P—oo

(sg(gn +2(1 =7 tn(1 + 7)) F' M8y MF —2(1 — 7 In(1 + W))@/M§12 + S, MF)) - O)
P



while for m =0,
[lim Pr (%mp@ﬁlmp > o) =1.
Note that both the finite sample size and power depend on the specific v which is used. Following
LWG however, we can randomly draw [ different sets of v and compute [ different statistics, say. Let

PVy, ... PV, be the p-values associated with the [ different statistics, so that PV} < PV, ... < PV].
LWG suggest rejecting the null at 5% if there is a j = 1,...[ such that PV; <0.05/(l —j — 1).

3 Monte Carlo Findings

In this section, we report results from a series of bivariate Monte Carlo experiments used to evaluate
the performance of in-sample Wald F and predictive ability or out-of-sample mp type Granger
causality tests. In particular, consider the following version of the data generating process given

above as equations (1) and (2),
Yt =M1 + MoYi—1 + M3Ti—1 + €1t

Tt = a1 + a1 + €2t

where ¢1; and e, are IN(0, 02), i =1,2. In order to change the predictive relevance of the past of
x¢ relative to the past of y; in regression models of y;, we focus on two quantities of interest when
parameterizing the above DGP. In particular, and assuming that z; and y; are stationary, in our

empirical power experiments we consider,

1

A = m2var(y;)(n3var(z;))t and

m3var(y;) + wavar(xy)
-~ mvar(y) + m3var(zy) + var(ery)”

Notice that A defines the magnitude of the explained variation in the model of y; which is due
the past of y; relative to that due to the past of x;. Thus, by changing A we can change the relative
importance of the past of x; for predicting y;. Our other quantity of interest, B, is a measure of
the goodness of fit of the model, and thus can be used as an indicator of how well we might expect

to predict y; given the past of both x; and y;. In order to parameterize our model using A and



B, we assume that m = ag. In addition, and for simplicity, assume that var(e1 ) = var(ess) = 1,
and that m = a1 = 1. Thus, given |ag| < 1, var(y:) = w3var(y:) + w3var(xy) + var(e1t), and
var(xy) = ajvar(xs) +var(eay), it follows that

3 (w3 + (1= 73)°)

A=
m3(1 — 73)

, and

m3(1 —m3) + 73
m3(1 = m3)? + (1 —m3)* + 3’

B =

so that by fixing A and ms it is possible to solve for w3 and hence also for B. In the Monte
Carlo experiments reported in Tables 4-6 (empirical power), we set A ={0.1,0.5,1.0,5.0,10.0},
and m = {0.1,0.3,0.5,0.7,0.9}. In addition, P is set equal to {0.1R,0.3R,0.5R}, and samples of
{250,500,1000} observations are generated. When Wald F tests are constructed, the entire sam-
ple is used, while when the two versions of the properly scaled mp statistics, which we shall call
v=1/2mp (one constructed based on the assumption that m = 0, say v='/?mp(7 = 0), and the other
constructed based on the assumption that 0 < 7 < oo, say v~1/2mp(7 > 0)) are constructed, only
P observations are used®. As discussed above, forecasts are generated recursively, with model pa-
rameters re-estimated before each new 1-step ahead forecast is constructed. However, for simplicity
it is assumed that the correct lag structure is known. All results are based on 10000 Monte Carlo
iterations, and are rejection frequencies of the null hypothesis of non Granger causality. Needless
to say, in corresponding empirical size experiments we set m3 = 0 (Tables 1-3) so that the only
parameter that matters is 7s.

Consider first the empirical size results reported in Tables 1-3. The rejection frequencies re-
ported in Table 1 correspond to Wald F-tests run under the null of Granger noncausality, and as
expected, empirical size is close to nominal size even for our smallest sample of 250 observations.
Note also that in Table 2 empirical size of the v~ /2mp(7 = 0) test is slightly higher than nominal
when P = 0.17, for all T, but is very close to nominal when P = 0.57", even for T' = 250. The results

in Table 3 for v—1/2m p(m > 0) suggest that empirical size is smaller than for the v 1/2

mp(7r = O)
statistic, and as the test is more undersized when P = 0.17 than when P = 0.57, empirical size

appears to converge to nominal size quite slowly with 7" and P.

6Note that for the cases in which the solutions for w3 given A and 7 are both complex, we do not generate data,
and hence no results are reported in Tables 1-6. Largely, these cases involve small values of A together with small

values of 5.
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Empirical power results reveal much more clearly the tradeoffs between out-of-sample and in-
sample tests of Granger noncausality. Note in Table 4 that the Wald F-test is very powerful for all
values of T, regardless of the magnitudes of A, B, and 7. This means that even when the parameter
associated with x;_1 is very small, and the relative importance of x;_1 in the overall regression model
is very small, the Wald F-test favor of Granger causality. This of course is expected, and certainly
must be the case for large samples. Our evidence suggests that it also holds for small samples.
However, cases where A is 10, say, and 73 is between 0.03 and 0.13 (the last 5 rows of Table 4), it
is clear that the marginal predictive content of x;_1 for y; will be very low. In such cases, it is not
clear whether a finding of Granger causality is desired, particularly if the objective of the modeler is
to select variables for inclusion in a forecasting model for ;. Note that in Tables 4 and 5, empirical
power of the mp statistics for these cases (again see last 5 rows) is much lower than that based on
the in-sample tests. Of course, power does increase as P,T increase, as expected. However, even
for P = 0.5T, and T = 1000, power is still below 0.5. This suggests that even though the data are
generated with nonzero s, x; 1 is nevertheless not always useful for predicting y;. However, note
that the v=/2mp statistics are powerful against alternatives where A values are 1 or below (equal
predictive ability of z; 1 and y; 1) and B values are higher than 0.5, even when P and T values

are low, again as expected.

4 Empirical Illustration

In order to illustrate the potential for different empirical approaches to testing for Granger causality
to lead to different conclusions, we consider the problem of assessing whether fluctuations in the
money stock anticipate (or Granger cause) fluctuations in real output. This is a question which has
received considerable attention in the applied macroeconomics literature (see e.g. Christiano and
Ljungqvist (1988), Hafer and Jansen (1991), Stock and Watson (1989), Swanson (1998), Thoma
(1994), and the references contained therein). Here we take as given the group of macroeconomic
variables used by all of the above authors, and construct in-sample Wald F-tests of Granger non-
causality. In addition, we form sequences of forecasts based on models estimated with and without
money, and assess the usefulness of money growth for forecasting the growth in industrial production
using the mp statistic discussed in Section 2. Our aims in this section are to show that conclusions

based on empirical investigations may depend crucially on what sorts of Granger causality tests

11



are used, and to illustrate the application of the statistics discussed above. We do not attempt
to address the deeper issue of money-income causality. Various authors have already done this,
including Amato and Swanson (1999) who perform a detailed investigation of real-time fluctuations
in money and income.

To summarize, we fit VEC(p) models of the form

AY; = a+b(L)AY;—1 + cZi—1 + €, (6)

where Y; = (IP;, M2;,CPI;, R;)’. The four elements of Y; are monthly seasonally adjusted U.S.
measures of industrial production, the nominal money stock (M2), the consumer price index, and the
3-month treasury bill return (secondary market) for the period 1961:1-1997:9. Based on the results
obtained by forming augmented Dickey-Fuller test statistics, it was assumed that all variables are
I(1). In addition, Z;_; = dY;_1 is a r x 1 vector of I(0) variables, r is the rank of the cointegrating
space, d is an  x 4 matrix of cointegrating vectors, a is an 4 x 1 vector, b(L) is a matrix polynomial
in the lag operator L, with p terms, each of which is an 4 x 4 matrix, p is the order of the VEC
model, ¢ is an 4 X r matrix, and ¢; is a vector error term. In order to ensure that the real time
forecasting models which we construct are not affected by data revision problems, as discussed
in Ghysels, Swanson, and Callan (1999), we use real-time versions of these variables, where by
real-time we mean that at each point in time an entire vector of observations for each variable is
constructed going back to the beginning of the sample. Each vector of observations is real-time
because revisions and seasonal adjustment modifications which occurred after the calendar date
to which the real-time vector corresponds are not incorporated into the data.”

Using real time data, models of the form given by equation (6) were re-estimated 212 times
using samples of observations beginning in 1961:1 and ending in 1980:1+zx, for x = 1, ..., 212, so that
the last sample of observations used was 1961:1-1997:8. Each re-estimation step involved fitting

two different models - a bigger model (with money) and a smaller model (without money). The

"As an example, consider downloading data on IP; right now from CITIBASE. The data corresponds to obser-
vations available right now. However, if the last 50 observations were held back, and the first 150 observations, say,
were used to form a forecast of the first observation in the out-of-sample period, then the forecast would not truly be
real-time. The problem is that if one were to go back in time to the date of the last in-sample observation, then one
would find that the data from CITIBASE do not correspond to the data that are actually available, as the CITIBASE
data have been revised, etc. This feature of macroeconomic data is well known, and is discussed by Diebold and

Rudebusch (1991), for example.
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parameters r, p, a, and b, were re-estimated at each point in time using least squares and the SIC
for selecting the number of lags®. In addition, models were estimated with 7 = 0, corresponding
to standard difference VAR models. As our forecasting results based on V EC models were never
superior to those based on VAR models, we report here only results for the case where r = 0.
Our approach allowed us to compute sequences of 212 in-sample Wald F-tests of the null of
Granger non-causality, for example. Of these, 94.8% resulted in rejection (at the 5% level), and
hence in a finding that money is Granger causal for real output. This result is similar to that found
by Swanson (1998). Our approach also allowed us to form sequences of 1-step ahead forecasts of
the growth in industrial production using our smaller model and our bigger model, and to compare
these forecasts with actual figures, thus forming sequences of real-time forecast errors along the
lines discussed in Ashley, Granger, and Schmalensee (1980). Interestingly, the M SFEs® (reported
as percentages) based on forecasts constructed using the bigger and smaller models were found to
be 0.4084 and 0.4101, respectively. Thus, if point estimates are compared the model with money is
preferred to the smaller model without money, in accord with our in-sample findings. However, note
in Figure 1 (see right top panel) that there is a large outlier in the difference series of the absolute
forecast errors from the two models (bigger model forecast error minus smaller model forecast error).
This outlier corresponds to a forecast for which the smaller model performed substantially worse
the bigger model. On the other hand, note that most of the difference-forecast errors are above 0.0,
corresponding to the observation that for most periods, the smaller model forecasted better than the
bigger model. For this reason, our point M SF Es may be misleading. Indeed, the properly rescaled
mp statistic values based on the two models are 0.0526 (7 = 0) and 0.0476 (7 = 0.5), indicating
that money is not causal for industrial production, at least in a predictive sense. The earliest period
for which complete real-time vectors of data could be constructed is 1978:1. In order to check the
robustness of our finding that in- and out-of-sample analyses can lead to different conclusions, we

also performed the above empirical investigation for the out-of-sample period 1978:2-1997:9. based

8In this stylized example, ¢ is set equal to zero, although the results are qualitatively similar when cointegration
is allowed for, as noted by Amato and Swanson (1999), where a thorough examination of the marginal predictive
content of money for real output. In addition, as the SIC selected just over 1 lag, on average, across all samples
for which models were estimated, we set p = 1. This allowed us to fix the regressor sets, X; and Y; used in the

construction of the mp statistics.
9Other loss functions may also be used to construct predictive ability tests, as discussed in Christoffersen and

Diebold (1997), Clements and Hendry (1988a,b), and Weiss (1996), for example.
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on this sample, our findings remained unchanged. Of course, it may be that for certain sub-samples
the in-sample and out-of-sample results will match up, and in fact it would be surprising if this
were not the case. Nevertheless, we can conclude that there are examples for which the decision
between using in-sample versus out-of-sample inference is crucial. In particular, we have found
that although in-sample tests suggest that there is Granger causality from money to output at
least some of the time, predictive ability tests suggest that nothing is gained by using money in a

forecasting model for output.

5 Conclusions

We discuss and implement a number of out-of-sample predictive ability tests in the spirit of
Granger’s original 1969 definition of noncausality. It is shown that in finite sample contexts our
out-of-sample tests can lead to evidence that is more indicative of the true forecasting ability of
one variable for another than when standard in-sample Wald type F-tests are used. In an empirical

illustration, we show that in-sample and out of sample tests can lead to different conclusions.
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6 Appendix

Proof of Theorem 1.(i)

1 T-1 1 T-1 R
mp = —F= 6t+1)(t - T = tYVtI (615 - 6*)
P t=R P t=R
1 T-1 1 T-1
= =) anXi——= > XY/ M ZY] 165 | +op(1)
\/ﬁ t= P t=R ] q

1 T-1 ) 1 4
HZFZZFM(;ZY] 16]) ZXth ( >y, le])+op(1) (7)

j=q

where F' = E(XY/),k x q. We want to show that the second term on the RHS of (7) is op(1).
We shall follow an argument similar to that used by West (1996). Let v; = (X;Y/ — F”'), and h; =
(Yj—1€5) , so that the second term on the RHS of (7) can be written as \/— SE oM ( J q hj)
We begin by showing that the expectation of the last expression is op(1). Let v; = E(viMhy—j),
where 7, is k& x 1. We shall show that each component is o(1). So Vi =1,2,...k,

(e (i)

= T’( Yio + Yi1 + - - %'R)+---(R+P—1)_1(’Yio+---+’Yz’R+---%’R+P—1))’

< T)(Rl+ (R+1)" ...+ (R+P—1)" )]Zm

We begin by showing that Vi, > 222 |7ij| < co. Because of the covariance inequality for strong

mixing processes, (e.g. Yokohama (1980)),

%) <
Z 73] < 12E(]vt]V[ht_j\§’)1/3Za§? < 00
§=0 J=0

where E(|v;Mh; ;|3)}/? < oo, and Y2 pa) < oo, given the moment and mixing conditions in

Assumption A. Also,

j(R—1+(R+1)—1 +(R+P—1)" )] (Z t_3/2) = o(1)

t=R+1

S~
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Thus, the mean of the second term on the RHS of (7) is o(1). By Chebyshev inequality, Vi = 1,...k,

1 T2 1t 1 T2 1t
_P v M Ezhj '>€ < Var Pt:th]V[ gjz;hj |

J=q

1 T-1 ’ 1 t 2_ 1 T-1 1 t 2
(s (z-m)) Z( b)) e

J=q i J=q i
2 E M 1 hj 9
25 Y plur(ly ©
t=R+11=R+1 ]_q ;

Recalling that v is &k x g, M is ¢ X g, and h is q X 1, le( Z] qh]). can be written as
1

(assuming for notational simplicity but without loss of generality that & = ¢ = 2 and i =
1) Z§=1 U1871M51 (% Z;’:q hl,j) —+ 2321 1)18,[]\/[32 (% Zj-:q hgyj). Note also that as ’l — t‘ — 00,
E (Zle V151 M1 (% Z;-:q hlyj)) — 0, so we can rewrite (9) as

]% li Tzl E(um( Zh)) :leo()

r=R+1i=R+1

by the argument used above. Thus, the term on the RHS is o(1) for % — 0, as T" — oo. Note also
that the term on the RHS of (8) is o(1), given the moment and mixing conditions in Assumption

A, by the same argument used in the proof of Lemma 3.1 in Corradi (1999). Thus,

1 T-1 1 T-1 1
=—) enX;——=> F'M ZY 165 | +0p(1)
VP i o=

] q

From Lemma A5 in West (1996), we have that

!/
1 T-1 1 t 1 t
E (T Y F'M (; ZYH@) (; S Yja€ | MF | —2(1 =7 In(1 + 7)) F' M Sy MF,
L J=q J=q

where So9 is defined as in the statement of the theorem. Also, from Lemma A6 in West (1996),

| Tl | T !
E iz > emxtﬁ > - > Ve | MF| —2(1 -7 In(1+7))Sj,MF
t=R t=R Jj=q
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where S1s is defined in the statement of the theorem, and finally

1 I-1 1 I-1 !
() (Frgee) ) -
where Sq1 is defined in the statement. Thus, by the central limit theorem for stationary mixing

processes,
# Sg €17 X
A 1
77 Zi—r F'M (? i—a Yj—1€j)

d N[ Sn 2(1 =7 tIn(1 4+ 7))S|,MF
21 =t In(1+ 7)) F'MSias 2(1 — 7 tIn(1+ 7)) F' MSyuMF

The result then follows for the case of P/R — 7,0 <7 < 00.

For m = 0, it suffices to show that # er:_é XY/ (Bt — ﬁ*) = 0p(1), and so it suffices to show
that # ZtT:j% Tt—jYi—i (@7,5 — 6;‘) =op(1),for j=0,1,...k—1,i=1,...q.

1 L N ~ 1 &
T i Up L BF) <supV PGB — BF|= Tr Us s
'\/]—DtZER t—jYt z(ﬁz,t 51) _tZII; |Bit BZ\PtZER\ t— 5t

Now, % S r (|xt—jyi—i|) converge in probability to a non random vector, while

-1
sup VP|G; — %] < —E _iPyyi_i A
ion 18 = 5] < (Rj:qyt vyt ) R

1 < —
—R Zyj,z-Pij
Jj=q

where P, = I—P, and P, is the projection of yy on yy_;, { = 1,...i—1,i+1,...q. As ﬁ ’Z;Zq yj,il_Dyej’
satisfies an invariance principle and so is Op(1), the right hand side of the inequality above is 0,(1)
for £ = o(1).

(i) # SR XY/ M (% Z§'=q Yj,lej) = Op(1) by the same argument as above. On the other
hand E(e;41X¢) # 0, and so ’# ZfZR et+1Xt’ diverges at rate v/P.

Proof of Corollary 2. ]/V},ﬁ’,gij i,7 = 1,2 are consistent for M, F,S;;. The result follows

immediately.

Proof of Proposition 3. Follows directly by the same arguments used in the proof of Theorem

1 and Corollary 2 when X is replaced with h(vy'Xy).
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Table 1: Empirical Size of the Wald F Test*

In-Sample Wald F Test Results Based on Entire Sample
Sample Size (T)

D) 250 500 1000
0.100 0.118 0.094 0.099
0.300 0.118 0.090 0.095
0.500 0.113 0.098 0.108
0.700 0.107 0.096 0.117
0.900 0.117 0.117 0.109

* Notes: All entries are rejection frequencies of the null hypothesis of Granger noncausality based on 10% nominal size in-
sample Wald F-tests. Data were generated as discussed in Section 3, with m3 = 0 so that z; is not Granger causal for y;. All
experiments are repeated for samples of 250, 500, and observations, and all entries are based on 10000 Monte Carlo replications.
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Table 2: Empirical Size of the v="/?mp(7 = 0) Test*

Out-of-Sample Predictive Ability Test Results Based on Sample Size P

Sample Size

P=01T P=03T P =0.5T
T 250 500 1000 250 500 1000 250 500 1000
0.100 0.151 0.131 0.131 0.127 0.118 0.102 0.107 0.107 0.100
0.300 0.143 0.125 0.127 0.124 0.116 0.108 0.101 0.111 0.102
0.500 0.144 0.124 0.124 0.117 0.118 0.106 0.095 0.110 0.093
0.700 0.146 0.117 0.128 0.123 0.120 0.108 0.096 0.114 0.101
0.900 0.165 0.128 0.129 0.127 0.126 0.116 0.126 0.121 0.111

* Notes: See notes to Table 1. All entries are rejection frequencies of the null hypothesis of Granger noncausality based on

10% nominal size out-of-sample predictive ability tests (i.e properly rescaled mp statistics, say v

7 = 0, so that parameter estimation error is not accounted for.

22

—1/2

mp). It is assumed that



Table 3: Empirical Size of the v="/?mp(7 > 0) Test*

Out-of-Sample Predictive Ability Test Results Based on Sample Size P

Sample Size

P=01T P=03T P =0.5T
T 250 500 1000 250 500 1000 250 500 1000

0.100 0.138 0.128 0.115 0.112 0.100 0.089 0.081 0.088 0.086
0.300 0.128 0.119 0.120 0.092 0.091 0.084 0.077 0.078 0.075
0.500 0.121 0.104 0.112 0.088 0.092 0.084 0.066 0.075 0.074
0.700 0.125 0.105 0.107 0.083 0.082 0.077 0.057 0.070 0.067
0.900 0.134 0.106 0.106 0.084 0.088 0.077 0.068 0.074 0.062

* Notes: See notes to Table 2. All entries are rejection frequencies of the null hypothesis of Granger noncausality based on
10% nominal size out-of-sample predictive ability tests (mp). It is assumed that = > 0, so that parameter estimation error is
accounted for.
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Table 4: Empirical Power of the Wald F Test*

In-Sample Wald F Test Results Based on Entire Sample
Sample Size (T)
A B D) 3 250 500 1000
0.100 0.108 0.100 0.330 1.000 1.000 1.000
0.100 0.988 0.300 8.235 1.000 1.000 1.000
0.500 0.029 0.100 0.141 0.715 0.940 0.999
0.500 0.234 0.300 0.431 1.000 1.000 1.000
0.500 0.628 0.500 0.919 1.000 1.000 1.000
1.000 0.020 0.100 0.100 0.461 0.718 0.929
1.000 0.154 0.300 0.288 1.000 1.000 1.000
1.000 0.360 0.500 0.459 1.000 1.000 1.000
1.000 0.927 0.700 1.803 1.000 1.000  1.000
5.000 0.012 0.100 0.044 0.170 0.253 0.406
5.000 0.091 0.300 0.123 0.641 0.901 0.991
5.000 0.194 0.500 0.174 0.924 0.997  1.000
5.000 0.271 0.700 0.178 0.983 1.000  1.000
5.000 0.556 0.900 0.199 1.000 1.000  1.000
10.000 0.011 0.100 0.031 0.138 0.177  0.246
10.000 0.083 0.300 0.087 0.402 0.633 0.883
10.000 0.176 0.500 0.121 0.703 0.929  0.996
10.000 0.233 0.700 0.119 0.819 0.967 1.000
10.000 0.228 0.900 0.071 0.800 0.964  1.000

* Notes: See notes to Table 1. All entries are rejection frequencies of the null hypothesis of Granger noncausality based on 10%
nominal size in-sample Wald F-tests. Values of the parameter B are constructed as discussed above by fixing A and 79 and
then solving for 3.
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Table 5: Empirical Power of the v='/2mp(7 = 0) Test*

Out-of-Sample Predictive Ability Test Results Based on Sample Size P

Sample Size

P=01T P=03T P =0.5T
A B v 3 250 500 1000 250 500 1000 250 500 1000

0.100 0.108 0.100 0.330 0.310 0.462 0.692 0.560 0.844 0.977 0.753 0.955 0.999
0.100 0988 0.300 8.235 0.952 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.500 0.029 0.100 0.141 0.180 0.177 0.281 0.218 0.311 0.507 0.275 0.444 0.686
0.500 0.234 0.300 0.431 0.353 0.544 0.788 0.660 0.914 0.998 0.863 0.985 1.000
0.500 0.628 0.500 0.919 0.498 0.807 0.975 0.916 0.999 1.000 0.988 1.000 1.000
1.000 0.020 0.100 0.100 0.164 0.148 0.205 0.164 0.220 0.323 0.199 0.301 0.448
1.000 0.154 0.300 0.288 0.245 0.343 0.546 0.414 0.697 0.905 0.580 0.859 0.980
1.000 0.360 0.500 0.459 0.287 0.475 0.722 0.5392 0.883 0.991 0.800 0.975 1.000
1.000 0.927 0.700 1.803 0.266 0.536 0.911 0.764 0.991 1.000 0.950 1.000 1.000
5.000 0.012 0.100 0.044 0.151 0.125 0.139 0.130 0.141 0.161 0.128 0.149 0.195
5.000 0.091 0.300 0.123 0.160 0.152 0.225 0.184 0.246 0.379 0.212 0.346 0.527
5.000 0.194 0.500 0.174 0.172 0.195 0.266 0.226 0.323 0.525 0.281 0.453 0.702
5.000 0.2vr1 0.700 0.178 0.159 0.170 0.239 0.192 0.291 0.451 0.244 0.401 0.623
5.000 0.5% 0.900 0.199 0.201 0.134 0.134 0.137 0.149 0.217 0.140 0.206 0.344
10.000 0.011 0.100 0.031 0.143 0.127 0.130 0.131 0.124 0.131 0.121 0.123 0.150
10.000 0.083 0.300 0.087 0.157 0.135 0.175 0.148 0.176 0.243 0.162 0.244 0.330
10.000 0.176 0.500 0.121 0.161 0.153 0.198 0.180 0.227 0.323 0.185 0.327 0.454
10.000 0.233 0.700 0.119 0.157 0.139 0.181 0.161 0.214 0.284 0.171 0.268 0.386
10.000 0.228 0.900 0.071 0.180 0.126 0.145 0.141 0.139 0.152 0.138 0.155 0.188

* Notes: See notes to Table 2. All entries are rejection frequencies of the null hypothesis of Granger noncausality based on 10%
nominal size out-of-sample predictive ability tests (mp). It is assumed that m = 0, so that parameter estimation error is not
accounted for. Values of the parameter B are constructed as discussed above by fixing A and ma and then solving for 3.
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Table 6: Empirical Power of the v='/2mp(7 > 0) Test*

Out-of-Sample Predictive Ability Test Results Based on Sample Size P

Sample Size

P=01T P=03T P =0.5T
A B v 3 250 500 1000 250 500 1000 250 500 1000

0.100 0.108 0.100 0.330 0.291 0.448 0.684 0.532 0.826 0.975 0.713 0.940 0.999
0.100  0.988 0.300 8.235 0.942 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.500 0.029 0.100 0.141 0.164 0.168 0.269 0.195 0.284 0.479 0.236 0.410 0.649
0.500 0.234 0.300 0.431 0.323 0.519 0.775 0.613 0.892 0.995 0.811 0.976 1.000
0.500 0.628 0.500 0.919 0470 0.776 0.970 0.883 0.998 1.000 0.977 1.000 1.000
1.000 0.020 0.100 0.100 0.150 0.135 0.195 0.152 0.197 0.290 0.176 0.258 0.401
1.000 0.154 0.300 0.288 0.216 0.323 0.533 0.368 0.650 0.882 0.525 0.817 0.973
1.000 0.360 0.500 0.459 0.257 0.447 0.704 0.517 0.851 0.982 0.720 0.950 0.999
1.000 0.927 0.700 1.803 0.245 0.515 0.903 0.719 0.988 1.000 0.932 1.000 1.000
5.000 0.012 0.100 0.044 0.137 0.116 0.129 0.114 0.119 0.141 0.105 0.118 0.161
5.000 0.091 0.300 0.123 0.147 0.144 0.206 0.158 0.214 0.340 0.172 0.306 0.468
5.000 0.194 0.500 0.174 0.155 0.172 0.252 0.186 0.281 0.460 0.209 0.395 0.637
5.000 0.271 0.700 0.178 0.143 0.147 0.220 0.148 0.234 0.389 0.172 0.311 0.522
5.000 0.556 0.900 0.199 0.174 0.109 0.114 0.096 0.111 0.161 0.094 0.144 0.255
10.000 0.011 0.100 0.031 0.138 0.117 0.123 0.116 0.110 0.113 0.095 0.096 0.124
10.000 0.083 0.300 0.087 0.139 0.126 0.164 0.124 0.157 0.216 0.131 0.189 0.291
10.000 0.176 0.500 0.121 0.143 0.129 0.178 0.144 0.185 0.280 0.140 0.249 0.374
10.000 0.233 0.700 0.119 0.133 0.117 0.157 0.115 0.159 0.227 0.119 0.191 0.315
10.000 0.228 0.900 0.071 0.154 0.106 0.128 0.093 0.096 0.106 0.080 0.088 0.114
* Notes: See notes to Table 2. All entries are rejection frequencies of the null hypothesis of Granger noncausality based on

10% nominal size out-of-sample predictive ability tests (mp). It is assumed that = > 0, so that parameter estimation error is
accounted for.
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Figure 1: Real Time Industrial Production Forecast Results
(p-values are for in-sample Granger noncausality tests)
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Notes: p-values were calculated recursively starting with the sample 1961:1-1980:1 and ending with data for the period
1960:1-1997:8. All results are based on models and forecasts of the monthly growth rate in U.S. industrial production.
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