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Abstract

We study the problem of identi�cation of the long regression E(y jx; z) when the short

conditional distributions P (y jx) and P (z jx) are known but the long conditional distri-

bution P (y jx; z) is not known. This problem often arises when a researcher utilizes data

from two separate data sets. (A leading example is the ecological inference problem of

political science, where voting behavior across electoral districts is observed from admin-

istrative records, the demographic composition of voters within a district is observed from

census data, and the researcher wants to infer voting behavior conditional on district and

demographic attributes.) We isolate an identi�cation region containing feasible values of

the long regression, and show that this region forms a sharp bound on the long regression.

The identi�cation region can be calculated precisely when y has �nite support. When y

has in�nite support we characterize two sets, one that contains the identi�cation region,

and one that is contained by it. Following this completely nonparametric analysis, we

examine the identifying power yielded by exclusion restrictions across distinct covariate

values. Such restrictions cause the identi�cation region to shrink, in many cases to a sin-

gle point. To illustrate the theory, we pose and address this hypothetical question: What

would be the outcome if the 1996 U.S. presidential election were re-enacted in a population

of di�erent demographic composition, ceteris paribus?

We have bene�tted from the opportunity to present this research in seminars at Northwestern

University and the University of Wisconsin - Madison. This research was supported in part

by National Science Foundation Grant SBR-9722846.



1 Introduction

Suppose that each member of a population is characterized by a triple (y; x; z). Here y is real-

valued, x takes values in a �nite dimensional real space X, and z takes values in a J-element

�nite set Z. Let P denote the population distribution of (y; x; z).

This paper studies the problem of identi�cation of the long regression E(y jx; z) when the short

conditional distributions P (y jx) and P (z jx) are known but the long conditional distribution

P (y jx; z) is not known. The nature of the problem is revealed by the Law of Total Probability,

P (y jx) =
X
j2Z

Pr(z = j jx)P (y jx; z = j): (1)

Knowledge of P (y jx) and P (z jx) restricts [P (y jx; z = j); j 2 Z] to J-vectors of distributions

that satisfy (1). Our objective is to determine the implied restrictions on E(y jx; z).

Aspects of the problem of inference on E(y jx; z) have been studied in several literatures with

varying concerns and terminology. The classical literature on linear regression compares the

parameter estimates obtained in a least squares �t of y to x with those obtained in a least

squares �t of y to (x; z). The expected di�erence between the estimated coe�cients on x

in the former and the latter �ts is sometimes called \omitted variable bias". The �ndings

are speci�c to least squares estimation of linear regressions and so do not directly inform the

present nonparametric analysis. We do, however, borrow the terms short regression and long

regression from Goldberger (1991), Sec. 17.2.

Stimulated by Simpson (1951), statisticians have been intrigued by the fact that E(y jx) may

be increasing in a scalar x and yet all J components of [E(y jx; z = j); j 2 Z] may be de-

creasing in x. Studies of Simpson's Paradox have sought to characterize the circumstances in

which this phenomenon occurs. See, for example, Lindley and Novick (1981) and Zidek (1984).

Following Huber (1964), research on robust estimation under contaminated sampling has taken

the object of interest to be P (y jx; z = j) for a speci�ed value of j. Values of (y; x; z) with
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z = j are said to be error-free, whereas those with z 6= j are said to be erroneous. The

researcher only observes (y; x) pairs, not (y; x; z) triples, and so does not know which observa-

tions are error free. The researcher is, however, assumed to know the conditional probability

Pr(z = j jx) that an observation is error-free, or at least to know a lower bound on this proba-

bility. Recently, Horowitz and Manski (1995) showed that equation (1) implies a sharp bound

on E(y jx; z = j). The lower and upper bounds on E(y jx; z = j) are the expectations of

certain right-truncated and left-truncated versions of P (y jx). This �nding forms the starting

point for the present analysis.

Our basic �ndings are developed in Section 2. We prove that the set of feasible values of the J -

vector [E(y jx; z = j); j 2 Z], its identi�cation region, is a bounded convex set whose extreme

points are the expectations of certain J-vectors of stacked distributions. When P (y jx) has

�nite support or J = 2, we are able to characterize the identi�cation region fully as the convex

hull of these extreme points. When P (y jx) has in�nite support and J � 3, we show that

the identi�cation region contains this convex hull and is contained in another convex polytope.

Whereas the analysis in Section 2 assumes no information is available beyond knowledge of

P (y jx) and P (z jx), we entertain additional information in Section 3. Here we study exclu-

sion restrictions asserting that y is either mean-independent or statistically independent of

some component of x, conditional on z and the other components of x. We �rst characterize

abstractly the identifying power of such exclusion restrictions and then present a simple rank

condition that su�ces for point identi�cation of long regressions.

Section 4 applies our �ndings to the ecological inference problem that has long drawn the

attention of sociologists and political scientists, especially since Robinson (1950). Social scien-

tists have described ecological inference substantively as inference on individual behavior from

aggregate data (e.g., King, 1997). Formally, however, the problem is inference on P (y jx; z)

given knowledge of P (y jx) and P (z jx). Focusing on settings in which y and z are both binary

variables, Duncan and Davis (1953) and Goodman (1953) performed simple partial analyses
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of the identi�cation problem that we address in generality in Sections 2 and 3. We connect

our analysis to this early literature and then show how our �ndings may be applied to election

forecasting problems. In particular, we pose and address this hypothetical question: What

would be the outcome if the 1996 U.S. presidential election were re-enacted in a population of

di�erent demographic composition, ceteris paribus? Assuming only that the long regression

E(y jx; z) would remain invariant under the hypothesized change in population composition,

we obtain informative bounds on the Electoral College vote and, in some cases, are able to

predict a winner.

2 Identifying E(y j x; z) given knowledge of P (y jx) and P (z jx)

We proceed in three steps. Section 2.1 reviews the sharp bound on the scalar E(y jx; z = j)

reported in Horowitz and Manski (1995). Section 2.2 uses this bound to characterize the

identi�cation region for the J-vector E(y jx; �) � [E(y jx; z = j); j 2 Z]. Section 2.3 extends

the analysis to E(y j �; �) � [E(y jx; �); x 2 X].

2.1 Identi�cation of E(y jx; z = j)

Fix x. For p 2 (0; 1), let qx(p) denote the p-quantile of P (y jx). Let Lx(p) and Ux(p) be,

respectively, the right-truncated and left-truncated distributions de�ned by

Lx(p)(�1; t] �

8><
>:

Pr[y�t j x]
p

if t < qx(p);

1 if t � qx(p);

(2)

Ux(p)(�1; t] �

8><
>:

0 if t < qx(1� p);

Pr[y�t jx]�(1�p)
p

if t � qx(1� p):

Let P (y jx) and P (z jx) be known. Suppose that E(y jx) exists and that �xj � Pr(z = j jx) >

0 for all j 2 Z.
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Horowitz and Manski (1995), Proposition 4 proves that the smallest and largest feasible values

of E(y jx; z = j) are the expected values of y under Lx(�xj) and Ux(�xj), respectively. Thus

E(y jx; z = j) 2

�Z
y dLx(�xj);

Z
y dUx(�xj)

�
� [Exj; Exj]: (3)

Simple reasoning underlies this result. Consider the sub-population with covariates x. The

smallest feasible value of E(y jx; z = j) occurs if, within this sub-population, the persons with

z = j have the smallest values of y. Then P (y jx; z = j) = Lx(�xj). The largest feasible value

occurs if the persons with z = j have the largest values of y. Then P (y jx; z = j) = Ux(�xj).

The bound (3) has a particularly simple form when y is a binary outcome variable, taking the

values 0 and 1. Then qx(p) = 0 if Pr(y = 1 jx) < 1 � p and qx(p) = 1 otherwise. It follows

that

Exj = max

(
0;
Pr(y = 1 jx) � (1� �xj)

�xj

)
; Exj = min

(
1;
Pr(y = 1 jx)

�xj

)
:

A simple direct proof of this result is given in Horowitz and Manski (1995), Corollary 1.2.

The univariate bound (3) immediately implies a bound on the J-vector E(y jx; �). That

is, E(y jx; �) must lie in the J-dimensional rectangle Cx � �j2Z [Exj; Exj]. The set Cx,

however, is not the sharp bound on E(y jx; �). The Law of Total Probability (1) implies

further restrictions, including the Law of Iterated Expectations,

E(y jx) =
X
j2Z

�xjE(y jx; z = j): (4)

Hence E(y jx; �) must lie in the intersection of Cx with the hyperplane satisfying (4). In what

follows, we characterize further the identi�cation region for E(y jx; �).

2.2 Identi�cation of E(y jx; �)

For each value of x, the feasible values of E(y jx; �) follow immediately, albeit abstractly, from

the Law of Total Probability (1). Let 	 denote the space of all probability distributions on
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R. Let �x denote the set of all J -vectors of distributions on R that satisfy (1). That is,

( j ; j 2 Z) 2 �x if, and only if,

P (y jx) =
X
j2Z

�xj j : (5)

Then the identi�cation region for E(y jx; �) is

Dx =

��Z
y d j ; j 2 Z

�
: ( j ; j 2 Z) 2 �x

�
: (6)

Some properties of Dx are immediate. The set �x is convex and the expectation operator is

linear, so Dx is convex. Moreover, Dx is contained within the J-dimensional rectangle Cx.

Hence Dx is a bounded convex set.

Our objective is to characterize Dx more precisely. Proposition 1 shows that Dx has at most

J ! distinct extreme points, these being the expectations of the stacked distributions de�ned

below. Following Proposition 1, we develop some immediate implications through two Corol-

laries.

The stacked distributions J-vectors of stacked distributions are sequences of J distribu-

tions such that the entire probability mass of the jth distribution lies weakly to the left of that

of the (j + 1)-st distribution. To describe these distribution sequences, we now let Z be the

ordered set of integers (1; : : : ; J). This set has J ! permutations, each of which generates a dis-

tinct J -vector of stacked distributions. We label these permutations of Z as Zm,m = 1; : : : ; J !,

and the corresponding J-vectors of stacked distributions as (Pmxj ; j = 1; : : : ; J);m = 1; : : : ; J !.

For each value of m, the elements of (Pmxj ; j = 1; : : : ; J) solve a recursive set of minimization

problems. In what follows, we show the construction of (P 1
xj; j = 1; : : : ; J), which is based

on Z
1, the original ordering of Z. The other (J ! � 1) J-vectors are generated from Z

m,

m = 2; 3; : : : ; J !, which alters the order in which the recursion is performed.

For each j = 1; : : : ; J; P 1
xj is chosen to minimize its expectation subject to the distributions

earlier chosen for (P 1
xi; i < j), and subject to the global condition that equation (5) must hold.
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The recursion is as follows: For j = 1; : : : ; J , P 1
xj solves the problem

min
 2	

Z
y d (7)

subject to

P (y jx) =
j�1X
i=1

�xiP
1
xi + �xj +

JX
k=j+1

�xk k; (8)

where  k 2 	, k = j + 1; : : : ; J are unrestricted probability distributions.

This recursion yields a sequence of stacked distributions. For j = 1, equation (8) reduces to

P (y jx) = �x1 +
JX
k=2

�xk k: (9)

Horowitz and Manski (1995), Proposition 4 shows that the distribution solving (7) subject to

(9) is Lx(�x1), the right-truncated version of P (y jx) de�ned in (2); thus P 1
x1 = Lx(�x1). For

j = 2, equation (8) has the form

P (y jx) = �x1Lx(�x1) + �x2 +
JX
k=3

�xk k: (10)

The proof of Horowitz and Manski's (1995) Proposition 4 shows that

P (y jx) = �x1Lx(�x1) + (1� �x1)Ux(1� �x1); (11)

where Ux(1 � �x1) is the left-truncated version of P (y jx) that maximizes E(y jx; z > 1).

Hence (8) becomes

Ux(1� �x1) =
�x2

1� �x1
 +

JX
k=3

�xk

1� �x1
 k: (12)

Equation (12) has the same form as (9), with Ux(1��x1) replacing P (y jx) and �x;k+1=(1��x1)

replacing �xk. Hence P
1
x2, the solution to (7) subject to (12), is a right-truncated version of

Ux(1��x1). By de�nition, Lx(�x1) has no mass to the right of the point qx(�x1) and Ux(1��x1)

has no mass to the left of this point. Hence P 1
x1 and P

1
x2 are stacked side-by-side, with all of the

mass of the former distribution lying weakly to the left of the mass of the latter distribution.

The distributions (P 1
xj ; j = 3; : : : ; J) are similarly stacked. For each j, the mass of P 1

xj lies to

weakly to the left of the mass of P 1
x;j+1. The supremum of the support of P 1

xj may equal the
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in�mum of the support of P 1
x;j+1, but otherwise the distributions are concentrated on disjoint

intervals.

Figure 1. Densities of stacked distributions for P (y jx) standard normal,

for each of the six permutations of Z = (1; 2; 3).
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Example: P (y jx) standard normal, �x1 = 1=2; �x2 = 1=3 and �x3 = 1=6.

Since J = 3 in this example, there are 3! = 6 3-vectors of stacked distributions, based on

Z
1 through Z

6. These are illustrated by their densities in Figure 1. Notice that the �rst

vector of stacked distributions in the �gure is (P 1
xj ; j = 1; 2; 3). P 1

x1 is Lx(1=2), the standard

normal right-truncated at 0. P 1
x2 is constructed by right-truncation at 0.97 of the distribution

resulting from Lx(1=2) being removed from the standard normal. And the remaining mass,

which is Ux(1=6), constitutes P
1
x3. The second vector of stacked distributions in Figure 1 is

(P 2
xj ; j = 1; 2; 3), where we de�ne Z2 = (1; 3; 2). And the remaining vectors of stacked distri-

butions in the �gure are derived from the remaining permutations, Z3 through Z6.

The extreme points of the identi�cation region With the above as preliminary, Propo-

sition 1 proves that the expectations of the stacked distributions are the extreme points of Dx.

Proposition 1: Let P (y jx) and P (z jx) be known. Let E(y jx) exist. Let Emx �

(
R
y dP

m
xj ; j = 1; : : : ; J ). Then the extreme points of Dx are fE

m
x ;m = 1; : : : ; J !g.

Proof: By construction, each of the J-vectors in fEmx ;m = 1; : : : ; J !g is a feasible value of

E(y jx; �). Step (i) of the proof shows that these vectors are extreme points of Dx. Step (ii)

shows that Dx has no other extreme points. In what follows, we simplify the notation by

suppressing the subscript x.

Step (i). It su�ces to consider E1. Permuting Z does not alter the argument below.

Suppose that E1 is not an extreme point of D. Then there exist an � 2 (0; 1) and distinct

J-vectors (�0; �00) 2 D such that E1 = ��
0 + (1 � �)�00. Suppose that E1, �0, and �00 di�er in

their �rst component. Then either �01 < E
1
1 < �

00
1 or �001 < E

1
1 < �

0
1. By construction, however,

E
1
1 = E

1, the global minimum of E(y j z = 1). So �01 � E
1
1 and �001 � E

1
1 . Hence it must be the

case that �001 = �
0
1 = E

1
1 .
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Now suppose that E1, �0, and �
00 di�er in their second component. Then �

0
2 < E

1
2 < �

00
2

or �002 < E
1
2 < �

0
2. But E1

2 minimizes E(y j z = 2) subject to the previous minimization of

E(y j z = 1). So �02 � E
1
2 and �002 � E

1
2 . Hence �002 = �

0
2 = E

1
2 . Recursive application of this

reasoning shows that �00 = �
0 = E

1, contrary to supposition. Hence E1 is an extreme point of

D.

Step (ii). Let � 2 D, with � =2 fEm;m = 1; : : : ; J !g. Then � is the expectation of some feasible

J-vector of non-stacked distributions. We want to show that � is not an extreme point of D.

Thus, we must show that there exists an � 2 (0; 1) and distinct J-vectors (�0; �00) 2 D such

that � = ��
0 + (1� �)�00.

Let the set-valued function S( ) denote the support of any probability distribution  on

the real line. Let ( j ; j 2 Z) 2 � be any feasible J -vector of distributions with expec-

tation �. This J-vector is not stacked, so there exist components  i and  k such that

[inf S( i); supS( i)] \ [inf S( k); supS( k)] has positive length. Thus supS( i) > inf S( k)

and supS( k) > inf S( i). For ease of exposition, henceforth let aj � inf S( j) and bj �

supS( j), for j = i; k.

We now construct a feasible J-vector of distributions that shifts mass, in a particular balanced

manner, between distributions  i and  k, while leaving the other components of ( j ; j 2

Z) unchanged. Let 0 < " <
1
2
(bi � ak). Then  k[ak; ak + "] > 0,  i[bi � "; bi] > 0, and

[ak; ak + "] \ [bi � "; bi] = ;. Let

� �
�k k[ak; ak + "]

�i i[bi � "; bi]
:

Now de�ne the new J-vector ( 0j ; j 2 Z) as follows: Let  
0
j =  j for j 6= i; k. If � � 1, let

[ 0i(y);  
0
k(y)] =

8>>>>><
>>>>>:

[  i(y) +
�k
�i
 k(y) ; 0 ] if y 2 [ak; ak + "];

[ (1� �) i(y) ;  k(y) + �
�i
�k
 i(y) ] if y 2 [bi � "; bi];

[  i(y) ;  k(y) ] otherwise:
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Alternatively, if � > 1, let

[ 0i(y);  
0
k(y)] =

8>>>>><
>>>>>:

[  i(y) +
1
�
�k
�i
 k(y) ; (1� 1

�
) k(y) ] if y 2 [ak; ak + "];

[ 0 ;  k(y) +
�i
�k
 i(y) ] if y 2 [bi � "; bi];

[  i(y) ;  k(y) ] otherwise:

Thus, the new J-vector shifts  i mass leftward from the [bi � "; bi] interval to the [ak; ak + "]

interval and compensates by shifting  k mass rightward to the [bi � "; bi] interval from the

[ak; ak + "] interval. The � parameter ensures that we shift equal amounts of mass and that

�i 
0
i + �k 

0
k = �i i + �k k. Hence ( 

0
j ; j 2 Z) is a feasible J -vector of distributions; that is,

an element of � . The mean of ( 0j ; j 2 Z) is related to the mean of ( j ; j 2 Z) as follows:

�
0
i < �i, �

0
k > �k, and �

0
j = �j for j 6= i; k.

An analogous operation switching the roles of i and k produces another new J-vector ( 00j ; j 2

Z). Now let 0 < " <
1
2(bk � ai) and rede�ne � accordingly. This construction shifts  k mass

leftward from the [bk � "; bk] interval to the [ai; ai + "] interval and shifts an equal amount of

 i mass rightward to the [bk � "; bk] interval from the [ai; ai + "] interval, while ensuring that

�i 
00
i + �k 

00
k = �i i + �k k. The mean of this J-vector is related to the mean of ( j ; j 2 Z)

as follows: �00i > �i, �
00
k < �k, and �

00
j = �j for j 6= i; k.

It follows from the above that �i�
00
i + �k�

00
k = �i�

0
i + �k�

0
k = �i�i + �k�k. Thus, (�i; �k) lies on

the line connecting (�0i; �
0
k) and (�00i ; �

00
k). Moreover, �00i > �i > �

0
i and �

0
k > �k > �

00
k . Hence

(�i; �k) is a strictly convex combination of (�0i; �
0
k) and (�00i ; �

00
k). Finally recall that �

00
j = �

0
j = �j

for j 6= i; k. Hence � is a strictly convex combination of �0 and �00. Thus � is not an extreme

point of D. Q:E:D:

Proposition 1 has two immediate implications that further characterize the identi�cation re-

gion. Let conv fEmx ;m = 1; : : : ; J !g denote the convex hull of fEmx ;m = 1; : : : ; J !g. Then we

have

10



Proposition 1, Corollary 1: conv fEmx ;m = 1; : : : ; J !g � Dx.

Proof: Dx is a convex set containing fEmx ;m = 1; : : : ; J !g. Hence Dx contains the convex

hull of these points. Q:E:D:

Proposition 1, Corollary 2: If P (y jx) has �nite support, then Dx = conv fEmx ;m =

1; : : : ; J !g.

Proof: Minkowski's Theorem (e.g., Br�ndsted, 1983, Theorem 5.10) shows that a compact

convex set in RJ is the convex hull of its extreme points. We already know that Dx is a

bounded convex set, so we need only show that Dx is closed. Let Y denote the support of

P (y jx) and suppose that Y has �nite cardinality H. For j 2 Z and � 2 Y , let 'j� be a

feasible value for Pr(y = � jx; z = j). Then equation (5) becomes the following system of H

linear equations in the J �H unknowns 'j�:

Pr(y = � jx) =
X
j2Z

�xj'j�; � 2 Y:

Let �x denote the solutions to this system of equations. �x forms a closed set in RJ�H . The

identi�cation region for E(y jx; �) is Dx = f (
P
�2Y � � 'j�; j 2 Z) : ' 2 �x g, a linear map

from �x to R
J . Hence Dx is closed. Q:E:D:

The identi�cation region when P (y jx) has in�nite support Proposition 1 and its

Corollaries fully characterize the identi�cation region when P (y jx) has �nite support, but

only partially so when P (y jx) has in�nite support. If Dx can be shown to be closed, then the

reasoning of Corollary 2 may be applied. Unfortunately, it appears di�cult to characterize

Dx topologically when P (y jx) has in�nite support.

Although we currently are not able to characterize fully the identi�cation region when P (y jx)

has in�nite support, we can add to the characterization given thus far. We have already

11



shown that Dx contains the convex polytope conv fEmx ;m = 1; : : : ; J !g. Proposition 2 uses

fEmx ;m = 1; : : : ; J !g to construct another convex polytope that contains Dx. When J = 2,

this yields a full characterization of Dx.

Proposition 2: For each m = 1; : : : ; J !, let Zm denote the mth permutation of Z. Let

j(m; k) be the position in Z of the kth element of Zm. De�ne the following subsets of RJ :

G
0
x �

8<
:� 2 RJ :

JX
j=1

�xj�j = E(y jx)

9=
; ;

G
m
x �

(
� 2 RJ :

nX
k=1

�xj(m;k)�k �
nX
k=1

�xj(m;k)E
m
xj(m;k); n = 1; : : : ; J � 1

)
; m = 1; : : : ; J !;

and

Gx �
J !\
m=0

G
m
x :

Then Gx is a convex polytope and conv fEmx ;m = 1; : : : ; J !g � Dx � Gx. When J = 2,

conv fEmx ;m = 1; : : : ; J !g = Dx = Gx.

Proof: Proposition 1, Corollary 1 showed that conv fEmx ;m = 1; : : : ; J !g � Dx. It is easy

to see that Dx � Gx. The Law of Iterated Expectations (4) requires that every point in Dx

satisfy the equality de�ning G0
x. For each m � 1, the construction of Emx by recursive mini-

mization implies that every point in Dx must satisfy each of the (J � 1) inequalities de�ning

G
m
x . Hence Dx � Gx.

To show that Gx is a convex polytope, observe �rst that G0
x is a hyperplane and each G

m
x

is the intersection of (J � 1) closed half-spaces. Hence Gx is a polyhedral set. Next ob-

serve that Gx is bounded from below. In particular, the �rst inequality used to de�ne

each set Gmx shows that � 2 Gx =) �j � Exj ; j 2 Z. Finally, observe that this lower

bound and the equality de�ning G0
x imply that Gx is bounded from above; in particular,

� 2 Gx =) �i � E(y jx) �
P
k 6=i �xj(m;k)Exk; i 2 Z. Thus Gx is a bounded polyhedral set,

and hence a convex polytope. See Br�ndsted (1983), Corollary 8.7.
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When J = 2, Gx is the line segment connecting the points (Ex1; Ex2) and (Ex1; Ex2), which

are the extreme points of Dx. So conv fEmx ;m = 1; : : : ; J !g = Dx = Gx in this special case.

Q:E:D:

2.3 Identi�cation of E(y j�; �)

It remains only to extend the analysis from identi�cation of E(y jx; �) to identi�cation of

E(y j�; �). This is straightforward. Knowledge of P (y jx) and P (z jx) implies no cross-x re-

strictions on E(y jx; �). Hence the identi�cation region for E(y j �; �) is the Cartesian product

�x2XDx.

3 The identifying power of exclusion restrictions

Propositions 1 and 2 have characterized the restrictions on E(y jx; z) implied by knowledge of

P (y jx) and P (z jx). Tighter inferences may be feasible if additional information is available.

Among the many forms that such information may take, we focus on exclusion restrictions of

the type that have been found useful in resolving other identi�cation problems.

Let us dispose �rst of one form of exclusion restriction whose implications are so immediate as

barely to require comment. Suppose it is known that y is mean-independent of z, conditional

on x; that is, E(y jx; z) = E(y jx). Then knowledge of P (y jx) identi�es E(y jx; z).

More interesting are exclusion restrictions connecting E(y jx; z) across di�erent values of x.

Let x = (v; w) and X = V �W . One familiar form of exclusion restriction asserts that y is

mean-independent of v, conditional on (w; z). Thus

E(y j v; w; z) = E(y jw; z): (13)

A stronger form of exclusion asserts that y is statistically independent of v, conditional on

(w; z). Thus

P (y j v; w; z) = P (y jw; z): (14)
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Restrictions of these forms are often called instrumental variable assumptions, v being the

instrumental variable.

Proposition 3 below characterizes fully, albeit abstractly, the identifying power of assumptions

(13) and (14). We then present a weaker, but much simpler, �nding that yields a straightfor-

ward rank condition for point identi�cation of E(y jw; �) � [E(y jw; z = j); j 2 Z]. This rank

condition indicates that, in applications, exclusion restrictions of the form (13) and (14) often

su�ce to identify E(y jw; �). We also call attention to the fact that these exclusion restrictions

are testable assumptions.

Proposition 3: Let P (y j v; w) and P (z j v; w) be known. Let E(y j v; w) exist. Let D�
w

and D
��
w denote the identi�cation regions for E(y jw; �) under assumptions (13) and (14)

respectively. Then

D
�
w �

\
v2V

D(v;w); (15)

and

D
��
w �

(�Z
y d i; j 2 Z

�
: ( j ; j 2 Z) 2

\
v2V

�(v;w)

)
� D

�
w: (16)

The corresponding identi�cation regions for E(y j �; �) are �w2WD
�
w and �w2WD

��
w .

Proof: Consider assumption (13). Recall that, for each value of (v; w), we have ( j ; j 2

Z) 2 �(v;w) if, and only if,

P (y j v; w) =
X
j2Z

�(v;w)j j:

Let � 2 RJ . Under (13), � is a feasible value for E(y jw; �) if, and only if, for every v 2 V

there exists an element of �(v;w) whose expectation is �. The set D�
w comprises these feasible

values of �.

Consider assumption (14). Under (14), ( j ; j 2 Z) is a feasible value for [P (y jw; j); j 2 Z ]
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if, and only if, ( j ; j 2 Z) satis�es the system of equations

P (y j v; w) =
X
j2Z

�(v;w)j j ; for all v 2 V:

Thus the set of feasible values for [P (y jw; j); j 2 Z ] is
T
v2V �(v;w). The set D

��
w comprises

the expectations of these feasible J -vectors of distributions. That D��
w � D

�
w follows from the

fact that assumption (14) is stronger than (13). It can also be seen directly by comparing (15)

and (16).

Now consider E(y j �; �). Neither (13) nor (14) imposes a cross-w restriction. Hence the iden-

ti�cation regions for E(y j �; �) are the Cartesian products of the regions for E(y jw; �) under

these assumptions. Q:E:D:

A rank condition for point identi�cation Proposition 3 is general, but it is too abstract

to convey a sense of the identifying power of exclusion restrictions. A much simpler, readily

applicable �nding emerges if we exploit only the Law of Iterated Expectations rather than the

full force of the Law of Total Probability.

Let C�
w � RJ denote the set of solutions � 2 RJ to the system of linear equations

E(y j v; w) =
X
j2Z

�(v;w)j�j; for all v 2 V: (17)

Let jV j denote the cardinality of the set V . Let � denote the jV j�J matrix whose jth column

is (�(v;w)j ; v 2 V ). Then we have

Proposition 3, Corollary 1: D
�
w � C

�
w. If � has rank J , then C�

w is a singleton and

D
�
w = C

�
w.

Proof: The Law of Iterated Expectations and assumption (13) require that feasible values

of E(y jw; �) solve equations (17). Hence D�
w � C

�
w. D

�
w is non-empty, so (17) must have at

least one solution. If � has rank J , then (17) has a unique solution and D�
w = C

�
w. Q:E:D:

15



Testing exclusion restrictions We have thus far supposed that the speci�ed exclusion

restriction is correct. Suppose that an attempt to solve the system of equations (17) reveals

that the solution set C�
w is empty. Or, if C�

w is non-empty, suppose that evaluation of the

identi�cation region D
�
w or D��

w , as the case may be, shows the region to be empty. Any

such �nding implies that the speci�ed exclusion restriction cannot be correct. Thus, exclusion

restrictions of the form (13) and (14) are testable assumptions.

4 Application to ecological inference

The ecological inference problem provides a rich setting within which to demonstrate the use

of Propositions 1 through 3. Section 4.1 connects our analysis to the literature on ecological

inference. Section 4.2 poses a forecasting task to which the analysis may be applied. Section

4.3 uses available data to carry out the application.

4.1 Background

An application in political science serves well to illustrate the ecological inference problem.

Political scientists have long been interested in the empirical variation in voting behavior

across the population. Sample surveys yielding information on individual attributes and vot-

ing behavior are not always available and, when they are, the credibility of self-reports of

voting behavior may be open to question. Hence political scientists have often sought to infer

voting patterns from two data sources that are readily available and credible: (a) administra-

tive records on voting by electoral district, and (b) census data on the attributes of persons

in each district.

To formalize this, let y denote the voting outcome of interest. Let x denote an electoral

district. Let z denote voter attributes thought to be related to voting behavior. Political sci-

entists want to learn features of P (y jx; z), the distribution of voting outcomes among persons
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in district x with attributes z. Voting records may reveal P (y jx) and census data may reveal

P (z jx). Ecological inference is inference on P (y jx; z) from this information on P (y jx) and

P (z jx).

The early major contributions to analysis of the ecological inference problem appeared in the

sociology literature in the 1950s. Robinson (1950) criticized the common practice of interpret-

ing the ecological correlation, the cross-x correlation of P (y jx) and P (z jx), as the correlation

of y and z. Soon afterwards, two in
uential short papers were published in the same issue

of the American Sociological Review . These papers, Duncan and Davis (1953) and Goodman

(1953), foreshadowed the analysis we have presented in Sections 2 and 3, respectively.

Duncan and Davis, considering problems in which both y and z are binary, used numeri-

cal illustrations to demonstrate that knowledge of P (y jx) and P (z jx) implies a bound on

P (y jx; z). Duncan and Davis did not formalize the bound, but it is clear from their illustra-

tions that they had in mind the sharp bound given in Horowitz and Manski (1995, Corollary

1.2) and, independently, in King (1997, Section 5.2). Goodman (1953), also considering prob-

lems in which y and z are binary, essentially showed that knowledge of E(y jx) and P (z jx)

combined with an exclusion restriction yields the rank condition for point identi�cation de-

veloped in our Proposition 3, Corollary 1.

Recent contributions to the literature on ecological inference have developed alternative routes

to point identi�cation of P (y jx; z). In particular, see Freedman et al. (1991), King (1997),

and the ensuing dispute played out in the Journal of the American Statistical Association

(Freedman et al., 1998, 1999; King, 1999). Research has continued to focus on settings in

which y is a binary outcome. There appears to be no precedent for the Horowitz and Manski

(1995, Proposition 4) �nding of a sharp bound on the expected value of a real-valued outcome.

Nor do there appear to be precedents for our Propositions 1 through 3.
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4.2 An illustrative application: forecasting the electoral e�ects of demo-

graphic changes

To illustrate the uses of Propositions 1 through 3, we now pose an instance of the ecological

inference problem. In dynamic societies, the composition of the population changes over time

as the net result of migration 
ows, variation in fertility and mortality rates, economic growth,

and so on. We shall apply Propositions 1 through 3 to the problem of forecasting the electoral

e�ects of these demographic changes. To make the application concrete, we pose a speci�c

hypothetical question:

What would be the outcome if the 1996 U.S. presidential election were

re-enacted in a population of di�erent composition, ceteris paribus?

Here ceteris paribus means that we assume the same candidates would be nominated, that

these candidates would use the same election strategies, and so on. Of course, the political

parties might nominate di�erent candidates and alter their strategies if the composition of

the population were to di�er. Nevertheless, the ceteris paribus scenario poses an interesting

baseline forecasting task.

To formalize the question, let x denote a state of the U.S., or the District of Columbia. Let z

denote attributes of individual voters thought to be related to voting behavior; for concrete-

ness we shall later let z indicate the age and ethnicity of a voter in state x. Let Y = f�1; 0; 1g

be the set of voting outcomes; y = 1 if a person votes Democratic, y = �1 if a person votes

Republican, and y = 0 otherwise. The 1996 election did not have signi�cant minor party

candidates. Hence, for simplicity, we use y = 0 to aggregate persons who vote for minor party

candidates and those who do not vote, either by choice or because they are ineligible.

In this setting, P (y jx) is the distribution of voting outcomes in state x. P (z jx) is the distri-

bution of voter attributes in this state. E(y jx; z) is the Democratic plurality among voters in

state x who have attributes z. Let Sx denote the number of Electoral College seats held by

state x. Then the Electoral College vote for the Democratic candidate, assuming away ties,
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is T �
P
x2X Sx � 1[E(y jx) > 0], where 1[�] is the indicator function. This candidate wins the

election if T > 269 = 538=2, as 538 is the total number of Electoral College seats.

Now suppose that the composition of the population were di�erent in 1996. Suppose that the

distribution of attributes in state x were P �(z jx) and that the number of its Electoral College

seats were S�x. What would be the election outcome under this scenario?

To address the question, we maintain the key assumption that E(y j�; �) is invariant , in the

sense that these conditional expectations remain unchanged under the hypothesized demo-

graphic change. This is a non-trivial assumption, but one that seems reasonable to enter-

tain. To interpret the assumption, it may help to consider a behavioral model of the form

y = f(x; z; u), wherein a voter's behavior is some function f of his state x, personal attributes

z, and other factors u. Then E(y j �; �) is invariant if u is statistically independent of (x; z)

and if the distribution of u remains unchanged under the hypothesized demographic change.

Clearly, the reasonableness of this assumption depends on the speci�cation chosen for the

covariates z.

Under the assumption that E(y j �; �) is invariant, the predicted Democratic plurality in state

x is

E
�(y jx) �

X
j2Z

Pr�(z = j jx)E(y jx; z = j): (18)

The predicted number of Electoral College votes for the Democratic candidate is T � �P
x2X S

�
x � 1[E�(y jx) > 0]. This candidate would win the election if T �

> 538=2.

The essential point is that the quantities to be predicted, �rst [E�(y jx); x 2 X] and then T �,

are functions of E(y j �; �). The identi�cation region for E(y j �; �) determines the region for T �.

Thus, under the assumption that E(y j �; �) is invariant, Propositions 1 through 3 provide the

basis for forecasting the hypothetical election outcome.
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4.3 Some forecasts

As a concrete application we forecast Democratic plurality, E�(y jx), and the number of Demo-

cratic Electoral College votes, T �, under the ceteris paribus assumption for the estimated U.S.

population composition in the next seven presidential election years, from 2000 to 2024. The

z covariates are (age, ethnicity), with two age categories (18 to 54 years, 55 years and over)

and three ethnicity categories (white, black, Hispanic). So J = 2� 3 = 6.

Data issues We use forecasts by the U.S. Bureau of the Census (Campbell, 1996) of each

state's population and its demographic composition. The 1996 distribution of voting outcomes

is based on data from the Federal Election Commission's web page, http://www.fec.gov.

The Census forecasts divide the population into four race categories; white, black, Asian/Paci�c

Islander, and American Indian/Eskimo/Aleut. Hispanic and non-Hispanic origin are also in-

dicated. From these eight distinct race/Hispanic origin categories we obtain our ethnicity

breakup as follows; Hispanics are all people of Hispanic origin regardless of race, blacks are

non-Hispanic blacks, and whites are non-Hispanics from the remaining races.

We classify as voters all members of the voting age population (18 years and over), even though

this includes legal and illegal aliens, persons in institutions, and others who do not possess

voting rights. All such persons have y = 0 as their recorded voting outcome, the same outcome

recorded by eligible voters who vote for minor party candidates or who choose not to vote. We

are restricted to this classi�cation because the Census Bureau does not publish forecasts of

the population of eligible voters. This same classi�cation is employed by the Federal Election

Commission (Kimberling, 1988).

Electoral College seats are allocated to states according to each state's total population, as

reported in the most recent decennial census. For example Sx, the seats in the 1996 presiden-

tial election, were allocated according to the population in each state from the 1990 Census,
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not according to forecasts of 1996 state populations. Consequently, we estimate S�x in 2004

and 2008 from the Census Bureau's forecasts of each state's population in 2000, S�x in 2012,

2016 and 2020 from the 2010 population forecasts, and S�x in 2024 from the 2020 population

forecasts. S�x in 2000 is equal to Sx, each state's number of Electoral College seats in 1996.

Bounds on E�(y jx) and T � To obtain the bounds on E�(y jx), we �rst apply Proposi-

tion 1, Corollary 2 to determine the identi�cation region Dx. We then use the right-hand side

of equation (18) to determine the feasible values of E�(y jx). Proposition 4 below shows that

the upper bound on E�(y jx) must occur at an extreme point of Dx, and the same argument

applies to the lower bound. Hence, to compute the lower and upper bounds on E�(y jx), we

do not have to evaluate the right-hand side of equation (18) at all points in Dx. It su�ces

to evaluate (18) at the J ! extreme points of Dx, which are the expectations of the vectors of

stacked distributions. In our application, J ! = 6! = 120, so this is quite tractable.

Proposition 4: For each j = 1; : : : ; J , let ��xj denote the counterfactual value of �xj. If y

has �nite support, then

max
�2Dx

X
j2Z

�
�
xj �j = max

�2fEmx ;m=1;:::;J!g

X
j2Z

�
�
xj �j :

Proof: Since y has �nite support, we know from Propostion 1, Corollary 2 that Dx =

conv fEmx ;m = 1; : : : ; J !g. So any � 2 Dx can be represented as
PJ!
m=1 �mE

m
x for appropri-

ately chosen convex combination weights �m. Relabel the m's, if necessary, to ensure that

E
1
x 2 arg max

m2f1;:::;J !g

X
j2Z

�
�
xj E

m
xj:

We have to show that

E
1
x 2 arg max

�2Dx

X
j2Z

�
�
xj �j:

We have X
j2Z

�
�
xj E

1
xj �

X
j2Z

�
�
xj E

m
xj for all m 2 f1; : : : ; J !g:

Since each �m is non-negative, we have

�m

X
j2Z

�
�
xj E

1
xj � �m

X
j2Z

�
�
xj E

m
xj for all m 2 f1; : : : ; J !g:
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Now since the �m's sum to one, summing across the m's gives

X
j2Z

�
�
xj E

1
xj =

J!X
m=1

�m

X
j2Z

�
�
xj E

1
xj �

J!X
m=1

�m

X
j2Z

�
�
xj E

m
xj =

X
j2Z

�
�
xj

J !X
m=1

�mE
m
xj =

X
j2Z

�
�
xj �j:

Since � is an arbitrary element of Dx the proposition is proved. Q:E:D:

Table 1 reports the bounds on E�(y jx) in 2004 and 2020. The table shows that the bounds

on E�(y jx) in 2020 are wider than those in 2004 for all states. In 2004 there are 25 states

where the bound on Democratic plurality is entirely a positive interval, and 11 states where

the bound is entirely a negative interval. In 2020 the corresponding number of states is �ve

and zero, respectively.

The reason the bounds are wider in 2020 is simple. The forecast change in the distribution

of demographic characteristics, P (z jx), for each x 2 X is more pronounced between 1996

and 2020 than between 1996 and 2004. The more P (z jx) varies, the less information P (y jx)

conveys about E�(y jx).

From the bounds on E�(y jx) in a particular state in 2004, we can predict the number of Elec-

toral College seats the Democratic candidate will win in that state. For the 25 states where the

bound on E�(y jx) is entirely a positive interval, we get the point prediction S�x as the number

of seats won. And for the 11 states where the bound on E�(y jx) is entirely a negative interval,

our point prediction of the number of seats won is zero. In the remaining 15 states the bound

on E�(y jx) straddles zero, and so we obtain no prediction for the number of Electoral College

seats won by the Democratic candidate. In the absence of any cross-x restrictions, we simply

add these bounds, some of which reduce to a point, across all states to obtain the bound on T �.
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Table 1. Bounds on E�(y jx) and T � in 2004 and 2020.

E(y j x) Bound on E�(y j x) Bound on E�(y jx)
in 1996 in 2004 in 2020

Northeast New England

Connecticut 0.102 [ 0.055 , 0.146 ] [ -0.053 , 0.252 ]

Maine 0.134 [ 0.103 , 0.168 ] [ -0.028 , 0.309 ]

Massachusetts 0.184 [ 0.141 , 0.223 ] [ 0.025 , 0.346 ]

New Hampshire 0.057 [ 0.023 , 0.093 ] [ -0.116 , 0.237 ]

Rhode Island 0.171 [ 0.131 , 0.206 ] [ 0.019 , 0.319 ]

Vermont 0.130 [ 0.091 , 0.172 ] [ -0.035 , 0.308 ]

Middle Atlantic

New Jersey 0.091 [ 0.048 , 0.130 ] [ -0.056 , 0.231 ]

New York 0.134 [ 0.098 , 0.167 ] [ 0.014 , 0.249 ]

Pennsylvania 0.045 [ 0.024 , 0.066 ] [ -0.068 , 0.162 ]

Midwest East North Central

Illinois 0.086 [ 0.051 , 0.120 ] [ -0.050 , 0.222 ]

Indiana -0.027 [ -0.055 , -0.001 ] [ -0.158 , 0.098 ]

Michigan 0.072 [ 0.042 , 0.104 ] [ -0.064 , 0.218 ]

Ohio 0.035 [ 0.007 , 0.063 ] [ -0.097 , 0.171 ]

Wisconsin 0.060 [ 0.028 , 0.091 ] [ -0.093 , 0.221 ]

West North Central

Iowa 0.060 [ 0.034 , 0.086 ] [ -0.078 , 0.206 ]

Kansas -0.103 [ -0.134 , -0.072 ] [ -0.262 , 0.046 ]

Minnesota 0.104 [ 0.068 , 0.140 ] [ -0.073 , 0.290 ]

Missouri 0.034 [ 0.013 , 0.056 ] [ -0.099 , 0.172 ]

Nebraska -0.105 [ -0.134 , -0.077 ] [ -0.256 , 0.032 ]

North Dakota -0.038 [ -0.065 , -0.013 ] [ -0.183 , 0.100 ]

South Dakota -0.021 [ -0.034 , -0.008 ] [ -0.171 , 0.125 ]

South South Atlantic

Delaware 0.076 [ 0.041 , 0.110 ] [ -0.079 , 0.237 ]

District of Columbia 0.331 [ 0.299 , 0.364 ] [ 0.253 , 0.401 ]

Florida 0.028 [ -0.025 , 0.078 ] [ -0.157 , 0.209 ]

Georgia -0.005 [ -0.044 , 0.033 ] [ -0.166 , 0.155 ]

Maryland 0.075 [ 0.030 , 0.117 ] [ -0.085 , 0.233 ]

North Carolina -0.022 [ -0.060 , 0.016 ] [ -0.183 , 0.135 ]

South Carolina -0.024 [ -0.066 , 0.016 ] [ -0.175 , 0.120 ]

Virginia -0.009 [ -0.058 , 0.039 ] [ -0.172 , 0.152 ]

West Virginia 0.066 [ 0.035 , 0.101 ] [ -0.057 , 0.203 ]

East South Central

Alabama -0.033 [ -0.067 , -0.001 ] [ -0.176 , 0.102 ]

Kentucky 0.005 [ -0.028 , 0.038 ] [ -0.143 , 0.153 ]

Mississippi -0.023 [ -0.055 , 0.008 ] [ -0.164 , 0.113 ]

Tennessee 0.011 [ -0.020 , 0.043 ] [ -0.135 , 0.160 ]

West South Central

Arkansas 0.080 [ 0.048 , 0.117 ] [ -0.061 , 0.239 ]

Louisiana 0.069 [ 0.022 , 0.117 ] [ -0.104 , 0.247 ]

Oklahoma -0.039 [ -0.079 , 0.000 ] [ -0.191 , 0.109 ]

Texas -0.020 [ -0.058 , 0.018 ] [ -0.168 , 0.128 ]

West Mountain

Arizona 0.010 [ -0.039 , 0.059 ] [ -0.166 , 0.186 ]

Colorado -0.007 [ -0.068 , 0.053 ] [ -0.224 , 0.208 ]

Idaho -0.108 [ -0.159 , -0.060 ] [ -0.320 , 0.080 ]

Montana -0.018 [ -0.070 , 0.033 ] [ -0.231 , 0.190 ]

Nevada 0.004 [ -0.053 , 0.061 ] [ -0.186 , 0.194 ]

New Mexico 0.034 [ -0.001 , 0.068 ] [ -0.116 , 0.184 ]

Utah -0.106 [ -0.145 , -0.074 ] [ -0.284 , 0.046 ]

Wyoming -0.078 [ -0.133 , -0.028 ] [ -0.284 , 0.109 ]

Paci�c

Alaska -0.100 [ -0.155 , -0.039 ] [ -0.232 , 0.050 ]

California 0.057 [ 0.003 , 0.114 ] [ -0.085 , 0.200 ]

Hawaii 0.103 [ 0.079 , 0.130 ] [ 0.028 , 0.189 ]

Oregon 0.047 [ -0.014 , 0.110 ] [ -0.156 , 0.260 ]

Washington 0.069 [ 0.017 , 0.125 ] [ -0.116 , 0.272 ]

Democratic Electoral
College votes, T � 379 [ 302 , 477 ] [ 51 , 538 ]
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The �rst column of Table 2 shows the bounds on T
� for all seven election years. Observe

that the bounds continually widen as we forecast further into the future. In 2000 and 2004,

the bounds are tight enough to predict a Democratic election winner, since they are intervals

lying entirely above 270. In contrast, the bound in 2024 conveys little information.

Table 2. Bounds on T � in 2000 through 2024.

No exclusion
restriction

Exclusion
restriction

2000 [ 359 , 413 ] 402

2004 [ 302 , 477 ] 399

2008 [ 193 , 514 ] 407

2012 [ 85 , 521 ] 361

2016 [ 55 , 538 ] 356

2020 [ 51 , 538 ] 351

2024 [ 18 , 538 ] 348

Dx versus Cx There are substantial gains from employing the sharp identi�cation region

Dx to bound E�(y jx) rather than the non-sharp rectangular region Cx discussed in Section

2.1. Consider, for example, the state of California. For this state, Cx is the cross product of

the six j-speci�c bounds shown in Table 3.

Table 3. Bounds on E(y jx = California; z = j) for each j 2 Z.

Bounds on

j Pr(z = j jx) E(y jx; z = j)

White, 18 to 54 years 0.476 [ -0.352 , 0.471 ]

White, 55 years and over 0.196 [ -0.853 , 1 ]

Black, 18 to 54 years 0.052 [ -1 , 1 ]

Black, 55 years and over 0.014 [ -1 , 1 ]

Hispanic, 18 to 54 years 0.223 [ -0.750 , 1 ]

Hispanic, 55 years and over 0.039 [ -1 , 1 ]
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Using this set Cx to bound Democratic plurality in California in 2004 yields [�0:626; 0:771],

considerably wider than [0:003; 0:114], the bound based on Dx reported in Table 1.

The bound calculated from Cx lacks informativeness not only because of its width, but also

because it straddles zero. In fact, in each of the seven election years, the bound on E�(y jx)

obtained from Cx straddles zero in every state. If the objective is to estimate the number

of Electoral College seats won by the Democratic candidate, then the bound on T � obtained

from Cx for all seven election years is [0; 538], completely uninformative. This stands in sharp

constrast to the bounds on T � obtained from Dx, reported in Table 2.

Exclusion restrictions Consider x as a pair (v; w), with w indicating region of the U.S. ,

and v indicating the state within that region. To illustrate the identifying power of exclusion

restrictions, let us now suppose that Democratic plurality, conditional on z, does not vary

between states in the same region, but may vary across regions. That is, assume

E(y j v; w; z) = E(y jw; z) for all v 2 V;w 2W; and z 2 Z: (19)

Each of the four regions of the U.S. contains more than six states. Hence the rank condition

of Proposition 3, Corollary 1 implies point identi�cation of [E(y jw; z = j); j 2 Z] if equation

(17) has a unique solution, and implies that the exclusion restriction (19) is incorrect if equa-

tion (17) has no solution. We �nd that the exclusion restriction is rejected for all four regions.

Goodman (1953) was aware that an exclusion restriction may be rejected but, wishing to

retain the restriction in an approximate form, suggested a least squares �t of equation (17).

In our application, such a �t yields a point estimate of Democratic plurality in each state in

a particular region. This yields a point estimate of the Electoral College seats won by the

Democratic candididate in each election year. These estimates are reported in the second

column of Table 2.

Notice that these point estimates for T � lie within the previously calculated bounds in each
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election year. However, this is not the case for the point estimates of E�(y jx). In 25 states

the predicted Democratic plurality in 2020 under the least squares approximation to (19) lies

outside the bound reported in Table 1. For three of these states, the prediction lies outside

[�1; 1], which is nonsensical. Further, in every region w, the estimates of E(y jw; z = j)

lie outside [�1; 1] for several values of j. Such problems are common in applications of this

Goodman regression approach to ecological inference (see King, 1997).

Clearly, the data reject assumption (19) when w indicates one of the four regions of the U.S.

We have also considered a weaker version of this assumption, in which w indicates one of the

nine sub-regions shown in Table 1. The data also reject this weaker exclusion restriction, in

which the Democratic plurality conditional on z is assumed constant only across states within

a sub-region.

Of course, exclusion restrictions are not the only form of assumption that an empirical re-

searcher may wish to bring to bear. One may, for example, wish to impose upon the long

regression a monotone instrumental variable assumption, in which the equalities de�ning ex-

clusion restrictions (13) and (14) are replaced with weak inequalities (see Manski and Pepper,

2000). Regardless of what assumptions one may wish to entertain, we believe that determi-

nation of the identi�cation region for E(y j �; �) using the data alone forms a natural starting

point for empirical analysis.
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