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Abstract

The topic of this paper is the problem of a singular disturbance covariance matrix

in (seemingly unrelated) systems of linear regression equations. This singularity is

considered as being caused by exact linear restrictions on the endogenous variables,

adding-up to a predetermined aggregate. It is well known, that the estimation of such

systems require the substitution of one equation by the "adding up condition" as pro-

posed by Barten (1969), or, as alternatively proposed by Theil (1971), a modi�cation

of the GLS estimator. The consequently occuring question of the invariance of the

parameter estimates to the choice of which equation is deleted has been discussed ex-

haustively by Powell (1969) for GLS and Barten (1969) for ML estimation. Dhrymes

and Schwarz (1987a,b) pointed out the parallels between the di�erent procedings and

argued that the estimator of Theil (1971) fails to exist in most of the practically rele-
vant constellations. The rank conditions given by Theil (1971) and the corresponding

objections of Dhrymes and Schwarz (1987a,b) are substantially simpli�ed and gener-

alized.
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1 Introduction

Much of the the attention dedicated to regression models with a singular covariance matrix of
disturbances has been stimulated by the work on allocation models, mainly demand systems.
Typically this models contain several, say n behavioral equations and an additional identity.
This identity implies that n dependendent variables yi (1 � i � n) (expenditures for the
di�erent commodities) add up to a �xed, known value (total expenditures). Consequently,
having n+1 equations and n dependent variables the resulting equation system is singular.
Considering models with n endogenous variables and T observations on every variable, we
denote the observations by yt;i; (t = 1; : : : ; T ); (i = 1; : : : ; n).
Of course there are several possible forms of the adding up condition. For example

(a)
nX
i=1

yt;i = st 8t;

(b)
nX
i=1

yt;i = 1 8t and

(c)
nX
i=1

aiyt;i = st 8t:

In demand theory the identity usually is of form (a) or (b). Case (b) is given when the
n dependent variables are represented as shares of the predetermined aggregate. A more
general identity is given in case (c), with a fundamental set partitioned in n disjoint subsets,
where yt;i represents the share value in subset i and yt represents the �xed share value of
the fundamental set. Denoting the non-stochastic shares of subset i of the fundamental set
as ai, the weighted yt;i will sum up identically to st. While (b) is nested in (a), both are
special cases of (c).
Whatever identity is considered, the implicit adding-up condition causes the seemingly

unrelated variables yt;i to be related, i.e. correlated. In regression analysis the residuals
inherit this correlation from the dependent variables, resulting in a singular covariance
matrix. Usually, in the context of unconstrained estimation, the resulting rank de�cit of the
covariance matrix is one. The consequently occuring problems when computing GLS or ML
estimates can be solved either by deleting one equation before the estimation procedure or
by modi�cation of the estimator (see Bewley, 1986).
In the framework of the classical multivariate single equation regression model with the

assumption of a singular covariance matrix Theil (1971) (and Kreijger and Neudecker (1977))
developed a best linear unbiased GLS and constrained GLS estimator using the Moore-
Penrose generalized inverse. Deleting one equation is one possible procedure to be able
to estimate the unknown parameters of the model. As stated by Bewley (1986) in his
monograph on allocation models "The major question that then arises is does the estimator
depend on which equation is deleted?" Powell (1969) considering both cases (a) and (c)
using GLS estimates and Barten (1969) considering case (a) using a generalisation of the
ML system estimator, treated the invariance problem in the system of equations model.
Dhrymes and Schwarz (1987a,b) pointed out, that "the literature has generally dealt with a
special case { in which all explanatory variables appear in every equation", but the Barten
estimator does "not hold for the general case" and the Theil-Kreijger-Neudecker (TKN)
estimator "fails to exist when the equations of the system contain one or more variables in
common", since the rank conditions postulated by Theil (1971) are not ful�lled.
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Similar problems occur in the context of panel data models, where sometimes a set of
restrictions of the form

(d)
nX
i=1

yt;i;j = rt;j 8j; 8t and
mX
j=1

yt;i;j = ct;i 8i; 8t:

has to be considered, whereas in the macroeconometric or simultaneous systems approach
usually the problem of a singular system covariance matrix occurs due to identities of endoge-
nous variables also occuring in behavioral equations. This two models represent practically
relevant cases where the rank de�cit (due to restrictions) of the system covariance matrix
could be greater than one.

In the second section we introduce a general model, where we discuss all necessary prelim-
inaries, assumptions and constraints and consider relevant model alternatives. Estimation
topics are discussed in section three. In section four we derive less restrictive rank condi-
tions than postulated by Theil (1971) in a more general framework as in the corresponding
considerations of Dhrymes and Schwarz (1987a,b). The special case of identical regressors in
every equation of the system and homoscedasticity is considererd in section �ve. Section six
deals with the problem of the deletion choice. Strongly related to the work of Powell (1969)
and Barten (1969) we show, that under consideration of the constraints, the estimator is
invariant to the deletion choice and equivalent to the modi�ed GLS estimator. In section
seven we briey discuss starting conditions for feasible GLS estimation.

2 The framework

2.1 Alternative speci�cations

The basic model is the following general system of regression equations model

(i) yt;i =
X
k

xt;k;ibk;i + ut;i:

Nested within (i) is the model considered by Powell (1969)

(ii) yt;i =
X
k

xt;kbk;i +
X
l

zt;l;icl;i + ut;i;

which contains both, independent variables xt;k that are common to every equation and
independent variables zt;l;i that are speci�c for some of the n equations. A special case of
(ii) is the model with identical regressors in each of the n equations,

(iii) yt;i =
X
k

xt;kbk;i + ut;i:

Powell, using speci�cation (ii), considered adding-up conditions

(I)
X
i

yt;i = xt;1 8t; or

(II)
X
i

aiyt;i = xt;1 8t;
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with the resulting constraints

(I')
X
i

b1;i = 1 and
X
i

bk;i = 0 for k � 2; or

(II')
X
i

aib1;i = 1 and
X
i

aibk;i = 0 for k � 2;

and assumed

(I")
X
i

zt;l;i = 0 8t; 8l; or

(II")
X
i

aizt;l;i = 0 8t; 8l:

He proved that, under condition (I) considering (I') and assuming (I"), the Aitken esti-
mator (modi�ed by using the Moore-Penrose inverse) is invariant to the choice of which
equation is deleted and that condition (II) represents a linear transformation of the minimi-
sation problem under (I). Thus, given the invariance of the Aitken estimator under linear
transformations, the invariance result is equally valid for weighted aggregates.

2.2 A general model

Consider the system of regression equations

yt;i =
KiX
k=1

bk;ixt;k;i + ut;i 1 � i � n; 1 � t � T;(1)

with the adding-up restriction

nX
i=1

aiyt;i = st 8t;(2)

where in general t is a time index and i is a cross-section index. Equation (1) could be
rendered to

y�;i = X�;ib�;i + u�;i 1 � i � n;(3)

where y�;i is a vector of T observations of the dependent variable, X�;i is a T �Ki regressor
matrix and b�;i contains the Ki parameters of the ith equation.

Assumption 1: All regressors are nonstochastic.

Assumption 2: Eu�;i = 0 8i.

Assumption 3: cov(ut;iut;j) =

(
0 for t 6= s; 1 � t; s � T;

�2!t;i;j for t = s; 1 � i; j � n:

Thus the covariance matrix is denoted by 
t with known elements !t;i;j.

Assumption 4:
P

i a
2
i > 0 and all ai are known and combined to the column vector a.
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Assumption 5: All st are known and combined to the column vector s.

Since the adding-up restriction should be identically ful�lled in the disturbances from (3)
we get X

i

aiu�;i = 0(4)

and X
i

aiX�;ib�;i = s:(5)

From (4) follows


ta = 0:(6)

Without loss of generality a0a = 1.

Assumption 6: 
t has a single zero eigenvalue.

This assumption implies that the singularity of 
t is solely caused by the adding-up restric-
tion and gives way to the diagonalization


t =
�
a Ft

� 0 0
0 �t

! 
a0

F0

t

!
; 8t;(7)

where �t is an n� 1 nonsingular diagonal matrix and
�
a Ft

�
is orthogonal. The latter

implies

a0Ft = 0; a0a = 1; F0

tFt = In�1 and aa0 + FtF
0

t = In:

From (7) follows


t = Ft�tF
0

t;(8)

and consequently for the Moore-Penrose inverse


+
t = Ft�

�1
t F0

t:(9)

Dhrymes and Schwarz (1987b, p.237) stated that "the heart of the problem is that the
conditions on the parameters force the singularity of the covariance matrix { and to a
certain degree the converse is true, i.e., the singularity of the covariance matrix implies
certain restrictions". It is important to note that, as stated by Bewley (1986, p.10, 12), "a
necessary and su�cient condition for the OLS estimates to satisfy the adding-up criterion
is that some linear combination of the regressors must be identically equal to the sum of
regressands if the model : : : is to be logically consistent."

Since the constraints in (5) depend on the values of the regressors, we postulate that the
constraints are identically valid in the regressors. This induces restrictions on the parameters
which are independent from the regressors. Thus let Z be a T � p matrix of T -vectors
z1; : : : ; zp, which constitute a base of the vector space containing the

P
iKi regressors of all

n equations. The obvious consequence is the existence of n matrices Ci of order p�Ki with

X�;i = ZCi; 8i:
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Thus, the constraints in (5) could be written as

Z
�
a1C1 : : : anCn

�
b = s;(10)

where b is the (
P

iKi)-vector of parameters in equation system (3).

Assumption 7: s is element of the linear space spanned by the (
P

iKi) regressors.

This implies

s = Zc;(11)

where c is a suitable vector. Combining (10) and (11) we get�
a1C1 : : : anCn

�
b = c;(12)

or, more compact

Sb = c;(13)

where S is an p � (
P

iKi) matrix. If any of the regressors cannot be reproduced as linear
combination of others, then (12) implies that the corresponding parameter could be obtained
through the constraints. Consider an illustrative example for the special case ai = 1, 8i
given in Bewley (1986, p.22)

yt;1 = b1;1xt;1 + b2;1xt;2 + ut;1;

yt;2 = b2;2xt;2 + b3;2xt;3 + ut;2;

yt;1 = b1;3xt;1 + ut;3;

and adding-up restrictions

yt;1 + yt;2 + yt;3 = xt;1:

Summing up the behavioral equations gives

(yt;1 + yt;2 + yt;3) = (b1;1 + b1;3)xt;1 + (b2;1 + b2;2)xt;2 + b3;2xt;3 + (ut;1 + ut;2 + ut;3):

Thus we have

ut;1 + ut;2 + ut;3 = 0;

b1;1 + b1;3 = 1;

b2;1 + b2;2 = 0;

b3;2 = 0:

In various applications there is the need to impose additional exogenous restrictions of the
form

Rb = r;(14)

where R is an q � (
P

iKi) matrix.
Combining (13) and (14) we get 

S

R

!
b =

 
c

r

!
:(15)
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We further assume that the constraints (15) are not contradictory.

Assumption 8: rk

 
S c

R r

!
= rk

 
S

R

!
.

The n seemingly unrelated equations are connected by the adding-up restriction. Since
this connection is independent from time, we introduce an alternative representation of the
system by aggregating groupewise for every t, given by

yt;� = Xt;�b+ ut;�; 8t;(16)

where the n� (
P

iKi) matrix Xt;� is given by

Xt;� �

0
BBBB@
x0t;�;1 0 : : : 0
0 x0t;�;2 : : : 0
...

...
. . .

...
0 0 : : : x0t;�;n

1
CCCCA ;

and x0t;�;i represents the column vector of the Ki regressors in equation i at time t. Aggre-
gating (16) subject to

y �

0
BBBB@
y1;�
y2;�
...

yT;�

1
CCCCA ;u �

0
BBBB@
u1;�
u2;�
...

uT;�

1
CCCCA ;b �

0
BBBB@
b�;1

b�;2
...

b�;n

1
CCCCA and X �

0
BBBB@
X1;�

X2;�
...

XT;�

1
CCCCA ;

we get

y = Xb+ u:(17)

We need, however, a rank condition to guarantee the identi�cation of the parameters. The
parameters in equation (17) are not identi�ed in case of the existence of a nonzero vector
�b with X�b = 0, S�b = 0 and R�b = 0.

Assumption 9: The matrix H �

0
B@
X

S

R

1
CA has full column rank.

By suitable row conversions the matrix H could be rendered to0
BBBBBBBBB@

X�;1 0 : : : 0
0 X�;2 : : : 0
...

...
. . .

...
0 0 : : : X�;n

a1C1 a2C2 : : : anCn

R

1
CCCCCCCCCA
:

Then, obviously full column rank of X�;i, 8i, is a su�cient condition for Assumption 9 to
be ful�lled. The covariance matrix of u in (17) is given by

Euu0 � 
 =

0
BBBB@

1 0 : : : 0
0 
2 : : : 0
...

...
. . .

...
0 0 : : : 
T

:

1
CCCCA(18)
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Hence, considering (6)


�a = 0;(19)

with �a � eT 
 a, where eT is an T-vector with all elements equal to unity. From (8) follows


 =

0
BBBB@
F1 0 : : : 0
0 F2 : : : 0
...

...
. . .

...
0 0 : : : FT

1
CCCCA

0
BBBB@
�1 0 : : : 0
0 �2 : : : 0
...

...
. . .

...
0 0 : : : �T

1
CCCCA

0
BBBB@
F0

1 0 : : : 0
0 F0

2 : : : 0
...

...
. . .

...
0 0 : : : F0

T

1
CCCCA ;(20)

and from (9) consequently


+ =

0
BBBB@
F1 0 : : : 0
0 F2 : : : 0
...

...
. . .

...
0 0 : : : FT

1
CCCCA

0
BBBB@
��1

1 0 : : : 0
0 ��1

2 : : : 0
...

...
. . .

...
0 0 : : : ��1

T

1
CCCCA

0
BBBB@
F0

1 0 : : : 0
0 F0

2 : : : 0
...

...
. . .

...
0 0 : : : F0

T

1
CCCCA :(21)

3 Estimation

The estimation problem is given by calculating b from (17) subject to the restrictions (15).

Premultiplying (16) by Mt �

 
a0

��1
t F0

t

!
, produces the restrictions (4) and (5) and the

reduced system

y�t;� = X�

t;�b+ u�

t;�; 8t;(22)

where y�t;� � ��1
t F0

tyt;�, X
�

t;� � ��1
t F0

tXt;� and u�

t;� � ��1
t F0

tut;�. Note that rk(Mt) = n.
Combining the equations of (22) leads to

y� = X�b+ u�;(23)

with

var(u�) = �2IT (n�1)(24)

and

X�0X� = X0
+X and X�0y� = X0
+y:(25)

OLS estimation of (23) subject to (15) yields the normal equations 
X0
+X H0

H 0

! 
b̂

�

!
=

 
X0
+y

h

!
;(26)

where H �

 
S

R

!
, h �

 
c

r

!
and � is the vector of Lagrange multipliers.

Oberhofer and Haupt (1999) have shown, that under assumptions one to nine, system (26)
has a best linear unbiased solution

b̂ = CX0
+y + (IK �CX0
+X)b�;

where b� is an arbitrary vector ful�lling Hb� = h and C � N(N0X0
+XN)�1N0, where
N is a base of the null space on H. The resulting estimator is denoted as modi�ed GLS
estimator.
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4 A note on rank conditions

Theorem 6.6 of Theil (1971, p.285) provides a BLU representation of the constrained GLS
estimator. The essential rank conditions for existence of this estimator used by Theil guar-
antee the invertibility of X0
+X in (26). Dhrymes and Schwarz (1987a), both using too
restrictive conditions and no additional exogenous restrictions, show that the rank condi-
tions postulated by Theil are not ful�lled for several practically relevant cases and provide
existence and non-existence conditions for the constrained estimator. As a generalization
of the considerations of Dhrymes and Schwarz (1987a) we derive necessary and su�cient
conditions for Theils rank conditions to be met in the context of the introduced SUR model.
Due to the representation of 
+ in (21) the nonsingularity of X0
+X is equivalent to a full
column rank of the matrix0

BBBB@
F0

1X1;�

F0

2X2;�
...

F0

TXT;�

1
CCCCA :(27)

The existence of a nonzero vector d ful�lling

F0

tXt;�d = 0; 8t;(28)

is equivalent to a column rank de�cit of the matrix in (27). Due to the orthogonality of a
and Ft, (28) implies the existence of T scalars gt with

Xt;�d = agt; 8t:(29)

By conducting row manipulations (29) could be rendered to

X�;idi = aig; 8i;(30)

where di contains a suitable selection of the elements in d.

Two cases must be distinguished:

(i) Let us assume the existence of an equation j; (1 � j � n) with rk(X�;j) < Kj. Then
there exists a nonzero vector f with X�;jf = 0. Now let di = 0 for i 6= j, dj = f and
g = 0. Hence we have found a nonzero vector d ful�lling (28) and the rank criterium
of Theil is violated.

(ii) If rk(X�;i) = Ki, 8i, then (30) implies the existence of a nonzero vector g, lying in the
linear space spanned by the regressors of equation i, for every i with ai 6= 0. Then
obviously it is possible to �nd a nonzero vector hi for every i with ai 6= 0 such that
X�;ihi = g. Finally, by setting di = aihi for every i with ai 6= 0 and di = 0 for ai = 0,
again a nonzero d satisfying (28) is found.

Obvious from the preceding discussion is the proof of

Lemma 1: The rank condition of Theil is violated, if there are collinearities in any of the
n equations, or, if there exists a nonzero linear combination g of the regressors of equation
i for all equations i with nonzero weight.
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Remark on Lemma 1: Obviously the conditions given in Lemma 1 are necessary and
su�cient. Dhrymes and Schwarz (1987a, Theorem 2) prove this lemma by using the stronger
condition that all n equations have no common regressor. This is a consequence of their
construction, assuming that the regressors of each equation are a selection of the p basis
vectors. However, in our considerations the regressors lie in a subspace of the linear space
spanned by the p basis vectors.

5 Identical regressors

In the existing literature often the case of identical regressors (see section 2.1 (iii)) in each
equation is considered. Thus equation (1) is replaced by

yt;i =
KX
k=1

bk;ixt;k + ut;i 1 � i � n; 1 � t � T:(31)

LetY be the T�nmatrix (yt;i),X is the T�K regressor matrix (xt;k), B be theK�nmatrix
(bk;i) and U is the T � n matrix of disturbances (ut;i). Then, combining all observations,
system (31) can be written in the form

Y = XB+U;(32)

and the adding-up restriction may be written as

Ya = s:(33)

From (32) and (33) follows

Ya = XBa = s(34)

and Ua = 0. Equation (34) implies the existence of a vector c with Xc = s. Since (34)
should be identically ful�lled in X, we get the parameter restrictions

Ba = c:(35)

In the case of homoscedasticity and if X0X has full rank, the modi�ed GLS estimator is
equivalent to the OLS estimator and the adding-up conditions are automatically ful�lled
(see Worswick and Champernowne (1954-55)), considering equations (32) to (35)

B̂a = (X0

X)�1X0Ya(36)

= (X0X)�1X0XBa

= Ba

= c:

Note that the rank conditions of Theil (1971) are never ful�lled in this case, even if there
are no collinearities among the K regressors. In this case the K non-redundant constraints
(13) could be written as

Sb = (a0 
 IK)b = c:(37)

An immediate consequence is that (5) contains redundant constraints for T > K.
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6 The deletion choice

For the special case that all elements of a are equal to one, Barten (1969), assuming normal
distribution of errors, has shown that the n� 1 linear independent equations of (1) contain
the entire statistical information. Consequently one arbitrary equation could be dropped
and then the remaining n� 1 equations could be estimated. The parameters of the omitted
equation could be estimated indirectly by rearranging restrictions (2). As proposed by
Barten (1969), the remaining equations are estimated by ML.
What we are going to prove in the framework of the preceding discussion, is the invariance
of the estimator to the deletion choice and the equivalence of the resulting estimator to the
modi�ed GLS estimator. This gives way to a representation of the estimator which needs
no calculation of the Moore-Penrose inverse of 
.

Lemma 2: We assume a1 6= 0. Let ut;� be the vector resulting from deletion of the �rst
element of ut;� and let 
t;� be the matrix obtained by deletion of the �rst column and row
of 
t. Then

u0

t;�

�1
t;�ut;� = ut;�


+
t ut;� = ut;� [
t + aa0]

�1
ut;�:

Proof: Due to the de�nition of ut;� we get ut;1 = �a0
�
ut;� and consequently

ut;� =

 
�1 �a0

�

�a� In�1

! 
0
ut;�

!
� V

 
0
ut;�

!
(38)

where a0
�
�
�
a2 a3 : : : an

�
=a1 and


t � Eut;�u
0

t;� = V

 
0 0
0 
t;�

!
V:(39)

Obviously V is invertible, since jVj = �1� (
Pn

i=2 a
2
i )=a

2
1 6= 0. Hence

u0

t;�

�1
t;�ut;� =

�
0 ut;�

� a21 0
0 
t;�

!
�1  

0
ut;�

!
(40)

= ut;�

"
V

 
a21 0
0 
t;�

!
V

#
�1

ut;�

= ut;� [aa
0 +
t]

�1
ut;�:

By de�nition of ut;� and 

+
t

ut;�

+
t ut;� = ut;�

h
aa0 +
+

t

i
ut;�(41)

= ut;�

"�
a Ft

� 1 0
0 ��1

t

! 
a0

F0

t

!#
ut;�

= ut;�

"�
a Ft

� 1 0
0 �t

! 
a0

F0

t

!#
�1

ut;�

= ut;� [aa
0 +
t]

�1
ut;�:

q:e:d:
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Remark on Lemma 2: Note the computational advantage that [
t + aa0]�1 can be
calculated instead of the Moore-Penrose inverse. Also note that 
t+aa

0 is always invertible
if aa0 6= 0.

Corollary: (i) Lemma 2 is valid for every deletion choice i with ai 6= 0.
(ii)The substitution of X0

t;�

+
t Xt;� by X

0

t;� [
t + aa0]�1Xt;� in the system of normal equa-
tions (26) is equivalent to the deletion of equation i with ai 6= 0. Then the constraints (13)
solely serve to recover the deleted parameters.

Proof: (i) Obvious from the preceding discussion.
(ii) The system of normal equations (26) results from minimising

TX
t=1

(yt;� �Xt;�b)
0
+

t (yt;� �Xt;�b);(42)

subject to the constraints Hb = h.
Due to the constraints, ut;� = yt;� �Xt;�b is normal to a. Thus, by Lemma 2,

TX
t=1

(yt;� �Xt;�b)
0
+

t (yt;� �Xt;�b) =
TX
t=1

u0

t;�

�1
t;�ut;� =(43)

TX
t=1

(yt;� �Xt;�b)
0 [
t + aa0]

�1
(yt;� �Xt;�b)

is identically ful�lled in b.

q:e:d:

Remark on the weights ai:

� In the case of a1 6= 0, the covariance matrix of the reduced system is nonsingular.
Thus we see that, when postmultiplying with Mt, one equation is substituted by
restrictions on the parameters. Since a1 6= 0 implies the nonsingularity ofMt, there is
whether a loss of given information nor a gain of new information. Hence, the resulting
nonsingular system could be estimated and the remaining parameters (of the deleted
equation) can be recovered by the parameter restrictions. This, of course, also holds in
the case of further restrictions, e.g. homogeneity or symmetry restrictions. For details
see Bewley (1986, chapter 3).

� In the case of a1 = 0, the endogenous variable of the �rst equation is excluded from
the adding-up condition. Obviously the reduced system is singular in this case.

� Usually in the literature all elements of a are restricted to unity, thus a � en and we
get

(IT 
 en)u = 0:(44)

Exceptions are given by Powell (1969) and Dhrymes and Schwarz (1987a), who consid-
ered weighted aggregates. However, using nontrivial weights should not be considered
an extra-generality. An imaginable example could be seen (all readers inclined in �-
nance may forgive us) in the (ex post) regression of asset risk premia on market risk
premium (which is equal to a weighted sum of the endogenous variable).
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7 A glimpse at feasible GLS

We now turn to the practically relevant case of an unknown covariance matrix 
t. Usually
the problem of unknown covariance is treated by iteratively applying feasible GLS. Since


t = Ft�tF
0

t

it is near at hand to assume for the �rst iteration step

�
(1)
t = In�1

to get



(1)
t = FtIn�1F

0

t = In � aa0;

which preserves all correlations caused by the adding-up restrictions. However, if the con-
straints are considered, due to Lemma 2 the �rst step estimator is given by

[In � aa0 + aa0]
�1

= In;

which brings us to the nice result, that we obtain in the �rst step the OLS estimation subject
to the constraints. Note that the restrictions are automatically ful�lled for homoscedasticity
and identical regressors (remember section 5).

References

[1] Barten A.P. (1969). "Maximum Likelihood Estimation of a Complete System of De-
mand Equations." European Economic Review 1: 7-73.

[2] Bewley R. (1986). Allocation Models: Speci�cation, Estimation and Applications. Cam-
bridge, Mass.: Ballinger.

[3] Dhrymes P.J. and S. Schwarz (1987a). "On the Existence of Generalized Inverse Esti-
mators in a Singular System of Equations." Journal of Forecasting 6: 181-192.

[4] Dhrymes P.J. and S. Schwarz (1987b). "On the Invariance of Estimators for Singular
Systems of Equations." Greek Economic Review 9 (1): 88-108.

[5] Kreijger R.G. and H. Neudecker (1977). "Exact Linear Restrictions on Parameters in
the General Linear Model with a Singular Covariance Matrix." Journal of the American

Statistical Association 72: 430-432.

[6] Oberhofer W. and H. Haupt (2000). "Best Linear Unbiased Estimates in the Con-
strained Singular Linear Model", (submitted to Econometric Theory).

[7] Powell A.A. (1969). "Aitken Estimators as a Tool in Allocating Predetermined Aggre-
gates." Journal of the American Statistical Association 64: 913-922.

[8] Theil H. (1971). Principles of Econometrics. New York: J. Wiley & Sons.

[9] Worswick G.D.N. and D.G. Champernowne (1954-55). "A Note on the Adding-up Cri-
terion." Review of Economic Studies 22: 57-60.

13


