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Abstract
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well-known bootstrap invalidity result for the random walk without drift. A simulation study
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1 Introduction

An important question in applied work is how to bootstrap autoregressive processes
involving highly persistent time series of unknown order of integration. Applied re-
searchers often are interested in conducting inference on autoregressive slope parameters
(or smooth functions thereof such as impulse responses or half-lives). The asymptotic
validity of the standard residual-based bootstrap algorithm for autoregressive slope pa-
rameters in stationary models follows from Bose (1988). Datta (1995) extends the
validity of this bootstrap algorithm to univariate AR(p) models with some explosive
roots (also see Basawa et al. (1989) for a discussion of the explosive AR(1) model).
However, he explicitly rules out the knife-edge case of an exact unit root. There are no
theoretical results to our knowledge that would justify the use of the standard bootstrap
algorithm for processes with exact unit roots.

The main contribution of this paper is to show that in many cases of interest in
applied work the standard bootstrap algorithm for unrestricted autoregressions remains
valid for processes with exact unit roots. A direct implication of our results is that the
standard bootstrap algorithm will often provide an asymptotically valid approximation
to the true distribution of the autoregressive slope parameters, whether the population
process is integrated or not. This fact is important for applied work because it alleviates,
at least asymptotically, the need for unit root pre-tests.

The possibility of exact unit roots has received considerable attention in time series
econometrics. While any univariate autoregressive process with an exact unit root can
be converted into a stationary process by �rst di�erencing, the existence of a unit root
is rarely known from economic theory. In practice, applied researchers often decide to
di�erence the data based on the outcome of unit root pre-tests. There is an extensive
literature documenting the potential pitfalls in basing econometric inference on the
outcome of such tests (see Cochrane 1991; Blough 1992; Faust 1996; also see Elliott
1998). This fact calls into question bootstrap inference based on unit-root pre-tests.
Our results show that in many cases applied users of the bootstrap may proceed as
though the process were known to be level-stationary. There is no need to be concerned
about the possible existence of a unit root.

Our approach builds on and extends existing theoretical results on bootstrapping
unrestricted autoregressions with exact unit roots. In a well-known paper, Basawa et
al. (1991a) establish the asymptotic invalidity for the random walk model without drift
of the residual-based bootstrap algorithm for autoregressive slope parameters based on
unrestricted autoregressions. Their original result is based on a very special parametric
resampling scheme which one would like to apply only when the error distribution of
the autoregressive process is known to be standard normal. Datta (1996) generalizes
Basawa et al.'s result and proves the invalidity of the standard nonparametric bootstrap
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algorithm of Bose (1988) for the same model. The theoretical validity of the standard
bootstrap algorithm for other autoregressions with exact unit roots (such as random
walks with drift or higher-order autoregressions with or without drift) has not been
examined to date.

In this paper, we show that the Basawa et al. (1991a) bootstrap invalidity result is
a very special case only. We establish that for many other autoregressive processes the
standard bootstrap algorithm is asymptotically valid even in the presence of a unit root.
Speci�cally, we prove the �rst-order asymptotic validity of bootstrapping any linear
combination of slope parameters in autoregressive models with drift. Our results include
the random walk model with drift as a special case. In addition, we establish the �rst-
order bootstrap validity for the marginal distribution of slope parameters and for most
linear combinations of slope parameters in higher-order autoregressions without drift.
Our results apply not only when bootstrapping models with known zero intercept, but
also in the practically more important case of unknown and possibly nonzero intercept.

The cases for which we establish the validity of the bootstrap are cases for which
the asymptotic normality of the OLS estimator in the local-to-unity model follows from
Jeganathan (1991) or for which asymptotic normality may be established by similar
arguments. Jeganathan's local-to-unity model implies that the limiting distribution
of the OLS estimator of the autoregressive model without drift depends on nuisance
parameters. Similar arguments may be applied to the bootstrap estimator with the
added complication that in the bootstrap world the nuisance parameters will be random.
This means that the standard arguments for the asymptotic validity of the bootstrap
cannot be applied.

The main technical innovation of this paper is to derive the limit distribution of
the bootstrap estimator in these circumstances. We show that in models without drift
the bootstrap estimator of the sum of the autoregressive coe�cients converges to a
random limiting distribution. In contrast, in models with drift the limit distribution of
the bootstrap estimator of this sum is shown to be Gaussian. In fact, the bootstrap
estimator converges to the same normal limit distribution as the usual OLS estimator.
We also show that, both for models with and without drift, the bootstrap estimator
of coe�cients on lagged di�erences in the augmented Dickey-Fuller representation will
converge to the same Gaussian limit distribution as the OLS estimator.

Our results imply that the standard bootstrap is asymptotically valid for the slope
parameter in the random walk model with drift. In contrast, in the random walk
model without drift, the limit distribution of the OLS estimator is nonstandard and the
bootstrap estimator converges to a random distribution. Paraphrasing Basawa et al.
(1991b, p.1016): \The main cause of the failure of the standard bootstrap estimator at
the unit circle in the AR(1) model is the fact that the limit distributions of the slope
parameter are drastically di�erent for the stationary, explosive and unit root case; the
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unit root serving as a threshold. This introduces instability in the bootstrap samples,
which in turn leads to the eventual invalidity of the standard bootstrap estimator at
the unit circle." This quote suggests that the bootstrap validity in the random walk
model with drift is not obvious.

It is well known of course that the OLS estimator of the slope parameter of the
random walk model with drift has a Gaussian limit distribution (see e.g., West 1988).
Asymptotic normality, however, is neither necessary nor has it been shown to be suf-
�cient for establishing the asymptotic validity of the bootstrap. Note that the asymp-
totic distribution of the slope parameter in the random walk model with drift exhibits a
discontinuity at the unit circle not unlike that referred to by Basawa et al. This discon-
tinuity occurs because the slope parameter in the AR(1) model with nonzero intercept
has a di�erent variance and even di�erent rate of convergence depending on whether
there is a unit root or not. The resulting discontinuity of the asymptotic distribution
at the unit circle may seem to suggest that the bootstrap will fail just as in the random
walk model without drift. We prove that this is not the case.

We also study higher-order autoregressive models with and without drift. Sims,
Stock and Watson (1990) establish the asymptotic normality of the OLS estimator
of the slope parameters of the level representation of these models. We show that the
bootstrap estimator of these parameters converges to the same normal limit distribution
as the usual OLS estimator. Thus, the standard bootstrap approximation remains
asymptotically valid even in the presence of a unit root.

This result is nontrivial because the bootstrap estimator in integrated processes de-
pends on nuisance parameters. We show that in higher-order processes these nuisance
parameters do not a�ect the asymptotic distribution of the bootstrap estimator of the
level slope parameters. The intuition for this result is as follows. Recall that the boot-
strap estimator of the slope parameters of higher-order autoregressions can be expressed
in terms of the sum of the autoregressive coe�cients on the one hand and of coe�cients
on lagged di�erences on the other. We show that the bootstrap estimator of the latter
coe�cients is always

p
T consistent and Gaussian. Although in models without drift

the bootstrap estimator of the sum of the autoregressive coe�cients converges to a
random distribution, it converges faster than the remaining terms and is asymptoti-
cally negligible. This fact ensures the

p
T consistency and asymptotic normality of the

bootstrap estimator of the autoregressive slope parameters. Similarly, in higher-order
models with drift, the bootstrap validity follows from the fact that the sum of the au-
toregressive coe�cients converges at rate T 3=2 compared with T 1=2 for the remaining
terms.

Our results do not only apply to slope parameters, but they also provide the basis
for inference on linear and smooth nonlinear functions of slope parameters (such as
impulse responses), provided the limit distribution is nondegenerate. Like Sims, Stock
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and Watson (1990), however, we �nd that for certain \forbidden" linear combinations
the validity of the normal approximation and of the bootstrap approximation breaks
down. For the latter case, several modi�ed bootstrap algorithm of varying degrees of
generality and �nite-sample accuracy have been proposed by Basawa et al. (1991b),
Datta (1996), Heimann and Kreiss (1996), Datta and Sriram (1997) and Romano and
Wolf (1998). Related work also includes Hansen (1999).

Our theoretical results imply that for inference on autoregressive slope parameters
in many cases no pre-tests are required, at least asymptotically, and applied researchers
may proceed as in the stationary case. This result is important for applied work because
in most empirical studies interest centers on smooth functions of autoregressive slope
parameters, and the existence of a unit root is of no direct interest. An important
question is how relevant these asymptotic results are for sample sizes of interest in
practice. In a preliminary Monte Carlo study, we examine the �nite-sample accuracy of
the bootstrap estimator of the autoregressive slope parameters both for integrated and
for near-integrated processes. As in our theoretical discussion, we carefully distinguish
regression models with and without intercept and population models with and without
drift. We �nd that in many, but not all circumstances, the bootstrap distribution closely
approximates the exact �nite sample distribution. Thus, from a practical point of view
the question of whether there is a unit root or not becomes much less important for
conducting bootstrap inference.

The remainder of the paper is organized as follows. Section 2 contains the main
results. The Monte Carlo simulation evidence is discussed in section 3. The concluding
remarks are in Section 4. The proofs are relegated in the appendix.

2 Bootstrap Asymptotic Theory

The properties of the autoregressive bootstrap estimator depend critically on the prop-
erties of the population model as well as on the regression model. We begin with a review
of the standard residual-based bootstrap procedure for autoregressions. Let (�̂1; :::; �̂p)

0

denote the ordinary least squares (OLS) estimator of (�1; :::; �p)0 in the scalar AR(p)

process �(L)yt = � + "t where �(L) = 1 � �1L � �2L
2 � � � � � �pL

p. Let (�̂�1; :::; �̂
�
p)
0

denote the corresponding bootstrap OLS estimator of (�1; :::; �p)
0. We distinguish two

closely related bootstrap algorithms referred to as Algorithm 1 and Algorithm 2.

Algorithm 1: Algorithm 1 is designed for the autoregressive model with known
intercept � = 0. Let "̂t = �̂(L)yt denote the residuals of the OLS estimate of process
(1) given fytgTt=1�p. De�ne the centered residuals ~"t = "̂t � T�1

PT
t=1 "̂t. Let ~FT

denote the empirical distribution function of ~"t. ~FT associates probability mass T�1

4



with ~"t, t = 1; :::; T . Treating ~FT as the bootstrap population distribution, random
samples f"�t gTt=1 may be drawn from ~FT . Thus, conditional on the data, the random
variable "�t is iid with distribution function ~FT . Now construct the bootstrap sample
fy�t gTt=1�p recursively from �̂(L)y�t = "�t , given initial values y�0 = y0; :::; y

�
1�p = y1�p.

The bootstrap estimator (�̂�1; :::; �̂
�
p) then may be obtained by OLS from fy�t gTt=1�p.

Algorithm 2: Algorithm 2 is designed for models with unknown and possibly
nonzero intercept �. In that case, "̂t = �̂(L)yt� �̂ where �̂ is the OLS estimate of � and
"̂t is mean zero by construction. Thus, conditional on the data, the random variable "�t
is iid with distribution function F̂T and bootstrap data may be generated recursively
from �̂(L)y�t = �̂ + "�t as described previously.

In our theoretical analysis, we distinguish population models with drift and without
drift and regression models with and without intercept. In Theorem 1, the population
model is a higher-order autoregression without drift, and the regression model does
not include an intercept. The case of higher-order models with known zero drift is
primarily of theoretical interest because it extends the Basawa et al./Datta analysis
of the AR(1) process. The regression model with intercept is dealt with in Theorems
2 and 3. Theorems 2 and 3 make di�erent assumptions about the population model.
Theorem 2 covers both �rst-order and higher-order autoregressive models with drift.
This theorem applies to trending data such as consumption or output. In Theorem 3,
we analyze autoregressive models without drift. The latter assumption is most relevant
for nontrending data such as interest rates, ination rates or real exchange rates, for
which the possible existence of a unit root is often a practical concern.

2.1 Higher-Order Autoregressions without Drift when the Regression
Model does not Include an Intercept

Before stating the main results, we establish some notation. Let
L! denote convergence

in law and
d! denote convergence in distribution. Let !-a.s. denote weak convergence

almost surely conditional on the sample (see Gin�e and Zinn, 1990). 0q�1 denotes a
q-dimensional vector of zeros. Ip denotes the p-dimensional identity matrix.

Consider the following AR(p) process

�(L)yt = "t; (1)

where p > 1, y0 = y1 = � � � = y1�p = 0 and "t
iid� (0; �2) with Ej"tj2+� < 1 for

some � > 0 and F satisfying a Lipschitz condition, i.e., there is M > 0 such that
jF (x0) � F (x)j < M jx0 � xj for all x and x0. Suppose that �(z) = (1 � L) (z) with
j (z)j 6= 0 for all jzj � 1 such that the process is integrated of order 1.
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The process yt can be written as

yt = �yt�1 + �1�yt�1 + �2�yt�2 + � � �+ �p�1�yt�p+1 + "t

= �0xt + "t; (2)

where

� = �1 + �2 + � � �+ �p = 1

�j = �[�j+1 + �j+2 + � � �+ �p] for j = 1; 2; :::; p� 1

� = (�; �1; �2; :::; �p�1)
0

xt = (yt�1;�yt�1;�yt�2; :::;�yt�p+1)
0:

Let �̂ denote the OLS estimator of �. We know from Hasza and Fuller (1979) that
under the conditions stated

�T (�̂ � �) L! ~ =

2
64

 (1)
R
1

0
B(r)dB(r)R

1

0
B(r)2dr

���
1

2Wp�1

3
75 ; (3)

where �T = diag(T; T 1=2; :::; T 1=2), B is a Brownian motion,Wp�1 is a (p�1)-dimensional
standard normal random vector, B and Wp�1 are independent,

� =

2
66664

0 1 � � � p�1
1 0 � � � p�2
...

...
. . .

...
p�1 p�2 � � � 0

3
77775 ;

and j is the jth autocovariance of �yt. Let �̂
� denote the bootstrap OLS estimator of

�̂ based on Algorithm 1.
As noted earlier, the standard bootstrap results for autoregressions such as Bose

(1988) and Datta (1995) do not cover this model. Theorem 1 uses local asymptotics
to prove that the standard bootstrap is valid for the non-unit-root parameters �j , j =
1; :::; p� 1, in the ADF representation (2). We also show that the standard bootstrap
fails for �. Corollary 1 establishes that the bootstrap invalidity for � is irrelevant if we
are interested in inference on smooth functions of both � and �j , j = 1; :::; p� 1, such
as slope parameters of the level representation (1) or smooth functions thereof. Note
that we do not claim to have solved the unit root problem for �. Rather we show that
the bootstrap invalidity for � does not matter for many statistics of interest in applied
work.

Theorem 1. (Asymptotic Properties of the Bootstrap in Integrated AR(p)

Processes without Drift)
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Under the stated assumptions about process (1),

�T (�̂
� � �̂)

L!
2
64

 (1)
R
1

0
S(r;~0)dB(r)R

1

0
S(r;~0)2dr

���
1

2Wp�1

3
75 !-a.s. (4)

where

S(r; 0) = B(r) +  (1)0

Z r

0
exp [(r � s) (1)0]B(s)ds; (5)

and ~0 denotes the �rst element of the random vector ~ on the RHS of (3).

Theorem 1 generalizes the results of Basawa et al. (1991a) and Datta (1996) to
higher-order autoregressions without drift. Note that the bootstrap fails to mimic the
limiting distribution of the OLS estimator for �, but it recovers the limiting distribution
of the OLS estimator for the non-unit-root parameters (�1; �2; :::; �p�1)0. The latter
fact has important implications for the distribution of the slope parameters in the
level representation of the autoregressive process. The slope parameters of the level
representation (1) can be expressed as linear combinations of � and of �i, i = 1; 2:::; p�1.
Speci�cally, �1 = �+�1, �j = �j��j�1 for j = 2; :::; p�1 and �p = ��p�1. Although the
bootstrap estimator of � converges to a random limit distribution, it does so at a rate
so fast, that any linear combination of bootstrap estimators involving coe�cients on
lagged di�erences will be

p
T consistent and will converge to the usual Gaussian limit

distribution. Hence, the bootstrap provides an asymptotically valid approximation to
the marginal distribution of the autoregressive slope parameters, even in the presence
of a unit root. Note that the variance of the bootstrap estimator is continuous in � and
thus there is no discontinuity at the unit circle, unlike in the random walk model.

This result is of considerable importance for applied work. Applied researchers typ-
ically are not interested in inference about � or about �i, i = 1; 2; :::; p� 1. Rather
they are interested in inference on linear and smooth nonlinear functions of the au-
toregressive slope parameters (such as impulse responses and half-lives). For this class
of problems, it is the distribution of the autoregressive slope parameters in the level
representation (1) that matters rather than the distribution of the parameters of the
augmented Dickey-Fuller representation (2). Hence, the invalidity of the bootstrap
estimator of � is irrelevant. Theorem 1 implies that the standard bootstrap approxi-
mation to the marginal distribution of the autoregressive slope parameters in (1) will
be as sound asymptotically as the usual Gaussian approximation. Corollary 1 considers
the implications of Theorem 1 for the distribution of linear combinations of the slope
parameters in the level representation of the autoregressive process.

Corollary 1. (Validity of the Bootstrap for Slope Parameters in Integrated
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AR(p) Processes without Drift)

Consider a linear combination of slope parameters c0� where c = (c1; c2; :::; cp)
0 6=

(�; �; :::; �)0 for all � and � = (�1; �2; :::; �p)
0. Let �̂ and �̂� denote the OLS estimator

and the bootstrap estimator, respectively. Suppose that the assumptions of Theorem 1
hold. Then

T 1=2c0(�̂� �) d! N(0; c0
c) (6)

T 1=2c0(�̂� � �̂) d! N(0; c0
c) !-a.s. (7)

where


 = D

"
0 01�(p�1)

0(p�1)�1 �2��1

#
D0;

D =

2
66666666664

1 0 0 0 0 0 0
�1 1 0 0 0 0 0
0 �1 1 0 0 0 0
0 0 �1 1 � � � 0 0
...

...
...

...
0 0 0 0 � � � �1 1
0 0 0 0 0 0 �1

3
77777777775
:

The assumption p > 1 is crucial for Corollary 1. For p = 1, �1 = � will have a
nonstandard limiting distribution and the bootstrap will not be valid (see Datta, 1996).
Speci�cally, T (�̂� � �̂) will converge to a random distribution.

Theorem 1 and Corollary 1 validate the application of the standard nonparametric
bootstrap to individual slope parameters, �j , for j = 1; 2; :::; p, and to linear combi-
nations of slope parameters except to those proportional to � = �1 + � � �+ �p. When
c = (�; �; :::; �)0 for some � 6= 0, c0� = �� and thus the bootstrap will be invalid. This
result parallels the results for the usual OLS estimator by Sims, Stock and Watson
(1990). Our results also provide the basis for bootstrap inference on smooth nonlinear
functions of (�; �1; :::; �p�1)

0 such as impulse responses, provided the limiting distribution
is nondegenerate.

It is important to stress that our result pertains to the case of integrated processes.
Note that a di�erent limiting distribution is obtained in the stationary case. Neverthe-
less, the bootstrap is valid in both cases. This feature suggests that applied users need
not be concerned about the possible existence of a unit root, at least asymptotically.
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2.2 Autoregressions with Drift when the Regression Model Includes
an Intercept

Having established the conditions for the asymptotic validity of the bootstrap in the
integrated AR(p) model without drift, we now turn to models with drift. The regression
model is assumed to include an intercept. This is not the only regression model one
may wish to consider for this process. If the true order of integration is unknown,
a researcher may choose to include a linear time trend in the regression as well. A
discussion of the regression model with both intercept and linear time trend is deferred
to the end of section 2.3.

Consider the following AR(p) process

�(L)yt = � + "t; (8)

where p � 1, y0 = y1 = � � � = y1�p = 0, and "t
iid� (0; �2) with Ej"tj2+� < 1 for some

� > 0 and F satisfying a Lipschitz condition. Suppose that �(z) = (1 � L) (z) with
j (z)j 6= 0 for all jzj � 1. Write (8) as

yt =
�

 (1)
+ �yt�1 + �1

�
�yt�1 � �

 (1)

�
+ � � �+ �p�1

�
�yt�p+1 � �

 (1)

�
+ "t

= ��0�xt + "t;

where

� = �1 + �2 + � � �+ �p;

�j = �[�j+1 + �j+2 + � � �+ �p] for j = 1; 2; :::; p� 1;

�� =

(
(�; �)0 if p = 1
(�= (1); �; �1; �2; :::; �p�1)0 if p > 1;

�xt =

(
(1; yt�1)0 if p = 1
(1; yt�1;�yt�1 � �= (1); :::;�yt�p+1� �= (1))0 if p > 1:

Let �̂� denote the OLS estimator of ��. We know from Dickey and Fuller (1981) that for
p = 1

��T ( �̂� � ��)
d! N

0
@02�1; �2

"
1 �

2
�
2

�2

3

#�11A (9)

and that for p > 1

��T ( �̂� � ��)
d! N

0
BB@0(p+1)�1; �2

2
64

1 �
2 (1) 01�(p�1)

�
2 (1)

�2

3 (1)2 01�(p�1)
0(p�1)�1 0(p�1)�1 �

3
75
�11CCA ; (10)
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where

��T =

(
diag(T 1=2; T 3=2) if p = 1;

diag(T 1=2; T 3=2; T 1=2; :::; T1=2) if p > 1;

� =

2
66664

0 1 � � � p�1
1 0 � � � p�2
...

...
. . .

...
p�1 p�2 � � � 0

3
77775 ;

and j is the jth autocovariance of �yt � �= (1). Let �̂�
�
denote the bootstrap OLS

estimator of �̂� based on Algorithm 2.

Theorem 2. (Asymptotic Properties of the Bootstrap in Integrated AR(p)
Processes with Drift)

Under the stated assumptions about process (8) for p = 1

��T ( �̂�
� � �̂�)

d! N

0
@02�1; �2

"
1 �

2
�
2

�2

3

#�11A !-a.s. (11)

and for p > 1

��T ( �̂�
� � �̂�)

d! N

0
BB@0(p+1)�1; �2

2
64

1 �
2 (1) 01�(p�1)

�
2 (1)

�2

3 (1)2 01�(p�1)
0(p�1)�1 0(p�1)�1 �

3
75
�11CCA !-a.s. (12)

Note that the results for the model with drift are stronger than for the model without
drift. Unlike in Theorem 1, the bootstrap is valid not only for (�1; :::; �p�1)0 but also for
�.

Corollary 2. (Validity of the Bootstrap for the Slope Parameters in Inte-
grated AR(p) Processes with Drift)

Suppose that the assumptions of Theorem 2 hold. Consider a linear combination of
slope parameters c0� where � = (�1; �2; :::; �p)

0, and �c = (�c1; �c2; :::;�cp)
0 6= 0p�1. Let �̂

and �̂� denote the OLS estimator and the bootstrap OLS estimator, respectively.

1. If (�c1; �c2; :::;�cp)
0 = (�; �; :::; �)0 for some � 6= 0, then

T 3=2�c0(�̂� �)
d! N

 
0;
12�2�2

�2

!
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T 3=2�c0(�̂� � �̂)
d! N

 
0;
12�2�2

�2

!
!-a.s.

2. If (�c1; �c2; :::;�cp)0 6= (�; �; :::; �)0 for all �, then

T 1=2�c0(�̂� �) d! N(0; �2�c0�
�c) (13)

T 1=2�c0(�̂� � �̂) d! N(0; �2�c0�
�c) !-a.s. (14)

where

�
 = �2 �D��1 �D0;

�D =

2
666666664

1 0 � � � 0 0
�1 1 � � � 0 0
0 �1 � � � 0 0

...
...

...
0 0 � � � �1 1
0 0 � � � 0 �1

3
777777775
:

There are two main di�erences between Corollary 1 and Corollary 2. First, while
Corollary 1 requires p > 1, Corollary 2 does not. Thus, the bootstrap is valid for the
random walk model with drift. This result is in marked contrast to the case of the
random walk model without drift analyzed by Datta (1996). Second, unlike Corol-
lary 1, Corollary 2 establishes the asymptotic validity of the bootstrap for any linear
combination of (�1; �2; :::; �p)0.

2.3 Autoregressions without Drift when the Regression Model In-
cludes an Intercept

Lastly, consider the case in which an AR(p) model with intercept is �tted to data
generated from the integrated AR(p) process without drift described by (1). Let

�� =

(
(c; �)0 if p = 1
(c; �; �1; �2; :::; �p�1)

0 if p > 1;

�xt =

(
(1; yt�1)0 if p = 1
(1; yt�1;�yt�1;�yt�2; :::;�yt�p+1)

0 if p > 1:

Let �̂� denote the OLS estimator of ��. We know from Dickey and Fuller (1981) that for
p = 1

��T ( �̂� � ��)
L!
"
� 0
0  (1)

#"
1

R 1
0 B(r)drR 1

0 B(r)dr
R 1
0 B(r)

2dr

#�1 "
B(1)R 1

0 B(r)dB(r)

#
; (15)
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and that for p > 1

��T ( �̂�� ��)
L!

2
664
"
� 0
0  (1)

#"
1

R 1
0 B(r)drR 1

0 B(r)dr
R 1
0 B(r)

2dr

#�1 "
B(1)R 1

0 B(r)dB(r)

#

���
1

2Wp�1

3
775 : (16)

Let �̂�
�
denote the bootstrap OLS estimator of �̂� based on Algorithm 2.

Theorem 3. (Asymptotic Properties of the Bootstrap in Integrated AR(p)
Processes without Drift)

Suppose that the assumptions of Theorem 1 hold with p � 1. For p = 1,

��T ( �̂�
�� �̂�)

L!
"
� 0
0  (1)

# "
1

R 1
0 S(r; ~0)drR 1

0 S(r; ~0)dr
R 1
0 S(r; ~0)

2dr

#�1 "
S(1; ~0)R 1

0 S(r; ~0)dB(r)

#
!-a.s.

(17)
and for p > 1

��T ( �̂�
�� �̂�)

L!

2
664
"
� 0
0  (1)

# "
1

R 1
0 S(r; ~0)drR 1

0 S(r; ~0)dr
R 1
0 S(r; ~0)

2dr

#�1 "
S(1; ~0)R 1

0 S(r; ~0)dB(r)

#

���
1

2Wp�1

3
775 !-a.s.

(18)

Note that the results of Theorem 3 for the slope parameters in higher-order autore-
gressions parallel those in Theorem 1. Moreover, the bootstrap invalidity result of Datta
(1996) for the random walk model without drift is preserved when the regression model
includes an intercept.

Corollary 3. (Validity of the Bootstrap for Slope Parameters in Integrated

AR(p) Processes without Drift)
Consider a linear combination of slope parameters c0� where c = (c1; c2; :::; cp)0 6=

(�; �; :::; �)0 for all � and � = (�1; �2; :::; �p)0. Let �̂ and �̂� denote the OLS estimator
and the bootstrap estimator in Theorem 3, respectively. Suppose that the assumptions
of Theorem 1 hold. Then

T 1=2c0(�̂� �) d! N(0; c0
c) (19)

T 1=2c0(�̂� � �̂) d! N(0; c0
c) !-a.s. (20)

where 
 is de�ned in Corollary 1.

Corollary 3 shows that the inclusion of an intercept term does not a�ect the conclu-
sions obtained earlier for the autoregressive model without drift under the assumption

12



of a known drift of zero.
So far we have deliberately postponed discussion of the population model with drift,

when the regression model includes both an intercept and a linear time trend. In that
case, the drift no longer dominates the unit root, and one would expect the asymptotic
results for the slope parameters to be identical to those in Corollary 3. A formal proof of
this conjecture is likely to be conceptually straightforward, but tedious. This extension
is beyond the scope of this paper, however, because it would require the generalization
of the Jeganathan (1991) results to models with deterministic time trends.

Our proofs assume that the lag order is known. Alternatively, the lag order could be
estimated based on information-based criteria (see Paulsen 1984; Tsay 1984). In that
case, the bootstrap algorithm must be modi�ed slightly to account for the lag-order
uncertainty (see Kilian (1998) for further discussion).

3 Monte Carlo Evidence

The theoretical results of section 2 imply that in many cases the standard bootstrap
algorithm will provide an asymptotically valid approximation to the true distribution
of the autoregressive slope parameters, whether the true process is integrated or not.
This result is important because it alleviates, at least asymptotically, the need for unit
root pre-tests. In this section, we provide some preliminary Monte Carlo evidence of the
accuracy of the proposed bootstrap approximation in �nite samples. Further simulation
evidence will be needed to corroborate our �ndings. Our aim here is merely to illustrate
the potential usefulness of the proposed bootstrap method in �nite samples.

First, consider bootstrap algorithm 1. In Table 1 we study the accuracy of the
bootstrap approximation for slope parameters of integrated and near-integrated AR(2)
models without drift when the regression model does not include an intercept. While the
assumption of a known intercept is perhaps unrealistic, this case is of theoretical interest
because it exactly matches the assumptions of Basawa et al. (1991a) and Datta (1996)
except for the additional autoregressive lag. The table shows the percentiles of the true
�nite-sample distribution of T 1=2(�̂i��i) i = 1; 2, and the average of the corresponding
bootstrap percentiles of T 1=2(�̂�i � �̂i) obtained in 100 trials. The bootstrap percentiles
for each trial are based on 20,000 replications. The results are not sensitive to increasing
the number of trials. We consider sample sizes of 100, 300, and 500 observations,
corresponding to small, moderately large and large sample sizes. Given the asymptotic
validity result in Theorem 1, one would expect the bootstrap approximation to be close
to the exact �nite-sample distribution for su�ciently large sample sizes. Panel (a)
suggests that the bootstrap approximation is reasonably accurate even for small and
moderately large samples and is excellent for large samples.

13



The results in panel (a) support the use of bootstrap algorithm 1 when the population
process has an exact unit root. In practice, however, it is rarely known with certainty
whether the true process contains a unit root or not. We therefore investigate how well
the standard bootstrap approximation continues to work for near-integrated processes
without drift. Panels (b) and (c) in Table 1 focus on similar AR(2) population processes
with dominant roots of approximately 0.99 and 0.98, respectively. We �nd that the
standard bootstrap approximation works equally well for near-integrated higher-order
autoregressive processes. Thus, the simulation results in Table 1 support the view that
under suitable conditions valid bootstrap inference is possible using standard resampling
algorithms without taking a stand on the unit root question.

We now turn to more general models. In most applied work the intercept is unknown
and the �tted model will include an intercept as described in bootstrap algorithm 2.
This bootstrap estimator has di�erent properties than the estimator underlying Table
1. As in Theorems 2 and 3 we distinguish population models with drift (Tables 2 and
3) and without drift (Table 4). The results in Table 2 are based on the same AR(2)
data generating process as the results in Table 1, except that the population model
includes an additional drift term of the same magnitude as the standard deviation of
the innovation. Applying bootstrap algorithm 2 produces results not unlike those in
Table 1. Panel (a) shows that the bootstrap approximation to the distribution of the
slope parameters is adequate for moderately large samples and highly accurate for large
sample sizes. Similar results hold for the near-integrated processes in panels (b) and
(c).

Table 3 shows the corresponding results for the random walk model with drift. Again,
the bootstrap approximation works well for all roots considered and mimics the changes
in the �nite-sample distributions of the slope parameters as the root approaches unity.
This result is in sharp contrast to the deterioration of the accuracy of the bootstrap
approximation near the unit circle in the near-random walk model without drift.

Next, we re-examine the case of the population model without drift. The results in
Table 4 di�er from the results in Table 1 in that we use bootstrap algorithm 2 rather than
bootstrap algorithm 1. Not imposing the zero intercept results in a sharp deterioration
of the accuracy of the bootstrap approximation in small samples. The apparent reason
is the additional small-sample bias of the OLS estimator in the model with intercept,
which is further propagated by the bootstrap estimator. Nevertheless, there is clear
evidence of gradual convergence of the bootstrap percentiles to the exact �nite-sample
percentiles, as the sample size is increased. In sharp contrast to the exact unit root case
in panel (a), for the corresponding near-integrated processes without drift in panels (b)
and (c) the bootstrap approximation continues to work well for moderately large and
large samples.

How important for applied work is the slow convergence of the bootstrap distribution
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for exact unit root processes without drift? Most processes of interest in empirical
research are trending like the processes considered in Table 2. On the other hand,
there are some highly persistent processes (such as interest rates, ination rates or real
exchange rates) that may not be trending. Those processes are unlikely to be exact
unit root processes without drift, however. More likely they have roots very close to
unity and means di�erent from zero. For such processes the results in Table 2 suggest
that the bootstrap approximation may be reasonably accurate after all. The evidence
in Table 2 shows that a nonzero drift in population tends to eliminate the small-sample
bias of the OLS estimator, resulting in much higher bootstrap accuracy. A similar e�ect
can be expected for near-integrated processes with roots very close to unity. In Table
5 we explore this possibility for a process with a root of approximately 0.998. Table 5
shows that even for roots very close to unity a small nonzero intercept (relative to the
standard deviation of the innovation) drastically improves the �nite-sample accuracy
of the bootstrap approximation. Thus, unless we have strong a priori reason to believe
that the true process is indeed integrated with zero drift, the bootstrap approximation
is likely to be adequate even for time series such as nominal or real interest rates or
for real exchange rates. A detailed investigation of this conjecture more appropriately
would be the subject of a separate and more extensive simulation study.

4 Concluding Remarks

We studied the asymptotic validity of the standard bootstrap algorithm for unrestricted
autoregressions in models with exact unit roots. The main contribution of this paper
has been two-fold. First, we derived the limit distribution of the bootstrap estimator for
the augmented Dickey-Fuller representation of an integrated univariate autoregressive
process. Second, on the basis of this theoretical result, we showed that, in many cases
of interest in applied work, asymptotically valid bootstrap inference may be conducted
without conditioning on the outcome of unit root pre-tests.

There are two natural extensions of this result. One extension involves generalizing
the results of this paper to possibly integrated and/or cointegrated vector valued pro-
cesses. This extension will require a generalization of the results in Jeganathan (1991)
to vector valued processes. The other extension is a study of the conditions under which
the bootstrap approximation described in this paper provides asymptotic re�nements
for the studentized estimator of the slope parameter (or smooth functions thereof). Our
results in this paper imply that the bootstrap approximation is as sound asymptotically
as the usual normal approximation, but they do not establish that the bootstrap ap-
proximation provides higher-order re�nements. We conjecture that such re�nements
will be possible in the model with drift, but not in the model without drift, owing to
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the rate of convergence of the estimator of the sum of the autoregressive coe�cients.
Both extensions are nontrivial and more appropriately dealt with in a separate paper.
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Appendix

Proof of Theorem 1. The proof is organized as follows: First, we consider the population
process (2) with � and �j replaced by deterministic sequences �T and �T;j such that
�T = 1 + 0=T + o(T�1) and �T;j = �j + j=T

1=2 + o(T�1=2) for j = 1; 2; :::; p� 1
where  = (0; 1; :::; p�1)

0 is �xed. Next, we shall derive the limiting distribution
of the bootstrap OLS estimator when �; �1; :::; �p�1 in (2) are replaced with their OLS
estimates.

Consider the following triangular array:

yT;t = �T;1yT;t�1 + �T;2yT;t�2 + � � �+ �T;pyT;t�p + "t

= �TyT;t�1 + �T;1(1� �TL)yT;t�1 + � � �+ �T;p�1(1� �TL)yT;t�p+1 + "t

= �0TxT;t + "t;

where yT;0 = yT;1 = � � � = yT;1�p = 0, "t � iid(0; �2),

�T = �T;1 + �T;2 + � � �+ �T;p

�T;j = �[�T;j+1 + �T;j+2 + � � �+ �T;p] for j = 1; 2; :::; p� 1

�T = (�T ; �T;1; �T;2; :::; �T;p�1)
0

= � +��1T 

xT;t = (yT;t�1; (1� �TL)yT;t�1; (1� �TL)yT;t�2; :::; (1� �TL)yT;t�p+1)0
�T = diag (T; T 1=2; :::; T 1=2):

Let zT;t = ( T (L)"t; (1 � �TL)yT;t�1; (1 � �TL)yT;t�2; :::; (1 � �TL)yT;t�p+1)
0 where

 T (L) = �T (L)=(1� �TL). Then by Propositions 1, 4 and 5 of Jeganathan (1991),

��1T

TX
t=1

zT;tz
0
T;t�

�1
T

L!
" R 1

0 S(r; 0)
2dr 01�(p�1)

0(p�1)�1 �

#
(21)

��1T

TX
t=1

zT;t"t
L!

" R 1
0 S(r; 0)dB(r)
��Wp�1

#
(22)

where B is a Brownian motion, Wp�1 is a (p� 1)-dimensional standard normal random
vector and B and Wp�1 are independent. In other words, by Theorem 1 of Jeganathan
(1991),

lim
T!1

P

0
@�T

 
TX
t=1

zT;tz
0
T;t

!�1 TX
t=1

zT;t"t � x

1
A = H(; x) (23)
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where H(; x) is the joint distribution function of the p-dimensional random vector2
64

 (1)
R
1

0
S(r;0)dB(r)R

1

0
S(r;0)2dr

���
1

2Wp�1

3
75 : (24)

Next, we shall derive the limiting distribution of the bootstrap OLS estimator when
�; �1; :::; �p�1 in (2) are replaced with their OLS estimates. Let �T denote a random
measure on <p de�ned by

�T (S) =

Z
S
HT (dx)

where S is a Borel set in <p,

HT (x) = P �

0
@�T

 
TX
t=1

z�t z
�0

t

!�1 TX
t=1

z�t "
�
t � x

1
A :

P � is the probability measure induced by the bootstrap conditional on the original data.

In other words, �T (S) = P �
�
�T

�PT
t=1 z

�
t z
�0
t

��1PT
t=1 z

�
t "
�
t 2 S

�
. Noting that H(; x)

is continuous in  for each �xed x, we de�ne a random measure � on <p by

�(S) =

Z
S
H(~; dx)

where ~ is the p-dimensional random vector given by the RHS of (3). We want to show
that, as T !1

�T ) � !-a.s. (25)

As Datta (1996, Remark 2.2) points out, �T is not a function of �̂ alone, but also a
function of ~FT , and thus it is di�cult to prove (25) directly. In order to circumvent
this di�culty, we follow a strategy similar to that adopted by Datta (1996) for the

random walk model. Recall that in population �(L)yt = "t where "t
iid� F . First,

consider a thought experiment in which we bootstrap the slope parameters under the
counterfactual assumption that the true error distribution is known, i.e.,

�̂(L)~y�t = ~"�t ; t = 1; 2; :::; T; (26)

where ~"�t
iid� F and ~y�0 = � � � = ~y�1�p = 0. The bootstrap analogue of �T under this

resampling scheme is given by

~�T (S) =
Z
S

~HT (dx)
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where ~HT (x) = P �
�
�T

�PT
t=1 ~z

�
t ~z
�0
t

��1PT
t=1 ~z

�
t ~"
�
t � x

�
, ~z�t = (~u�t ;�~y�t�1; :::;�~y�t�p)

0

and ~u�t =  ̂(L)~y�t . Note that the assumption underlying Basawa et al.'s (1991a) proof
is a special case of this algorithm with F replaced by the standard normal distribution.

Next, consider the standard bootstrap resampling scheme

�̂(L)y�t = "�t ; t = 1; 2; :::; T;

where "�t
iid� ~F and y�0 = � � � = y�1�p = 0. Let z�t = (u�t ;�y

�
t�1; :::;�y

�
t�p)

0 where

u�t =  ̂(L)y�t . Keeping the di�erence in notation between these two resampling schemes
in mind, let ~U�T = ��1T

PT
t=1 ~z

�
t�1~"

�
t , U

�
T = ��1T

PT
t=1 z

�
t�1"

�
t ,

~V �T = ��1T
PT
t=1 ~z

�
t ~z
�0
t �

�1
T

and V �
T = ��1T

PT
t=1 z

�
t z
�0
t �

�1
T .

We will proceed as follows. First, in Lemma 1 we will provide bounds for the dif-
ference between ~U�T and U�T and between ~V �

T and V �
T . We show that this di�erence

vanishes asymptotically for �̂ close to unity. This fact allows us to substitute U�T and
V �T for ~U�T and ~V �T , respectively, and to proceed as though F were known. Second, in
Lemma 2, we will prove that the distance between the bootstrap innovation and the
true innovation vanishes asymptotically. This result will be used in proving Lemma
3. Third, in Lemma 3, we will derive the limit distribution of U�T and V �T and show
that it is of a known form, corresponding to the numerator and the denominator of (4).
Finally, we will apply the continuous mapping theorem to show that the ratio of U�T
and V �

T indeed converges to the limit distribution of the bootstrap estimator in (4).
Let M(<s) denote the space of probability measures on <s topologized by weak

convergence and let ) denote weak convergence of probability measures. Given an
n �m matrix A = faijg, let kAk =

Pn
i=1

Pm
j=1 jaij j. For �; � 2 �r = f 2 M(<q) :R kxkr(dx) < 1g, let dr(�; �) be the in�mum of (EkX � Y kr)1=r, over all possible

joint distributions of two s-dimensional random vectors X and Y , whose marginal dis-
tributions are � and �, respectively. The notation LX;Y stands for the joint distribution
of X and Y . De�ne a metric on M(<s) by

d(�; �) =
1X
n=1

2�n
�����
Z
fnd��

Z
fnd�

���� ^ 1

�

for �; � 2 M(<s), where fn is some bounded uniformly continuous real-valued function
on <s and a ^ b stands for the minimum of a and b.

Lemma 1.

d1( ~V
�

T ; V
�

T ) �

8><
>:1 + 2(p� 1)

0
@ 1X

j=0

�̂2j

1
A

1

2 �
1 + (1 _ j�̂jT�1)(T � 1)j�̂� 1j

�
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+(p � 1)2

0
@ 1X

j=0

�̂2j

1
A �1 + (1 _ j�̂jT�1)(T � 1)j�̂� 1j

�2
=(1 _ j�̂jT�1)

9=
;

�(1 _ j�̂jT�1)(� + �̂)d2("1; "
�

1); (27)

d1( ~U
�

T ; U
�

T ) =

8><
>:(1 _ j�̂jT�1)T j�̂ � 1j(� + �̂)

2
641 +

0
@ 1X

j=0

�̂2j

1
A

1

2

3
75

+(� + �̂)

0
@ 1X

j=0

�̂2j

1
A

1

2

+ (1 _ j�̂jT�1)T�
1

2 + d2("1; "
�

1)

9>=
>; d2("1; "

�

1);

(28)

d1(( ~U
�

T ;
~V �T ); (U

�

T ; V
�

T )) � RHS of (27) + RHS of (28); (29)

where a _ b stands for the maximum of a and b.

Proof of Lemma 1.

Note that

E�j~u�2t�1 � u�2t�1j � E�j~u�t�1 + u�t�1jE�j~u�t�1 � u�t�1j
� (E�j~ut�1j+ E�jut�1j)E�j~u�t�1 � u�t�1j: (30)

Since u�t =
Pt
s=1 �̂

t�s"s and ~u�t =
Pt
s=1 �̂

t�s~"s, it follows that

E�j~u�t�1 � u�t�1j �
0
@t�1X
j=1

�̂2j

1
A

1

2

d2("1; "
�
1) � (1_ j�̂jt�1)d2("1; "�1)(t� 1)

1

2 : (31)

Since u�t�1 =
Pt�1
s=1 �̂

t�s"�s and ~u�t =
Pt�1
s=1 �̂

t�s~"�s, it follows that

E�jut�1j � (1_ j�̂jt�1)�̂(t � 1)
1

2 (32)

E�j~ut�1j � (1_ j�̂jt�1)�(t� 1)
1

2 (33)

Thus, it follows from (30), (31), (32) and (33) that

E�j~u�2t�1 � u�2t�1j � (1 _ j�̂jt�1)(� + �̂)d2("1; "
�
1)(t� 1): (34)

Observe that

Ej~u�t�1�~y�t�j � u�t�1�y�t�j j
� Ej(~u�t�1 � u�t�1)�~y�t�j j+ Ej(�~y�t�1��y�t�1)u

�
t�j j

� Ej~u�t�1 � u�t�1jEj�~y�t�jj+ Ej�~y�t�1 ��y�t�1jEju�t�jj: (35)
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Since

�y�t�j =
1� L
1� �̂L

 ̂�1(L)"�t�j

=

"
1 + (�̂� 1)

1X
i=1

�̂i�1Li
#
1X
k=0

�̂k"
�
t�j�k ;

=

2
41 + (�̂� 1)

t�jX
i=1

�̂i�1Li

3
5 t�jX
k=0

�̂k"
�
t�j�k ;

�~y�t�j =

2
41 + (�̂� 1)

t�jX
i=1

�̂i�1Li

3
5 t�jX
k=0

�̂k ~"
�
t�j�k ;

where �̂j is the jth moving average coe�cient of the moving average representation of

 ̂�1(L), it follows that

Ej�~y�t�j j �
h
1 + (1_ j�̂jt�j)j�̂� 1j(t� j)

i 1X
k=0

�̂2k

! 1

2

�; (36)

Ej�~y�t�j ��y�t�j j �
h
1 + (1_ j�̂jt�j)j�̂� 1j(t� j)

i 1X
k=0

�̂2k

! 1

2

d2("1; "
�
1):

(37)

It follows from (32), (34), (35), (36) and (37) that

E
���~u�t�1�~y�t�j � u�t�1�y

�
t�j

���
�

h
1 + (1_ j�̂jt�j)j�̂� 1j(t� j)

i 1X
k=0

�̂2k

! 1

2

(1 _ �̂t�1)(� + �̂)d2("1; "
�
1)(t� 1)

1

2 :

(38)

Similarly, we obtain

E�j�~y�t�i�~y�t�j ��y�t�i�y
�
t�j j

� (� + �̂)
1X
k=0

�̂2k

h
1 + (1 _ j�̂jt�i)j�̂� 1j(t� i)

i

�
h
1 + (1 _ j�̂jt�j)j�̂� 1j(t� j)

i
d2("1; "

�
1): (39)
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Since

d1( ~V
�
T ; V

�
T ) =

pX
i=1

pX
j=1

������
"
��1T

TX
t=1

�
~z�t ~z

�0

t � z�t z
�0

t

�
�T

#
i;j

������
where [A]i;j denote the (i; j)th element of A, (27) follows from (34), (38) and (39).

Since

u�t = �̂u�t�1 + "�t

u�2t = �̂2u�2t�1 + 2�̂u�t�1"
�
t + "�2t

TX
t=1

u�2t = �̂2
TX
t=1

u�2t�1 + 2�̂
TX
t=1

u�t�1"
�
t +

TX
t=1

"�2t ;

it follows that

1

T

TX
t=1

u�t "
�
t =

1

2�̂T

 
TX
t=1

u�2t � �̂2
TX
t=1

u�2t�1 �
TX
t=1

"�2t

!
;

=
u�T
2�̂T

+
T (1� �̂2)

2�̂

1

T 2

TX
t=1

u�2t � 1

2�̂T

TX
t=1

"�2t : (40)

Similarly,

1

T

TX
t=1

~u�t ~"
�
t =

~u�T
2�̂T

+
T (1� �̂2)

2�̂

1

T 2

TX
t=1

~u�2t � 1

2�̂T

TX
t=1

~"�2t : (41)

It follows from (34), (40) and (41) that

E�

����� 1T
TX
t=1

u�t "
�
t �

1

T

TX
t=1

~u�t ~"
�
t

�����
�

n
(1 _ j�̂jT�1)

h
T�

1

2 + T (1� �̂2)(� + �̂)
i
+ d2("1; "

�
1)
o d("1; "�1)

2�̂
: (42)

Since

E�
����y�t�j"�t ��~yt�j ~"t

��� � E
����y�t�j ��~yt�j

��� �̂ +Ej�~yt�j jd2("1; "�1);

it follows from (36) and (37) that

E�
����y�t�j"�t ��~yt�j ~"t

���
�

h
1 + (1_ j�̂jT�1)(T � 1)j�̂� 1j

i
(� + �̂)

0
@ 1X
j=0

�̂2j

1
A

1

2

d2("1; "
�
1): (43)
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(28) follows from (42) and (43).
Then (29) follows immediately from (27) and (28).

In the rest of the proof, we treat L
~U�
T ;

~V �
T , LU

�
T ;V

�
T and LU;V as M(<p�Mp;p)-valued

random elements, where Mp;p is a set of p � p real matrices. Lemma 2 shows that
the distance between the bootstrap innovation and the population innovation vanishes
asymptotically. This result will be used in the proof of Lemma 3.

Lemma 2.
d2("

�
t ; "t)! 0 !-a.s. (44)

for all t.

Proof of Lemma 2. By Lemma 8.3 of Bickel and Freedman (1981), it is su�cient to
show that ~FT ) F !-a.s. and E�(~"2t )! �2 !-a.s.

Since f"tg is iid, FT ) F !-a.s. where FT is the empirical distribution of f"tg. By
the stochastic equicontinuity of fFT (�)g,

sup
x;x0:jx�x0j��T

jFT (x0)� F (x0)� FT (x) + F (x)j = oas(1) (45)

for �T ! 0 as T !1. By applications of Theorem 3 and Lemma 1 of Zheng (1992),

�̂� � = Oas(T
�1(log logT )2); (46)

�̂j � �j = Oas(T
�1=2(log log T )1=2): (47)

By the functional law of iterated logarithm,

[Tr]X
t=1

 (L)"t = Oas((T log logT )1=2) (48)

for r 2 [0; 1]. Because the distribution of "t, F , satis�es the Lipschitz condition, there
is M > 0 such that

jF (x0)� F (x)j �M jx0 � xj (49)

By the standard arguments about convergence of empirical processes, it follows from
(45)-(49) that

F̂T ) F !-a.s. (50)

where F̂T is the empirical distribution of "̂t. It follows from (46)-(48) that

1

T

TX
t=1

"̂t = oas(1): (51)
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By the stochastic equicontinuity of F̂T and from (49)-(51), it follows that

~FT ) F !-a.s. (52)

Arguments analogous to the proof of Lemma 4.1 of Datta (1996) lead to

E�("�2t ) = �̂2
a:s:! �2 (53)

An application of Lemma 8.3 of Bickel and Freedman (1981) to (52) and (53) completes
the proof of Lemma 2.

Lemma 3. Let

U =

" R 1
0 S(r; ~0)dB(r)

��
1

2W

#
;

V =

" R 1
0 S(r; ~0)

2dr 01�(p�1)
0(p�1)�1 �

#
;

where ~0 is the �rst element of the random variable on the RHS of (3). Then

LU
�
T ;V

�
T

L! LU;V !-a.s. (54)

Proof of Lemma 3.

Since LU
�
T ;V

�
T and LU;V areM(<p�Mp;p)-valued random elements andM(<p�Mp;p)

is separable, by Theorems 6.2 and 6.6 of Parthasarathy (1967), it is su�cient to prove

E[g(LU
�
T;V

�
T )]! E[g(LU;V )] (55)

for every bounded uniformly continuous function g on M(<p �Mp;p).���E[g(LU�
T ;V

�
T )]�E[g(L ~U�

T ;
~V �
T )]
���

� E
h���g(L ~U�

T ;
~V �
T )� g(L ~U�

T ;
~V �
T )
��� I(T j�̂� 1j � K)

i
+MP (T j�̂� 1j > K); (56)

where M is a bound for g, K is a real number and I(�) is the indicator function.
Since T (�̂T � 1) = Op(1), the second term can be made arbitrarily small by choosing a

su�ciently large K. On the set fT j�̂� 1j � Kg, d1(LU�
T ;V

�
T ; L

~U�
T ;
~V �
T ) ! 0 by Lemmas

1 and 2, and thus d(LU
�
T ;V

�
T ; L

~U�
T ;
~V �
T ) ! 0 by Theorem II 6.6 in Parthasarathy (1967).

Since g is uniformly continuous and bounded, the �rst term converges to zero by the
dominated convergence theorem. Thus,���E[g(LU�

T ;V
�
T )]� E[g(L

~U�
T ;
~V �
T )]
���! 0: (57)
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It follows from (3) and the Skorohod representation theorem that there exist ~� and ~

such that �T (~� � �)
L! ~ a.s., L

~� = L�̂ and L~ = L . Let ~UT and ~VT correspond to
~U�T and ~V �T , respectively, with �̂ replaced by ~�. Let ~U and ~V correspond to U and V ,
respectively, with  replaced by ~. By Lemma 1,

L
~UT ;~VT ) L

~U;~V !-a.s. (58)

Since L
~UT ;~VT = L

~U�
T ;

~V �
T and L

~U;~V = LU;V by the Skorohod representation theorem, it
follows from (58) that

E[g(L
~U�
T ;
~V �
T )]! E[g(LU;V )] (59)

by the dominant convergence theorem.

Note that U�T and V �T correspond to the numerator and the denominator of the
limiting expression of the bootstrap estimator in (4). Thus, we can derive the limit
distribution of the estimator by analyzing the limit distribution of the ratio V ��1T U�T .
Our proof relies on an application of the continuous mapping theorem.

It follows from Lemma 3 that

��1T

TX
t=1

z�t z
�0

t �
�1
T

L! V !-a.s. (60)

��1T

TX
t=1

z�t "
�
t

L! U !-a.s. (61)

Since V is nonsingular with probability one by Lemma 1 and Proposition 4 of Je-
ganathan (1991), it follows by the continuous mapping theorem (e.g., Theorem 1.3.6 of
van der Vaart and Wellner, 1996) that

�T

 
TX
t=1

z�t z
�
0

t

!�1
TX
t=1

z�t "
�

t

L
! V �1U !-a.s.

�

0
@
R

1

0

S(r;~0)dB(r)R
1

0

S(r;~0)2dr

���
1

2W

1
A !-a.s. (62)

Note that �T (�̂�T � �̂) can be expressed in terms of z�t as

�T (�̂
�
T � �̂) =MT

 
TX
t=1

z�t z
�0
t

!�1 TX
t=1

z�t "
�
t ; (63)
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where

MT =

0
BBBB@

 ̂(1)T 0 � � � 0Pp�1
j=1  ̂jT

1=2

... Ip�1T
1=2

 ̂p�1T
1=2

1
CCCCA ;

from which we obtain (4).

Proof of Corollary 1.

Since

�1 = �+ �1;

�j = �j � �j�1 for j = 2; :::; p� 1;

�p = ��p�1;

(6) and (7) follow from (3) and Theorem 1, respectively.

Proof of Theorem 2.

The proof of Theorem 2 is analogous to the proof of Theorem 1 except that Step
1 of the proof of Theorem 1 and Lemma 1 are replaced by Lemma 4 and Lemma
6, respectively. Although the bootstrap estimator of � converges to a random limit
distribution, its rate of convergence is T compared with

p
T for the coe�cients of

the lagged di�erences. Thus, any linear combination of bootstrap estimators involving
coe�cients on lagged di�erences will be

p
T consistent and will converge to the same

Gaussian limit distribution as the usual OLS estimator. Hence, the bootstrap provides
an asymptotically valid approximation to the distribution of the autoregressive slope
parameters, even in the presence of a unit root.

Lemma 4. (Asymptotic Distribution of the Slope Parameters of Integrated
AR(p) Processes with Drift)

Consider the following triangular array of an AR(p) process with drift.

yT;t = �T + �T;1yT;t�1 + �T;2yT;t�2 + � � �+ �T;pyT;t�p + "t

= �0TxT;t + "t;

where yT;0 = yT;1 = � � � = yT;1�p = 0, "t � iid(0; �2),

�T =

(
(�T = T(1); �T ; �T;1; �T;2; :::; �T;p�1)

0 if p > 1
(�T ; �T)0 if p = 1

�T (�T ) = 0;
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�T;j = �[�T;j+1=�T + �T;j+2=�
2
T + � � �+ �T;p=�

p�j
T ] for j = 1; 2; :::; p� 1

xT;t =

(
(1; yT;t�1; (1� �TL)yT;t�1 � �T

 T (1)
; :::; (1� �TL)yT;t�p+1 � �T

 T (1)
)0 if p > 1

(1; yT;t�1)
0 if p = 1:

Suppose that T 3=2(�T;j � 1) ! 0, T
1=2(�T;j � �j) ! j for j = 1; 2; :::; p � 1, and

T 1=2(�T � �)! p where  = (0; 1; :::; p)
0 is a (p+1)-dimensional vector of constants.

Then
��T (��T � �T )

d! N(0(p+1)�1; �
2���1)

where

��T =

(
diag (T 1=2; T 3=2; T 1=2; :::; T 1=2) if p > 1

diag (T 1=2; T 3=2) if p = 1:

Proof of Lemma 4. Observe that

��T (��T � �T ) = ��T (
TX
t=1

�xT;t�x
0
T;t)

�1
TX
t=1

�xT;t"t

= �MT (
TX
t=1

�zT;t�z
0
T;t)

�1
TX
t=1

�zT;t"t

where

�MT =

2
66666664

T 1=2 T 1=2(�T= T (1))
Pp�1
i=1

Pp�1
j=i  T;j=�

j�i+1
T 0 � � � 0

0 T 3=2(1�Pp�1
j=1  T;j=�

j
T ) 0 � � � 0

0 T 1=2Pp�1
j=1  T;j=�

j
T

...
... T 1=2Ip�1

0 T 1=2 T;p�1=�T

3
77777775
;

�zT;t = (1;  T(L)"t; (1� �TL)yT;t�1 � �T= T (1); :::; (1� �TL)yT;t�p+1 � �T= T (1))
0:

Arguments analogous to Jeganathan (1991) with his Propositions 1 and 5 replaced by
Lemma 5 below lead to

���1T

TX
t=1

�zT;t�z
0
T;t

���1T
p! ��

���1T

TX
t=1

�zT;t"t
d! N(0(p+1)�1; �

2��):
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Therefore the desired conclusion follows.

Lemma 5. "
T�1=2 0

0 T�3=2

#
TX
t=1

 
1
�uT;t

!
"t

d! N

 
02�1;

 
1 �

2
�
2

�2

3

!!
; (64)

"
T�1=2 0

0 T�3=2

#
TX
t=1

 
1
�uT;t

! 
1
�uT;t

!0 "
T�1=2 0

0 T�3=2

#

p!
 

1 �
2

�
2

�2

3

!
; (65)

"
T�1 0
0 T�2

#
TX
t=1

 
1
�uT;t

!
(�yT;t�j � �T = T (1)) = op(1); (66)

where �uT;t =  T (L)yT;t.

Lemma 4 provides the asymptotics for the OLS estimator of �T . Note that the usual
local-to-unity results, which assume �T to be constant, do not apply in our context
because � in the bootstrap world will be a function of the random variable p. Our
result shows that the limiting distributions are the same in both cases.

Lemma 6. Let ~U�T = ��1T
PT
t=1 ~z

�
t�1~"

�
t , U

�
T = ��1T

PT
t=1 z

�
t�1"

�
t , ~V

�
T = ��1T

PT
t=1 ~z

�
t ~z
�0
t �

�1
T

and V �
T = ��1T

PT
t=1 z

�
t z
�0
t �

�1
T . Then

d1( ~V
�
T ; V

�
T ) = Op

�
(1_ j�̂j2T )T 2(�̂� 1)2d2("1; "

�
1)
�
; (67)

d1( ~U
�
T ; U

�
T ) = Op

�
(1_ j�̂jT )T (�̂� 1)2d2("1; "

�
1)
�
; (68)

d1(( ~U
�
T ;

~V �T ); (U
�
T ; V

�
T )) � RHS of (67) + RHS of (68): (69)

Proof of Lemma 6. The proof of Lemma 6 is analogous to that of Lemma 1 and thus is
omitted.

Proof of Corollary 2. The proof of Corollary 2 follows from Theorem 2 by the delta
method.

Proof of Theorem 3. The proof of Theorem 3 is analogous to the proof of Theorem 1
with (21) and (22) replaced by

��1T

TX
t=1

�zT;t�z
0
T;t�

�1
T

L!
"

1
R 1
0 S(r; 0)drR 1

0 S(r; ~0)dr
R 1
0 S(r; 0)

2dr

#
(70)
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��1T

TX
t=1

�zT;t"t
L!

2
64

S(1; 0)R 1
0 S(r; 0)dB(r)

���
1

2Wp�1

3
75 (71)

respectively, where �zT;t = (1;  T(L)"t; (1��TL)yT;t�1; (1��TL)yT;t�2; :::; (1��TL)yT;t�p+1)0.
Applications of the continuous mapping theorem to equations 35, 36 and 37 of Je-
ganathan (1991) yield (70) and (71).

Proof of Corollary 3. The proof of Corollary 3 is analogous to the proof of Corollary 1
and thus is omitted.
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Table 1.
Percentiles of the True Finite-Sample Distribution and Average Bootstrap Percentiles

Regression Model: yt = �1yt�1 + �2yt�2 + "t

(a) DGP: yt = 0:8yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -1.71 -1.37 -0.94 -0.11 0.76 1.21 1.58

T 1=2(�̂�
1
� �̂1) -1.70 -1.35 -0.93 -0.10 0.76 1.21 1.59

T = 300 T 1=2(�̂1 � �1) -1.66 -1.31 -0.88 -0.06 0.78 1.23 1.59

T 1=2(�̂�
1
� �̂1) -1.65 -1.30 -0.88 -0.06 0.78 1.22 1.59

T = 500 T 1=2(�̂1 � �1) -1.64 -1.30 -0.87 -0.05 0.79 1.23 1.59

T 1=2(�̂�
1
� �̂1) -1.64 -1.29 -0.87 -0.05 0.79 1.23 1.59

T = 100 T 1=2(�̂2 � �2) -1.80 -1.42 -0.97 -0.10 0.73 1.16 1.49

T 1=2(�̂�
2
� �̂2) -1.80 -1.42 -0.97 -0.11 0.72 1.14 1.48

T = 300 T 1=2(�̂2 � �2) -1.71 -1.34 -0.90 -0.06 0.76 1.19 1.54

T 1=2(�̂�
2
� �̂2) -1.72 -1.35 -0.90 -0.07 0.75 1.17 1.52

T = 500 T 1=2(�̂2 � �2) -1.69 -1.33 -0.89 -0.04 0.78 1.20 1.55

T 1=2(�̂�
2
� �̂2) -1.69 -1.32 -0.89 -0.05 0.77 1.19 1.54

(b) DGP: yt = 0:79yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -1.71 -1.36 -0.93 -0.10 0.76 1.21 1.59

T 1=2(�̂�
1
� �̂1) -1.70 -1.35 -0.93 -0.09 0.76 1.22 1.59

T = 300 T 1=2(�̂1 � �1) -1.66 -1.30 -0.88 -0.06 0.79 1.23 1.60

T 1=2(�̂�
1
� �̂1) -1.65 -1.30 -0.88 -0.06 0.78 1.23 1.60

T = 500 T 1=2(�̂1 � �1) -1.64 -1.29 -0.87 -0.05 0.79 1.23 1.59

T 1=2(�̂�
1
� �̂1) -1.64 -1.29 -0.87 -0.04 0.79 1.23 1.60

T = 100 T 1=2(�̂2 � �2) -1.81 -1.43 -0.98 -0.12 0.71 1.14 1.47

T 1=2(�̂�
2
� �̂2) -1.81 -1.43 -0.98 -0.12 0.70 1.13 1.46

T = 300 T 1=2(�̂2 � �2) -1.73 -1.36 -0.91 -0.08 0.75 1.17 1.52

T 1=2(�̂�
2
� �̂2) -1.72 -1.36 -0.91 -0.08 0.74 1.16 1.51

T = 500 T 1=2(�̂2 � �2) -1.70 -1.34 -0.90 -0.06 0.77 1.19 1.53

T 1=2(�̂�
2
� �̂2) -1.70 -1.33 -0.89 -0.06 0.76 1.18 1.53

(c) DGP: yt = 0:78yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -1.70 -1.36 -0.93 -0.10 0.76 1.22 1.59

T 1=2(�̂�
1
� �̂1) -1.70 -1.35 -0.92 -0.09 0.76 1.22 1.60

T = 300 T 1=2(�̂1 � �1) -1.66 -1.30 -0.88 -0.06 0.79 1.23 1.60

T 1=2(�̂�
1
� �̂1) -1.65 -1.30 -0.88 -0.05 0.78 1.23 1.60

T = 500 T 1=2(�̂1 � �1) -1.64 -1.29 -0.87 -0.05 0.79 1.23 1.59

T 1=2(�̂�
1
� �̂1) -1.64 -1.29 -0.87 -0.04 0.79 1.23 1.60

T = 100 T 1=2(�̂2 � �2) -1.82 -1.44 -0.99 -0.13 0.70 1.13 1.46

T 1=2(�̂�
2
� �̂2) -1.81 -1.44 -0.98 -0.13 0.70 1.12 1.46

T = 300 T 1=2(�̂2 � �2) -1.73 -1.36 -0.92 -0.08 0.74 1.17 1.52

T 1=2(�̂�
2
� �̂2) -1.73 -1.36 -0.92 -0.08 0.74 1.16 1.50

T = 500 T 1=2(�̂2 � �2) -1.70 -1.34 -0.90 -0.06 0.76 1.19 1.53

T 1=2(�̂�
2
� �̂2) -1.70 -1.33 -0.89 -0.06 0.76 1.18 1.53

NOTES: Percentiles of true distribution based on 100000 Monte Carlo trials. Bootstrap percentiles based on
average of 100 trials with 20000 bootstrap replications each.
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Table 2.
Percentiles of the True Finite-Sample Distribution and Average Bootstrap Percentiles

Regression Model: yt = �+ �1yt�1 + �2yt�2 + "t

(a) DGP: yt = 1 + 0:8yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -1.70 -1.37 -0.96 -0.15 0.69 1.14 1.51

T 1=2(�̂�
1
� �̂1) -1.67 -1.34 -0.94 -0.14 0.69 1.14 1.51

T = 300 T 1=2(�̂1 � �1) -1.67 -1.32 -0.90 -0.08 0.75 1.19 1.56

T 1=2(�̂�
1
� �̂1) -1.65 -1.31 -0.89 -0.08 0.75 1.19 1.56

T = 500 T 1=2(�̂1 � �1) -1.65 -1.31 -0.89 -0.07 0.77 1.21 1.57

T 1=2(�̂�
1
� �̂1) -1.64 -1.30 -0.88 -0.06 0.77 1.20 1.57

T = 100 T 1=2(�̂2 � �2) -1.52 -1.14 -0.70 0.14 0.95 1.36 1.69

T 1=2(�̂�
2
� �̂2) -1.52 -1.15 -0.70 0.13 0.93 1.33 1.66

T = 300 T 1=2(�̂2 � �2) -1.56 -1.19 -0.75 0.08 0.90 1.32 1.66

T 1=2(�̂�
2
� �̂2) -1.56 -1.19 -0.75 0.08 0.89 1.31 1.65

T = 500 T 1=2(�̂2 � �2) -1.57 -1.21 -0.77 0.07 0.89 1.30 1.64

T 1=2(�̂�
2
� �̂2) -1.57 -1.20 -0.77 0.06 0.88 1.30 1.64

(b) DGP: yt = 1 + 0:79yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -1.71 -1.38 -0.96 -0.15 0.69 1.14 1.51

T 1=2(�̂�
1
� �̂1) -1.67 -1.35 -0.94 -0.14 0.69 1.14 1.51

T = 300 T 1=2(�̂1 � �1) -1.67 -1.32 -0.90 -0.09 0.75 1.19 1.55

T 1=2(�̂�
1
� �̂1) -1.65 -1.31 -0.89 -0.08 0.75 1.19 1.55

T = 500 T 1=2(�̂1 � �1) -1.65 -1.31 -0.89 -0.07 0.77 1.20 1.56

T 1=2(�̂�
1
� �̂1) -1.65 -1.30 -0.88 -0.07 0.76 1.20 1.57

T = 100 T 1=2(�̂2 � �2) -1.51 -1.14 -0.70 0.14 0.94 1.35 1.67

T 1=2(�̂�
2
� �̂2) -1.51 -1.14 -0.70 0.12 0.92 1.32 1.64

T = 300 T 1=2(�̂2 � �2) -1.55 -1.19 -0.75 0.07 0.88 1.30 1.64

T 1=2(�̂�
2
� �̂2) -1.55 -1.19 -0.75 0.07 0.88 1.29 1.63

T = 500 T 1=2(�̂2 � �2) -1.56 -1.20 -0.77 0.06 0.87 1.29 1.63

T 1=2(�̂�
2
� �̂2) -1.56 -1.20 -0.77 0.05 0.86 1.28 1.62

(c) DGP: yt = 1 + 0:78yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -1.71 -1.38 -0.97 -0.16 0.69 1.13 1.50

T 1=2(�̂�
1
� �̂1) -1.68 -1.35 -0.95 -0.15 0.69 1.13 1.51

T = 300 T 1=2(�̂1 � �1) -1.67 -1.33 -0.90 -0.09 0.75 1.19 1.55

T 1=2(�̂�
1
� �̂1) -1.66 -1.31 -0.90 -0.09 0.74 1.18 1.55

T = 500 T 1=2(�̂1 � �1) -1.65 -1.31 -0.89 -0.07 0.77 1.20 1.56

T 1=2(�̂�
1
� �̂1) -1.65 -1.31 -0.89 -0.07 0.76 1.20 1.56

T = 100 T 1=2(�̂2 � �2) -1.51 -1.14 -0.71 0.13 0.92 1.33 1.65

T 1=2(�̂�
2
� �̂2) -1.51 -1.14 -0.71 0.11 0.90 1.30 1.61

T = 300 T 1=2(�̂2 � �2) -1.55 -1.20 -0.76 0.06 0.86 1.28 1.62

T 1=2(�̂�
2
� �̂2) -1.55 -1.19 -0.76 0.06 0.85 1.26 1.60

T = 500 T 1=2(�̂2 � �2) -1.57 -1.21 -0.79 0.04 0.85 1.26 1.60

T 1=2(�̂�
2
� �̂2) -1.57 -1.21 -0.78 0.04 0.84 1.26 1.60

NOTES: Percentiles of true distribution based on 100000 Monte Carlo trials. Bootstrap percentiles based on
average of 100 trials with 20000 bootstrap replications each.
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Table 3.
Percentiles of the True Finite-Sample Distribution and Average Bootstrap Percentiles

Regression Model: yt = � + �1yt�1 + "t

(a) DGP: yt = 1 + yt�1 + "t; "t � N(0; 1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 3=2(�̂1 � �1) -6.461 -5.114 -3.549 -0.599 2.334 3.883 5.196

T 3=2(�̂�1 � �̂1) -6.561 -5.205 -3.605 -0.621 2.350 3.927 5.258

T = 300 T 3=2(�̂1 � �1) -6.079 -4.806 -3.271 -0.346 2.595 4.124 5.373

T 3=2(�̂�1 � �̂1) -6.151 -4.856 -3.307 -0.353 2.598 4.156 5.446

T = 500 T 3=2(�̂1 � �1) -6.019 -4.757 -3.211 -0.274 2.673 4.219 5.516

T 3=2(�̂�1 � �̂1) -6.011 -4.731 -3.196 -0.268 2.664 4.208 5.483

(b) DGP: yt = 1 + 0:99yt�1 + "t; "t � N(0; 1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -0.112 -0.088 -0.061 -0.013 0.032 0.055 0.074

T 1=2(�̂�1 � �̂1) -0.115 -0.091 -0.063 -0.013 0.033 0.056 0.075

T = 300 T 1=2(�̂1 � �1) -0.079 -0.062 -0.042 -0.008 0.023 0.038 0.050

T 1=2(�̂�1 � �̂1) -0.081 -0.063 -0.043 -0.008 0.023 0.039 0.051

T = 500 T 1=2(�̂1 � �1) -0.083 -0.065 -0.044 -0.008 0.024 0.039 0.052

T 1=2(�̂�1 � �̂1) -0.084 -0.066 -0.045 -0.008 0.024 0.040 0.052

(c) DGP: yt = 1 + 0:98yt�1 + "t; "t � N(0; 1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -0.182 -0.142 -0.098 -0.024 0.042 0.073 0.099

T 1=2(�̂�1 � �̂1) -0.188 -0.147 -0.102 -0.025 0.043 0.076 0.102

T = 300 T 1=2(�̂1 � �1) -0.183 -0.143 -0.098 -0.023 0.041 0.071 0.094

T 1=2(�̂�1 � �̂1) -0.188 -0.147 -0.101 -0.024 0.043 0.074 0.098

T = 500 T 1=2(�̂1 � �1) -0.206 -0.161 -0.111 -0.025 0.048 0.082 0.108

T 1=2(�̂�1 � �̂1) -0.209 -0.164 -0.113 -0.026 0.049 0.084 0.111

NOTES: Percentiles of true distribution based on 100000 Monte Carlo trials. Bootstrap per-
centiles based on average of 100 trials with 20000 bootstrap replications each.
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Table 4.
Percentiles of the True Finite-Sample Distribution and Average Bootstrap Percentiles

Regression Model: yt = �+ �1yt�1 + �2yt�2 + "t

(a) DGP: yt = 0:8yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -2.07 -1.71 -1.26 -0.41 0.47 0.94 1.32

T 1=2(�̂�
1
� �̂1) -1.88 -1.52 -1.09 -0.24 0.62 1.08 1.46

T = 300 T 1=2(�̂1 � �1) -1.86 -1.50 -1.07 -0.24 0.61 1.06 1.43

T 1=2(�̂�
1
� �̂1) -1.76 -1.41 -0.98 -0.15 0.69 1.14 1.51

T = 500 T 1=2(�̂1 � �1) -1.79 -1.44 -1.02 -0.19 0.66 1.10 1.46

T 1=2(�̂�
1
� �̂1) -1.72 -1.37 -0.95 -0.12 0.72 1.16 1.53

T = 100 T 1=2(�̂2 � �2) -1.93 -1.54 -1.09 -0.23 0.61 1.03 1.37

T 1=2(�̂�
2
� �̂2) -1.83 -1.46 -1.01 -0.17 0.65 1.06 1.40

T = 300 T 1=2(�̂2 � �2) -1.79 -1.42 -0.97 -0.14 0.69 1.12 1.46

T 1=2(�̂�
2
� �̂2) -1.75 -1.38 -0.94 -0.11 0.71 1.13 1.47

T = 500 T 1=2(�̂2 � �2) -1.74 -1.38 -0.94 -0.10 0.72 1.15 1.49

T 1=2(�̂�
2
� �̂2) -1.72 -1.35 -0.91 -0.08 0.74 1.16 1.51

(b) DGP: yt = 0:79yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -2.05 -1.69 -1.24 -0.38 0.51 0.97 1.36

T 1=2(�̂�
1
� �̂1) -1.89 -1.54 -1.10 -0.25 0.62 1.08 1.47

T = 300 T 1=2(�̂1 � �1) -1.82 -1.45 -1.02 -0.19 0.66 1.11 1.48

T 1=2(�̂�
1
� �̂1) -1.77 -1.42 -0.99 -0.16 0.69 1.14 1.51

T = 500 T 1=2(�̂1 � �1) -1.74 -1.39 -0.97 -0.14 0.71 1.15 1.51

T 1=2(�̂�
1
� �̂1) -1.73 -1.38 -0.95 -0.12 0.72 1.16 1.53

T = 100 T 1=2(�̂2 � �2) -1.96 -1.59 -1.14 -0.28 0.56 0.98 1.32

T 1=2(�̂�
2
� �̂2) -1.87 -1.50 -1.05 -0.21 0.61 1.03 1.37

T = 300 T 1=2(�̂2 � �2) -1.83 -1.46 -1.01 -0.18 0.65 1.07 1.42

T 1=2(�̂�
2
� �̂2) -1.80 -1.43 -0.99 -0.15 0.67 1.09 1.43

T = 500 T 1=2(�̂2 � �2) -1.77 -1.41 -0.97 -0.13 0.69 1.11 1.46

T 1=2(�̂�
2
� �̂2) -1.76 -1.40 -0.96 -0.12 0.70 1.12 1.47

(c) DGP: yt = 0:78yt�1 + 0:2yt�2 + "t; "t � N(0;1):

5% 10% 20% 50% 80% 90% 95%

T = 100 T 1=2(�̂1 � �1) -2.02 -1.66 -1.22 -0.35 0.55 1.01 1.39

T 1=2(�̂�
1
� �̂1) -1.91 -1.54 -1.10 -0.25 0.62 1.09 1.47

T = 300 T 1=2(�̂1 � �1) -1.79 -1.43 -1.00 -0.16 0.69 1.13 1.50

T 1=2(�̂�
1
� �̂1) -1.77 -1.41 -0.98 -0.15 0.70 1.14 1.52

T = 500 T 1=2(�̂1 � �1) -1.72 -1.38 -0.95 -0.12 0.73 1.17 1.53

T 1=2(�̂�
1
� �̂1) -1.72 -1.37 -0.94 -0.11 0.73 1.17 1.54

T = 100 T 1=2(�̂2 � �2) -1.98 -1.60 -1.16 -0.30 0.53 0.95 1.30

T 1=2(�̂�
2
� �̂2) -1.90 -1.53 -1.08 -0.24 0.59 1.01 1.35

T = 300 T 1=2(�̂2 � �2) -1.82 -1.46 -1.01 -0.18 0.65 1.08 1.43

T 1=2(�̂�
2
� �̂2) -1.81 -1.44 -1.00 -0.16 0.66 1.08 1.42

T = 500 T 1=2(�̂2 � �2) -1.78 -1.41 -0.97 -0.13 0.69 1.12 1.47

T 1=2(�̂�
2
� �̂2) -1.76 -1.40 -0.96 -0.12 0.70 1.12 1.47

NOTES: Percentiles of true distribution based on 100000 Monte Carlo trials. Bootstrap percentiles based on
average of 100 trials with 20000 bootstrap replications each.
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Table 5.
Percentiles of the True Finite-Sample Distribution and Average Bootstrap Percentiles

Regression Model: yt = � + �1yt�1 + �2yt�2 + "t

DGP: yt = �+ 0:798yt�1 + 0:2yt�2 + "t; "t � N(0; 1):

5% 10% 20% 50% 80% 90% 95%

T = 500 � = 0 T 1=2(�̂1 � �1) -1.78 -1.43 -1.00 -0.17 0.68 1.12 1.47

T 1=2(�̂�1 � �̂1) -1.73 -1.38 -0.95 -0.12 0.71 1.16 1.53

� = 0:1 T 1=2(�̂1 � �1) -1.71 -1.36 -0.94 -0.12 0.73 1.16 1.52

T 1=2(�̂�1 � �̂1) -1.70 -1.35 -0.93 -0.11 0.73 1.17 1.53

T = 500 � = 0 T 1=2(�̂2 � �2) -1.76 -1.40 -0.96 -0.12 0.70 1.13 1.47

T 1=2(�̂�2 � �̂2) -1.73 -1.37 -0.93 -0.10 0.72 1.14 1.49

� = 0:1 T 1=2(�̂2 � �2) -1.65 -1.30 -0.86 -0.02 0.81 1.23 1.57

T 1=2(�̂�2 � �̂2) -1.66 -1.29 -0.86 -0.03 0.79 1.21 1.56

NOTES: Percentiles of true distribution based on 100000 Monte Carlo trials. Bootstrap
percentiles based on average of 100 trials with 20000 bootstrap replications each.
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