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Imputation Methods for Incomplete Dependent Variables in
Finance

ABSTRACT

Missing observations in dependent variables is a common feature of many financial applications. Standard ad hoc
missing value imputation methods invariably fail to deliver efficient and unbiased parameter estimates. A number of
recently developed classical and Bayesian iterative methods are evaluated for the treatment of missing dependent
variables when the independent variables are completely observed. These methods are compared by simulation to
commonly applied alternative missing data methodologies in the finance literature. The methods are then applied to a
system of simultaneous equations modelling the maturity, secured status, and pricing of U.S. bank revolving loan
contracts. Two of the four dependent variables in this application are characterised by severe missingness. The system
of equations approach allows us to also exploit the additional information contained in the interdependencies among
these features. The results indicate that proper treatment of missingness can be important for many financial
applications.

Keywords: missing data, EM-algorithm, IP-algorithm, multiple imputations, revolving loan
characteristics
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MISSING DATA PROBLEMSoOccur frequently in applied research in finance. While it is relatively easy
to acknowledge the existence of such problems, it seems much harder to admit to any potential
consequences for the investigator’s research. These consequences can be manifold, but ultimately
boil down to a questioning of the reliability of the research outcomes.

While some researchers have ignored (and not reported) the problem, others have used one
of the following three approaches. The predominant approachlistilise deletiormethod — is to
exclude the observations with missing data from the study and only use complete records.
Unfortunately, the damage done is an efficiency cost due to lost observations. A further difficulty
with this approach is that authors sometimes find that the observations where data are missing
appear to have characteristics more attuned to a particular outcome of the dependent variable. In
these circumstances exclusion of the missing data introduces a systematic bias to the estimates. A
second common approach — traitted variablenethod — is to exclude the variables with missing
data from the analysis. King et al. (1998) show that this method also risks bias though not
inefficiency. Also, variable omission will not be an option when the variables with missing data are
dependent variables in the analysis. The third alternative is to use some kind of imputation method.



The typical imputation approach — thd hoc value imputatiomethod — is to assume the blank

fields take some ad hoc (subjective) value. This could take the form of imputing zeroes (or ones) for
all missing values of a discrete (0/1) variable or using a binomial process to randomly allocate
zeroes and ones to missing values. For continuous variables, researchers often use mean imputation
i.e., replacing all missing values with the mean of the observed values. Yet another ad hoc value
imputation alternative is to look for ‘matching’ observations (those that are in every respect
identical, but are completely observed). This occurs, for example, when proxy observations (or even
replacing the variable with missing values) are used. While the sample size is maximised, potential
measurement error is introduced in each of the ad hoc approaches.

Assuming that the missingness pattern is not completely at random, values for the observed
variables provide indirect evidence about the likely values of the unobserved variables. Under
certain conditions, this then implies a predictive probability distribution for missing values over
which one could average in statistical analysis of the data. To exploit this predictability some
researchers adopt a ‘one-shot’ fitted value approach regnession imputatiomethod — to handle
missing data. Using the complete observations only, an auxiliary regression is run. The parameter
estimates are then used to fit the missing observations. This paper will show that such an approach
is one step towards the preferred imputation method. The application illustrates that under certain
circumstances such a method might provide satisfactory results.

The missing data problems are accentuated in simultaneous equation studies of interrelated
dependent variables. The missing data exclusion method — now known pairthise deletion
method — applied commonly across all equations may dramatically reduce sample size and
introduce bias into estimates. Tiegression imputatiomethodology can then also be adopted and
is intuitively even more appealing given that there are more ‘information channels’ than in the
single equation context. However, in both instances the implicatioregodssion imputatiorare
not straightforward. Wheregsairwise deletionin simultaneous equations systems may lead to
inconsistency in the covariance matrix and biased estimatggssion imputatiomay also lead to
biased estimates. Also, the imputed values are really estimates. Ignoring the uncertainty of missing
value prediction will lead to standard errors that are too small.

The current paper proposes a novel statistical framework that minimizes the problems
associated with missing values. Based on either maximum likelihood or Bayesian estimation
methods it is often possible to obtain unbiased imputed values for the missing observations with
correct standard errors. The statistical literature on missing data problems dates back to the mid-
1970s with Rubin’s (1976, 1978) and Dempster, Laird and Rubin’s (1977) papers. These papers
proposed an iterative maximum likelihood based procedure to impute ‘most likely’ values for the



missing data. Tanner and Wong (1987) introduced a Bayesian equivalent of this methodology.
There are many advantages to both iterative maximization methods when direct maximization of
the incomplete data likelihood is not an option. This likelihood is computationally complex and

convergence of maximization is not guaranteed. The iterative methods on the other hand are
computationally straightforward, easy to program in specific cases, and also generate fitted values

for the missing data.

Dempster, Laird and Rubin first suggested the by now starMrdigorithm for imputing
values of incomplete observations. This estimation procedure consists of iteratively computing the
conditional expected values of incomplete observations, substituting these for the incomplete
observations, and then estimating the unknown parameters to maximize the complete data
likelihood. Whereas its convergence properties are very attractiveENkalgorithm does not
explicitly account for the uncertainty surrounding the missing value imputations (a shortcoming it

shares with the previously described naive imputation methods).

An alternative approach suggested by Tanner and Wong (19874mplsation Posterior
(IP)-method, explicitly accounts for the imputation uncertainty. This Bayesian alternative to the
EM-methodology is also based on an iterative (posterior density) maximization procedure where the
I-step imputes missing values based on an initial random draw of parameter valuesRstethe
then computes new parameter values from a Bayesian posterior distriblRtoc@mvergence occurs
in distribution to the exact data likelihood. Therefore, according to Schafer (1997), it should be
considered the “gold method” to deal with missing data problems. Unfortunately, exactly when this
convergence occurs is difficult to assess and requires some Bayesian expertise. Moreover, the
method is also computationally intensive and might not be suitable for large datasets that are

common in financial applications.

Hence, it would be optimal to use a method that has the ‘exactness’|Bfiethod while
retaining the computational simplicity of tkM-method. Rubin (1978) and more recently Schafer
(1997) develop a number of extensions toEMealgorithm which solve its basic shortcoming. The
EM-samplingand EM-importance samplingnethods add a Bayesian flavour to the clasdudal
approach. That is, they allow for the uncertainty regarding the imputations of missing values. Thus,

they approach the exactness of frenethod.

This paper first surveys the pervasiveness of missing data in the applied finance literature.
As it turns out, financial researchers typically treat missing data by discarding observations or, at

best, by using ad hoc methods. The novel imputation methodologies referred to above have better



properties than these methods and should therefore be considered for application. Whereas the
statistical literature has focused on single equation estimation with continuous dependent variables,
this paper also considers simultaneous equations with discrete dependent variables. This leads to
some interesting simulation evidence that has not been recorded before. The imputation
methodologies are then applied to a financial dataset with an extremely high degree of missing data.
To test the imputation methods on this real dataset, a cross-validation experiment is designed which
predicts missing values. The iteratiZ®l-importance samplinghethod is found to outperform the

alternatives.

The paper is organized as follows. The next section discusses the missing data problem in
the financial literature. Then, as these methods are not well known in applied finance, a brief
overview of the multiple imputation methods is given. To illustrate these methods, a financial
application is given for a simultaneous equation model where the interdependent variables are
characterized by a high degree of missingness. The results of the consistent and Efffleient
extended andP estimates are then compared with the ‘naive’ approaches typically used in the
finance literature. Finally, the predictive ability of these imputation methods is evaluated.

[. Survey

An examination of papers published in four recent volumes of five international journals in banking
and financé, as summarised in Table |, suggests that missing observations is a common feature of
many financial applications. In total, 175 articles (out of 105@re identified where authors
explicitly recognised their treatment of missing data. These authors frequently describe how their
sample has been reduced, or observations amended, because of missing values of independen
variables. Somewhat less common, however, is a recognition that samples have been reduced, or
modified, because of missing dependent variable observations. This may reflect the fact that
missing dependent variable observations are often easily concealed in single equation studies by a
statement such d®N observations of the (dependent) variable were available and collected for
study.” Thus, the results in Table I potentially underestimate the extent of the missing data problem
in finance. Complicating the investigation is the fact that data descriptions are frequently

incomplete and/or are hardly informative with regard to sources, availability, completeness, and

! The journals included th#ournal of Banking and Finang®ols.19-22 , thdournal of FinanceVols.50-53, the
Journal of Financial Economi¢d/0ls.37-50, thelournal of Financial and Quantitative Analysi#ols.30-33, and the
Review of Financial Studie¥ols.9-11.

2 These include theoretical as well as empirical papers.



transformations applied. For replication purposes, and to shed light on the reliability and
significance of the results, it would be desirable if such information became more commonly
available.

A second reason why missing data problems do not seem to occur as often in dependent
variables might be that editors and/or referees may be more inclined to reject studies with missing
dependent variables. There may also be significant self-selection. Whereas it may be considered
straightforward to estimate a model with some missing observations in the explanatory variables, a

similar missingness among the dependent variables may often seem more complicated.

Table |
Literature Survey of Missing Data in Finance: 1995-1998

This table presents information regarding the number of papers that acknowledge the presence of a missing data
problem; in what type of variable the problem occurs; and, in what type of empirical application the problem occurs.
The total number of papers appearing in this journal is given in parentheses. The journals incllaleniddeof

Banking and FinancéJBF), theJournal of Finance(JF), theJournal of Financial Economic8JFE), theJournal of

Financial and Quantitative Analys{§FQA), and th&eview of Financial StudigRFS).

Journals Papers Independent Dependent Both  Cross Section Time Series

Variable Variable

@) ) ®3) (4) ®) (6)

JBF 42 (327) 32 6 31179)  20(175)
JF 70 (289) 61 7 2 59(191)  15(198)
JFE 38 (194) 29 - 9 36(166) 12 (159)
JFQA 15 (112) 13 1 11 (66) 5 (69)
RFS 10 (135) 7 2 1 4 (54) 9 (58)
175(1057) 142 14 19 143656) 63 (659)

Table | also investigates the relationship between the missingness problem and the analysis
type. The numbers in columns (5)-(6) measure the number of papers with a missing data problem in
a time-series application, in a cross-section application, or (if it uses a combination of these) in both
applications’ The numbers in parentheses in these columns are the total numbers of papers of the
analysis type. Event studies (or asset pricing models) use a mixture of time-series analysis to
estimate excess returns (to estimate asset betas) and cross-section analysis to estimate even

parameters (to estimate risk premia). Hence, these studies are counted under both columns (5) and

% Note that even if the empirical analysis was based on a combination of time-series and cross-section, it often occurred
that the missing data problem was only relevant for either the time-series or the cross-section, but not for both.



(6). The high frequency with which this occurs highlights the predominance of these studies in the
finance literature. Missing data problems are often assumed to prevail in cross-section studies.
There is some evidence for this phenomenon. However, editors and referees may deem it more

acceptable for cross-section studies to have missing data than for time-series studies.

Table 1l
Treatment of Missing Data in Finance: 1995-1998

This table presents information regarding the treatment of a missing data problem in those papers that acknowledge the
presence of a missing data problem. The journals includéativmal of Banking and Financ@BF), theJournal of

Finance (JF), theJournal of Financial Economic8FE), theJournal of Financial and Quantitative Analyqi3FQA),

and theReview of Financial Studi¢RFS).

Journals Papers Listwise Regression Ad Hoc Proxy
Deletion Imputation Imputation Imputation|
JBF 42 35 4 2 1
JF 70 54 6 6 4
JFE 38 30 2 3 3
JFQA 15 14 - - 1
RFS 10 4 3 3 -
175 137 15 14 9

Table 1l summarises the missing data methodology applied when the researcher was
confronted with a missing data problem. In most of the missing value cases, the solution adopted in
the paper was listwise deletion (in 137 cases) while regression imputation, ad hoc imputation and
proxy imputation were infrequently used. Note, however, that in a substantial number of cases this

information was derived indirectly from the data description.

II. EM andIP Imputation Algorithms

Excellent statistical treatments of missing data imputation methodologies can be found in Rubin
(1987) and Schafer (1997). Since this literature is not commonly adopted by finance practitioners, it
seems worthwhile to provide a synopsis of the theory. To understand the consequences of missing
values and potential solutions for statistical analysis with missing values, some idea of why and
how missing values occur is needed. The occurrence of missing values can be captured by three

distinct missingness schemes. They are distinguished by whether the source of missingness is



internal to the dataset, external to the dataset, or completely independent from the dataset. Suppose
x is a completely observed independent variable for an incomplete dependent waridhke
missingness pattern ynis now said to be:

* Missing Completely At Random (MCAR)
when the missingness ynis independent of botkandy. The missing data are then missing-at-random, while the
observed data are observed-at-random

* Missing At Random (MAR)
when the missingness independs o but not ony. Missing data are still missing-at-random, but the observed
data are no longer observed-at-random.

* Non-Ignorable (NI)
when the missingness yndepends oy and possibly also ox

To illustrate the distinction in missingness types, consider the following application based on
Pulvino (1998). The dependent variable in Pulvino’s hedonic regression model is the transaction
price of used aircraft. Independent variables in this regression are aircraft characteristics (e.g., the
age of the aircraft). The data series is based on aircraft transactions from 1978 to 1993. Post-1991
transactions are, however, excluded due to some missing observations in the transaction prices. Let
us assume that these post-1991 transaction prices are missing simply because of data handling. If it
can reasonably be assumed that the data manager makes these mistakes at random, then th
missingness type is MCAR. Instead, consider that the data manager is not to blame, but missingness
depends on the age of the aircraft. The older the aircraft, the less likely it is that its transaction price
gets reported. The missingness is now of type MAR. However, for this particular data series
Pulvino (p.947) notes that:.*1991 transactions are included in the Avmark database only when
prices were voluntarily disclosed or reported in other public sources. To preclude sample selection
bias, transactions that occurred after 1991 are excluded from the analyses that’féhisvcould

imply that parties involved in a fire sale are less likely to report extreme transaction prices (i.e., very
high and very low). Hence, missingness in the dependent variable is now a function of the
dependent variable itself. This is known as type NI.

Clearly, when the missingness is determined outside the dataset, as it is with NI, it is
impossible to infer likely values for the missing data from the observed data. As long as the missing
data scheme is not NI, however, likelihood-based imputation methods can be used to generate
unbiased estimates for the complete data statistical model. Hence, if the MAR assumption is
reasonable, then among tkehe distribution ofy is the same foy.ps (the observed dependent
variables) as it is foymis (the missing observations). It implies that the relationship betwaedy

for the observed data can be extrapolated to the missing data, for which we do obseunzube



This is known as the ignorability assumption. Of course, it is impossible to test the ignorability
assumption against the NI assumption.

For now, assume that the data satisfies the ignorability condition. Consider the complete
data matrixY (of dimensionnxp), that is not completely observed. It can be partitioned according to
missingness status, such thét(Yons Ymig). Assuming the observations are independently and
identically distributed i(i.d.), the probability density functiorpdf) of the complete data can be

written as

n

P(ve)= ] t(y, 16) (1)

the product of the densitied(.) for the individual observationg. These densities are conditional
on a set of paramete® for which unbiased estimates and their correct standard errors are of
interest. Given that there are missing valuey, ithis is not trivial. That is, the parametépertain
to the complete data, but this dataset is only partially observed. A matixhe same dimension
nxp as the data matrix can be introduced to indicate which pafiobbserved (zeroes ) and
which part is missing (ones ). The probability of encountering a missing value (a on@)ims
conditional on the observed data, the missing data and a set of nuisance parnmeteesmost
general missingness model. Such a model coincides with the assumption of NI missingness.
Assuming the missingness type is MCAR, the probability distribution of this missingness Imatrix
simplifies to

P(M1 | Yobs: Ymis: @) = P(1) (2)
It does not depend on any available information in the data (missing or observed). Missingness is
truly random. Assuming the missingness type is MAR, the probability distribution of this

missingness matrikl simplifies to

P [ Yops: Yoier2) = P(T [ Yo 9) (3)

obs? "mis?

It does not depend on the missing data, but it does depend on the observed data. Combining the
simplification in (3) with equation (1) and assuming tBdt are distinct nuisance parameters, see
Schafer (1997), leads to

P(rl ’Yobs |6779) = P(rl |Yobs’79)I P(Y |6)de = P(rl |Yobs'19)P(Y 6) (4)

is obs?

These two assumptions (MAR and distinctness) allow ‘ignorability of the missingness model,” see

Rubin (1987). Equation (4) then implies that likelihood estimatio@ @he parameters of interest)



is unaffected by the model for missingness. That, however, does not imply that the missing
observations are of no consequence to inferendg tirdoes say that all the necessary information
to ‘complete’ the data (i.e., to fill in the missing values) is contained in the observed data.

As an example, consider the case where a dataset consists of two possibly related variables.
Y, is complete, butY, has some missing observations. If the data are rearranged such that
observations 1 tpare completely observed (bothandY; are available), and observatigrd ton

have missing values fof;, the observed data likelihood can be written as:

obs II_J y|1’ y|2 |9 (yil |9)|_| (y|2 | y|1’9)j mis (5)

i= J+1 i=j+1

where the first two terms do not involve missing values and the last term integrates to one, then
L6 1Yops) = |‘]Py.1 y.2|e P(yy 16)= rlpy.lleﬂpy.zw.l (6)

If, e.g., the data density is assumed bivariate normally distributed with npeaarsd variance-

covariance matrix, then the data-likelihood for the parameters can be written as

J

Lo 1Y) exp%%z( =) 5y, — o e
= 5 =

204,

(7)

(yil - /Jl)z

]+l

O

IIM 5

Generalizing this to multivariate normally distributed data with arbitrary missingness patterns
throughout thep variables, there will b&° possible missingness patterns. Of course, not all occur
and the unique missingness patterns can be summarized &s..,/7, andl(7) is then a subset of

rows with this particular pattern. The observed data likelihood then looks like

Yops) |_l| expﬁ* (v; —uL)'Z;'l(y? —u;)ﬁ (8)

where a * indicates the observed part in missingness patte@Ilearly, this can become a

complicated function of individual means and (co)variances. Its derivatives with respect to these
means and (co)variances are very complicated. There are no closed form solutions, nor is it
straightforward to compute this expression numerically. Instead, some kind of iterative procedure is
needed. The iteration has intuitive appeal. It exploits the interdependence between the missing
values and the complete data parameters of interest. Under the MAR assumption, the complete data
parameters have information relevant to estimating likely missing values. At the same time the

missing values have relevant information with regard to the parameter estimates. This interaction

10



has been captured by the following two iterative techniques that are commonly considered and used

for this purpose.

A. IP Method
The Imputation-Posteriormethodology, discussed in Tanner and Wong (1987), is an iterative
Bayesian procedure imputing values for the missing observations and making inference about

unknown parameters in a stochastic mantterinitially imputes missing observations randomly
based on a suitable prior for the parameértsf the imputation model, and then samples new
parameter values from a Bayesian posterior distribution based on both observed and imputed data.

Thus, we begin by selecting starting value$)j and sample from

VL = PV Yo 07 (©)
which is the Imputationl) step, and then sample from

80~ Plo Y, V. 0) (10)

which is the PosterioP) step. Iteratively sampling for1,2,..N whilst updating the conditioning
variables produces a sample Nf parameter sets (of parameter values) which converge in
distribution to the posterior distribution(e |Y). Features of the posterior distribution, its marginal
densities and probability intervals, can be extracted from this sample. An advantagelf the
approach is that the parameter distribution converges to a posterior distribution averaging over the
missing observations. The parameter distribution and missing observations distribution converge to
an (exact) predictive distribution fd and Yy,s respectively. However, a disadvantage of lihe

method according to Schafer (1997) is that its convergence is difficult to evaluate and the method is
computationally time-intensiveN(will typically be large). The subjectivity involved in judging
convergence is of particular concern. Even though the method is theoretically exact, it will be
difficult to determine when this exactness has been achieved. Incorrect judgments may then still

lead to biased outcomes.

B. EM Algorithm
A less computationally intensive alternative to the BayesRumethod is theExpectation-
Maximizationalgorithm, first introduced by Dempster, Laird and Rubin (1977). The distribution of

the complete (but incompletely observed) datan be split up as follows:

P(Y |9) = P(Yobs |6)P(Ymis |Yob516) (11)

11



and writing down the data likelihood for the parameters of interest
L(6 |Y): L(6 |Yobs)+ In I:’(Ymis |Yobs,16)+C (12)

with ¢, a constant. The second term on the right hand side of (12) is a predictive distribution of the
missing data given the observed data and the parameters. Given that we do not observe the missing
values, this term cannot be computed. Instead, by replaing®, which fori=0 is an initial

estimate of the unknown parameters, tH&-method averages iteratively over the predictive
distribution. Each iteration consists of two steps, the Expectadf)ost€p and the Maximizatioh/)

step. TheE-step estimates the sufficient statistics of the completeYjajaven the observed data

Yobs and the initial parameter estimad®. It then computes expected values for the missing data

Y& . TheM-step then takes the estimated complete @4tand estimates the unknown parameters

6 by maximum likelihood as though the estimated complete data were the observed data. Then
these two steps are iterated (wheéré@ is the new parameter estimate to find updated expected
values for the missing datg®?) until convergence is achieved based@h=g(*. Convergence

occurs without any assumptions on the derivatives or the starting values and will also occur for
small sample sizes. This is clearly an advantage over the subjectivity involved in juiEging
convergence. However, convergence is based on the parameter estimates’ contribution to the
likelihood. While the EM algorithm finds the maximum of the likelihood function for the
parameters and missing values, unliReit does not identify the full parameter distribution tr
andYnis Both theEM-imputations, and thEM-parameters are single values (maximum posterior),
instead of a complete distributioaccording to Schafer (1997) the method therefore ignores

estimation uncertainty and consequently underestimates the standard errors.

Despite its computational simplicity and good convergence propertiegMradgorithm

has so far attracted little attention outside theoretical analyses and applications with a purely
statistics focus. Very few finance and/or economic applications have so far utilizdeMthe
methodology. That is somewhat surprising given that incomplete data problems can and do occur in
almost every type of financial research as witnessed in Section | of this paper. There are a few
exceptions. Kalb, Kofman and Vorst (1995) for example, illustrate how the algorithm can be
operationalized in single equation missing observation problems for actuarial applications where
there are mixtures of continuously and discretely valued variables. Malhotra (1987) shows how this

can be done for probit, and tobit estimation problems in marketing research.

12



C. EM extensions

Tanner (1996) provides a related method, knownEltsampling (EM-s) that reintroduces
imputation uncertainty into th&M-algorithm. EM-s first applies the standarfiM-algorithm to
generate the maximum posterior parameter estimgteghe converged mean parameter values)

and computes its variance matr(iﬂ). To determine an imputation uncertainty adjusted parameter

estimated, a simulated parameter value is drawn from a normal distribution with @eamd
variancev(ém). By sampling from this parameter distribution, an imputation for the missing values
Y...is obtained. This sampling procedure is repeatgiines (after the initiaEM-step and variance
computation) which generates a sampling distributionvfgr. According to King et al. (1998) the

EM-s approach tends to find the true mode of this distribution well, but with highly skewed (non-
normal) categorical data it can produce incorrect standard errors. This is a serious shortcoming for
financial applications where non-normality is a common characteristic.

Rubin (1987), Tanner (1996), and King et al. (1998) use the same procediM- as
sampling except that draws from the initi&M are treated as first approximations to the true

posterior. TheilEM-importance samplingrocedure then uses an acceptance-rejection algorithm

that keeps parameter drawsvith probability proportional to thenportance ratio

_LBIY,
) >

and discards the rest. THe is a ratio of the actual posterior distribution to the asymptotic normal
approximation. This implies that the likelihood is evaluated at the important segments of the range
more frequently than otherwise. The parameter simulations are then used to produce the imputations

Y.« Similar to EM-sampling This method is fast, and its imputations are based on the exact finite

sample posterior distribution. Unlike thH@-method it does not require Markov chains and
convergence is therefore still easily determined. As suggested by Schafer (1997), it might not do so

well for seriously non-normal likelihoods.

D. Multiple Imputation

Rather than estimate the incomplete data likelihood function directly, the itel&ivend
EM(extended) methods start with an initial parameter vector, and within each iteration the
incomplete data problem is converted to a complete data problem by replacing each of the
incomplete observations by their simulated expected values, conditioning upon all extraneous

information available. That is, implementation requires the researcher to include as many variables

13



as possible in the imputation stage. Including as much information as possible might preMént the
problem, when a variable outside the analysis model could explain missing values. This suggests
that the imputation model will most likely diverge from the analysis model, which is of ultimate
interest to the researcher. The analysis model will typically be chosen based on model selection
rules to prevent an overspecified model. King et al. (1998) argues that the risk of overspecification

is not an issue of concern in the imputation stage.

To accommodate this ‘separation’ between imputation and analysis model, the two iterative
imputation approaches can be used in either of two ways: (i) to simulgarameter values

6 6 9" from the observed data posterior distribution for the parame(ég,p9; or (ii) to

simulatem missing valuesy™®) v vt from the observed data posterior distribution for the
missing value® (Ymid Yob9. The first way, known aparameter simulationseems attractive since it
directly provides the required parameter estimates. However, the encompassing imputation model
does not necessarily match the (smaller) analysis model. The larger imputation model may violate
proper model selection rules, and #é) estimates may not be the parameter estimates of interest.
Also, parameter simulationmposes a certain structure on the parameter estimates based on the
assumptions underlying the imputation methodology. The ultimate parameter estimates may be
seriously misleading if these assumptions are violated. The second way to utilize the iterative
imputation methods was introduced by Rubin (1978), knowmwsple imputationwhere theYns
are replaced successively by simulated val&f,ﬁ(ﬁ and each of then complete datasets are
analyzed by standard analysis. The variability amongrtlamalysis results provides a measure of
the uncertainty due to missingness and, when combined with sample variation, gives a single
measure for the parameter of interest. Unpleameter simulationnow only the missing values
are ‘affected’ by the imputation methodology. Violating the assumptions underlying the imputation
methodology will then be less dramatic since its impact on the parameter estimates will be
diminished by the actually observed observations.

Assuming multivariate normality implies that the missing observations can be imputed

linearly, like simulating from a regression

yijD:yi,—jXD+a (14)

where y;' is a simulated value for missing observatioand variablg, y;  is the vector of all

observed variables for this observation, afdis computed from a random draw of the observed

data posterior distribution for the parameters The disturbance terr§ is a random draw from a

14



standard normal distribution. Hence, multiple imputation requinesdependent draws for the

missing observations from a posterior predictive distributiorgfor

Having computed then different imputed datasetsinference can then be drawn with
respect to the parametens and their variances, for the analysis model. These parameters will
then take explicit account of the uncertainty regarding the imputed missing values. They may not
match the imputation model parametdrssince the analysis model will typically be of smaller
dimension than the imputation model. The successive estimation of the analysis model ganerates

equally likely estimates(bl,..,bm;sl,..,sm) estimates for the parameters and their variances,

respectively. The combined multiple imputation estimate is then:

b (15)

(16)

and total variance, standard error and confidence interval,

S, =S+ (1+%)5m
s& =S (17)

bxtyse with df :(m—1)§+ﬁg
m 3

respectively. Hence, the uncertainty with regard to the parameter estimate decreases with the
number of imputations through the degrees of freedom expression in (17). The parameter

uncertainty increases with the ratio

(& 1k (18)

S

My =

4 The imputation models for this paper have been estimated using the Gauss programs readily available on the WWW-
page of King:http://Gking.Harvard.edexplained in Honaker, Joseph, King, and Scheve (1999). S-PLUS programs for

IP andEM imputation are available on the WWW-page of Schdf#p://www.stat.psu.edu/~jlexplained in Schafer

(1997). Standard packages like Stata and SPSS nowadays have some missing data imputation options, but they are
restricted toregression imputatiorand/ormean imputationThe analysis models for this paper have been estimated

using Gauss programs written by the authors of this paper, and are available on request.

15



which measures the relative increase in variance due to missingness, Rubin (1987). The efficiency
of an estimate for a single parametdsased orm imputations is approximatelft + (m, /m))™ with
15 the fraction of missing information with regardidosee Rubin (1987):

My + 553

df +3 (19)

m, =
r, +1

Typically, only a few imputations (<10) are necessary to achieve a high degree of efficiency.
Further imputations will only contribute minor efficiency gains. It is nevertheless worthwhile to

compute the fraction of missingness ablout

[ll. Monte Carlo Experiments

To assess the relative size of the bias and/or (in)efficiency for these missing value imputation
methodologies vis-a-vis simply discarding observations with missing values, a series of Monte
Carlo experiments were designed. Consider a complete dataset based on the single equation mode
Y = XB +e with a single explanatory variabl§, a known correlation parameter and i.i.d.
innovationse that are drawn from a standard normal distribution. The Monte Carlo experiments are
conducted for two different types of dependent varia¥lecontinuous and discrete (071)
respectively. The latter is particularly relevant for the application that follows.

Three missing value datasets were then created from this complete dataset. The first is based
on the MCAR scheme, where a fractianof the dependent variable values are eliminated
completely at random by drawing from a binomial distribution independent ofXbatidY. The
second dataset is based on the MAR scheme, where a fraatibthe dependent variable values
are eliminated based on a missingness fung{®). Hence, the missingness depends on the values
of the explanatory variablé. The third dataset is based on the NI scheme, where a fraabibtine
dependent variable values are eliminated based on a missingness fug(dtjoHence, the
missingness depends on the values of the dependent vafitda¥.

The models are then estimated based on listwise deletion anBMks algorithm?
respectively. In addition the Monte Carlo is run over a range of valugs {0 0.1,...,0.9) and a
range of values fok (0.25, 0.3,..., 0.75) in order to examine the sensitivity of the mean squared

error (nsg to strength of correlation, and degree of missingness, respectively. For each

® The benchmark experiments, i.e., the continuous variables examples, can also be found in Schafer (1997) and King et
al. (1998).
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combination, the estimation procedure is repeated a large number of times (1000 random draws of
innovations). The results are summarized in Figures 1, 2 and 3 for a discrete dependent variable, for
MCAR, MAR, and NI respectively. The continuous dependent variable equivalents are given in

Figures la, 2a and 3a.
INSERT FIGURES 1-2-3

To assess the relative contribution of bias and (in)efficiencynde the bias function is given
separately. The bias andseare calculated for the mean (expected) value of the ‘completed’
dependent variable distributi®{Y|6). The results are very clear. For the experiment with a discrete
dependent variable, MCAR missingness does not generate significant bias nor inefficiency as
illustrated in Figure 1. Listwise deletion performs just as well as the more compliektas
method. With MAR missingness in Figure 2 listwise deletion results in significant negative bias.
This bias increases with increasipgand (less so) with increasing missingness. The first effect
dominates the latter. Also noteworthy is the fact that even for gm@&0.5), the bias is already
significant. TheEM-is method, on the other hand, now clearly outperforms listwise deletion.
Nevertheless, it still has some (significant) bias at high degrees of correlation. This seems to be
driven by the fact that the dependent variable is discrete. For a continuous dependentBiriable
has insignificant bias. Both methods do not fare well when the missingness is NI as illustrated in
Figure 3. For both methods, the bias is increasing with missingness, but decreasing in correlation.
Next, the Monte Carlo experiment is extended to a simultaneous equation setting where the
related dependent variables are drawn from a bivariate normal distribution with known correlation
matrix and repeated for the case where one dependent variable is a discrete (0/1) variable. Once
again, a fractiork of the dependent variables values are eliminated by MCAR, MAR, and NI
respectively. Now, missingness occurs in both dependent variables. The models that are reported
below are based guairwise deletiorand theEM-is algorithm. As before, simulations are based on
a range of missingness fractions as well as a range of correlation. Note that the relevant correlation
measure is the one between the dependent variables. The simultaneous estimation procedure is
replicated a large number of times (1000 random draws of innovations), and the results illustrating
the bias andnsein the parameter estimates are summarized in Figures 4, 5 and 6. Results for the
case where one dependent variable is discrete (and the other is continuous) are displayed in Figures

4, 5 and 6. For comparison, the equivalents where both dependent variables are continuous are

® For the purpose of comparison, only the preferred imputation methodology (EM-is) and the most common naive
(listwise/pairwise deletion) imputation methodology are presented here. Results for the other EM and IP estimation
methods are available from the authors upon request.
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given in Figures 4a, 5a, and 6a. The correlations of the dependent variables with their respective
explanatory variables are fixed at 0.75. The biasrasdare calculated for the mean (expected)

value of the discrete ‘completed’ dependent variable distribE{¥i|6).
INSERT FIGURES 4-5-6

The results are very similar to those obtained from single equation experiments. First, for the
MCAR case in Figure 4, theairwise deletiorandEM-is method perform similarly. As before with
listwise deletionin the single equation resultpairwise deletionperforms badly when the
missingness scheme is MAR in Figure 5. Bias is increasing with missingness and in correlation. In
contrast to the single equation resuli$)-is now performs really well. Even for high degrees of
correlation and missingness, there is very limited (and fairly constant) evidence of bias. The
information embedded in the feedback structure of the simultaneous equations seems to have
eliminated the bias at higher correlations found in Figure 2. The results for the NI-case in Figure 6
are less dramatic than for the single equation examples. Bias is still significant fqrabettse
deletionand EM-is method, though less pronounced than in the single equation. The negative bias

still decreases with correlation and increases with missingness.

IV. lllustrative Example

In a recent study, Dennis, Nandy and Sharpe (1999), hereafter referred to as DNS, model debt
contract terms (duration, secured status, all-in-spread and undrawn commitment fee) on bank
revolving lines of credit where two of the four dependent variables in the simultaneous equation
system were subject to missing observations. DNS adopt a different approach for each of the
problem variables. For the secured status equation they use listwise deletion, effectively losing 1331
of the total 2634 observations. On the other hand, in the commitment fee equation they use ad hoc
imputation, assuming that the 877 missing values of the 2634 observations have zero commitment
fees. However, where secured status appears as a determinant of each of the other three contrac
terms, the authors adopt a regression imputation method. In this case the secured status reducec
form estimates using 1303 observations were used to obtain out-of-sample fitted values for the
N=1331 missing observations allowing the duration, the all-in-spread, and the commitment fee
equations to be estimated on the full N=2634 sample.
The DNS model and data provides a particularly interesting application for which to

compare the imputation methods proposed in the previous sections. Two of the four dependent

variables within a simultaneous equation system are subject to a high rate of missing observations
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(51% for secured status, and 33% for commitment fee, respectively). This is even further inflated
when these variables are considered jointly, with the sample size reducing to just 896 observations
(i.e., 66% missingness). Moreover, the dependent variables involve a mix of continuous dependent
variables (duration and all-in-spread), a discrete choice dependent variable (secured status) and a
censored-from-below-at-zero dependent variable (commitment Féedlly, the data is interesting
as the missing observations have somewhat different characteristics vis-a-vis the non-missing data.
The first step is to use an informal tool to assess whether the missingness scheme is likely to
be MCAR or MAR (note that NI cannot be established from the observed data). The dataset is
divided according to missingness status for the dependent variable. The frequency distribution of an
explanatory variable can then be plotted for those observations that have a dependent variable value
missing and for those that are complete. Under MCAR, a similar distribution shape is expected
regardless of missingness status. Under MAR, a distinctly different shape should be expected for
the missing dataset in comparison with the complete dataset. The graphs in Figure 7 clearly

illustrate this difference.
INSERT FIGURE 7

The panels on the left in Figure 7 condition the data on the missingness status of the
commitment fee (COMFEE) dependent variable. There is no apparent difference between the
conditional histograms for the Z-score (ZSCR) explanatory variable. The top two panels on the
right in Figure 7 condition the data on the missingness status of the secured status (SECURED)
dependent variable. There is a distinct difference in shape between the two histograms for the all-in-
spread (SPRD) explanatory variable. To further investigate this difference, the data for which
secured status (SECURED) is observed is further conditioned on its outcome (whether itis a 0 or a
1). The histograms for the all-in-spread (SPRD) explanatory variable are displayed in the bottom
two panels on the right in Figure 7. The histogram for missing secured status now looks similar to
the histogram for SECURED=0. Hence, the missing values for SECURED do not seem to be
missing _completely at random, but seem more likely to be zeroes than ones. Clearly, such
statements are not very satisfactory for a complicated model like this. A more formal procedure is
needed.

DNS model the four debt contract features as an interrelated system in which borrowers
trade off loan characteristics. However, only three of the contract features may be independently
chosen. Reflecting this independence feature, they jointly model the choice of DURATION and

" The commitment fee is treated as a continuous variable in the imputation stage for reasons of comparison with the
results of Dennis, Nandy and Sharpe (1999). In the next section, the commitment fee is treated as a discrete variable to
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SECURED status and then model ALL-IN-SPREAD and COMFEE as being determined by the
choice of DURATION and SECURED status. While DNS assume unidirectional relationships from
both DURATION and SECURED to ALL-IN-SPREAD and COMFEE, they allow bi-directional
relationships between ALL-IN-SPREAD and COMFEE and between DURATION and SECURED.

The model takes the following form:

DURATION = YpsSECURED +BpXp  +ep

SECURED  =y5p,DURATION +PsXg +eg (20)
ALL-IN - SPREADG-y ,pDURATION +y,sSECURED +y acCOMFEE +BaXs t+en

COMFEE =YcpDURATION +y-sSECURED +y pALL—IN -=SPREAD + X +ec

where SECURED is a dichotomous [0,1] variable, COMFEE is censored from below gt zem,
the interdependence parameters between contract teemd j, Xi are vectors of explanatory
variables relevant to the specific contract té&rrande, are the disturbances for contract téem

The Xy vectors for the determinants of DURATION, SECURED status, ALL-IN-SPREAD

and COMFEE together with the expected sign of the relationship are summarised in the following:

g:onstantmarket/bodx"’e, unexpecte@arnings’®, tax/assets®, earningsvariance”®,U

[l
Xp = [Oermpremium’™®,interest wlatility ¢, z- score*¢, z-squared’®, leveragé”, 0
a . o . ) 0
mssematurity™®, firm size’, capitaladequacy’®, loanpurposé, dealstructure g
[¢onstantmarket/bo "¢, unexpecteearnings®, z- scor€ , leveragéd“®, firm size’,0
X O 0
S~ . R
Hoanconcentrabn™¢, loanpurposé, dealstructure E (21)
[¢onstantmarket/bo& "¢, unexpecte@arnings ¢, termpremium’, interest g
0 p g p 0
X, = [volatility *®, z-score '8, leveragéd“®, libor *V¢, firm size’, capitaladequacy’®, loan]
A
g _ O
onncentrabn?, loan purposé’ , dealstructur€ B
X %:onstantmarket/bodi V¢ 'unexpecte@arnings“®,z-score ¢, leveragé"‘®, capitala
=

Fdequacy’®, loanconcentrabn?, loan purpose°, dealstructure =]

DNS estimate the model using a two-stage estimation procedure suggested by Nelson and Olson
(1978). In the first stage the reduced form estimates of the model from OLS, logit and tobit

estimators are used to obtain fitted values for each of the dependent variables. Then the four
structural equations are estimated in the second stage by OLS, logit and tobit as appropriate and

using the fitted values as instruments for the interdependent endogenous variables. The correct

more closely approximate the assumptions of the imputation model.
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asymptotic covariance matrix of the structural estimates is then obtained following Amemiya
(1979).

This approach was modified to take account of an endogeneity problem with the leverage
variable. While leverage is not modelled in the paper, agency theory suggests that leverage,
maturity and secured status are alternative mechanisms for limiting underinvestment and other
agency problems in firms. To overcome this problem DNS use an instrumental variable approach
and estimate a reduced form equation for leverage. Fitted values for this reduced form are then
substituted for leverage in the second stage estimates of the four structural equations in the model.

The two-stage estimation procedure used by DNS is a particularly good example of a case
where multiple imputation is much preferred to parameter simulation. The analysis model is rather
complicated and generating thousands of parameter estimates (let alone the appropriate two-stage
standard errors) will be highly impractical. Specifying an imputation model that encompasses all
possible interactions of variables is, however, much easier. The sample is also of sufficient size for
the asymptotic approximations to be valid.

As outlined in Section II, the missing value analysis then consists of three stages. In the
imputation stage, an imputation methodology is used to generate mgtip)eimputations for
each missing value in the original dataset. This create®mpleted datasets. At this stage all
instruments and exogenous variables are used to generate the imputations. In the analysis stage, the
model is then estimated according to the specification and two-stage estimation methodology used
by DNS for each of then datasets. In the final stage, thesets of parameter estimates are

combined according to equations (15) to (17). The results are given in Table IIl.
INSERT TABLE Il

In a multivariate context it is difficult to evaluate the alternative sets of regression
coefficients and standard errors in Table Ill. While there is considerable variability in the point
estimates, in many cases the differences are unlikely to be statistically significant. Assuming the IP
estimates are correct or exact, then visual comparisons can be made between the IP and alternative
treatments of the missing data in Table Ill. This comparison is facilitated by an examination of the
number of statistically significant parameters in each of the treatments, as summarised in Table IV.
For each equation the table shows the number of statistically significant coefficients at the 90%
confidence level or higher. Also shown in parentheses is the number of significant coefficients in
methodi that are also significant in the ‘corredP method. This allows an evaluation of the
reliability of the method in producing significant coefficients consistent with those of the IP

method, given this particular model and underlying data.
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For this illustrative example, tHeM-is method produces coefficients andalues in Table
Il very similar to those of théP method. Relative to the 28 significant coefficients in ifhe
method, theEM-is method produces 27 significant coefficients of which 24 are common 1@ the
method. This suggests that for this particular model and dat&BMke method performs well in

terms of producing relatively unbiased and efficient estimates.

TABLE IV

Statistical Significance of Parameter Estimates in the Dennis, Nandy and Sharpe (1999)
Model for Alternative Treatments of Missing Values
This table displays the number of significant coefficients in each equation at the 90% confidence level or higher. The

number in parentheses is the number of significant coefficients that are consistent with significant coefficients obtained
in thelP method

MISSING MATURITY | SECURED | SPREAD COMMITMENT | ALL
VALUE EQUATION | STATUS EQUATION | FEE EQUATION | EQUATIONS
TREATMENT EQUATION

IP 5 5 8 10 28
METHOD

EM-is 7 4 7 9 27
METHOD (5) (4) @) (8) (24)
PWD 6 4 3 3 16
METHOD (4) (4) 3) 3) (14)
Ad Hoc 8 5 12 7 32
METHOD (4) 3) 7 (6) (20)
DNS 10 5 11 7 34
METHOD (5) (5) (8) @) (25)
EM 7 5 7 9 28
METHOD (5) (5) @) 9) (26)

On the other hand, theWD and Ad Hoc imputatiormethods are less successful for this
data. While thePWD coefficient estimates are generally similar to those of IEhenethod,
suggesting unbiasedness for this data and model, only 16 coefficients are statistically significant
with 14 of those common to the estimates. The problem with tR&/D method appears to be the
loss of efficiency associated with the reduction in sample size from 2634 to 896 observations, rather
than any bias in the estimates. It is also suggestive of the missing data being MCAR, missing
completely at random. Thé&d Hoc method appears less reliable, producing 32 significant

coefficients of which only 20 agreed with those of fRenethod. While thé\d Hocmethod retains
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the efficiency of the full sample size, the imputed zero values for the missing observations
introduces measurement error and biased coefficients.

As theDNS method involves a mix akegression imputatioifa variant ofEM) for missing
secured status observations aul Hoc imputationfor the commitment fee equation, the results
contain features of both. It produces 34 significant coefficients, of which 25 agreed with those of
thelP method.

Finally, it is interesting to compare the classiEll method, which ignores estimation
uncertainty, with thé&M-is method. With upwardly biasdéralues (which are difficult to detect in
Table 2 because of the multivariate model) &l method has 28 significant coefficients
(compared to 27 iEM-is) of which 26 are consistent with those of tRemethod. Thus, for this
data and model, there is little difference betweenBReand EM-is results, although the former
appears to slightly better mimic the method results in terms of significant coefficients.

It is not possible to draw general conclusions from this illustrative example because the
results of the various treatments of missingness depend on the underlying nature of the missingness
and the data and model used. Nevertheless, the example highlights the need for caution in handling
missing data and the potential efficiency losses and biased results that can arise from use of the
listwise (or pairwise deletionandad hoc imputatiormethods which are commonly used in the

Finance discipline.

V. Predicting Missing Values

In order to assess the power of the imputation methodologies from a different perspective, a cross
validation experiment has been designed for the empirical data set. Given that the empirical results
in Table 2 indicate surprisingly little bias in the pairwise deletion estimates as compared to the
‘exact’ IP, despite the high degree of missingness, this implies that the missingness type is most
likely MCAR. Given that the explanatory model is reasonably strong, it should predict with some
accuracy the most likely value for a particular missing observation.

To examine this proposition, the sample was restricted to the 896 observations without
missing data on either secured status and/or commitment fee. To obtain the best possible
imputations, a few modifications to the DNS methodology have been applied for this prediction
exercise. A close examination of the bank loan commitment data revealed that the commitment fee
data was strongly spiked (and somewhat skewed) with observations concentrated at multiples of

6.25 basispoints (1/1%. The imputation methods require the distribution of the continuous
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incomplete random variables to approximate normality. Hence the commitment fee (COMFEE)

variable was recoded as an ordinal variable according to the following scheme:

0 <COMFEE< 6.25 0
6.25 <COMFEE< 12.5 1
12.5 <COMFEE=< 25 2
25 <COMFEE< 50 3
50 <COMFEE 4

This transformed the COMFEE equation into an Ordered Probit model, rather than the tobit model
as in DNS. Also, an inspection of the residuals of the secured status (SECURED) equation
suggested using a probit model instead of the logit model as in DNS.

After recoding, a randomly selected sample of observed dependent variables (COMFEE and
SECURED) were given missing status, and the imputation methodology was applied to this set to
obtain predictive posterior distributions for the missing values. The imputation model was based on
the simultaneous equations model, i.e., exploiting the interactions between the dependent variables.
The mode of these distributions was then compared with the true value and the proportion of correct
predictions computed. This exercise was repeated a thousand times for different sets of missing
observations in the dependent variables to create a Monte Carlo distribution of 1000 modal values
of the proportion correctly predicted. The properties of this Monte Carlo distributicorict
predictive proportios can then easily be compared with a similar Monte Carlo distribution based
on naive imputation prediction schemes. Two naive imputation methods were considered for this
exercise: abinomial method where each outcome has the same probability of occurrence; and a

mean imputatiomethod. These methods are compared witfetles methodology.
INSERT FIGURE 8

The results are illustrated in Figure 8. A further dimension to this standard experiment is added by
increasing the number of ‘explanatory’ variables included in the missingness model from one to
eight. It is clear that th&M-is imputation method is doing a much better job in forecasting the
correct missing values than its naive alternatives. Whereas the probit variable (SECURED) scores a
success rate of about 77% (against 50% naive), the ordered probit variable (COMFEE) scores about
50% (against 20% naive). Interestingly, mean imputation performs just as weM-&s for the

probit (SECURED) equation, but performs significantly worse for the ordered probit (COMFEE)
equation. As expected the distribution is slightly narrowing (becoming more precise) for increasing

numbers of explanatory variables in the missingness model. However, it does not seem to give
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biased proportions when omitting explanatory variables (i.e., including too few variables in the

missingness model). This may be an artifact of this particular application.

VI. Conclusion

Missing data problems should be taken seriously in many financial applications. Dropping
observations with missing information is at best inefficient and at worst influences inference. It
would therefore be advisable if journal editors required authors to supply explicit data information
with regard to missing data problems and treatment. The approach advocated in this paper is based
on missing data imputation. New, vastly improved, imputation methods have recently become
available. Their application has so far been restricted to the statistics literature. This is lamentable
given the scope for application in the finance (and economics) literature. Even in cases where the
missing values are missing completely at random (MCAR), more efficiency can be gained by
performing ‘complete-data’ analysis. Standard errors of parameter estimates will generally be
smaller. When the missing values can be related to the (complete) explanatory variables (i.e., the
MAR scheme), formal imputation methods become imperative. The discussed imputation methods
are generally fast (though the Bayesian methods still have a distinct disadvantage) and are
intuitively appealing. They are however not magic and will fail in the case of non-ignorable
missingness (NI). Recent papers by Rotnitsky et al. (1998) and Horowitz and Manski (1998) deal
with non-ignorable (non-randomly) missing data. Horowitz and Manski derive bounds on the
parameters for the case where no assumptions are made with regard to the inherently untestable
missingness model. Inevitably, the confidence intervals will be larger (sometimes unacceptably so)
than when the MAR or MCAR assumption is taken on face value. Interestingly, whereas NI has a
severe impact on single equation parameters, the results in this paper indicate that its impact may be
much less severe for simultaneous equations. The intricate feedback obtained by the simultaneity
expands the available information that can be used for imputing missing values. Ultimately,
whether one can reasonably assume ignorability of the missingness model depends on the specific
application. Careful analysis of the potential reasons why certain values are missing in a particular
dataset might indicate whether NI is a likely cause for missingness. In the case of the example used
in this study, the DNS model, the ignorability assumption seems reasonable.

Careful application of the missing data imputation methods discussed in this paper opens up
many opportunities for otherwise complicated data analysis. In many cases, more reliable parameter
estimates with smaller standard errors can be achieved. These methods might even allow

researchers to revisit ‘old’ issues through analysis on previously discarded datasets.
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Table 1ll. Simultaneous Equation Imputation Model

Panels A through D give the parameter estimates for the DNS model based on different treatment of missing values in
the Secured Status and Commitment Fee variablS.is the benchmark method used by Dennis, Nandy and Sharpe
(1999), which is a combination of ad hoc imputation and regression imputaté.is the pairwise deletion method
AdHocis the ad hoc imputation method where all missing values are assumed to e zettee Bayesian imputation-
posterior methodEM is the Expectation/Maximization imputation meth&M-is is the EM algorithm extended by
importance sampling?WD estimates are based on 896 observations. All other methods’ estimates are based on 2634
observationsmrgivesthe fraction of missing information with regardE&-is parameters.

Table 1ll.A. Maturity Equation

The explanatory variables consist of instruments for: Secured Status (ISECD), Leverage (ILEVG),
and exogenous variables: Constant (CONS), Market-to-Book ratio (MKBK), Unexpected Earnings

(ABNL), Interest Volatility (SDGB), Tax to Assets ratio (TAXA), Altman’s Z-score (ZSCR), Z-
score squared (ZSQD), Asset Maturity (AMAT), Earnings Variance (VAR), Firm Size (FSZE),
Term Premium (TERM), a post-1993 dummy (POST93), Other Purpose (PMSC).

PARAMETER ESTIMATES

DNS PWD AdHoc IP EM EM-is
ISECD 0.893 1.034 0.623 1.019 1.024 1.011
ILEVG -3.905 -5.250 -1.388 -2.084 -2.300 -2.438
CONS -1.519 -1.685 0.766  -1.627 -1.267 -1.258
MKBK -0.192 -0.254 -0.188 -0.110 -0.124 -0.134
ABNL -0.178 -0.105 -0.108 -0.114 -0.121 -0.167
SDGB 0.969 0.423 0.677 0.534 0.598 0.776
TAXA -3.545 0.630 -2.324 -2.473 -2.473 -1.899
ZSCR 0.576 0.569 0.290 0.502 0.500 0.467
ZS5QD -0.090 -0.099 -0.039 -0.066 -0.076 -0.067
AMAT 0.080 0.066 0.073 0.095 0.039 0.082
VAR -6.227 -6.910 -3.083 -4.407 -5.674 -5.437
FSZE 0.595 0.750 0.463 0.586 0.567 0.553
TERM 0.178 0.120 -0.061 0.110 0.098 0.098
POST93 0.408 0.282 0.066 0.342 0.359 0.314
PMSC -0.346  -0.068 -0.154 -0.375 -0.352 -0.327
T
t-VALUES EM-is
ISECD 4.99 4.49 6.06 4.19 5.70 5.47 0.20
ILEVG -2.97 -3.17 -1.97 -2.17 -2.40 -1.66 1.48
CONS -1.47 -1.12 1.61 -1.32 -1.51 -1.30 0.43
MKBK -1.91 -1.67 -2.81 -1.24 -1.29 -1.49 0.11
ABNL -0.90 -0.46 -1.01 -0.70 -0.65 -0.92 0.15
SDGB 1.99 0.60 2.46 1.37 1.55 1.49 1.12
TAXA -1.13 0.14 -1.21 -0.86 -0.87 -0.66 0.35
ZSCR 2.26 1.57 2.32 1.49 2.10 1.99 0.68
ZSQD -2.20 -1.75 2.11 -1.25 -2.07 -1.78 0.84
AMAT 0.81 0.45 1.24 1.00 0.43 0.81 0.65
VAR -2.85 -2.22 -2.82 -1.90 -2.91 -2.17 1.18
FSZE 6.45 6.75 8.41 5.86 7.30 6.12 0.54
TERM 1.90 0.85 -1.23 1.38 1.19 1.39 0.10
POST93 2.34 1.14 0.62 1.87 2.47 191 0.41
PMSC -0.95 -0.12 -0.72 -1.18 -1.34 -1.02 0.56

28



Table I1I.B. Secured Status Equation
The explanatory variables consist of instruments for: Maturity (IMATY), Leverage (ILEVG), and

exogenous variables: Constant (CONS), Market-to-Book ratio (MKBK), Unexpected Earnings
(ABNL), Altman’s Z-score (ZSCR), Firm Size (FSZE), Loan Concentration (LRSZ).

PARAMETER ESTIMATES

DNS PWD AdHoc P EM EM-is
IMATY 0.536 0.412 0.129 0.445 0.365 0.265
ILEVG 6.694 7.584 5.316 4.136 4.820 5.557
CONS 1.387 1.130 0.536 1.601 1.314 1.263
MKBK 0.386 0.334 0.381 0.246 0.277 0.286
ABNL 0.212 0.149 0.171 0.120 0.131 0.168
ZSCR -0.051 -0.072 -0.141 -0.097 -0.052 -0.066
FSZE -0.649 -0.524 -0.445 -0.536 -0.492 -0.439
LRSZ 0.232 0.459 0.504 0.191 0.244 0.358
T

t-VALUES  EM-Is
IMATY 2.28 1.34 0.89 2.05 1.78 1.63 0.20
ILEVG 3.19 3.83 4.21 2.58 2.49 3.92 0.19
CONS 2.29 1.77 1.49 3.81 2.56 2.62 0.59
MKBK 3.36 2.47 5.04 2.97 2.47 3.37 0.21
ABNL 1.04 0.73 1.51 0.80 0.76 1.07 0.14
ZSCR -0.59 -0.75 -3.01 -1.46 -0.84 -1.10 0.43
FSZE -5.60 -3.21 -6.23 -5.91 -4.68 -5.00 0.51
LRSZ 0.81 1.32 2.89 0.88 0.95 1.63 0.58
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Table III.C. Spread Equation

The explanatory variables consist of instruments for: Commitment fee (ICOMD), Maturity
(IMATY), Secured Status (ISECD), Leverage (ILEVG), and exogenous variables: Constant
(CONS), Market-to-Book ratio (MKBK), Unexpected Earnings (ABNL), Interest Volatility
(SDGB), Altman’s Z-score (ZSCR), Loan Concentration (LRSZ), London Interbank Offered Rate
(LIBOR), Term Premium (TERM), Repayment/Recap (PNRM), Acquisitions (PACQ), Term Loan

(TMLN), Syndicated loan (SYND).

PARAMETER ESTIMATES

DNS PWD AdHoc IP EM EM-is
ICOMD 1.677 10.691 1.645 4.977 5.246 6.197
IMATY -0.675 -0.503 -0.614 -0.466 -0.455 -0.419
ISECD 0.166  -0.233 0.258 0.085 0.062 0.043
ILEVG 2.203 -0.910 1.981 0.862 0.903 -0.126
CONS 2.165 0.307 2.087 0.892 0.921 0.727
MKBK 0.091 0.007 0.071 0.068 0.062 0.010
ABNL 0.015 -0.169 0.022 -0.051 -0.054 -0.066
SDGB 0.734 0.417 0.727 0.337 0.288 0.240
ZSCR -0.046 -0.065 -0.025 -0.007 0.001 0.000
LRSZ 0.334 0.040 0.252 0.152 0.142 0.053
LIBOR 0.049 0.031 0.085 0.023 0.009 0.013
TERM 0.160 -0.074 0.165 0.062 0.029 0.023
PNRM 0.204 0.214 0.147 0.166 0.154 0.169
PACQ 0.499 0.370 0.349 0.348 0.323 0.289
TMLN -0.170 -0.321 -0.216 -0.150 -0.145 -0.133
SYND -0.312 -0.249 -0.249 -0.249 -0.246 -0.209
T
t-VALUES EM-is
ICOMD 2.12 1.82 2.08 3.02 3.34 3.37 0.70
IMATY -6.82 -2.38 -5.28 -4.95 -4.42 -4.78 0.16
ISECD 2.48 -0.78 2.52 0.76 0.64 0.35 0.99
ILEVG 2.08 -0.29 1.85 0.84 0.79 -0.09 0.70
CONS 5.40 0.22 5.11 2.21 2.11 2.02 0.16
MKBK 1.47 0.04 1.16 1.38 1.06 0.13 0.95
ABNL 0.24 -1.22 0.36 -0.97 -0.89 -1.26 0.15
SDGB 4.71 0.85 4.71 2.45 1.65 1.13 0.60
ZSCR -1.52 -0.70 -0.79 -0.28 0.04 0.01 0.70
LRSZ 3.26 0.13 2.18 1.55 1.21 0.42 0.57
LIBOR 1.57 0.48 3.03 0.88 0.26 0.48 0.32
TERM 2.50 -0.37 2.59 1.01 0.38 0.31 0.67
PNRM 1.93 0.85 1.28 1.74 1.58 1.76 0.48
PACQ 3.74 1.13 2.08 291 2.53 2.15 0.56
TMLN -2.34 -1.88 -2.99 -2.82 -2.32 -2.37 0.32
SYND -2.90 -0.87 -2.36 -2.70 -2.60 -1.88 0.68
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Table 111.D. Commitment Fee Equation

The explanatory variables consist of instruments for: Spread (ISPRD), Maturity (IMATY), Secured
Status (ISECD), Leverage (ILEVG), and exogenous variables: Constant (CONS), Market-to-Book
ratio (MKBK), Unexpected Earnings (ABNL), Altman’s Z-score (ZSCR), Loan Concentration
(LRSZ), a post-1993 dummy (POST93), Other Purpose (PMSC), Multiple Revolvers (MULT),
Term Loan (TMLN), Syndicated loan (SYND).

PARAMETER ESTIMATES

DNS PWD AdHoc IP EM EM-is
ISPRD 0.063 0.088 -0.003 0.111 0.120 0.112
IMATY 0.020 0.019 0.009 0.015 0.019 0.017
ISECD -0.004 0.002 0.046 -0.008 -0.010 -0.006
ILEVG 0.615 0.256 0.514 0.247 0.186 0.251
CONS -0.133 0.054 0.055 0.061 0.049 0.048
MKBK 0.023 0.004 0.018 0.002 0.000 0.005
ABNL 0.014 0.020 0.014 0.017 0.016 0.014
ZSCR -0.006 -0.002 -0.005 -0.005 -0.006 -0.005
LRSZ 0.055 0.023 0.037 0.024 0.020 0.023
POST93 -0.041 -0.003 -0.046 -0.016 -0.020 -0.011
PMSC -0.070 0.050 -0.085 0.032 0.031 0.027
MULT -0.060 -0.013 -0.056 -0.021 -0.022 -0.018
TMLN 0.044 0.022 0.028 0.020 0.021 0.017
SYND 0.073 0.035 0.060 0.039 0.042 0.034

t-VALUES

ISPRD 2.01 3.50 -0.09 7.19 6.13 6.95
IMATY 1.03 1.49 0.55 1.74 1.75 1.77
ISECD -0.25 0.15 2.52 -0.66 -0.70 -0.57
ILEVG 2.22 1.37 2.45 1.98 1.26 2.11
CONS -1.47 0.67 0.55 1.63 0.93 1.03
MKBK 1.54 0.40 1.54 0.25 0.03 0.77
ABNL 0.95 2.32 1.13 2.40 1.89 2.17
ZSCR -0.87 -0.36 -0.92 -1.65 -1.69 -1.19
LRSZ 1.82 1.06 1.55 1.55 1.23 1.66
POST93 -2.45 -0.27 -3.64 -1.66 -2.21 -1.16
PMSC -2.19 1.52 -3.17 2.26 1.79 1.75
MULT -2.96 -0.86 -3.55 -2.23 -1.80 -2.08
TMLN 2.64 1.53 1.87 2.14 2.10 2.16
SYND 3.03 1.69 3.00 3.34 2.97 2.26
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MONTE CARLO EXPERIMENTS

Figure 1. Single Equation Bias andMSE - MCAR

The top two panels display the mean squared emag (for the mean value of the distribution for a discrete (0/1)
dependent variable in a single equation. The bottom two panels display the bias for the mean value of this distribution.
The panels on the left are based listwise deletion The panels on the right are based on Ei-is imputation
methodology. The missingness schenmMissing Completely at RandofllCAR)
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Figure la. Single Equation Bias andSE - MCAR

The top two panels display the mean squared emgsg (for the mean value of the distribution for a continuous
dependent variable in a single equation. The bottom two panels display the bias for the mean value of this distribution.
The panels on the left are based listwise deletion The panels on the right are based on Ei-is imputation
methodology. The missingness schenMissing Completely at RandofllCAR)

MSE EMis Imputation — MCAR
BIAS EMis Imputation — MCAR

MSE Listwise Deletion — MCAR
BIAS Listwise Deletion — MCAR
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Figure 2. Single Equation Bias andMSE - MAR

The top two panels display the mean squared emag (for the mean value of the distribution for a discrete (0/1)
dependent variable in a single equation. The bottom two panels display the bias for the mean value of this distribution.
The panels on the left are based listwise deletion The panels on the right are based on Eiis imputation

methodology. The missingness schenMdissing at RandoniMAR).
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Figure 2a. Single Equation Bias and'SE —MAR

The top two panels display the mean squared emsg (for the mean value of the distribution for a continuous
dependent variable in a single equation. The bottom two panels display the bias for the mean value of this distribution.
The panels on the left are based listwise deletion The panels on the right are based on Eh-is imputation
methodology. The missingness schenMissing at RandoniMAR).
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Figure 3. Single Equation Bias andSE — NI

The top two panels display the mean squared emsg (for the mean value of the distribution for a discrete (0/1)
dependent variable in a single equation. The bottom two panels display the bias for the mean value of this distribution.
The panels on the left are based listwise deletion The panels on the right are based on Eh-is imputation
methodology. The missingness schenfdas-lgnorable(NI).
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Figure 3a. Single Equation Bias andISE - NI

The top two panels display the mean squared emgsg (for the mean value of the distribution for a continuous
dependent variable in a single equation. The bottom two panels display the bias for the mean value of this distribution.
The panels on the left are based listwise deletion The panels on the right are based on Ei-is imputation
methodology. The missingness schenfdas-lgnorable(NI).

NI
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Figure 4. Simultaneous Equation Bias and/SE - MCAR

The top two panels display the mean squared emag (for the mean value of the distribution for a discrete (0/1)
dependent variable in a simultaneous equations system where the other dependent variable is continuous. The bottom
two panels display the bias for the mean value of this distribution. The panels on the left are passdsendeletion

The panels on the right are based on Eid-is imputation methodology. The missingness schemlissing
Completely at RandoiMCAR). Both dependent variables have missing values.
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Figure 4a. Simultaneous Equation Bias anISE - MCAR

The top two panels display the mean squared emgsg (for the mean value of the distribution for a continuous
dependent variable in a simultaneous equations system where the other dependent variable is also continuous. The
bottom two panels display the bias for the mean value of this distribution. The panels on the left are paseisen

deletion The panels on the right are based onBENReis imputation methodology. The missingness schenissing
Completely at RandoiMCAR). Both dependent variables have missing values.
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Figure 5. Simultaneous Equation Bias andMSE - MAR

The top two panels display the mean squared emag (for the mean value of the distribution for a discrete (0/1)
dependent variable in a simultaneous equations system where the other dependent variable is continuous. The bottom
two panels display the bias for the mean value of this distribution. The panels on the left are passdsendeletion

The panels on the right are based or&Nkkis imputation methodology. The missingness schenmissing at Random

(MAR). Both dependent variables have missing values.
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Figure 5a. Simultaneous Equation Bias antISE - MAR

The top two panels display the mean squared emgsg (for the mean value of the distribution for a continuous
dependent variable in a simultaneous equations system where the other dependent variable is also continuous. The
bottom two panels display the bias for the mean value of this distribution. The panels on the left are paseisen

deletion The panels on the right are based onENeis imputation methodology. The missingness schenhdissing

at Random(MAR). Both dependent variables have missing values.
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Figure 6. Simultaneous Equation Bias an®SE - NI

The top two panels display the mean squared emag (for the mean value of the distribution for a discrete (0/1)
dependent variable in a simultaneous equations system where the other dependent variable is continuous. The bottom
two panels display the bias for the mean value of this distribution. The panels on the left are passdsendeletion

The panels on the right are based onHEih-is imputation methodology. The missingness schemigois-Ignorable

(NI). Both dependent variables have missing values.
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Figure 6a. Simultaneous Equation Bias ant1SE - NI

The top two panels display the mean squared emgsg (for the mean value of the distribution for a continuous
dependent variable in a simultaneous equations system where the other dependent variable is also continuous. The
bottom two panels display the bias for the mean value of this distribution. The panels on the left are paseisen

deletion The panels on the right are based onEM:is imputation methodology. The missingness schemnigois-
Ignorable(NI). Both dependent variables have missing values.
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Figure 7. An Informal Tool to Determine MCAR or MAR

The panels on the left give histograms for the Z-score (ZSCR) explanatory variable, conditional on the missingness
status for the commitment fee (COMFEE) dependent variable. The top two panels on the right give histograms for the
all-in-spread (SPRD) explanatory variable, conditional on the missingness status for the secured status (SECURED)
dependent variable. The bottom two panels on the right give histograms for the all-in-spread (SPRD) explanatory
variable, conditional on the observed outcome of the secured status (SECURED) dependent variable.
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Figure 8. Predictability of Missing Values (Naive versugEM-is)

The panels on the left display the proportion of correct predictions for the discrete secured status dependent variable
against the number of explanatory variables. The panels on the right display the proportion of correct predictions for the
discrete commitment fee dependent variable against the number of explanatory variables. The top two panels are based
on equal probability imputatiorfguess). The middle two panels are basechean imputationThe bottom two panels

are based on tHeM-is imputation methodology. The missingness schenvissing Completely at RandofCAR).
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