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1 Introduction

People often infer information out of the actions of other people. For example,

when making their purchasing decisions consumers often choose the most popu-

lar brand because they think that its popularity indicates a better price/quality

combination1. People do not go and eat in an empty restaurant, because they be-

lieve that the food quality is low. When arguing with someone, try to strengthen

your argumentation by claiming that everybody agrees with you on that point.

This trick (even if it is not true) often succeeds in convincing more reluctant minds

that you are right.

This tendency to base decisions largely on the observed decisions of other agents

has recently been modelled as information externalities. Banerjee (1992) and

Bikhchandani, Hirshleifer andWelch (1992) (henceforth BHW) made the ¯rst mod-

els which stressed the ine±ciencies of these information externalities in a context

of social learning2. Both models consider a population of individuals each endowed

with a private, costless and imperfect signal concerning the desirability of a course

of action. People decide sequentially whether to adopt or reject a given course of

action. People observe which actions were taken by the persons who moved before

them, but they do not observe their signals. If enough individuals have adopted

the same behaviour, then each subsequent individual neglects her private signal

and herds on the actions of the ¯rst persons, because the informativeness of their

combined actions is higher than the informativeness of any one signal. More inter-

estingly they also showed that herding is quite likely to cause a "bad outcome", i.e.

an outcome where all (or the vast majority of all) players adopt an action which

ex post turns out to be suboptimal.

Subsequently a number of other papers appeared which also stressed the ine±-

ciencies entailed by information externalities in di®erent contexts of social learn-

ing. For example3 Chamley and Gale (1994) consider a set-up similar to BHW

except that all players have the possibility to wait in order to observe how many

1Caminal and Vives (1996) analyse a game where ¯rms engage in price competition in order
to become more popular and bene¯t from these information externalities.

2With a "context of social learning" we mean a context where one person must choose an
action out of a prespeci¯ed action set and which has, prior to her decision, the opportunity to
learn out of the choices made by her predecessors.

3The models we brie°y discuss in this paragraph are among the most famous ones, but the
list is certainly not exhaustive.
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players invest in the current period and to make their investment decision in the

next period based on superior information. They showed how in their context bad

outcomes and ine±cient waiting may occur in equilibrium. Avery and Zemsky

(1998) also consider a set-up similar to BHW except that they add a competitive

market maker in the picture which sets the price of an investment asset on the

basis of all available information. They show that due to herding short-run price

bubbles can occur provided that traders are uncertain about the precision of the

other traders' signals. Vives (1993) shows that in the presence of a continuous

action space in the long run bad outcomes do not arise, i.e. eventually everyone

will adopt the right action. However in the presence of noise (when observing the

actions of the other players) the rate of convergence towards the right action is slow.

To summarise, so far the literature on social learning mainly stressed di®erent inef-

¯ciencies (short-run price bubbles, bad outcomes, ine±cient waiting, slow learning,

...) entailed by information externalities. All these ine±ciencies are due to the fact

that players when choosing their actions rely too little on their private informa-

tion and too much on the public one. In this paper we argue that herding4 also

possesses some positive aspects in the sense that players may have less incentives

to wait in a herding environment.

We study the following set-up. We assume that a ¯xed number of ¯rms enter se-

quentially in an emerging market. Each ¯rm is run by one manager who maximises

his utility. Upon entrance in the market managers must choose a technology. Man-

agers can choose to adopt an "old" technology. Adopting this "old" technology

is easy: it doesn't require e®ort from the manager. Managers can also choose to

exert a high e®ort to check the existence of a new (and more pro¯table) technol-

ogy. With a probability p a new technology exists, which will always be found if

e®ort is provided. We assume that - due to switching costs - it's only pro¯table to

innovate upon entrance in the market. After the adoption of the old technology

it's only pro¯table for a ¯rm to imitate the new technology if it is invented by a

subsequent manager. Managers act strategically in the sense that they all may

wait, adopt the "old" technology in the hope to free-ride on the e®ort of another

manager inventing a better technology.

4From now on, with "herding" we mean a behaviour where one person observes the action(s)
of her predecessor(s), updates her prior beliefs and then has more incentives to imitate her
predecessor(s) knowing that her choice may ex post not be optimal. This de¯nition allows us to
classify Vives' (1993) paper also in the herding literature and it permits us to better explain the
originality of this paper.
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We ¯rst compute the (unique) equilibrium of our game if everyone observes the

e®ort levels and the technological choices of all their predecessors. In these cir-

cumstances there are no informational asymmetries and thus also no herding. In

this benchmark case all ¯rst movers wait and free-ride on the e®ort level of the

last manager. This benchmark case is thus characterised by a lot of free-riding5

and, as switching from the old to the new technology is ine±cient, note that in our

model free-riding is ine±cient. This free-riding is driven by our assumption that

the new technology is a public good. Once a manager invented the new technology,

by assumption it can be copied by all the other managers in the economy at no

cost. As inventing the new technology constitutes a costly activity all managers in

our model have a natural incentive to wait in order to free-ride on someone else's

e®ort level.

Next we assume that all managers only observe one another's technological choices

(and not one another's e®ort levels). We show how herding attenuates the free-

riding problems present in our benchmark case. The intuition goes as follows. Late

movers observe the early movers adopting the old technology. As they infer the

inexistence of the new technology out of their actions, this induces them to adopt

the old technology as well (in other words late movers tend to herd on the actions

of the early movers). Early movers realise that they have little possibilities to free-

ride on the e®ort level of late movers and this induces them to exert e®ort. This

paper thus highlights the existence of a trade-o® between herding and waiting (or

free-riding).

We also show that late entrants (who put a lower probability on the existence of

the new technology as compared to the one put by early entrants) may exert a

higher ex ante e®ort level than early entrants. This is because in equilibrium the

probability with which the second up to the last manager exert e®ort is deter-

mined by the interplay of two e®ects. The ¯rst e®ect, which we call the herd e®ect,

states that the more managers who adopt the old technology, the higher the prob-

ability that a previous manager unsuccessfully checked the existence of a superior

technology, the lower a manager's incentives to exert e®ort. As mentioned in our

5And with free-riding we mean that a manager takes an ine±cient action (i.e. adopts the
standard technology) in the hope to free-ride on the e®ort of another manager. Free-riding
and waiting are thus equivalent in our model and henceforth we will almost always denote this
behaviour by waiting.
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previous paragraph, this e®ect explains why with unobservable e®ort levels our

players have less incentives to wait. The second e®ect which we call the free-rider

e®ect states that late entrants know that they cannot rely too much on the e®ort

of a subsequent manager inventing a better technology. This e®ect ensures that

late entrants still face a lot of incentives to exert e®ort. We show that - depending

on the values of our exogenous parameters - the free-rider e®ect may dominate the

herd e®ect. In that case late entrants exert a higher ex ante e®ort level than early

ones.

In the following paragraphs we discuss more in depth how this paper relates to

other models in the literature of social learning. We discuss the other papers in

increasing order of relatedness.

Smith and S¿rensen (1997) study a set-up similar to the one of BHW (i.e. without

analysing issues of strategic waiting) in which they consider a social planner who

maximises the present value of all agents' utilities. In their paper a socially more

e±cient outcome is obtained when some players internalise their information ex-

ternality. They show that players can be induced to internalise their information

externalities by means of a simple set of history-contingent balanced-budget trans-

fers. In our paper information externalities are internalised because all players

know that - due to herding - they will be less able to free-ride on the e®ort levels

of subsequent movers.

Rob (1991) models dynamic entry in an emerging market. Potential entrants ob-

serve the actions (quantity choices) and the payo®s (pro¯ts) of the incumbent ¯rms

and out of this infer information concerning the realisation of an unknown demand

parameter. Due to an information externality the rate of entry in the emerging

market is lower than the socially optimal one. His model does not possess our main

insight that herding may act as an incentive device because in his model the act

of waiting does not entail any negative information externality. In his model an

information externality only occurs whenever a ¯rm enters in the emerging mar-

ket. If a ¯rm decides to wait (to gather information from the entry decisions of the

other ¯rms) this does not in°uence the remaining players' posteriors concerning

the pro¯tability of the market (and thus doesn't hamper their incentives to enter

the emerging market at a later date).

In Chamley and Gale (1994) some players receive an option which gives them the
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right to invest. The higher the realised state of the world, the higher the prob-

ability that each player receives an investment option and the higher the return

from the investment project. All players who possess an investment option have

the possibility to wait, to observe how many other players invested in the previous

period and to make an investment decision on the basis of more information. They

prove the existence of a unique equilibrium where all players who possess an in-

vestment option invest with a symmetric probability ¸ such that the informational

gain of waiting is o®set by the opportunity cost of waiting.

Herding does not reduce the scope of strategic waiting in their model. If in their

model all players would truthfully exchange their signals, then ¯rst best applies

i.e. everyone would take the correct ex ante investment decision in period one.

Why is it that in our model herding reduces the scope of strategic waiting and

not in theirs? Which crucial assumptions explain this di®erence? In our model we

assume (i) the existence of aggregate uncertainty (in Chamley and Gale's model if

the number of players becomes large there is no (or almost no) aggregate uncer-

tainty) and (ii) that the good state of the world becomes publicly known as soon

as one player exerts e®ort. To see that it are really these two assumptions which

make the crucial di®erence, take Chamley and Gale's model but assume that (i)

the economy is populated by a limited number of players who possess an imperfect

signal and (ii) the return of the investment project becomes publicly known as

soon as one player invests6. If players were to share truthfully their signals then

they would all possess the same posteriors. In this context - due to aggregate un-

certainty (due to the limited number of players) - everyone still has an incentive to

wait until someone else invests (and thereby resolving the aggregate uncertainty).

Assume now that our players do not exchange their signals (due for instance to

the absence of a certi¯cation technology). In that case if an optimist7 waits, other

players partly infer a bad signal out of this. As this hampers their future incentives

to invest, optimists have then less incentives to wait.

In Hendricks and Kovenock (1989) two oil ¯rms possess a private imperfect signal

concerning the pro¯tability of drilling an exploratory oil well. If one ¯rm drills,

then the other ¯rm costlessly observes whether there is oil or not and (in case of

success) makes a riskless investment decision in the next period. Both ¯rms wait

6Note that this merely represents the set-up analysed by Hendricks and Kovenock (1989).
7In Chamley and Gale, an optimist can be interpreted as a player who possesses an investment

option.
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in the hope to free-ride on the drilling cost of the other ¯rm. If one ¯rm delays

its drilling decision, this "signals" to the other ¯rm that it possesses a poor signal.

The subsequent downward revision of its prior may induce the other ¯rm to let its

lease expire without drilling any well (which is nothing else than the herd e®ect

we mentioned earlier). Herding does not act as an incentive scheme in their model

because they only work with a two-period model. In their model both ¯rms don't

care about each other's second-period posteriors because (by construction) they

cannot free-ride on each other's second-period drilling decision. This paper thus

shows that additional insights can be obtained when generalising their model to

N periods.

This paper is organised as follows. In section two we explain the basic assumptions

of our model. We ¯rst analyse the workings of our model under the assumption of

observable e®ort levels and observable technological choices (section 3). In section

4 we work under the assumption that players do not observe one another's e®ort

levels. First we illustrate how herding acts as an incentive device by focusing on

a simple equilibrium where only one manager exerts e®ort. Next (section 4.2) we

analyse the case where N managers exert e®ort (with a certain probability) in

equilibrium. Final comments are summarised in section 5.

2 The Model

We consider a simple model of dynamic entry in an emerging market. Our model

counts two phases: a ¯rst one called the adoption phase and a second one called the

production phase. Throughout the paper time is discrete. In the adoption phase

we assume that in each di®erent period t = 1; :::;K (K ¸ 2 (K 2 IN)) one (and
only one) ¯rm enters in a market and makes her technological choice. Each ¯rm

is run by a risk neutral manager/entrepreneur who maximises an expected utility

function. Henceforth we call manager t, the manager who enters in the emerging

market at time t. Next, (after period K) in the production phase all managers

receive their payo®s by producing and selling their goods in a ¯nite market (which

lasts from period K + 1 until period K (K ¸ K + 1 (K 2 IN))).

Manager t must use a technology (chosen out of the set Tt 2 fo; ng) from his

time of entry until time K8. In the beginning of the ¯rst period T1 = fog. o
8Stated di®erently, manager t is not allowed to make his technological choice at time t0 > t.
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represents an "old" technology. One can best think of o as a technology which is

widely used in other industries, everyone knows how o works and everyone knows

its pro¯tability characteristics. Assume that Tt = fog. Manager t, before adopting
his technology, has then two options: he can either adopt o at no cost (i.e. without

exerting e®ort) or he can exert e®ort e to try to invent a new, more pro¯table

technology denoted by n. If manager t successfully invents n, then 8t0 ¸ t, Tt0

becomes equal to fng which implies that manager t (along with all his successors)
has no other option left than to adopt the new technology. Moreover we assume

that once n was invented, all previous managers instantaneously exchange their old

technology for the new one and stick to it until the end of the game9. If manager

t doesn't invent n, then Tt remains equal to fog and in the beginning of period
t+ 1, Tt+1 = fog. It is assumed that the new technology exists with a probability
p 2 (0; 1) and will always be invented if it exists and if a manager exerts e®ort
e. We assume that if manager t invents n, all previous and subsequent managers

bene¯t from a knowledge spillover e®ect in the sense that they adopt n without

incurring the cost of e®ort (however previous managers who switch from o to n

incur a switching cost (see below)). The use of n (o) during the production phase

generates a total pro¯t of ¼(¢) (¼). The "height" of ¼(¢) depends on whether or not
a manager had adopted o prior to his adoption of n. Formally, ¼(¢) is determined
by the function ¼ : I1 ¡! IR where I1 = fs; nsg represents an indicator function
which takes the value s (ns), whenever a manager switched from o to n (adopted

n from scratch).

We model the managers' utilities as a v.N.M. utility function. Suppose Tt = fog. If
manager t decides to exert e®ort at time t his expected payo® equals E(U je; ns) =
p:U(¼(ns)) + (1 ¡ p):U(¼) ¡ e (e > 0). To hold matters simple, we assume that
U(¼) = 0 and that U(¼(ns)) = 1, so E(U je; ns) = p¡e. If an entrant exerts e®ort,
with probability p there exists a new technology which he will ¯nd (for sure) and

in the production phase this will give him a payo® equal to 1 ¡ e. However our
diligent manager may be unlucky because with probability (1¡ p) there does not
exist a new technology. In that case our manager must use o to operate in the

This assumption could best be defended by allowing all ¯rms to produce and sell their goods
from their time of entry on. However, this would imply that a manager's payo® would depend
on his time of entry, an unnecessary complication.

9This is a model about technology invention and how herding a®ects the time at which a
new technology gets discovered. Therefore we don't explicitly model how a new technology
spreads throughout the economy. Instead we exogenously assume that once someone invents n,
it automatically (and instantaneously) gets adopted by the other managers.
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emerging market. In the production phase he will then get a payo® equal to ¡e.
We also assume that - due to switching costs - U(¼(s)) = ° < 1. In order to

highlight the interesting features of our model, we suppose that:

A1: p > e.

Under assumption one all our (risk neutral) managers have an individual incentive

to exert e®ort at their time of entry. We also assume that all managers rather

imitate instead of innovate. This is captured by our following assumption:

A2: p¡ e < p°

Assumption A2 states that given °, manager one rather waits (and never exerts

e®ort) and free-rides on the e®ort of the second manager, if he believes the second

manager will exert e®ort for sure. So A2 naturally introduces strategic waiting

in our model. If a manager who did not exert e®ort and adopted o in a previous

period decides to exert e®ort at time t, he gets E(U je; s) = p°¡e. We assume that:

A3: p° < e

Assumption 3 is an important simplifying assumption. It ensures that in equilib-

rium managers only want to innovate at their time of entry. The main di®erence

between our exogenous queue assumption and the one present in Banerjee (1992)

and BHW (1992) is that in our model all managers still care about their successors'

actions. The precise repercussions of A3 will be discussed more in detail in the

next sections.

3 Observable e®ort levels and observable tech-

nological choices: A game of free-riding.

In this section we analyse our model under the assumption that all managers ob-

serve one another's e®ort levels and technological choices. The timing of our game

is explained below10:

10The timing of the game is explained under the restriction that managers only exert e®ort (i)
at their time of entry and (ii) if n had not yet been invented. By now it should be clear that
these restrictions are innocuous.
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0) At time zero: nature decides whether n exists or not.

1) At time t: manager t enters in the market and observes Tt and the past e®ort

levels of all his predecessors. In case Tt = fog, manager t chooses his e®ort level.
If he invents n, Tt becomes equal to n, the new technology is immediately adopted

by manager t and copied by all his predecessors and subsequent followers.

2) Period K+1 until period K: managers receive their payo®s and the game ends.

We assumed that the new technology will always be invented if it exists and if a

manager exerts e®ort e. The inexistence of n is thus proven as soon as a manager

exerts e®ort and adopts o. Hence a manager only wants to exert e®ort (i) at his time

of entry, (ii) if none of his predecessors adopted n and (iii) if none of his predecessors

exerted e®ort. Therefore we de¯ne a strategy for manager t, qt, as a probability

with which manager t exerts e®ort at his time of entry if none of his predecessors

exerted e®ort. A subgame perfect equilibrium (SPE) is a (q1; q2; :::; qK) such that

no manager has an incentive to deviate given the other managers' strategies. In

this case we obtain the following result:

proposition 1 Under A1, A2 and A3, with observable technological choices and

observable e®ort levels, the unique SPE of our game is: q1 = q2 = ::: = qK¡1 = 0,
qK = 1.

Proof: Consider ¯rst the optimal decision of manager K. Manager K observes that

all his predecessors use the standard technology. But he also observes that none

of his predecessors exerted a high e®ort level. Therefore manager K knows that

if he exerts a high e®ort level with prior probability p he will ¯nd the superior

technology. Under A1, manager K wants to exert e®ort. As mentioned previously,

under A3 none of the K-1 ¯rst movers want to exert e®ort at time K. Therefore

q1 = q2 = ::: = qK¡1 = 0, qK = 1 constitutes an equilibrium strategy. Under

A2 the ¯rst K ¡ 1 movers rather wait and free-ride on manager K's e®ort level.
Therefore q1 = q2 = ::: = qK¡1 = 0, qK = 1 constitutes the unique (subgame

perfect) equilibrium. Q.E.D.

Note that proposition (1) crucially rests on A3. This can easily be illustrated with

an example where K = 2. If p° ¸ e, q1 = 1, q2 = 0 also constitutes a subgame

perfect equilibrium. To see this, suppose that manager one exerts no e®ort and

adopts o. Call q12 the probability with which manager one exerts e®ort at time

two. In the second period there are two ¯rms in the market with two managers
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who both have an incentive to exert e®ort. This subgame possesses three Nash

equilibria: q12 = 1, q2 = 0; q12 = 0, q2 = 1 and there also exists a mixed-strategy

Nash equilibrium in which q12 =
p¡e
p°
and q2 =

p°¡e
p°
. If manager one at time one

anticipates that if he were to exert no e®ort, in period two they would either play

the mixed-strategy Nash equilibrium or the equilibrium q12 = 1, q2 = 0, then man-

ager one rather exerts e®ort in period one. Therefore, if p° ¸ e (q1 = 1, q2 = 0)
constitutes a SPE. The reader can easily generalise this insight to the case with

K managers, if p° ¸ e there are K di®erent equilibria with each time a di®erent

manager who exerts e®ort.

Proposition (1) shows that if all players have a lot of information at their disposal,

this will result in a lot of waiting. This result bears some close resemblance to the

one that was derived earlier by Rob(1991). Rob also models dynamic entry in an

emerging market under the assumption that all players observe all the incumbents'

payo®s and actions. As mentioned in the introduction in his model due to an in-

formation externality the rate of entry is lower than the socially optimal one (in

other words the equilibrium (just as in our model) is characterised by too much

waiting). In the remainder of the paper we will introduce herding in the model (i.e.

managers who "blindly" imitate the technological choices of their predecessors in

the hope that they exerted e®ort) by allowing for informational asymmetries. We

will see that in a herding environment our players have much less incentives to wait.

In this paper it's natural to take the case without any private information as our

benchmark one because of its sharp contrast with our non-benchmark case. Two

remarks. First, note that if in Banerjee (1992) or BHW (1992) all players would

observe one another's signals and actions, all players would ex ante take the most

e±cient action and ¯rst best would apply. So the choice of our benchmark case

makes it explicitly clear that herding only reduces the scope of strategic waiting

when in the absence of any private information, players would still have an incentive

to delay their (informative) actions. Second we could have chosen the case where

all players don't observe actions (i.e. technological choices) nor e®ort levels during

the adoption phase as our benchmark one. We expect that giving all players

the possibility to observe one another's technological choices during the adoption

phase, this should increase welfare and e±ciency (compared to the case where all

players don't observe anything in the adoption phase) because late movers would

then have the possibility to free-ride on the e®ort level of an early mover. However,

this result is not original nor surprising. Already in Banerjee (1992) and BHW
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(1992) late movers are better o® (in an ex ante sense) when they observe their

predecessors actions (as compared to the case where they don't observe anything)

because they may act with more information than their predecessors.

4 A waiting game with observable technological

choices and unobservable e®ort levels.

In this section we consider the same game as the one we analysed in our previ-

ous section except that now our players only observe one another's technological

choices and not one another's e®ort levels. A manager is called active if in equi-

librium he exerts e®ort with a strictly positive probability. In this case we de¯ne

a strategy for manager t, qt, as a probability with which manager t exerts e®ort

at his time of entry if none of his predecessors adopted n (in all the other cases a

manager strictly prefers not to exert e®ort). As e®ort levels are unobservable this

is a dynamic game of imperfect information. Each manager - upon observing his

predecessors adopting the old technology - must have a belief concerning which

node in the game tree was reached. If a manager believes that at least one of his

predecessors exerted e®ort, then he rather adopts the old technology without ex-

erting e®ort. In this model beliefs concerning past e®ort levels matter because they

ultimately in°uence pt = Prob[n existsjt¡1 ¯rst managers use o], which in its turn
in°uences manager t's incentives to exert e®ort. Therefore we de¯ne our equilib-

rium concept using each manager's posterior (concerning the existence of the new

technology) instead of working directly with his beliefs concerning past e®ort lev-

els. P = (p; p2; :::; pK), Q = (q1; q2; :::; qK) and Q¡t = (q1; q2; :::; qt¡1; qt+1; :::; qK).
A subgame perfect equilibrium (SPE) is a (Q;P ) such that:

(i) given pt and Q¡t, manager t cannot gain by deviating 8t, and
(ii) given Q, pt is computed via Bayes' law, 8t.

We now analyse equilibrium strategies in our game. We ¯rst focus on an equilib-

rium with one active manager which already shows how in this model herding acts

as an incentive device. Next we generalise our results to N (1 < N · K) active
managers.

4.1 An equilibrium with one active manager.

Our main result with one active manager is summarised below:
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proposition 2 Under A1 and A2, there exists a SPE in which only the ¯rst

manager is active and where q1 = 1.

Proof: Suppose all managers revise their priors under the assumption that q1 = 1,

q2 = q3 = ::: = qK = 0. It is then quite easy to see that under this assumption it's

optimal for manager one to exert e®ort with probability one. Suppose manager one

deviates exerts no e®ort and adopts o. Manager two at his time of entry observes

that manager one adopted o. His expected gain of exerting e®ort equals: P (n

existsj man. 1 uses o)¡e = p2 ¡ e, where:

p2 =
(1¡ q1)

(1¡ q1) + q1(1¡ p)p(1)

Manager two computes p2 by replacing q1 in (1) by 1. Therefore p2 = 0. This

is logical: manager two is sure that manager one exerted e®ort. Therefore he

interprets manager one's act of adopting o as a "proof" that n does not exist.

Since p2 = 0 < e, q2 = 0. Manager three observes that the ¯rst two managers

adopted o. Using Bayes' law he computes his posterior p3 = P(n exists j ¯rst two
man. use o):

p3 =
(1¡ q1)(1¡ q2)

(1¡ q1)(1¡ q2) + [1¡ (1¡ q1)(1¡ q2)](1¡ p)p(2)

in which he substitutes q1 by one and q2 by zero. Hence p3 = 0 < e and con-

sequently q3 = 0. All subsequent movers compute the same posterior (p4 =

p5 = ::: = pK = 0) and therefore it's optimal for them not to exert any e®ort

(q4 = q5 = ::: = qK = 0). Manager one knows this. Correctly anticipating that

q2 = q3 = ::: = qK = 0, manager one knows that he is the only one for whom

it is pro¯table to exert e®ort. Hence it is optimal for him to exert e®ort with

probability one.

Of course this is not the unique equilibrium with one active manager. For example

there also exists a SPE in which only the second manger is active and where q2 = 1

(under A2 it is indeed optimal for manager one to set q1 = 0 and to free-ride on

the e®ort level of the second manager). As a matter of fact with only one active

manager there exist K equilibria with each time a di®erent manager who exerts

e®ort for sure, but none of them entail more waiting than the (unique) equilibrium

we obtained when e®ort levels were observable. Q.E.D.
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Intuitively, the strategy in which only the ¯rst manager exerts e®ort for sure con-

stitutes a SPE because manager one - knowing that if he adopts o, subsequent

movers will revise downward their prior probabilities and will never exert e®ort -

internalises his information externality by exerting e®ort. Therefore in equilibrium

one obtains less waiting. Note also that proposition (2) does not rely at all on A3,

even if ° were equal to one, the strategies described in the proposition would still

constitute a SPE.

4.2 An equilibrium with N (1 < N · K) active managers.
4.2.1 An existence and uniqueness theorem.

With N managers, all managers compute their equilibrium probabilities out of

the following set of N + (N ¡ 1) nonlinear simultaneous equations. The ¯rst N
equations merely state that our N managers must choose their e®ort levels such

that everyone, given their posteriors, is indi®erent between the two pure strategies:

p¡ e = q2p° + (1¡ q2)q3p° + :::+
N¡1Y
k=2

(1¡ qk)qNp°

p2 ¡ e = q3p2° + (1¡ q3)q4p2° + :::+
N¡1Y
k=3

(1¡ qk)qNp2°
.

.

.

pN¡1 ¡ e = qNpN¡1°
pN = e

The remaining (N ¡ 1) equations determine the posteriors of manager two to
manager N (since p1 = p, the "posterior" of the ¯rst manager is exogenously given

and need not be endogenously computed). These equations can be summarized as:

pj =

Qj¡1
k=1(1¡ qk)Qj¡1

k=1(1¡ qk)p+ (1¡ p)
p 8j = 2; :::; N

We can now state our most interesting ¯nding:

proposition 3 Under A1, A2 and if ° · Maxf e
p
; 1 ¡ eg, for every set of man-

agers, there exists a unique SPE where they are all active.
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Proof: see appendix one and two

Our game thus clearly exhibits multiple equilibria in the sense that di®erent sets

of active managers lead to di®erent SPE.11 This multiplicity does not bother us in

the sense that no equilibrium of our game with non-observable e®ort levels entails

more waiting than the unique equilibrium we obtained with observable e®ort levels.

Before explaining the intuition behind proposition (3) more in detail, we ¯rst

illustrate it with a simple example with two active managers

4.2.2 An illustration with two active managers.

Assume it are the ¯rst two managers who must be active. Both managers compute

their equilibrium probabilities out of the equations:

p¡ e = q2p°(3)

p2 = e

where p2 is determined by equation (1). Out of (3), we see that q2 =
p¡e
p°
2 (0; 1).

Out of (1), one can easily see that q1 =
p¡e
p(1¡e) 2 (0; 1). Note that q2 is a decreasing

function of °. This is logical: manager one is only indi®erent between innovation

and imitation if every increase in the switching cost (decrease in °) is compen-

sated by an increase in q2. If ° is low enough (lower than 1 ¡ e) this implies
that manager two in equilibrium exerts a higher (ex ante) e®ort level (which is

quite counterintuitive given that p2 < p). To prove that q1 =
p¡e
p(1¡e) , q2 =

p¡e
p°
,

q3 = q4 = ::: = qK = 0 constitutes a SPE we still must check that no manager

(not even the ¯rst two managers) has an incentive to exert e®ort after observing

manager two adopting o.

First assume that p° · e. Under this assumption the ¯rst two managers don't

want to exert e®ort from date three on. Manager three computes his posterior

using (2) in which he substitutes q1 and q2 by their equilibrium values. As q2 > 0,

p3 < p2 = e. Hence q3 = 0. As previously, p4 = p5 = ::: = pK = p3 and

q4 = q5 = ::: = qK = 0. So the third up to the last manager always adopt the

same technology as the one which was adopted by manager two. The ¯rst two

11Specifying a model with an endogenous queue should not limit the number of equilibria.
Admittedly, an endogenous queue should yield a unique symmetric equilibrium, but should also
possess a large number of asymmetric equilibria.
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managers - even though they both prefer to imitate instead of innovate - correctly

anticipate that they won't be able to free-ride on the e®ort levels of subsequent

movers. Therefore they are indi®erent between the two pure strategies and they

may as well choose to exert e®ort with a strictly positive probability. Hence, if

p° · e, there exists a unique SPE in which only the ¯rst two managers are active.

However, even if p° > e, there may still exist a SPE in which only the ¯rst two

managers are active and exert e®ort with probabilities q1 =
p¡e
p(1¡e) and q2 =

p¡e
p°
. To

see this suppose that e
p
< ° · 1¡ e. We know that if ° · 1¡ e, q2 ¸ q1. Suppose

both managers don't exert e®ort and adopt the standard technology. Consider

both managers in the third period. What induces them to exert e®ort (given that

they know their own e®ort levels)? Nothing! Manager one observed that the sec-

ond manager adopted the standard technology. In the third period manager one

computes his posterior p13 =
(1¡q2)p

(1¡q2)+q2(1¡p) . Now p13 · e (and thus p13° < e. This
is logical: manager one's posterior (at time three) is not higher than the one of

manager two (who was already indi®erent) because q2 ¸ q1. Hence manager one,
upon observing manager two adopting the standard technology has no incentive

anymore to exert e®ort. Manager two doesn't want to exert e®ort in any subse-

quent period either because p2 = e. Hence if ° · 1¡ e both managers know that
they won't be able to free-ride on the e®ort level of a manager (including their own

e®ort level) after the second period. Given that they are indi®erent, they may as

well choose to exert e®ort with a strictly positive probability.

Note that the third up to the last manager never exert e®ort and adopt the same

technology as the one which was adopted by the ¯rst two managers. Note that this

herd may be misdirected because with a probability (1¡ q1)(1¡ q2)p all ¯rms in
the emerging market end up using the old technology when a new one exists, but

which was not invented by a diligent manager. This explanation of how an industry

can get "stuck" with a suboptimal technology was already o®ered by Hendricks

and Kovenock (1989). J.Zwiebel (1995) explains this observation on the basis of

reputational concerns.

4.2.3 Herd e®ect versus free-rider e®ect.

In these paragraphs we provide an answer to questions like: what is the intuition

behind proposition (3) and which "forces" in°uence the equilibrium e®ort level of

each active manager?
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Before answering these questions we ¯rst introduce some new notations. zt de-

notes the probability with which manager t will not exert e®ort (i.e. zt = 1¡ qt).
j 2 IN and j = 2; :::; N . Zj+1 denotes the probability that no manager mov-

ing after manager j will search for the new technology (i.e. 8j = 2; :::;N ¡ 1,
Zj+1 = zj+1:zj+2:::zN and if j = N , ZN+1 = 1). Furthermore we de¯ne NEj¡1
as p=pj. In other words NEj¡1 denotes the negative externality induced by the
actions of the j ¡ 1 ¯rst managers on manager j's posterior. NEj¡1 > 1 8j and
NEj¡1 is strictly increasing in j. We de¯ne Roe (return on e®ort) as p=e.

All active managers must be indi®erent between the two pure strategies, i.e. pj¡1¡
e = (1¡ Zj)pj¡1°. We can rewrite this last equation as:

zj =
1

Zj+1
[C +

NEj¡2
Roe°

](4)

(where C = (1 ¡ 1
°
) and NE2¡2 = NE0 = 1) Equation (4) shows that qj is a

function of two opposing e®ects (or "forces").

The ¯rst e®ect, which we call the herd e®ect, is captured by the term NEj¡2.
NEj¡2 is increasing in j and qj is decreasing in NEj¡2: the more one advances
in the queue, the higher the sum of the expected e®orts spent by all previous

managers, the lower the posterior of manager j¡ 1, the lower the probability with
which manager j must exert a high e®ort to make manager j¡1 indi®erent (ceteris
paribus). This herd e®ect is similar to the one present in the other herding models

(Banerjee (1992), BHW(1992), Chamley and Gale (1994), Vives (1993), Hendricks

and Kovenock (1989), Scharfstein and Stein (1990), ...). However in this model,

due to the herd e®ect, all N managers realise that they won't be able to free-ride

too much on the e®ort levels of their successors. Proposition (3) then shows that

by appropriately choosing all e®ort probabilities one can make all N managers in-

di®erent between the two pure strategies and thus willing to randomise. Therefore

our model highlights a trade-o® between herding versus waiting which went unno-

ticed in the current herding literature. The fundamental reason why this insight is

not present in Rob (1991), Chamley and Gale (1994) and Hendricks and Kovenock

(1989) was already explained in the introduction.

In our model the herd e®ect also gives birth to a countervailing force which we

call the free-rider e®ect. This free-rider e®ect is captured by the term Zj+1. Zj+1
is increasing in j, and qj is increasing in Zj+1. This is also logical: the more one
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advances in the queue, the lower the probability that manager j ¡ 1 can hope to
free-ride on the e®ort of a subsequent manager (due to the herd e®ect), the higher

the probability with which manager j should exert a high e®ort to make manager

j ¡ 1 indi®erent. This free-rider e®ect thus ensures that late movers may still face
a lot of incentives to exert e®ort.

Equation (4) also shows that manager j's equilibrium behaviour can be summarised

by the following rule: "manager j takes pj¡1 and Zj+1 as given and chooses qj such
that manager j ¡ 1 is indi®erent between the two pure strategies".12 This simple
rule also provides a partial intuition why, once we ¯x the set of active managers,

there exists a unique vector of equilibrium probabilities. Zj+1 is ¯xed such that

manager j is indi®erent. Since qj¡1 > 0 (otherwise manager j ¡ 1 is not active),
pj¡1 > pj . Therefore if qj = 0, manager j ¡ 1 rather exerts e®ort, if qj = 1, man-
ager j ¡ 1 rather waits. By continuity, there exists a unique qj such that manager
j ¡ 1 is indi®erent.

One ¯nal word of explanation concerning our assumption A3. As explained above,

proposition (3) does not fully rely on A3: for high enough a 1¡e, that proposition
remains valid even with "low" or "moderate" switching costs. However, the main

insight of this paper is that a herding environment may be less prone to prob-

lems of strategic waiting than a non-herding one. This was shown by comparing

proposition (3) to proposition (1). As proposition (1) crucially rests on A3, our

main insight crucially hinges on this assumption. Nonetheless we believe our main

insight to be robust in the sense that we can specify two other realistic contexts

in which our main insight remains valid and would not depend on A3. First, we

can work in a context where ° = 1, where the queue is endogenous and where all

players face a discount factor ± < 1. Second, in the introduction we already men-

tioned that our main insight can be recovered without the use of A3 in Chamley

and Gale's model provided that we allow for (i) aggregate uncertainty and (ii) the

state of the world which becomes publicly known as soon as one player invests.

12The intuition behind manager one's behaviour is more complicated and is not explained in
this paper. Somewhat surprisingly it turns out that manager one chooses q1 such that manager
N is indi®erent. The intuition why manager one is able to make the last manager indi®erent was
explained in a previous version of this paper titled "Corporate Conservatism as Endogenous Pes-
simism" and can be obtained by simple request from the author. For a mathematical explanation
see proposition (6) in appendix one.
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4.2.4 The temporal pro¯le of equilibrium e®ort probabilities.

In this subsection we check when the free-rider e®ect dominates the herd e®ect

(i.e. when late movers exert a higher ex ante e®ort level than early movers).

proposition 4 In equilibrium: q1 · q2 · ::: · qN if and only if ° · 1 ¡ e, and
q1 > q2 > ::: > qN if and only if ° > 1¡ e
Proof:

From appendix one we know that we can rewrite our system of N + (N ¡ 1) si-
multaneous equations into a simpler set of N equations in N unknowns:

·2 + °z2z3:::zN = ·1

·2z1 + °z1z3:::zN = ·1

·2z1z2 + °z1z2z4:::zN = ·1
...

·2z1:::zN¡1 + °z1:::zN¡1 = ·1

where ·2 = 1¡ ° ¡ e 2 (¡1;+1), ·1 = e1¡pp 2 (0;1)

Assume that ° · 1 ¡ e. Then the ¯rst terms on the LHS of the equations form
a decreasing sequence (·2 ¸ ·2z1 ¸ ::: ¸ ·2z1:::zN¡1), so the second terms on the
LHS must form an increasing sequence: z2z3:::zN · z1z3z4:::zN · z1z2z4z5:::zN ·
::: · z1:::zN¡1. Simplifying these inequalities we get: z1 ¸ z2, z2 ¸ z3, ... ,

zN¡1 ¸ zN implying that q1 · q2 · ::: · qN which is our result. The proof for

° > 1 ¡ e is similar except that the ¯rst term of the LHS now forms a strictly

increasing sequence and therefore: q1 > q2 > ::: > qN .Q.E.D.

The intuition behind proposition (4) was already set forth in an earlier part of this

paper. With two active managers we saw that if ° is relatively low, manager one

was only indi®erent between the two pure strategies if the high switching cost was

compensated by a higher q2. For low enough a °, q1 < q2. Proposition (4) shows

that this result can be generalised to the case with N active manager.

We believe proposition (4) to be an interesting one because it proves a quite coun-

terintuitive result that late movers (who put a lower probability on the existence

of n than early movers) may - depending on the values of the parameters - exert

higher ex ante e®ort levels than early movers.
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5 Conclusions

This paper analysed a waiting game with information externalities. We di®ered

from other papers which introduced information externalities in waiting games

(see in particular Chamley and Gale (1994) and Gul and Lundholm (1995)) in two

important aspects. First we assumed the existence of aggregate uncertainty and

second, we assumed that the good state of the world becomes (publicly) known as

soon as one manager exerts e®ort. In the absence of informational asymmetries

the equilibrium exhibits a lot of strategic waiting because all players wait until

the last manager exerts e®ort and resolves the aggregate uncertainty. With un-

observable e®ort levels all managers (except the ¯rst one) revise downward their

priors because they infer out of the conservative behaviour of their predecessors

the unavailability of the new technology. As all players (except the ¯rst one) re-

vise downward their prior probabilities, this hampers their incentives to innovate.

Early movers correctly anticipate that if they adopt the old technology, they will be

less able to free-ride on the e®ort levels of one of their successors and this induces

them to exert e®ort. Therefore this paper shows that in the presence of aggregate

uncertainty and if the good state of the world becomes publicly known as soon as

one player invests, there exists a trade-o® between herding and waiting which has

not been stressed before by other models which introduced informational external-

ities in waiting games (see a.o. Rob (1991), Chamley and Gale (1994), Gul and

Lundholm (1995), Hendricks and Kovenock (1989), ...). Finally, we also showed

that if switching costs are relatively high late movers exert a higher ex ante e®ort

level than early movers. We believe this last result to be counterintuitive in the

sense that early movers put a higher probability on the existence of the new tech-

nology as compared to the one put by late movers.

This paper analysed strategic waiting under the assumption that managers only

want to innovate at their time of entry. One may want to relax that assumption

and work instead with an endogenous-queue model. We believe this constitutes an

interesting topic for future research.

As we mentioned in our introduction, the context in our paper is most realistic if

one considers the oil exploration industry. Our framework can also be applied to

the timing of compatibility decisions between two technologies: a ¯rm selling tech-

nology A may be induced to search for a technology which would make technology

A and B mutually compatible because by not searching she may discourage the
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other ¯rm from doing so. In our opinion, our theory may be applied to other eco-

nomic ¯elds as well. For instance the hold-up problem (or more generally problems

due to moral hazard in teams) may become less severe in a herding environment

because individuals realise that if they don't work enough this may reveal some bad

information and this will discourage others from working hard too. In that case

our theory can also be applied to the ¯eld of (complete and incomplete) contract

theory. Similarly, organisations may structure themselves such as to introduce

information externalities in their organisations which may induce some people to

work. We believe all this to constitute an avenue for future research.
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Appendix one

by N.Melissas and M.Pauly

In this appendix we prove our existence and uniqueness theorem as stated in propo-

sition (3). We work here under the assumption that managers only exert e®ort

at their time of entry. In appendix 2 we prove that if ° · Maxf e
p
; 1 ¡ eg in

equilibrium managers only want to exert e®ort at their time of entry. We start by

reducing our system of N + (N ¡ 1) simultaneous equations into a more tractable
set of N equations in N unknowns. To illustrate our way of working, consider

the ¯rst equation: p ¡ e = q2p° + z2q3p° + z2z3q4p° + ::: + z2:::zN¡1qNp° (where
zt = 1 ¡ qt). This equation can be rewritten as: p ¡ e = (1 ¡ z2z3:::zN )p°. This
last equation can be rewritten as: ·2 + °z2z3:::zN = ·1 where ·2 = 1¡ ° ¡ e and
·1 = e

1¡p
p
.

Similarly we can rewrite equation t as: (1 ¡ °) + °zt+1:::zN = e
pt
(if t = N then

zN+1 = 1). Replacing
1
pt
by 1 + c

z1:::zt¡1 (where c =
1¡p
p
) in this last equation we

get ·2z1:::zt¡1 + °z1:::zt¡1zt+1:::zN = ·1. We thus obtain the following set of N

simultaneous equations:

·2 + °z2z3:::zN = ·1(5)

·2z1 + °z1z3:::zN = ·1(6)

·2z1z2 + °z1z2z4:::zN = ·1

.

.

.

·2z1:::zN¡2 + °z1:::zN¡2zN = ·1

·2z1:::zN¡1 + °z1:::zN¡1 = ·1(7)

de¯nition: We say that (z1; :::; zN) is an equilibrium if zt, computed out of our

system of N simultaneous equations, 2 (0,1) 8t

We ¯rst state and prove our Uniqueness Theorem.

proposition 5 (Uniqueness Theorem) There cannot be more than one equilib-

rium.
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Proof:

Suppose there are two equilibria (z1; ::::; zN ) and (z
0
1; :::; z

0
N). Assume that z

0
1 > z1.

Out of the ¯rst equation we know that z02:::z
0
N = z2:::zN =

·1¡·2
°
. Out of the second

equation we know that ·2z1 + °
z1z2:::zN

z2
= ·1 = ·2z

0
1 + °

z01z
0
2:::z

0
N

z02
. It follows that:

z2 =
°z1

·1 ¡ ·2z1 (z2:::zN)

Hence, z02 > z2. Similarly, we learn from equation t that z0t > zt. But this contra-
dicts that z02:::z

0
N = z2:::zN =

·1¡·2
°
. If z01 = z1, it's easy to show that 8t z0t = zt

and that both equilibria are equal.Q.E.D.

De¯nition: (z1; :::; zN) is a candidate equilibrium if zt 2 (0; 1] 8t and,

·2z1 + °a
z1
z2
= ·1(8)

·2z1z2 + °a
z1
z3
= ·1

...

·2z1:::zN¡1 + °a
z1
zN
= ·1(9)

where a = ·1¡·2
°
.

Note that the system of equations starting from (8) to (and including) (9) merely

represent a rewriting of the system of equations starting from (6) to (and includ-

ing) (7). Note also that equation (5) does not intervene in our de¯niton of our

candidate equilibrium. Therefore, every equilibrium is a candidate-equilibrium (to

see this, replace (5) by z2z3:::zN = a = ·1¡·2
°

and insert it in all the subsequent

equations). However, every candidate equilibrium constitutes an equilibrium only

if:

(a) all the zt 6= 1,
(b) z2z3:::zN =

·1¡·2
°

Our next proposition shows that once we know z1, we are able to compute all the

remaining z0js (j = 2; :::; N).

proposition 6 8 ® 2 (0; 1], there exists one and only one candidate equilibrium
such that z1 = ®.
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Proof:

If z1 = ®, then equation (8) gives:

z2 =
(·1 ¡ ·2)®
·1 ¡ ·2®

Note that ·1 ¡ ·2 > 0, because of A2. Therefore z2 2 (0; 1]. We can see from
equations (8) to (and including) equation (9) that zj 2 (0; 1] 8j. Q.E.D.

We know enough now to state our last proposition.

proposition 7 (Existence Theorem) Under A1, A2 and A3, 8N > 1 there exists

an equilibrium vector (z1; :::; zN).

Proof:

Assume that z1 = 1. Then out of our system of equations starting from (8) to (and

including) (9) we know that z2 = z3 = ::: = zN = 1 (because ·2 + °a = ·1). But

then z2:::zN = 1 >
·1¡·2
°

(the reader can easily verify that under A1: ·1¡·2 < °).

Assume now that z1 < ² (where ² represents an arbitrarily small strictly positive

number). From (8) we know that:

lim
z1!0

z2 = lim
z1!0

(·1 ¡ ·2)z1
·1 ¡ ·2z1 = 0

Hence 9 ²2 > 0 such that 8z1 · ²2; z2 < a 1
N¡1

More generally,

lim
z1!0

zj = lim
z1!0

(·1 ¡ ·2)z1
·1 ¡ ·2z1:::zj¡1 = 0

Hence 8j, 9 ²j > 0 such that 8z1 · ²j, zj < a 1
N¡1 .

Let's de¯ne:

² = min
j
f²jg > 0

Then 8z1 · ², zj < a 1
N¡1 8j.

In that case , z2:::zN < a.

We know that the function f : z1 2 (0; 1) ! z2:::zN 2 < is a continuous one

because 8j, zj is a continuous function of z1 and we know that the product of con-
tinuous functions also yields a continuous function. We also know that f(1) > a

and f(²) < a. Hence there exists at least one z1 2 (0; 1) such that f(z1) = a.

Q.E.D.
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Appendix two

In this appendix we prove that if (su±cient condition) ° · Maxf e
p
; 1 ¡ eg all

active managers only want to exert efort at their time of entry. If p° < e, then

by assumption each manager only wants to exert e®ort at his time of entry. If

p° ¸ e, then we must check whether an active manager has no incentive to exert
no e®ort at his time of entry, to wait untill some of (or possibly all) his (active)

succesors made their technological choices and to exert e®ort at a future date. To

analyse this kind of strategic behaviour we study the following variant of our game.

0) At time zero, nature decides whether n exists or not.

1) Manager one enters in the market and chooses his e®ort level. He only adopts

o in case he doesn't invent n.

2) Manager two enters in the market and observes the technological choice and the

past e®ort level of the ¯rst manager. In case manager one adopted o, the ¯rst two

managers choose simultaneously their e®ort levels. If one of them invents n, it's

immediately copied by the other one.

3) In each subsequent period (untill period K), one additional manager enters in

the market. In case all previous managers adopted o, all managers present in

the market choose simultaneously their e®ort levels. If a manager invents n, it's

immediately adopted by him and copied by all his predecessors and subsequent

followers.

4) In period K+1 no manager enters in the market. In case all managers adopted

o, all active managers choose simultaneously their e®ort levels. In case n gets in-

vented, it automatically spreads throughout the economy.

5) In period K + 2 untill period K (K ¸ K + 2): managers receive their payo®s

and the game ends.

Assume that p° = e. Assume it are the ¯rst N managers who are active. As q1 > 0

(otherwise manager one wouldn't be active) pj° < e (j = 2; :::; N). Assume man-

ager one did not exert e®ort at time one and assume that the second one adopts

o. At time three manager one strictly prefers to exert no e®ort because, as q2 > 0,

p13° < e. Hence at time two manager one has two options: (i) exert e®ort at time

two (which yields a payo® equal to p° ¡ e = 0) or (ii) never exert any e®ort untill
the end of the game. As 0 < (1 ¡ Z2)p°, manager one only wants to exert e®ort
at time 1.

Assume now that e
p
< ° · 1¡ e. l = 1; :::; t. plt denotes manager l's posterior at
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time t if prior to manager t's e®ort decision Tt = fog and if manager l at his time
of entry did not exert e®ort. Consider manager l at time t. What induces manager

l to exert e®ort at time t? Is plt° ¡ e · (1¡ Zt)plt°? Suppose ¯rst that l = t¡ 1.
Note that pt¡1t¡1 = pt¡1t (manager t¡ 1 knows that he did not exert any e®ort at
time t ¡ 1, therefore his act of adopting o doesn't a®ect his posterior probability
concerning the existence of n). Now pt¡1t° ¡ e < pt¡1t¡1 ¡ e = (1 ¡ Zt)pt¡1t°.
Hence, due to switching costs manager t¡ 1 strictly prefers not to exert e®ort at
time t. Assume next that l < t¡1. Manager l doesn't want to exert e®ort at time
t either if (s.c.) plt° ¡ e · pt¡1t° ¡ e or if plt · pt¡1t. Now,

plt =
z1z2:::zl¡1zl+1:::zt¡1

z1z2:::zl¡1zl+1:::zt¡1p+ (1¡ p)p ·
z1z2:::zl¡1zlzl+1:::zt¡2

z1z2:::zl¡1zlzl+1:::zt¡2p+ (1¡ p)p = pt¡1t

if and only if zt¡1 · zl or i® qt¡1 ¸ ql. From proposition (4) we know that this is

the case as soon as ° · 1¡ e.

Consider now all managers at time K + 1 and assume that everyone adopted o.

Using a reasonning similar to our previous one, the reader can easily check that if

° · 1¡ e, manager t (t < N) doesn't want to exert e®ort at time K + 1 because

ptK+1 · pN = e.Q.E.D.
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