
SEMIPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION

AND ITS APPLICATION TO DYNAMIC OLIGOPOLY

SANGIN  PARK∗

Department of Economics
SUNY at Stony Brook

Stony Brook, NY 11794-4384
U.S.A.

Email: sanpark@notes.cc.sunysb.edu

This Draft: August 1999

This paper considers a semiparametric regression model in which the error term is
correlated with the nonparametric part. A technical difficulty of this semiparametric regression
model is that we can not eliminate the nonparametric part in the two-step estimation procedure of
a typical semiparametric regression model. Yet, we can still obtain a semiparametric estimator,
called a semiparametric instrumental variables (SIV) estimator, with consistency and asymptotic
normality if there exist two sets of instrumental variables (IVs) satisfying both an identification
condition and an orthogonality condition. The paper provides two generic examples in which we
can construct these two sets of IVs, and then discusses an empirical example of the application of
the SIV estimation procedure to estimate network effects in the U.S. home VCR market. This
empirical example indicates that the SIV estimation procedure can be applied to some structural
models of dynamic oligopoly in order to avoid a prohibitive computational burden of calculating
each firm’s value functions in equilibrium for each candidate value of the parameter vector.

KEYWORDS: semiparametric instrumental variables estimation, filtering, identification,
orthogonality, dynamic oligopoly, network externality.

JEL Classification: C14; C51; D43.

                                                          
∗  I am grateful for helpful comments from Ariel Pakes, Don Andrews, Steven Berry, Oliver Linton, John
Rust, Lanier Benkard, Jinyong Hahn, Soiliou Namoro, and Ito Harumi. The previous version of this paper
has been presented at the 1997 Winter Meeting of North America Econometric Society, Ewha University,
SUNY at Stony Brook, Universite de Toulouse I, and Yale University. All errors and omissions are my
own.



1

1.  INTRODUCTION

A COMMON ASSUMPTION IN SEMIPARAMETRIC REGRESSION MODELS is that the error term, say uj

∈  R, is mean independent of the nonparametric part, say ϕ0(⋅), where ϕ0 is an unknown real

function.1 Then a typical semiparametric regression model is specified as follows:

(1.1) yj = f(xj; θ0) + ϕ0(vj) + uj,

with

(1.2) E[uj | vj] = 0,

where (yj, xj′, vj′)′ is an R×Rd×Rl-valued vector of random variables, θ0 is a Rk-valued vector of

parameters which we want to estimate, and f is a known function from Rd×Rk to R. Since ϕ0(⋅) is

unknown, ϕ0(vj) cannot be observed.

Usually, the conditional moment restriction (CMR) in (1.2) is applied to eliminate the

nonparametric part ϕ0(vj),2 leading to:3

(1.3) yj - E[yj | vj] = f(xj; θ0) - E[f(xj; θ0) | vj] + uj.

In a two-step estimation procedure, the conditional expectations, E[yj | vj] and E[f(xj; θ) | vj] for

any θ, are estimated nonparametrically in the first step. In the second step, if xj is also mean

independent of uj, we can obtain a semiparametric least squares estimator for θ0 (Robinson

                                                          
1 All the functions in the paper are assumed to be measurable functions.
2 In the case of partially linear regression models, the nonparametric part may be approximated by some
series estimates. Refer to Andrews (1991) for the regularity conditions for this case. If the density of the
data (yj, xj′, vj′)′ satisfies an index restriction, we may obtain a semiparametric maximum likelihood
estimator for θ0 (see Ai (1997)).
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(1988)), or a semiparametric nonlinear least squares estimator (Andrews (1994)). If xj is

correlated with uj, and if there is an instrumental vector, we may obtain a semiparametric method

of moments estimator as a special case of Pakes and Olley (1995).

In this paper, we consider a case in which an error term, say ξj ∈  R, is correlated with a

nonparametric part, say φ(vj), where φ  is an unknown function from Rl to R. The regression

model this paper considers takes the form:

(1.4) yj = f(xj; θ0) + φ(vj) + ξj,

with

(1.5) E[ξj | vj] ≠  0.4

An example of the regression model in (1.4) and (1.5) can be derived from structural

models of dynamic oligopoly. Dynamic oligopoly is a situation in which firms’ price-settings (or

quantity-settings) are strategically interdependent and have durable effects on the stream of their

profits. Dynamic oligopoly fits many industries characterized by the significance of network

externalities, learning-by-doing, or informational product differentiation. For example,

semiconductor, especially DRAM, manufacturing is considered as a dynamic oligopoly (see

Scherer (1996)). Learning-by-doing is significant in the semiconductor industry since a firm’s

current output level affects its future production costs and thus its future profits. Particularly in

the DRAM market, large investments in R&D and learning-by-doing lead to a fairly concentrated

industry, and strategic interactions are significant and change dramatically over the product

                                                                                                                                                                            
3 The conditional moment restriction in (1.2) implies: E y |v =E f(x ; |v (v )j j j j j[ ] [ ) ]θ ϕ0 0+ .  Subtracting

this from (1.1) yields (1.3).
4 The estimation procedure of this paper can be extended to a more general case:

ξj = f(yj, xj; θ0) + φ(vj), with E[ξj | vj] ≠  0.
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cycle.5 Dynamic oligopoly is also a relevant market structure of many industries characterized by

the significance of network externalities (see Park (1999)). In the presence of network

externalities, a firm’s current price may affect its future network size and thus future profits and

survival. Network externalities are significant in such industries as the computer industry, the

broadcasting industry, and some consumer electronics industries. In most of these industries,

technologies are sponsored and markets are oligopolistic.6 Another example of dynamic

oligopoly includes industries characterized by informational product differentiation. In

informational product differentiation, a firm’s current output level can affect its future profits

since the quality of a product is learned by consumption experience. In the pharmaceutical

industry, a branded drug usually enjoys informational product differentiation over generics (see

Schmalensee (1982); Currie and Park (1999)).

To my knowledge, however, there is no tractable estimation procedure for (even a part

of) structural models of dynamic oligopoly. For a dynamic structural model of the representative

agent, the Euler-equation-based estimation technique is usually employed (see Hansen and

Singleton (1982)). However, the Euler equations cannot be generally obtained in dynamic

oligopoly.7 As an alternative, we may consider an estimation procedure in dynamic oligopoly as

follows. Under some regularity conditions as in Ericson and Pakes (1995), a firm’s optimal

pricing (or quantity-setting) in dynamic oligopoly can be formulated as a continuous Markov

decision problem (MDP). Then we may apply an estimation procedure similar to the nested fixed

point algorithm in Rust (1994): using ad hoc assumptions for stochastic specification of the

evolution of state variables, we may calculate each firm’s value functions in equilibrium for each

                                                          
5 The airframe industry is another example in which learning-by-doing and strategic interactions are
significant (see Benkard (1997)).
6 Some examples of competing technologies are: VHS vs. Betamax in VCRs, MS-DOS vs. Machintosh
operating system in personal computer operating systems, and Nintendo vs. Sega vs. Atari in home video
game systems.
7 In the presence of strategic interdependence, the envelope theorem does not hold in general, so the Euler
equation can not be obtained. Refer to Appendix A for a detailed discussion.
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candidate value of the parameter vector and then search for the value of the parameter vector that

maximizes the (log) likelihood function or minimizes some distance. It is, however, impractical

to implement this estimation procedure in the case of dynamic oligopoly. Most of all, it will

result in a prohibitive computational burden. It is well known that continuous MDPs have the

problem of Bellman’s curse of dimensionality (see Pakes and McGuire (1996); Rust (1997)).

Even with some simple discretization assumptions and a stochastic algorithm to break the curse

of dimensionality, the computational burden to calculate the equilibrium value functions for just

one candidate value of the parameter vector is usually huge (see Pakes and McGuire (1996);

Benkard (1997)). In addition, the complexity of the estimation problem usually makes it difficult

to determine the robustness of the conclusions to the ad hoc stochastic assumptions.

Furthermore, if the stochastic process is misspecified, the estimator for the parameter vector is

generally inconsistent.

The estimation procedure developed in this paper, however, enables us to

semiparametrically estimate a class of structural models of dynamic oligopoly. It will be shown

that, with a separable unobserved state variable (for example, an unobservable cost

characteristic), first-order profit maximization conditions of dynamic oligopoly lead to the

semiparametric regression model in (1.4) and (1.5). A technical difficulty of the regression model

in (1.4) and (1.5) is that we can not eliminate the nonparametric part, φ(vj), in the two-step

procedure of a typical semiparametric regression model in (1.1) and (1.2) since the error term is

correlated with the nonparametric part. However, we can still obtain a consistent and

asymptotically normal estimator for the parameter vector θ0 if (together with some regularity

conditions we will discuss in section 2) there exist two sets of instrumental variables (IVs)

satisfying both an identification condition and an orthogonality condition. Our estimation plan is

as follows. We first filter the nonparametric part φ(vj) by the first set of IVs in order to eliminate

φ(vj). For the identification of θ0, we need the second set of IVs which is not a function of the
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first set of IVs. In order to construct moment conditions, it is required that the filtering error

should be orthogonal to the second set of IVs (the orthogonality condition). Then based on the

moment condition, we obtain an estimator, called a semiparametric instrumental variables (SIV)

estimator, for θ0 which will be proved to be consistent and asymptotically normal. The J statistic

is employed to statistically test the moment conditions implied by our orthogonality condition.

We provide two generic examples in which we can construct two sets of IVs both satisfying the

orthogonality condition and not violating the identification condition, and then discuss an

empirical example of the application of the SIV estimation procedure to estimate network effects

in the U.S. home VCR market. This empirical example indicates that the SIV estimation

procedure can be applied to some structural models of dynamic oligopoly in order to avoid a

prohibitive computational burden of calculating each firm’s value functions in equilibrium for

each candidate value of the parameter vector.

The remainder of the paper is organized as follows. Section 2 discusses the identification

and the orthogonality conditions and the SIV estimation procedure. Section 3 suggest a sufficient

condition, called the conditional uncorrelation requirement, for the orthogonality and then

discusses two generic examples. Section 4 provides an empirical example of the application of

the SIV estimation procedure to estimate network effects in dynamic oligopoly. Section 5

concludes the paper. Appendix A shows that the Euler equations cannot be generally obtained in

the presence of strategic interdependence. Appendix B provides the proof of consistency and

asymptotic normality of the SIV estimator.

2. ESTIMATION PROCEDURE

In this section, we discuss the SIV estimation procedure. It will be shown that we can

obtain a consistent and asymptotically normal estimator for the parameter vector θ0 in the
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semiparametric regression model in (1.4) and (1.5) if (together with some regularity conditions)

there exist two sets of IVs satisfying both an identification condition and an orthogonality

condition. In section 3, we will discuss how to construct these IVs in specific examples. Let z1j ∈

Rm and z2j ∈  Rr (with r ≥ k) denote the first and the second set of IVs, respectively. Then E[ξj | z1j,

z2j] = 0, where ξj is the error term in the regression model of (1.4). In the semiparametric

regression model of (1.4), xj should not be a subvector of the first set of IVs, z1j. Otherwise, θ0

can not be identified.8

2.1. Filtering

Since the error term, ξj, is correlated with the nonparametric part, φ(vj), of our regression

model in (1.4) and (1.5), we cannot eliminate φ(vj) in the two-step procedure of a typical

semiparametric regression model in (1.1) and (1.2). In order to eliminate φ(vj), we first filter φ(vj)

by the first set of IVs, z1j. Filtering the nonparametric part φ(vj) by z1j, we can decompose φ(vj)

into its projection onto the space spanned by z1j, E[φ(vj) | z1j], and a projection error, εj ∈  R,

orthogonal to z1j. Then by the property of conditional expectations, we have: ϕ(z1j) =

E [φ(vj) | z1j], where ϕ is a function from Rm to R. Hence we have:

(2.1) φ(vj) = ϕ(z1j) + εj,

with

(2.2) E [εj | z1j] = 0.

Substituting (2.1) into the regression model of (1.4) yields:

                                                          
8 If xj is a subvector of z1j, then f x , E f(x ; zj j j( )θ θ= [ )| ]1  for any θ, which violates the identification
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(2.3) yj = f(xj; θ0) + ϕ(z1j) + uj,

where uj ≡ ξj + εj. The CMRs in both (1.5) and (2.2) imply:

(2.4) E[ uj | z1j ] = E[ ξj | z1j ] + E[ εj | z1j ] = 0.

Now the CMR of (2.4) is applied to eliminate the unknown projection ϕ(z1j) in a two-step

procedure, leading to an alternative regression model:

(2.5) y E y z f x ; E f x ; z uj j j j j j j− = − +[ | ] [ ]1 0 0 1( ) ( )|θ θ .

By the property of conditional expectations, we let τ10 1 1(z ) E y |zj j j= [ ] and

τ θ θ20 [ )| ]( )z , E f(x ; zj j j1 1= , where θ ∈  Rk, τ10 is a function from Rm to R, and τ20 is a function

from Rm×Rk to R. Both τ10(z1j) and τ20(z1j, θ) can be nonparametrically estimated. Let

τ θ τ τ θ0 1 10 1 20 1( , ) ( ( ), ( , ))'z z zj j j= .

2.2. Identification and Orthogonality

The fundamental necessary condition for the identification of θ0 can be stated as follows.

ASSUMPTION 1 (Identification): The two vectors of IVs, z1j and z2j, are such that for any θ ≠ θ0,

E f x z zj j[ ( ; ) ( , )| ]θ τ θ− 20 1j 2  ≠ 0 and E y (z ) f x z zj j j j[ ( ; ) ( , )| ]− − +τ θ τ θ10 20 1j1 2  ≠ 0.

                                                                                                                                                                            
condition of Assumption 1 that follows.
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The fundamental necessary identification condition is required for the existence of a consistent

estimator of θ0. The CMR of (2.4) cannot be applied to the alternative regression model of (2.5)

since the identification condition of Assumption 1 will be violated. In general, if z2j is a function

of z1j, then E f x zj j[ ( ; )| ]θ 2 =  E E f x z zj j j[ [ ( ; )| ]| ]θ 1 2  for any θ.9 Therefore, if z2j is a function

of z1j, the fundamental necessary condition for the identification of Assumption 1 is violated.

The orthogonality condition requires that the filtering error, εj, should be orthogonal to

the second set of IVs.

ASSUMPTION 2 (orthogonality): The two vectors of IVs, z1j and z2j, are such that E[ z2jεj ] = 0.

Assumption 2 will turn out to be a sufficient condition to construct moment conditions in our

SIV estimation procedure.

2.3. Two-Step Estimation Procedure

We now discuss a two-step estimation procedure based on the alternative regression

model in (2.5). Le mj: R
k×R2 → Rr defined as:10

(2.6) m z y f xj j j j( , ) ( ; ) }θ τ τ θ τ0 2= − − +{ 10 20 ,

                                                          
9 In addition, E y z E E y z zj j j j j[ | ] [ [ | ]| ]2 1 2=  and hence E y z f xj j[ 10 1j− −τ θ( ) ( ; )

+τ θ20 1j( , )| ]z z j2 = 0 for any θ.

10 We can construct a GMM weight matrix, say γ(z2j), in a similar fashion of Hansen and Singleton (1982).
As discussed in Chamberlain (1992), however, this GMM estimator generally does not obtain the efficiency
bound in the semiparametric regression cases.
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where τ τ τ0 10 20= ( , )' , τ τ10 10 1= ( )z j  and τ τ θ20 20 1= ( , )z j . Assumption 2 is a sufficient

condition in which we have: E mj[ ( , )]θ τ0 00 = .11

LEMMA 1: Under Assumption 2, we have: E mj[ ( , )]θ τ0 00 = .

Proof.  Since uj = ξj + εj, E[ z2juj ] = E[ z2jξj ] + E[ z2jεj ]. Using the CMR that E[ξj | z1j, z2j] = 0, we

have: E[z2jξj | z1j ] = E[ E[z2jξj | z1j, z2j ] | z1j ] = E[ z2jE[ ξj | z1j, z2j ] | z1j ] = 0.

Hence, E[ z2jξj ] = E[E[ z2jξj | z1j ]] = 0. From Assumption 2, we have E[ z2jεj ] = 0. Therefore,

E mj[ ( , )]θ τ0 0 =  E[ z2j uj ] = E[ z2jξj ] + E[ z2jεj ] = 0. Q.E.D.

Based on the alternative regression model of (2.5) and the moment condition in Lemma

1, we now apply a two-step estimation procedure to obtain a SIV estimator for θ0. In the first

step, we obtain nonparametric estimators for τ10(z1j) and τ20(z1j, θ). Let

!( , )'τ θz j1 = ( ! ( ), ! ( , ))τ τ θ1 2 1z z j1j  denote the preliminary nonparametric estimator for τ0(z1j, θ)′ = (

τ10(z1j), τ20(z1j, θ)). For notational simplicity, define: G m JJ jj

J
( ) [ ( , !)] /θ θ τ=

=∑ 1
 and

G E mj( ) [ ]θ θ τ= ( , )0 . Lemma 1 guarantees that G( )θ0 0= . We choose as a SIV estimator, say 

θJ, the value which satisfies

(2.7) || GJ(θJ) || = infθ∈Θ  || GJ(θ) || + op(1/ J ),12

                                                          
11 The expectation operator E[⋅] is with respect to a distribution for Wj = (yj, xj′, z1j′, z2j′)′.
12 We let ||A|| denote the Euclidean norm of a vector or matrix A, i.e., ||A|| = (trace(A'A))1/2.
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where θ0 ∈  intΘ, a bounded subset of Rk. Under some regularity conditions, we can prove that

the SIV estimator, θJ, defined in (2.7) is consistent and asymptotically normal.

THEOREM 1: Suppose: (i) f(xj; θ) is once continuously differentiable in θ and has a square

integrable envelope;13 (ii) z1j and z2j satisfy the orthogonality condition in Assumption 2;

(iii) for any δ, inf || ( )|||| ||θ θ δ θ− > >
0

0G ;14 (iv) ||z2j|| < ∞; (v) Let J denote the number of

observations. For α > ¼, sup || ! ( ) ( )|| ( ))( z j j pj
J z z O

1 1 1 10 1 1α τ τ− = , and

sup || ! ( , ) ( , )|| ( ))( ,z j j pj
J z z O

1 2 1 20 1 1θ
α τ θ τ θ− = ;15 (vi) Γ′Γ  has full rank, where

Γ ≡ ∂ θ ∂θG( ) / '0  ; and (vii) E y z[ ( )]j 10 1j− < ∞τ 2 , and

E f x zj[ ( ; ) ( , )]θ τ θ0 0
2− < ∞20 1j . Then the SIV estimator θJ defined in (2.7) is

consistent and asymptotically normal with the covariance matrix given by Λ = (Γ′Γ )-1Γ′V

Γ(Γ′Γ )-1, where V (J= J E G E GJ Jlim [ ( )])( [ ( )])'→∞ θ θ0 0 .

The Appendix B proves Theorem 1.

3.  GENERIC EXAMPLES

In general, the projection error εj may or may not be orthogonal to z2j unless z2j is a

function of z1j. The identification condition of Assumption 1, however, will be violated if z2j is a

function of z1j. Hereafter z1j and z2j are said to be different sets of IVs if z2j is not a function of z1j.

                                                          
13 f(xj; θ) has a square integrable envelope if and only if there is f (x )j  such that

| f(xj; θ) | ≤ f (x )j  and ∫ f (x )j
2 Ρ(dxj) ≤ K < ∞, where P(dxj) is the distribution function of xj.

14 This is the identification condition. The condition in Assumption 1 is a necessary condition for this.
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The critical question on the SIV estimation procedure may be how to construct two different sets

of IVs satisfying the orthogonality condition of Assumption 2. In this section, we first provide a

sufficient condition in which two different sets of IVs satisfy the orthogonality of Assumption 2,

and then discuss two generic examples.

A sufficient condition in which two different sets of IVs satisfy the orthogonality will be:

Cov[ z2j, φ(vj) | z1j] = 0, which we will call conditional uncorrelation requirement. The

conditional uncorrelation requirement means that for the given first set of IVs z1j, the second set

of IVs z2j and the nonparametric part φ(vj) must be linearly uncorrelated. Hence this requirement

can instruct how to construct two different sets of IVs in a specific economic model, depending

on the meaning of the nonparametric part and available exogenous variables. Section 4 provides

such an empirical example.

LEMMA 2: If Cov[ z2j, φ(vj) | z1j] = 0, then E[z2jεj ] = 0.

Proof: From the filtering equation in (2.1), we have:

E[z2jεj | z1j] = E[z2jφ(vj) | z1j ] − E[z2j E[ φ(vj) | z1j ] | z1j ]

= E[z2jφ(vj) | z1j ] - E[z2j | z1j ] E[ φ(vj) | z1j ] = Cov[z2j, φ(vj) | z1j].

Therefore, if Cov[z2j, φ(vj) | z1j] = 0, E[z2jεj ] = E[ E[z2jεj | z1j] ] = 0. Q.E.D.

Now we discuss the first generic example. In the regression model of (1.4) and (1.5), we

assume: (i) xj is a vector of exogenous variables and is excluded from the nonparametric part; and

(ii) vj  = (wj′, dj′)′ where is wj ∈  Rw (w < l) is a vector of exogenous variables, and dj ∈  Rl-w is a

vector of variables correlated with ξj. dj may include ξj. Then Generic Form I can be written as:

                                                                                                                                                                            
15 Some bias-reducing multivariate normal-based kernel estimators as in Bierens (1987) can be used as such
preliminary estimators.
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(3.1) yj = f(xj; θ0) + φ(wj, dj) + ξj,

with

(3.2) E[ ξj | xj, wj ] = 0.

If (xj′, wj′)′ and dj are stochastically independent, we can construct two different sets of IVs

satisfying the conditional uncorrelation requirement as follows. We first choose z1j = wj. Then we

choose z2j = H(xj, wj) for a given function H: Rd×Rw → Rr. As discussed in section 2, it is

necessary for the identification condition of Assumption 1 that H(xj, wj) should not be a function

of only wj.

THEOREM 2: In Generic Form I described in (3.1) and (3.2), if (xj′, wj′)′ and dj are

independent, then choosing z1j = wj and z2j = H(xj, wj) for a given function

H: Rd×Rw → Rr, the conditional uncorrelation requirement, E H x w wj j j j[ ( , ) | ]ε  = 0, is

satisfied.

Proof:  The following proof is based on 2.2.10 Theorem in Florens, Mouchart and Rolin (1990).

“⇒ ” means “imply” in this proof. Suppose that A, B, and C are random variables defined on the

same sample space. If A and B are conditionally (on C) independent, we will write “A ⊥  B | C”.

The independence between (xj′, wj′)′ and dj implies:

( , ) |x ' w ' ' d wj j j j⊥  ⇒  ( , ) ( , ) |x ' w ' ' w ' d ' ' wj j j j j⊥  ⇒  H x w w d w wj j j j j j( , ) ( ( , ), )|⊥ φ

for any functions φ and H, which implies once again:

H x w w d E w d w wj j j j j j j j( , ) ( ( , ) [ ( , )| ])|⊥ −φ φ  ⇒  E H x w wj j j j[ ( , ) | ]ε  = 0,

where ε φ φj j j j j jw d E w d w= −( , ) [ ( , )| ] . Q.E.D.
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The second generic example is a case in which a vector of excluded exogenous variables

is available while the parametric function includes some endogenous variables. More

specifically, in the regression model of (1.4) and (1.5), we assume: (i) xj includes a vector of

endogenous variables; (ii) there exists a vector of excluded (from the nonparametric part)

exogenous variables, say gj ∈  Rs;16 and (iii) vj  = (wj′, dj′)′ where is wj ∈  Rw (w < l) is a vector of

(included) exogenous variables, and dj ∈  Rl-w is a vector of variables correlated with ξj. dj may

include ξj. Hence Generic Form II can be written as:

(3.3) yj = f(xj; θ0) + φ(wj, dj) + ξj,

with

(3.4) E[ξj |gj, wj] = 0.

Then choose z1j = wj and z2j = Hg(gj, wj) for a given function Hg: R
s×Rw → Rr. As

discussed in section 2, it is necessary for the identification condition of Assumption 1 that Hg(gj,

wj) should not a function of only wj.

THEOREM 3: Consider the Generic Form II described in (3.4) and (3.5). If (gj′, wj′)′ and dj are

independent, then choosing z1j = wj and z2j = Hg(gj, wj) for a given function

Hg: R
s×Rw → Rr, the conditional uncorrelation requirement, E H g w wg j j j j[ ( , ) | ]ε  = 0,

is satisfied.

The proof for Theorem 3 is similar to that of Theorem 2.

                                                          
16 In the case that f is a linear function, the identification condition requires that gj should be correlated
either with xj or with wj.
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Possible applications of Theorem 3 may include a semiparametric estimation of

structural models of dynamic oligopoly. In dynamic oligopoly, Markov perfect equilibrium is

usually adopted as a solution concept. In a Markov perfect equilibrium, some exogenous state

variables may have an arbitrarily small influence on the stream of future profits (see Fudenberg

and Tirole (1992)). In this case, the first order conditions derived from dynamic oligopoly can be

treated as an example of Generic Form II. We will detail this idea in an empirical example in

section 4.

The additive semiparametric model in Newey, Powell and Vella (1999) can be

considered a more general case than Generic Form II in the sense that it allows the influence of

excluded exogenous variables on the nonparametic part through endogenous variables. However,

the estimation procedure suggested in Newey, Powell and Vella (1999) may not be practical in

structural estimation of oligopoly. In structural estimation of oligopoly, we usually have

endogenous variables (prices or quantities) both as dependent variables and as a part of

explanatory variables. If the estimation procedure in Newey, Powell and Vella (1999) is applied

to this case, it requires preliminarily estimating reduced-form equations of endogenous variables

in order to estimate the structural-form equations of the same endogenous variables. In addition,

the preliminary reduced form estimation may suffer from the curse of dimensionality or the

specification problem in this case.

4. EMPIRICAL EXAMPLE

An example of the regression model in (1.4) and (1.5) can be derived from structural

models of dynamic oligopoly in general. Dynamic oligopoly is a situation in which firms’ price-

settings (or quantity-settings) are strategically interdependent and have durable effects on the

stream of their future profits. Dynamic oligopoly fits many industries characterized by the
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presence of network externalities, informational product differentiation, or learning-by-doing. In

the presence of network externalities or informational product differentiation, a firm’s current

output level affects its installed base or consumers’ experience utilities and thus its demands and

profits in the future. In the presence of learning-by-doing, a firm’s current output level affects its

future marginal production cost and thus profits. In this section, we discuss an empirical example

of applying the SIV estimation procedure to estimate network effects in the framework of Park

(1999).

In dynamic oligopoly, a firm makes a dynamic optimization decision, based on available

information, beliefs on the rivals’ strategies and beliefs on the evolution of the state. Usually

dynamic structural models assume rational expectations and Markov processes for the evolution

of the state variables. Let Ωt = (Xt′, ξt′,ωt′)′ denote a vector of exogenous state variables in period

t, where Xt is a vector of observable product characteristics, and (ξt′,ωt′)′  is a vector of

unobservable product and cost characteristics. In many applied microeconomics studies, the

existence and importance of the unobservable state variable have been recognized (see Rust

(1994); Bery, Levinsohn, and Pakes (1995); Park (1999)). Let Bt denote a vector of cumulative

output levels (endogenous state variables), and pt denote a vector of price levels (continuous

decision variables) in period t. Let subscript j indicate a vector of firm j’s variables, and subscript

-j indicate a vector of variables of firm j’s rivals. Hence, for example, Ωt′ = (Ωjt′, Ω-jt′). Under

some regularity conditions,17 firm j’s optimal decision rule solves for the Bellman equation:

(4.1) v(Ωjt, Ω-jt, Bjt, B-jt) = suppjt 
{ Π j(Ωt, Bt, pt; θ0) +

  β ∫ v(Ωjt+1, Ω-jt+1, Bjt+1, B-jt+1) ΡB(dBt+1|Bt, pt) ΡΩ(dΩt+1|Ωt)},

                                                          
17 For the regularity conditions, refer to Ericson and Pakes (1995) and the literature cited there.
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where Π j(⋅) is a single-period payoff function, β is the discount factor, ΡΩ (⋅|⋅) is the conditional

distribution of the next-period exogenous state vector, Ωt+1, given the current-period exogenous

state vector, Ωt, and ΡB(⋅|⋅) is the conditional distribution of the next period endogenous state

vector, Bt+1, given the current period endogenous state vector, Bt, and the current decision vector,

pt.

Then, the dynamic first-order conditions of (4.1) can be derived as follows:18

(4.2)
∂

∂
Π Ωj t t t

jt

B p

p

( , , )
 +β

∂
∂

v B B
dB B p

p
djt jt jt jt

B t t t

jt
t t( , , , )

( | , )
( | )Ω Ω

Ρ
Ρ Ω ΩΩ+ − + + − +

+
+∫ 1 1 1 1

1
1

= 0.

Ericson and Pakes (1995) provided the regularity conditions in which the dynamic optimization

behavior based on (4.2) generates a Markov perfect equilibrium. The second term on the left-

hand side of (4.2) indicates that the firm takes into account the effects of current action (e.g.,

pricing) on its own and its rivals’ future endogenous state variables (e.g., cumulative outputs)

and thus its future profit stream. Due to the effects of a firm’s current action on its rivals’ future

endogenous state variables, the envelope theorem does not hold, and thus the Euler equations can

not be generally obtained. Refer to Appendix A for a formal proof for this. A theoretical

alternative to the Euler-equations-based estimation procedure can be as follows. Using ad hoc

assumptions for stochastic specification of the evolution of state variables, we may calculate

each firm’s value functions in equilibrium for each candidate value of the parameter vector and

then search for the value of the parameter vector that maximizes the (log) likelihood function or

minimizes some distance. This alternative procedure, however, will cause a prohibitive

computational burden. Even with some simple discretization assumptions and a stochastic
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algorithm, the computational burden to calculate the equilibrium value functions for just one

candidate value of the parameter vector is usually huge (see Pakes and McGuire (1996); Benkard

(1997)).

Instead, we may derive a semiparametric regression model from the dynamic first order

conditions in (4.2). Suppose that the marginal cost function, mcj, of product j is the sum of a

hedonic function, say Γ(Xj), and an unobserved cost characteristic, ωj: mcj = Γ(Xj) + ωj. Then the

dynamic first-order condition in (4.2) leads to the following pricing equation of dynamic

oligopoly:

(4.3) p
q p

qjt
jt jt

jt jt jt= − + +
1

∂ ∂
φ ω

/
,

where φ φjt j t tB= =( , )Ω

Γ Ω Ω Ρ Ρ Ω ΩΩ( )
/

( , , , )
( | , )

( | )X
q p

V B B
dB B p

p
djt

jt jt
jt jt jt jt

B t t t

jt
t t+ −

+ − + + − +
+

+∫1
1 1 1 1

1
1∂ ∂

β ∂
∂

.

Note that prices and sales can be expressed as functions of state variables. The second term of φjt

in (4.3) is a mark-up reflecting the effects of the firm’s current price on its own and its rivals’

future cumulative outputs and thus the stream of its future profits. For a given (parametric)

demand function, - q q pjt jt jt/ ( / )∂ ∂  in (4.3) is a known function with a parameter vector.

However, since φ jt (especially its second term) is an unknown function, the pricing equation of

(4.3) is of the form of a semiparametric regression model. Indeed, this equation is an example of

our semiparametric regression model in (1.3) and (1.4) since the error term ωjt is correlated with

the nonparametric part φ jt. Note that ωjt is a part of the state vector Ωt. In addition, it is correlated

with current prices and sales in oligopoly, which may affect the producer’s future profits.

                                                                                                                                                                            
18 We assume that Π j(⋅) and ΡB(⋅|⋅) are differentiable with respect to pjt.
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Now we discuss the framework developed in Park (1999) to estimate network effects in

dynamic oligopoly. Network externalities may be understood as positive consumption

externalities: in the presence of network externalities, an increase in the number of users of a

product raises the consumer's utility level and hence the demands for that product. The number of

users is usually called a network size, and the user's benefit from the network size is called a

network benefit. In many examples of network externalities, products such as VCRs and the

computer operating systems are durable goods. In the case of durable goods, the consumer may

take into account not only the current utility but also the expected future utilities derived from

the use of a product. This dynamic concern of the consumer is represented by the consumer’s

value function in Park (1999). We consider a situation in which consumers choose a format

(VHS or Betamax in the VCR case) first and then a brand within the format. If two products are

of the same format, then they are compatible. We assume that products are differentiated. Then

in Park (1999), the consumer’s value function is derived as the sum of the (average) network

benefit and the (average) stand-alone benefit of the product. More specifically consumer i’s

(average) value function for product j of format g in period t, say Vij,t, is defined as:

(4.4) V N p Xij t gt jt j j ig ij, = − + + + + −ϕλ α ξ ζ σ ε(1 ) ,

and

N E NB | Bgt gs t t= − −

≥
∑ϕ ϕ(1 ) ]s t

s t

[ ,Ω ,

where NBgt is a single-period network benefit of format g in period t, ζ ig + (1-σ)εij is consumer

i’s idiosyncratic taste for differentiated product j of format g, ϕ is the consumer’s discount rate,

and θ0′ = (ϕλ , σ,  α′ , {Ngt}t) is the parameter vector which we want to estimate. Ngt represents the

(average) network benefit from using product j from period t on, and
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− + + + + −ϕλ ξ ζ σ εp X ajt j j ig ij(1 )  represents consumer i’s (average) utility level for the

attributes of product j. Using the nested logistic assumptions as in Cardell (1997), closed-form

demand (or market share) functions can be derived from the consumer’s value function in (4.4).

From the obtained market share functions, we derive a demand-side estimating equation.

The obtained market share functions also imply that the parametric part of the pricing equation in

(4.3) will be: }))1(1/{()1()//( / ϕλσσσ∂∂ jtgtjjtjtjt SSpqq −−−−=− , where Sjt and Sj/gt denote

product j’s market share and product j’s within-format market share, respectively. Then we have

a system of the demand-side and producer-side estimating equations as follows:

(4.5)
ln( / )

( ) / ([ ( ) ] )/

S S

p

c p X S N

S S
j

j

j j j/g g j

j g j j j

0

1 1 1









 =

− − + + + +
− − − − + +











ϕλ α σ ξ
σ σ σ ϕλ φ ω

ln
.  

Henceforth, it is understood that variables are indexed by time. Our main interest is to estimate

the network effects Ng. Since Ng is common to all products of format g, Ng and σ cannot be

identified by using the demand-side estimating equation alone. For the identification of Ng and σ,

we need the pricing equation.19

As discussed above in (4.3), the producer-side estimating equation is an example of our

generic regression model in (1.4) and (1.5). Hence we need to construct two different sets of

instrumental variables satisfying the conditional uncorrelation requirement. Since prices are

determined endogenously in oligopoly, we also need a vector of instrumental variables for the

demand-side estimating equation. We assume the stochastic independence between observable

product characteristics Xt and unobservable characteristics (ξt′, ωt′)′ and installed bases Bt:

ASSUMPTION 3: The (Xt′, ξt′, ωt′, Bt)′ vectors have the property that Xt and (ξt′, ωt′, Bt′)′ are
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stochastically independent.

Then as in Berry, Levinsohn and Pakes (1995), (Xj′, X-j′)′ can be employed as

instrumental variables for the demand-side estimating equation since a firm’s price is correlated

with its own and its rivals’ observed product characteristics. The observed product characteristics

in the VCR data of Park (1999) include high quality (HQ), number of programmable events

(events), on-screen display (osd), multichannel TV sound decoder (mts), stereo, and hi-fi.20 The

unobserved characteristic reflects the heterogeneity of VCR producers in marketing ability,

reliability of the brand, etc.

In preliminary estimations of demand-side equation alone,21 we have found that

observable product characteristics are not statistically significant in our case. Hence we suspect

that these variables can be candidates for the exogenous state variables which may have an

arbitrarily small influence on the stream of future profits. More specifically, we expect that for

the given observable product characteristics of a firm, the observable product characteristics of

the rivals (both in the same format and in the other format) may be correlated neither with the

firm’s hedonic marginal cost nor with the stream of the firm’s future profits (or mark-up). Hence

the observable product characteristics of the rivals, X -j, are treated as excluded exogenous

variables in our case. The included exogenous variables are its own observable product

characteristics, X j, in our case. The other variables, say d j as in Generic Form II, appearing in the

nonparametric part φ j include a vector of endogenous state variables (Bg, B-g)′ and a vector of

unobservable characteristics (ξ-j′, ω-j′, ξj, ωj)′ in our case. The independence assumption in

                                                                                                                                                                            
19 Refer to Berry (1994) for a more detailed discussion of this identification problem.
20 "HQ" means that the VCR provides improved picture quality; "events" indicates the number of programs
the VCR can be set to  record automatically; "osd" is a feature that makes it possible to use on-screen
commands for entering time, date, and channel of the program the user wants to tape; "mts" allows stereo
TV programs to be taped or heard in stereo; "stereo" and "hifi" are features of sound quality.
21 For example, fixing σ to be 0.8 (or other values between 0.7 and 0.95), we estimate the demand-side
equation in (4.5) alone.
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Assumption 3 guarantees the independence between (X -j, Xj)′ and dj. Hence we can select z1j = Xj

and z2j = X -j for the producer-side estimating equation as instructed in Theorem 3.

Table 1 reports the SIV estimates based on these IVs.22 We use an unbalanced firm-level

panel data for the U.S. home VCR market from year 1981 to year 1988 except year 1985.23 J

statistic in our calculation is 17.79 with degrees of freedom 12. Hence the over-identification

restriction is accepted with the significance level of 0.1, which implies the moment condition

constructed by the two sets of IVs described above is statistically valid. The within-format

correlation coefficient, σ, is significant. The estimate of the within-format correlation coefficient,

σ, is 0.805, which implies that VCRs of the same format are considered as roughly homogeneous

products. This estimate, however, is not as high as we expected, for example, 0.9 or higher since

there was almost no difference among the different brand VCRs of the same format in

performance or features.24 Prices are in $10,000 units and deflated by the Consumer Price Index.

The parameter of ‘price’ is significant with the significance level of 0.07 but has a very small

estimated value. All product characteristics turn out to be insignificant as in the preliminary

estimations. Based on the very low value of the price parameter and the insignificant estimates of

product characteristics, we can infer that the differences among the brands within a format are

caused by the heterogeneity of VCR producers in marketing ability, reliability of the brand, etc.,

which is reflected in the unobserved product characteristic of our structural regression model. All

                                                          
22 In the actual calculation, we use matrices of first-order polynomial basis functions of instrumental
variables. Pakes (1994) showed that the dimension of the basis for polynomials of a given order is
independent of the number of products, if the equilibrium is “partially exchangeable” (that is, exchangeable
in the state vectors of a product’s competitors). We assume the following two forms of exchangeability: (i)
exchangeable in the order of the competing formats, and (ii) for a given format, exchangeable in the order
of competing products. In our case, there are two formats, VHS and Betamax, and 6 observed product
characteristics. In addition, we add the number of producers in each format as IVs. Hence we have 20
demand-side IVs and 14 producer-side second-set IVs.
23 Refer to Park (1999) for the detailed description of the data set.
24 As argued in Berry (1994), the within-format correlation coefficient approaches 1 as the within-format
correlation of utility levels goes to 1.
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the dummy variables for network effect and a constant term in each year (Ng –c in (4.5)) are

significant.

Park (1999) showed that the logarithm of the relative sales (log relative sales, hereafter)

of the two formats can be decomposed into the sum of two differences as follows:

(4.6) ln( / )q qv b = ][]ln())[ln((1
)/(1)/(1

bvJjJj
NNee

b

j

v

j −+−− ∑∑ ∈

−

∈

− σδσδσ ,

where v denote VHS and b denote Betamax. The first term of the right-hand side in (4.6), if it is

positive, represents the price/quality advantage of VHS over Betamax, while the second term

stands for the network advantage of VHS over Betamax. Using the estimates of Ng –c for each

format in each year, we can calculate the ratio of network advantage of the VHS format over the

Betamax format (Nv – Nb) to log relative sales of the VHS format to the Betamax format (log(qv /

qb)) in each year as reported in Table 2. Table 2 indicates that the network advantage of VHS

explains 70.3% to 86.8% of the log relative sales of VHS to Betamax in each year. These

numbers indicate: during the years of 1981-1988, the network advantage of VHS was the key

reason that VHS outsold Betamax in the U.S. home VCR market. Park (1999) proceeded further

to conclude that the network advantages of VHS over Betamax were due to VHS’s larger

installed base, average price advantage, bigger lineups induced by entry and exit.

5. CONCLUDING REMAKS

This paper posits a semiparametric regression model in which the error term is correlated

with the nonparametric part and discusses conditions to obtain a semiparametric estimator, called

SIV estimator, with consistency and asymptotic normality. Then the paper provides two generic

examples and an empirical example of the application of the SIV estimation procedure. The
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empirical example shows that the SIV estimation procedure can be applied to some structural

models of dynamic oligopoly in order to avoid a prohibitive computational burden of calculating

each firm’s value functions in equilibrium for each candidate value of the parameter vector.

APPENDIX A

PROPOSITION:  The Euler equations cannot be generally obtained in the presence of strategic

interdependence.

Proof:  We will consider the following simple, deterministic case. The proof for a general,

stochastic case is similar. Suppose that there are two firms, 1 and 2, which are strategically

interdependent. Let (y1, y2) be a vector of firm 1’s and firm 2’s actions, and (x1, x2) be a vector of

firm 1’s and firm 2’s state variables. As a simplest case, assume that yi will be firm i’s state

variable in the next period. Then under some regularity conditions, firm 1’s value function solves

for the Bellman equation:

v x x F x y y v y yy( , ) max [ ( , , ) ( , )]1 2 1 1 2 1 21
= +β .

Let g1(x1, x2) and g2(x1, x2) be the optimal decision rules for firm 1 and firm 2, respectively. For

notational simplicity, let Fi and vi denote the partial derivatives of F(⋅) and v(⋅) with respect to the

ith element, respectively.

Then, the first order conditions are:

(A.1) F x g x x g x x v g x x g x x2 1 1 1 2 2 1 2 1 1 1 2 2 1 2 0[ , ( , ), ( , )] [ ( , ), ( , )]+ =β .
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The envelope condition is not satisfied because

(A.2)   v x x F x g x x g x x1 1 2 1 1 1 1 2 2 1 2( , ) [ , ( , ), ( , )]= +

F x g x x g x x
g x x

x
F x g x x g x x

g x x

x2 1 1 1 2 2 1 2
1 1 2

1
3 1 1 1 2 2 1 2

2 1 2

1

[ , ( , ), ( , )]
( , )

[ , ( , ), ( , )]
( , )∂

∂
∂

∂
+

 + +β
∂

∂
∂

∂
{ [ ( , ), ( , )]

( , )
[ ( , ), ( , )]

( , )
}v g x x g x x

g x x

x
v g x x g x x

g x x

x1 1 1 2 2 1 2
1 1 2

1
2 1 1 2 2 1 2

2 1 2

1

= F x g x x g x x1 1 1 1 2 2 1 2[ , ( , ), ( , )]+

{ [ , ( , ), ( , )]F x g x x g x x3 1 1 1 2 2 1 2 + β
∂

∂
v g x x g x x

g x x

x2 1 1 2 2 1 2
2 1 2

1

[ ( , ), ( , )]}
( , )

.

Note that ∂g1(x1, x2) / ∂x1= 0. Now set x1 = x1t, x2 = x2t, g1(x1, x2) = g1(x1t, x2t) = x1t+1 and g2(x1, x2) =

g2(x1t, x2t) = x2t+1 in (A.1) to obtain

F x x x v x xt t t t t2 1 1 1 2 1 1 1 1 2 1 0( , , ) ( , )+ + + ++ =β ,

and set x1 = x1t+1, x2 = x2t+1, g1(x1, x2) = g1(x1t+1, x2t+2) = x1t+2 and g2(x1, x2) = g2(x1t+1, x2t+1) = x2t+2 in

(A.2) to obtain

           v x xt t1 1 1 2 1( , )+ + = F x x xt t t1 1 1 1 2 2 2[ , , ]+ + + + { [ , , ]F x x xt t t3 1 1 1 2 2 2+ + + + β
∂
∂

v x x
x

xt t
t

t
2 1 2 2 2

2 2

1 1

( , )}+ +
+

+

.

Eliminating v x xt t1 1 1 2 1( , )+ +  between these two equations then gives:

(A.3) F x x xt t t2 1 1 1 2 1( , , )+ + + βF x x xt t t1 1 1 1 2 2 2[ , , ]+ + + +
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β{ [ , , ]F x x xt t t3 1 1 1 2 2 2+ + + + β
∂
∂

v x x
x

xt t
t

t
2 1 2 2 2

2 2

1 1

0( , )}+ +
+

+

= .

Due to the interaction term, (A.3) is not the Euler equation. Q.E.D.

APPENDIX B

Let Wj′ = (yj, xj′, z1j′, z2j′).  Suppose that {Wj}j = 1, 2, … is a random draw. For technical

reasons, we first redefine mj(⋅) of (2.6) over Θ, a bounded subset of Rk, as follows:

m W z y z f zj j j j( , !) ( ) { ! ( ) ( ; ) ! ( , )}θ τ ζ τ θ τ θ= − − +2 1 1j j 2 1jx ,

where ζ ( )Wj =  1 if W Wj ∈ * and = 0 otherwise, and W* is an open bounded set with a

minimally smooth boundary.25 For notational simplicity, let mj(θ) = mj(θ, τ0). Then

(B.1) m mj j( , !) ( ) ! }θ τ θ τ τ= − − +z { (z ) (z )2j 1 1j 1j10 z { (z , ) (z , )2j 2 1j 1j
! }τ θ τ θ− 20 .

In the following proofs of consistency and asymptotic normality of the SIV estimator, θJ, defined

in (2.7), it is assumed that Pr( !τ  ∈  T) → 1 as J → ∞, where T is a family of functions with

bounded derivatives up to a certain order as required below. The following proof of Theorem 1

can be considered a special case of Pakes and Olley (1995).

                                                          
25 ζ(Wj) is called a trimming function. All functions in consideration are assumed to be defined on W*, and
constant elsewhere. Andrews (1995, section 4.3) discussed the tradeoff between the smoothness condition
and stochastic equicontinuity conditions.
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B.1. Proof of Consistency

Selecting proper bandwidths, we derive bias-reducing multivariate normal-based kernel

estimators, say ! ( )τ1 1z j  and ! ( , )τ θ2 1z j , satisfying the condition (v) of Theorem 1, which implies:

sup || ! ( ) ( )|| ( ))(z 1 1j 1j1j
z zτ τ− =10 1Op  and sup || ! ( , ) ( , )|| ( ))(z , 2 1j 1j1j

z zθ τ θ τ θ− =20 1Op . Together

with these results, the conditions (i) and (iv) of Theorem 1 imply that mj ( , !)θ τ  in (B.1) is once

continuously differentiable in θ and has a square integrable envelope. Since the family {mj(θ)} is

Euclidean for an integrable envelope,26 we have: sup ||θ θ θGJ ( ) - G( )|| =

sup || ( , !) [ ( )]||θ θ τ θJ m E mj jj

− −∑1  ≤ sup || ( ) [ ( )]||θ θ θJ m E mj jj

− −∑1  +

|| ! }||J
j

− −∑1 10z { (z ) (z )2j 1 1j 1jτ τ  + sup || ! }||θ τ θ τ θJ
j

− −∑1 20z { (z , ) (z , )2j 2 1j 1j  = op(1), which,

together with the condition (iii) of Theorem 1, implies that the SIV estimator, θJ, defined in (2.7)

is a consistent estimator.27 Q.E.D.

B.2. Asymptotic Normality

Now we discuss the conditions for asymptotic normality of the SIV estimator, θJ, defined

in (2.7). First of all, we need stochastic equicontinuity of the following empirical processes:28

     ν τ τ τ τ τ1J 1 1j 1j 1 1j 1jj
{ (z ) (z ) (z ) (z )( ) [ ]}1 10 10

1
= − − −∑

J
E  at τ10 ,

                                                          
26 A family is Euclidean if it is differentiable in its index set which is bounded.
27 For details, refer to Corollary 3.2 in Pakes and Pollard (1989).
28 An empirical process, say υJ(δJ), defined on a metric space is called stochastically equicontinuous with
respect to its index set if for any two sequences of random indices, say δ1J and δ2J, we have υJ(δ1J) - υJ(δ2J) =
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and     

ν τ θ τ θ τ θ2J 2 1j 1jj
{ (z , ) (z ,( , ) )2 20

1
= − −∑

J
E[ ]}τ θ τ θ2 1j 1j(z , ) (z , )− 20  at ( , )τ θ20 0 .

A sufficient condition for stochastic equicontinuity of a family of functions is that the family has

a square-integrable envelope and satisfies Pollard’s entropy condition (see Andrews (1994(b)).

Both the existence of square-integrable envelopes and Pollard's entropy conditions for each of

the families of {τ τ1 1j 1j(z ) (z )− 10 } and {τ θ τ θ2 1j 1j(z , ) (z , )− 20 } can be ensured by the proper

choice of the bias-reducing multivariate normal based kernel estimators. More specifically, these

kernel estimators should have rates of convergence greater than ¼ as specified in the condition

(v) of Theorem 1. Then we have:

(B.2) JG VJ ( ) ( , )θ0 0d N → .

A proof of (B.2) is as follows:

Proof: From (B.1), we have:

JG J ( ) ( , !)θ θ τ0

1
= =∑

J
mjj

1
0 10

J
mj[ z (z ) (z )2j 1 1j 1jj

( ) { ! }θ τ τ− − +∑ z (z , ) (z , )2j 2 1j 1j{ ! }]τ θ τ θ0 20 0− .

                                                                                                                                                                            
op(1) whenever || δ1J - δ2J|| = op(1). For a good overview of stochastic equicontinuity with applications to

econometrics, refer to Andrews (1994(b)).
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Let g z1 j 10 1j( ) [ ( )]W yj = −τ , and g z2 20 1j( ) [ ( ; ) ( , )]W f xj j= −θ τ θ0 0 . Then

E g Wi j[ ( )] = 0  and E g Wi j[ ( ) ]2 < ∞ 29, for i = 1 and 2. Using the stochastic equicontinuities of

ν1J(τ10) and ν2J(τ20, θ0), we have:

1

J
(z ) (z )

1

J
g W1 1j 1jj 1 jj

{ ! } ( ) ( )τ τ− = +∑ ∑10 1op ,

and

1

J
(z , ) (z , )

1

J
g W2 1j 0 1j 0j 2 jj

{ ! } ( ) ( )τ θ τ θ− = +∑ ∑20 1op .

Hence, JGJ ( )θ0 =
1

J
[ (W ) (W )]1 j jj
m g g oj p( ) ( )θ0 2 1+ + +∑ . Since the family {mj(θ0)} is

Euclidean for an integrable envelope, JG J ( )θ0  has an asymptotic Normal distribution by the

Lindberg-Levy central limit theorem. Consequently, the covariance matrix V can be calculated as

follows:

V z V z2j 0 2j= E[ ' ] ,

where

V g W g W W W z0 j 1 j 2 j j 1 j 2 j 2j= + + + +E g g[{ ( ) ( ) ( )}{ ( ) ( ) ( )}'| ]ρ θ ρ θ0 0

with ρ θ τ θ τ θj j jy z f x z( ) ( ) ( ; ) ( , )0 0 0= − − +10 1j 20 1j .  Q.E.D.

Based on the result in (B.2), we can follow the Appendix A.2 of Andrews (1994) to

prove that the SIV estimator, θJ, defined in (2.7) satisfies:

                                                          
29 Refer to condition (vii) of Theorem 1.
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 J   V  J( ) ( , ( ' ) ' ( ' ) )θ θ−  → − −
0

1 10d N Γ Γ Γ Γ Γ Γ .
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