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Abstract

This paper analyzes the equilibrium dynamics of an AK-type endogenous
growth model with vintage capital. The inclusion of vintage capital leads
to oscillatory dynamics governed by replacement echoes, which additionally
intuence the intercept of the balanced growth path. These features, which
are in sharp contrast to those from the standard AK model, can contribute to
explaining the short-run deviations observed between investment and growth
rates time series. To characterize the convergence properties and the dynamics
of the model we develop analytical and numerical methods that should be of
interest for the general resolution of endogenous growth models with vintage
capital.
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1 Introduction

This paper focuses on the equilibrium dynamics of an AK-type endogenous growth
model with vintage capital and non-linear utility. Several important considerations
warrant the analysis of vintage capital growth models. First, vintage capital has
become a key feature to be incorporated in growth models toward a satisfactory
account of the postwar growth experience of the United States.! Second, most of
the theoretical literature on this ground [e.g. Aghion and Howitt (1994), Parente
(1994)] only focuses on the analysis of balanced growth paths. One of the main rea-
sons underlying this circumstance is that dynamic general equilibrium models with
vintage technology often collapse into a mixed delay dicerential equation system,
which cannot in general be solved either mathematically or numerically.? Finally, it
has been of some concern to us how vintages determine the long-term growth of an
economy and the transitional dynamics to a given balanced growth path. A precise
characterization of the role of vintages in the determination of the growth rate is
still an open question in modern growth theory.

This paper proposes a ..rst attempt towards the complete resolution of endoge-
nous growth models with vintage capital. In doing so we incorporate a simple
depreciation rule into the simplest approach to endogenous growth, namely the AK
model. More precisely, by assuming that machines have a ..nite lifetime, the one-
hoss shay depreciation assumption, we add to the AK model the minimum structure
needed to make the vintage capital technology economically relevant. This small de-
parture from the standard model of exponential depreciation modi..es dramatically
the dynamics of the standard AK class of models. Indeed, convergence to the bal-
anced growth path is no longer monotonic and the initial reaction to a shock acects
the position of the balanced growth path.

The .nding of persistent oscillations in investment is somewhat an expected
result once non-exponential depreciation structures are incorporated into growth
models. However, a complete model speci..cation is needed to precisely characterize
how the endogenous growth rate is acected by the determinants of the vintage struc-
ture of capital as well as to analyze the role of replacement echoes for the short-run
dynamics. To achieve these results it turns out to be useful to proceed in two stages.
We start by specifying a Solow-Swan version of the model where explicit results can
be brought about. Then, we incorporate our technology assumptions into an oth-

LFor a recent review see Greenwood and Jovanovic (1998). Of course a similar growth experience
should be found in most OECD countries, but it appears that still there are no systematic studies
of the relevant evidence.

2There exist some well-known exceptions. First of all, Arrow (1962) proposes a vintage capital
model in which learning-by-doing allows for a capital aggregator. Thus, integration with respect
to time can be substituted by integration with respect to knowledge and explicit results can be
brought out. A second example is provided by Solow (1960), where each vintage technology has a
Cobb-Douglas speci..cation. Under this assumption, it is also possible to derive an aggregator for
capital.



erwise standard optimal growth framework. There are important insights we get
from the Solow-Swan version of the model that we apply and extend in character-
izing analytically the dynamics in the optimal growth version.® In solving for the
Solow-Swan version of the model we are close to the strategy proposed by Benhabib
and Rustichini (1991) since the vintage capital structure can be reduced to delayed
dicerential equations with constant delays. However, the optimal growth version
of the model requires an alternative strategy since the dynamic system augments
to a mixed delayed-dicerential equation system. We have the advantage that some
stability results can be proved in our setting though. In light of these results we are
able to overcome the simultaneous occurrence of state dependent leads and lags by
operating directly on the optimization problem without using the optimality condi-
tions. We develop a numerical procedure that allows us in addition to deal with the
important issue of the indetermination in levels that arises in an endogenous growth
framework. Consequently, the analytical and numerical methods we present should
be of interest in related applications.

Besides the methodological contribution there are some features we can learn
from the AK vintage capital growth model, notwithstanding its simplicity as a theory
of endogenous growth. First, with respect to the relevance of the AK model for the
endogenous growth literature it is worth to say that the more precisely empirical
evidence is revised the more the theory does not appear to be inconsistent with
available data.* Second, and related, in particular for vintage capital we can build
a case in favor of AK theory as far as deviations in trends of investment rates and
growth rates are consistent with the patterns in postwar data, a testable prediction
of our model speci..cation. Finally, more elaborated theories of endogenous growth
might be discussed as having constant social returns to capital as a limiting case. A
lot of our procedures should be at work when reducing the level of aggregation by
thinking more carefully about the economics of technology and knowledge.

The paper is organized as follows. We ..rst specify in Section 2 the AK one-
hoss shay depreciation technology. In Section 3, we solve for the constant saving
rate growth model, we characterize the balanced growth path and we prove non-
monotonic convergence. An example is provided to explain the main economic
properties of this type of model. In Section 4, the same type of analyses is carried
out in the context of an optimal growth model. In Section 5, we show that a model
with vintages of physical and human capital has the same reduced form that the

3 As emphasized in Boucekkine, Germain and Licandro (1997), there are important dicerences
between a Solow and a Ramsey formulation of the vintage capital exogenous growth model, at
least in the short-medium run.

“The AK class of models has been criticized as having little empirical support its main as-
sumption: the absence of diminishing returns. This critique vanishes once technological knowledge
is assumed to be part of an aggregate of dizerent sorts of capital goods. More serious critiques
analyze the testable predictions of this type of models [e.g. Jones (1995)]. However, such criti-
cisms are themselves diC¢cult to support when versions of the model and the data are compared
appropriately [cf. McGrattan (1998)].



simple AK model, but it provides an explanation of growth in terms of embodied
technological progress. Section 6 concludes.

2 The technology

We propose a very simple AK technology with vintage capital:

YA t
y(®) =A i(z) dz; )
ti T

where y(t) represents production at time t and i(z) represents investment at time
z, which corresponds to the vintage z. As in the AK model, the productivity of
capital A is constant and strictly positive, and only capital goods are required to
produce. Machines depreciate suddenly after T > 0 units of time, the one-hoss shay
depreciation assumption. As we show below, the introduction of an exogenous life
time for machines changes dramatically the behavior of the AK model.

Technology (1) has some interesting properties. First, let us denote by k(t) the
integral in the right hand side of (1). It can be interpreted as the stock of capital.
Dizerentiating with respect to time, we have

K'(t) = i(t) i £(Dk(D);

where £(t) = i(ligt;): In the standard AK model, the depreciation rate is assumed to
be constant. However, in the one-hoss shay version, the depreciation rate depends
on delayed investment, which shows the vintage capital nature of the model. In-
deed, non-exponential depreciation schemes should be seen as a generalization of the
classical view of capital. This view is related to the standard model of exponential
depreciation and dramatically reduces the possible dynamics that an optimal growth
model can describe.

Secondly, this speci..cation of the production function does not introduce any
type of technological progress. However, as in the standard AK model, the fact that
returns to capital are constant results in sustained growth. Consequently, we have an
endogenous growth model of vintage capital without (embodied) technical change.
Notice that, even if vintage capital is a natural technological environment for the
analyses of embodied technical progress these are two distinct concepts. Section 5
provides an interpretation of equation (1) in terms of human capital accumulation,
that gives place to some type of embodied technological progress.



3 A constant saving rate

Let us start by analyzing an economy of the Solow-Swan type, where the saving
rate, 0 < s < 1, is supposed to be constant. The equilibrium for this economy can
be written as a delayed integral equation on i(t), i.e., 8t _ 0;

yA t
i(t) =sA i(2) dz 2
ti T
with initial conditions i(t) = ip(t) . O for all t 2 [§T;0[. By dizerentiating (2),
we can rewrite the equilibrium of this economy as a delayed dicerential equation
(DDE) on i(t), 8t _ 0;

') =sA®® ii(tiT)) 3
with i(t) =ig(t) _ Oforallt2[§T;0[ and
z
i(0) =sA i i0(z) dz: 4)
iT

From the de..nition of technology in (1), we know that changes in output depend
linearly on the dicerence between creation (current investment) and destruction (de-
layed investment). Since investment is a constant fraction of total output, changes
in investment are also a linear function of creation minus destruction, as speci..ed
in equation (3). This type of dynamics are expected to be non monotonic and to be
governed by echo ewects.

3.1 Balanced growth path

A balanced growth path solution for equation (2) is a constant growth rate g & O,
such that

i ¢
g=sA'lj eid ; 5)

In what follows, g = g(T) refers to the implicit BGP relation, in (5), between g
and T, for given values of s and A.

Proposition 1 g > 0 exists and is unique iif T > SLA
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Figure 1: Determination of the growth rate on the BGP

Proof. From (5), we can write for g >0
1
H(g) = —;
@ =&

where H(g) ~ 1—!‘;—“ By I'Hopital rule, we can prove that limgso+ H(g) = T.
Moreover, limgy 1 H(g) = 0: Additionally, H'(g) = (1*9T)g—§gT'l < 0, because the
numerator h(g) ~ (1+gT) ei9 j 1issuch that h(0) = 0and h’(g) = jgT?ei?" <0
iif g > 0: Consequently, as it can be seen in Figure 1, if T > . there exits a unique
g > 0 satisfying (5). B

In what follows, we impose the restriction on parameters T > i. Notice that
a machine produces AT units of output during all its productive live and, given
individuals’ saving behavior, produces sAT units of capital. To have positive growth
each machine must produce more than the one unit of good needed to produce it,
i.e., SAT should be greater than one.

e 1 09 0g ag i
Proposition 2 Under T > &, 2, ga and 57 are all positive

Proof. As we can see in Figurcﬂa 1, the two ..rst results are immediate. Notice that

for any g >0, L0 > Liet™ jf T > T'. Then, we can still use Figure 1 to see
0

that a proof for @—$ > 0 is immediate. &

Therefore, as it is shown in Figure 2, there is a positive relation between the
lifetime of machines and the growth rate. Since machines from all generations are

6
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Figure 2: The BGP growth rate

equally productive, an increase on T is equivalent to a decrease in the depreciation
rate in the AK model, which is positive for growth. Indeed, as T goes to in..nity,
g(T) is bounded above by sA which is the limit case for the AK model with zero
depreciation rate: (5) reduces to g = sA. It turns out to be the case that property
g-? > 0 is crucial for the statement of the stability results below. Finally, the positive
eaect on growth of both the saving rate and the productivity of capital are obvious
and they are present in the AK model as well.

With respect to the average age of capital, let us de..ne it as:

Z, .
m(t) = (tiz) Rt'i dz;
tiT ;7 1(2) dz

that is, a weighted average of the ages of active vintages, the weights being equal
to the relative participations of the successive active vintages in the total operating
capital.

Under the BGP assumption that i(t) grows at the rate g, we can easily compute the
BGP value for the average age:

1 Teidl
m—g i m, (6)

and show that, for a given T, the average age of capital is negatively related to the
growth rate. Notice that when T = 1, (6) reduces to the AK model with zero
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depreciation rate, where m = 1. In this case, the average age of capital is negatively
related to the growth rate. The reason is straightforward: given T and for a greater
growth rate, the weight of new machines is larger and then the average age of capital
is smaller. More in general, in the standard optimal growth model, if investment is
growing at a constant rate on the BGP, there should be a negative relation between
the average age of capital and the growth rate.®

3.2 Investment and output dynamics
3.2.1 Theoretical results on stability

In analyzing the stability properties of the DDE equation (3) we make use of a
result in Hayes (1950).° Let us de..ne detrended investment as §(t) = i(t) eidt.
From equations (3) and (5), we can show that

fO=(Ai09) KO idtiT): ™
Proposition 3 For g > 0 all the nonzero roots of (7) are stable

Proof. The characteristic equation associated to (7) is
zi(SAig)+(GAGgeiT =0

By de..ning z = 2T we obtain Hayes form: pe* jpjze*=0,withp ™ (sAjg)T.
Consequently, in our case as in Benhabib and Rustichini (1991, example 4),z =0 is
a root. For the remaining roots to have strictly negative real parts, we must prove
p < 1. From (5), it can be easily shown that (SA j )T = sAT ei9". Moreover, the
..rst derivative of the implicit function g(T) in (5) is

0Ty — sgTeidT
90 = 17 sATer
which is strictly positive by Proposition 2. g'(T) > 0 implies p < 1, which completes
the proof. m

Given that the characteristic equation has only z = 0 as a real root, the economy
converges to the long-run growth trend by oscillations.’

5Consequently, the Denison (1964) claim on the unimportance of the embodied question is
per-se irrelevant.

5The basic Hayes theorem (see Theorem 13.8 in Bellman and Cooke, 1963) is a set of two
necessary and su€cient conditions for the real parts of all the roots of the characteristic equation
to be strictly negative. See also Hale (1977, p. 109) for a complete bifurcation diagram for scalar
one delay DDEs.

"Note that 2 = jg is also a root of the characteristic function of the DDE describing detrended
investment dynamics. It corresponds to constant solution paths for i(t). Since under Proposition
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3.2.2 Numerical resolution of the dynamics

The DDE (7) can be solved using the method of steps described in Bellman and
Cooke (1963, p. 45). To this end, we now single out a numerical exercise by choosing
parameter values as reported in Table 1. In the BGP, the growth rate is equal to
0.0296. Concerning initial conditions, we have assumed io(t) = e%! for all t < 0,
go = 0:0282. Exponential initial conditions are consistent with the economy being in
a dicerent BGP before t = 0. In this sense, this exercise is equivalent to a permanent
shock in s, A or T, which increases the BGP growth rate in a 5%. The nature of
the shock has no exect on the solution, but it associates to ip(t) dicerent output
histories. Figures 3 and 4 show the solution for detrended output and the growth
rate. It is worth to remark that alternative speci..cations of initial conditions should
have consequences for the transitional dynamics.

Table 1: Parameter values

S A T g do g
0.2751 0.30 15 1 0.0282 | 0.0296

A .rst important observation, from Figure 4, is that the growth rate is non
constant from t = 0, as it is in the standard AK model. It jumps at t = 0,
is initially smaller than the BGP solution, increases monotonically over the ..rst
interval of length T and has a discontinuity in t = T. After this point the growth
rate converges to its BGP value by oscillations. The behavior of the growth rate
in the interval [0; T[, observed in Figure 4, is mathematically established in the
following proposition:

Proposition 4 If go < g, then

(@ 9 <9(0) <y

() ¢'(t) >0 forallt2[0;T[

(c) g(t) is discontinuous at t =T
(d) g i g(0) is increasing in g

The Proposition is proved in the Appendix.

A permanent shock in A or in T makes output to jump at t = 0, thus investment
also jumps. A permanent shock in s does azect investment directly. We have an
equivalent jump in the AK model: under the same initial conditions but T = 1,

1, g > 0, the latter solution paths are incompatible with the structural integral equation (2), so
that we have to disregard the this root.
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Figure 3: Constant saving rate: Detrended output
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Figure 4. Constant saving rate: The growth rate
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go < g iif SoAg < A, then i(0) = 3£ > %% =1 = i;. Investment jumps in order to
allow the growth rate of the capital stoclg< to jump at t =0.

Output at t = 0 is totally determined by initial conditions for investment. More-
over, the level of the new BGP solution depends crucially on the initial level of
output. Since the adjustment is not instantaneous, the evolution of output on the
adjustment period also infuences the output level on the BGP as we can observe in
Figure 3.

Finally, we perform numerical exercises for dicerent values of the parameters.
They indicate that the pro..le of both detrended output and the growth rate do not
depend on go (of course, if go > g the solution pro..le is inverted but symmetric)
orons, A or T, provided that condition T > SLA holds. The speed of convergence
is always the same. Only the initial jump on the growth rate, the BGP level of
detrended output and the amplitude of fuctuations depend on these parameters.
As stated in part (d) of Proposition 4, the greater is g with respect to g, the larger
the distance between g(0) and g. When the permanent shock is important, the
economy starts relatively far from the BGP growth rate and, even if the speed of
convergence is always the same, this initial distance reduces the level of the BGP.
Consequently, the greater is a positive shock, the larger is the slope of the BGP but
the smaller is the intercept.

4 The optimal growth model

In the previous section, we have fully characterized the dynamics of the one-hoss
shay AK model under the assumption of a constant saving rate. Under the same
technological assumptions, in this section we generalize these results for an optimal
growth model. Let a planner solve the following problem:

Z i%
Max Olcl(t)i—l;/:eim dt (8)
s.t.
yA t
y(t) = A - i(z) dz: D
c(t) +i(t) = y(b): )
0 (M vy

and given i(t) = ig(t) _ Oforall t 2 [§T;0[; with parameters %> > 0 and % > 0,
% & 1. c(t) represents consumption. The optimal conditions for this problem are:

11



YO i @) =A® (10)

Ve Z t+T Ve
A) ei™t = A A@z) 1" dz; (11)

t

where A(t) is the Lagrangian multiplier associated to the feasibility constraint.

Equation (11) says that at the optimum the cost of investment should be equal to
its discounted Fow of bene...ts, both evaluated at the marginal value of consumption.

4.1 Balanced growth path

From the previous equations, and assuming that y(t) =y e% and i(t) =i e,y >0
and i > 0, we obtain:

- , ¢
Yg+h=A'1;j eie+dT (12)

i . ¢
gzlAlli eidl . (13)
y
Notice that equation (13) is equivalent to (5) if i = s. However, g is determined in
equation (12), given the parameters %, %, A and T, and (13) determines the ratio
i. In what follows, we still use the notation g = g(T) to refer to the equilibrium

relation between g and T implicit now in equation (12).
Proposition 5 If H(%) > £, then g > 0:

Proof. Using the function H(x) ~ LXXT) whose properties were analyzed in

the proof of Proposition 1, we can easily show that this proposition is true. B

From equation (13), we know that if % and % are such that 1 = s in the BGP, for
s de..ned in the previous section, the BGP of the optimal growth model is identical
to the BGP of the constant saving rate model. Moreover, as a direct consequence of
Proposition 2, it can be easily checked that g(T) > 0, as in the Solow-Swan version
of the model.

The condition (1 j %)g <% is needed for utility to be bounded along the BGP.
Under this condition, it can be shown that # < 1. Along the BGP the saving rate
should be strictly smaller than one.

12



4.2 Investment and output dynamics
4.2.1 Theoretical results on stability

Notice that condition (11) only depends on the Lagrangian multiplier A(t), which
grows at the rate j¥%g on the BGP. Let us de..ne x(t) ~ A(t) "9t and rewrite (11)
as
Z ot
x(t) ef eIt = A X(z) e1 097 dz: (14)
t

This advanced integral equation is forward looking and forms a top block of the
system, implying that the detrended marginal value of consumption, x(t), can be
solved ..rst. By dizerentiating (14), we get the following advanced dicerential equa-
tion (ADE):

X(t) =" (x(t+T) i x(1)); (15)

-

where = A j %g i %, strictly positive for (12). In analyzing the stability of the
ADE (15) we build upon similar arguments as in Section 3.2.1.

Proposition 6 x(t) = x constant, for all t _ 0, is the only stable solution of (15)

Proof. The characteristic equationisz j ~ €T + =0 and de..ning z = j zT we
can easily obtain Hayes’ formwithp = T ~ jg. This implies a stability condition
~T < 1 which it can be easily checked it is equivalent to g°(T) > 0. Note this result
is obtained for jz so that all the roots but z = 0 have strictly positive real parts. B

Moreover, since x(t) has to converge to (y i i)i%, Proposition 6 implies x(t) =
(y j i)i* for all t _ 0. Detrended consumption is also constant and equal to
c(t) = ¢ 7 xi¥  The value of ¢ is determined by the initial conditions. The
optimality of this result is straightforward. The block recursive structure of the
problem allows the planner to choose detrended consumption without any restriction
other than (14). It seems obvious that, from concavity of the utility function, he
must prefer a constant detrended consumption path. Observe that, irrespective of
the value of the intertemporal elasticity of substitution, the planner always chooses a
constant detrended consumption, as it does in the standard AK model. However, in
our model he needs to let the saving rate to fuctuate to compensate for fuctuations
in output due to echo exects.

To analyze the transitional dynamics of detrended production and investment,
we need to solve equations (1) and (10) jointly with the de..nition of x(t) and the
solution x(t) = x. Before doing that, let us de..ne (t) = y(t) ei% and {(t) = i(t)
eidt, By combining (1) and (10), the de..nition of x(t) and Proposition 6 , we can
show that the dynamics of detrended investment are given by:

13



PO =i9c+A PN T Al {tiT) (16)

with initial conditions {(t) = io(t) ei9 for all t 2 [ T; 0[ and §(0) = y(0) i c, where
YA 0
y(0) =A i0(z) dz:

iT

Since the constant jgc adds only constant partial solutions, the stability of de-
trended investment depends upon the homogeneous part of equation (16).

Proposition 7 Any stable solution of the DDE (16) has the form:

<
=0+ cey
r2Es
where { = zosror, Es is the set of stable roots of the characteristic function of

the homogenous part of the DDE (16), and ¢, are constant terms determined by the
initial conditions.

The general solution form stated above is merely an application of the superpo-
sition principle to the non-homogenous DDE (16). £ is a constant solution of the
DDE and s, are the roots of f(z) =z j (A g)+Aei? ei?T which turns out to be
the characteristic function of the homogenous part of the DDE (16). The expansion
representation of the stable solutions of the homogenous part of (16) is an applica-
tion of Theorem 3.4 in Bellman and Cooke (1963). Note that the expansion involves
constant terms c, because the roots of f(z) are all simple. Indeed, a multiple root
arises if and only if f(z) = f%(z) = 0. It is trivial to show that this situation cannot
occur in our case. On the other hand, one can put the characteristic function f(z)
into the form of Hayes with p = (A j g)T and jq ~ ATei9". Since equation (13)
can be rewritten as (A j #)T = ATei9 = jq, it turns out that p > jq as far as
the long run saving rate is strictly lower than one. Hence, one of the two necessary
and su€cient conditions of Hayes theorem does not hold and the characteristic func-
tion admits generally both stable and unstable roots. For stability requirements (of
detrended investment), we rule out the unstable roots. But still the constant terms
¢, and the consumption term ¢ cannot be fully determined if no initial function
(), t2[§T;0[ is speci..ed. But even if the latter function was speci..ed, we would
not be able to compute analytically the solution paths since this would require the
computation of the entire set of the stable roots of function f(z), which is typically
in..nite. So we resort to numerical resolution.

14



4.2.2 Numerical resolution of the dynamics

The computational procedure that we use to ..nd the equilibrium paths of the opti-
mal growth model is of the cyclic coordinate descent type (see Luenberger (1973),
p. 158) and operates directly on the optimization problem. It is an extension
of the algorithm proposed by Boucekkine, Germain, Licandro and Magnus (1999).
The Appendix contains a description of the algorithm used to compute the opti-
mal solution. Roughly, it consists of ..nding a ..xed point vector i(t) by sequentially
maximizing the objective with respect to coordinate variables at time t. We perform
a comparable experiment to that of the Solow-Swan version of the model and pa-
rameter values are chosen correspondingly. This implies parameter values as those
reported in Table 2.

Table 2: Parameter values

/) % A T io Jdo g
8.0 006 030 15 1 0.0282 | 0.0296

We set % and % that correspond at the BGP value for s (0.2751) used in Section
3. Notice that the implied value of % is relatively high. It can be easily checked that
this quantitative peculiarity comes from the AK model and it is not a result of the
one-hoss shay depreciation assumption.

Figures 5 and 6 are plotted in the same scale as Figures 3 and 4 above, respec-
tively. They depict the solution path for output and the growth rate, which behave
very similar as in the constant saving rate model. From Proposition 6, we know that
the planner optimally chooses to have a constant detrended consumption. For this
reason, the saving rate rises at the beginning, increasing the growth rate (with re-
spect to the Solow-Swan case) and therefore allowing output to converge to a higher
long-run level. As a consequence, the planner generates longer lasting fuctuations
than those that were obtained in the constant saving rate model. Indeed, in the
optimal growth model it is the saving rate that bears most of the adjustment to the
BGP.

As stated in Proposition 6, detrended consumption should be constant from
t = 0, but its level should be determined by initial conditions. Figure 7 compares
the numerical solution obtained for detrended consumption in both models, the
dashed line corresponds to the optimal growth solution and the solid line to the
constant saving rate model. In the optimal growth model our numerical procedure
illustrates on the fact that the planner is optimally choosing the stable solution, and
the algorithm succeeds in calculating the constant detrended consumption level. In
order to have a constant detrended consumption, the saving rate must increase at the
beginning and fuctuate around its BGP solution afterward, as it is shown in Figure
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Figure 5: Optimal growth model: Detrended output
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Figure 6: Optimal growth model: The growth rate
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c(t)

Figure 7: Consumption: optimal growth vs constant saving rate

8. Alternatively, in the Solow-Swan version of the model detrended consumption is
just a constant fraction of output and fuctuates likewise.

Finally, in the context of our simple model, we can further derive implications
in terms of the empirical relevance of the AK class of models. In particular, in-
corporating vintage capital into an otherwise standard optimal AK growth model
contributes to break the close connection between investment and growth in the
short-medium run. This is a feature of the data which has been stressed the AK
model contradicts [cf. Jones (1995)].8 Figure 8 summarizes the short-run dynamics
of the investment share (dashed line) and the growth rate (solid line): investment
rates do not move in lock step with growth rates. The intuition is straightforward.
Compared with the standard version of the model we move from g(t) = Ai(t)=y(t) j+
to g(t) = Ai(t)=y(t) i £(t) being £(t) =~ Ai(t j T)=y(t). The growth rate depends
not only upon the current investment rate but also on delayed investment. Tempo-
rary changes in investment will imply temporary changes in growth rates from their
long-run trend. Thus, the sort of fuctuations the model generates is not merely a
mathematical property but derives testable implications for the AK theory.

A further analyzes on stability can be achieved by computing numerically a
subset of the in..nite roots of the homogeneous part of (16), those with a negative
real part near to zero [cf. Engelborghs and Roose (1999)]. We have found that this
subset is non empty and therefore supports the convergence by oscillations result in
Figures 5 and 6. For the optimal growth model and the parameter values in Table
2, Figure 9 shows the real parts in the x axe and the imaginary parts in the y axe.

8For a review see McGrattan (1998). Considering evidence over longer time periods and more
countries that Jones does she ..nds the long-run trends that AK theory predicts and that our
model economy preserves. McGrattan also provides examples suggesting that the relationship
which forms the basis of Jones’ (1995) time series tests does not generally hold for the AK model.
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Figure 8: The growth and the saving rates

Figure 10 does the same for the constant saving rate model and parameters in Table
1. We can evaluate the convergence speed of the economy using the computed roots:
the closer to zero is the smallest real part of the nonzero computed eigenvalues, the
slower is convergence. These ..gures con..rm that the Solow-Swan version of the
model converges more rapidly.

5 A Solow (1960) interpretation

The AK model can also be seen as a reduced form of a more general economy with
both physical and human capital. This result is obtained in a one sector model
using a constant returns to scale technology in both types of capital. In such a
model output can be used on a one-for-one basis for consumption, for investment in
physical capital and for human capital accumulation. In this section we investigate
what are the implications of considering this stylized representation in a vintage
capital framework. For this purpose we aggregate over vintage technologies following
Solow (1960).

Let us assume that the technology of a vintage z is given by
y(2) =B i(2)'**h(2)"; (17)

where B >0 and 0 < ® < 1. h(z) represents human capital associated to vintage z.
Let us assume that both physical and human capital are vintage speci..c and have
the same lifetime T > 0. Machines use speci..c human capital, which is destroyed
when machines are scrapped. Thus, given the one-for-one allocation structure of
our setting the price of each type of capital would be ..xed at unity. Under these
assumptions, the representative plant of vintage z solves the following problem:
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Figure 10: Eigenvalues of the constant saving rate model
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where
yA z+T R .
i(Z): i Sr(v)dv dC
z
Given our irreversibility assumption, a plant of vintage z produces the same output
from z to z + T. The interest rate is denoted by r(t) and j(z) is the discounted
value of a Fow of one unit of output produced during the plant life. Given that both

forms of capital face the same user cost, it is very easy to show that the optimal
ratio of physical to human capital is

i(z) _1i0,
h@z)~ ®

the same for all vintages. Substituting it in (17), and aggregating over all operative
plants at time t, we get that aggregate production is equal to
yA t
y(t) = A i(z) dz;
ti T
where A ~ Bi o %o
1j®

Aggregate production in this model clearly reduces to the AK technology pre-
sented in the previous sections. The interest of this Solow (1960) version of our
one-hoss shay AK model is that we can interpret it in terms of embodied techno-
logical progress. On the BGP, human and physical capital are both growing at the
positive rate g. Consequently, labor associated to the representative plant of vintage
z has h(z) as human capital, which is greater than the human capital of all previous
vintages. Under this interpretation, technical progress is embodied in new plants.®

The key dizerence with Solow’s paper comes from the speci..city of human cap-
ital. In the Solow paper, labor is an homogeneous good and technological progress

9From constant returns to scale in production, the number of plants is undetermined. Moreover,
our assumption on human capital accumulation makes the number of workers undetermined also,
since we can associate any amount of human capital to any small unit of labor. Without any loss
of generality, we can assume that the measure of ..rms and the measure of labor are both one. In
this sense, a plant is always associated with one worker. Since the human capital investment of a
plant is increasing, we can interpret it as technological progress embodied in the labor resource.
Of course, since human capital is vintage speci..c and associated to a particular vintage of capital,
we could in a large sense say that technical progress is embodied in physical capital too, but it is
still labor saving. Arrow (1962) is an example of labor saving technical progress embodied in new
machines. However, this model makes an important dicerence with respect to the recent literature
on embodied technical progress, as in Greenwood, Hercowitz and Krusell (1998), which follows
Solow (1960) by assuming that technical change is capital saving.
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is embodied in the physical capital. The ..rst assumption implies that the equi-
librium wage is the same for all vintages. From the second assumption, to restore
the equality of labor productivities across vintages, we must associate less labor to
older vintages. Under these conditions, Solow shows that the aggregate production
from adding vintage speci..c Cobb-Douglas technologies is also Cobb-Douglas. In
our model, human capital is vintage speci..c, implying that the capital-labor ratio
of a particular vintage is not varying over time, and it is the same for all vintages.
Under this alternative assumption, aggregate production is of the one-hoss shay AK

type.

6 Conclusions

Recent discussions on growth theory emphasize the ability of vintage capital models
to explain growth facts. However, there is a small number of contributions endoge-
nizing growth in vintage models, and most of them focus on the analysis of balanced
growth paths. The model analyzed here goes part way toward developing the meth-
ods for a complete resolution of endogenous growth models with vintage capital.
For analytical convenience it is limited to a case in which the engine of growth is
simple: returns to capital are bounded below. However, the basic properties of the
model are common to most endogenous growth models. Our framework represents
a minimal departure from the standard model with linear technology: we impose
a constant lifetime for machines. Under this assumption we show that some key
properties of the AK model change dramatically. In particular, convergence to the
BGP is no more instantaneous. Instead, convergence is non monotonic due to the
existence of replacement echoes. As a consequence, investment rates do not move
in lock step with growth rates.

Appendix

In this appendix we prove Proposition 4 and we present an outline of the algorithm
used to compute equilibrium paths of the optimal growth model.

Proof of Proposition 4

(a) From (2) we can show that

go eiQOT

g(0) =sA i T eidoT

(AD)
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From (5), we can show that

eidT
g=sAj lgiﬁ: (A2)

Since G(g) ~ L&+ is such that G'(g) < 0, then g(0) < g. Finally, from
Proposition 2, we know that the relation between g and s, implicit in (5), is

decreasing. Consequently, there exists a < sA, such that

} eigOT
g=alie®)=aj ZLQ(;W < 9(0):

(b) From (3)

S T,
g(t) W_SAI OBk

Dizerentiating with respect to time gives, for all t 2 [0; T|
g’(t) =9(v) i 9o:
Since g(0) > go, 9%(t) > 08t 2 [0;T[.

(c) Given that H(g) < 0 and g < g, from (4) and (5), i(0) > limyug: io(t) = 1.
From (3), i'(t) has a discontinuity at t =T.

(d) Combining (Al) and (A2), we get
9 i 9(0) =G(9) i G(9) >0

At given g, an increase in g rises g j g(0) since G'(g) < 0:¥

Algorithm
The planner’s problem can be rede..ned in terms of variables for which its long-
run is known.

Let de..ne j(t) = - 'O and z(t) = YO “then (8) reads:
io(iT) it

Z 1 1§%
z()§ 1" Sy
max [ ( ])- . sy] i (t)l i /Ae 1 l/ztdt
0 17

subject to

Z i (2)
_ i
z(t) =A T i(t)dz (A3)
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i) _

i (D)
given initial conditions j (t) = jo(t) = io'?g?) _Oforallt<O

The numerical procedure operates on this transformation of the problem and the

optimization relies upon the objective. In line with the cyclic coordinate descent
algorithm proposed by Boucekkine, Germain, Licandro and Magnus (1999), the
unknowns are replaced by piecewise constants on intervals (0; ¢), (¢;2¢), ..., and
iterations are performed to ..nd a ..xed-point g(t) (and/or state variable i(t);y(t))
vector up to tolerance parameter ‘Tol’. An outline of the algorithm used to compute
an approximate solution of problem above is the following:

9(t) (A4)

Step 1: Initialize g°(t), the base of the relaxation, with dimension K succiently
large. For t 2 [K;N[, N > K and large enough, set g(t) = g (the BGP solution).
Notice that knowing g(t) we can compute j (t) and z (t) using (A3) and (A4).

Step 2: Maximization step by step:
2 Step 2.0: maximize with respect to coordinate go keeping unchanged coordi-
nates gi, i >0

2 Step 2.k: maximize with respect to coordinate gx keeping unchanged coordi-
nates g, i > k, with coordinates g;,0 | Kk j 1 updated

2 Step 2.K: last k < K step, get g*(t)

Note that at each k step states must be updated.
Step 3: If g*(t) = g°(t), we are done. Else update g°(t) and go to Step 2.

Table 3: Algorithm parameters

N K ¢ Tol
10T 4T 01 10i°
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