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Abstract

This paper shows that the best known empirical biases of the Black
and Scholes (1973) option pricing formula can be explained by investors
learning the parameters of the underlying fundamental process. In
the context of an equilibrium model where dividend news evolve on a
binomial lattice we derive closed-form pricing formulas for European
options under Bayesian learning. Learning effects are found to be able
to generate asymmetric skews in the implied volatility surface and
systematic patterns in the term structure of option prices. We also
infer from S&P 500 index option prices the parameters characterizing
the maintained recursive learning process. This allows us to estimate
the dynamics of learning and to provide an empirical test for the model.

1 Introduction

Although Black and Scholes’ (1973) formula (BS) remains the most com-
monly used option pricing model in financial markets', it is well established
that it suffers from strong empirical biases. Most commonly, BS biases are
identified with the appearance of systematic patterns (smiles or skews) in
the implied volatility surface produced by matching observed market prices
with theoretical BS prices and solving for the unknown volatility parame-
ter (Rubinstein (1985, 1990) and Dumas et al. (1998)). Implied volatility
also appears to be systematically related to the term structure of option
contracts (Das and Sundaram (1999)).

! Quoting Rubinstein (1994): ” This model is widely viewed as one of the most successful
in the social sciences and has perhaps (...) the most widely used formula, with embedded
probabilities, in human history.



In an attempt to improve on the empirical performance of BS, a plethora
of pricing models have been proposed during the last two decades. These
include stochastic volatility models (Hull and White (1987), Wiggins (1987),
Melino and Turnbull (1990), Heston (1993)); models in which the conditional
variance follows an ARCH process (Duan (1995)); models with jumps in the
underlying price process (Merton (1976)); jump-diffusion models (Ball and
Torous (1985), Amin (1993)); and models incorporating transaction costs
(Leland (1985)). The empirical performance of these models is summarized
in Bakshi, Cao and Chen (1997). Although most of these option pricing
models fail to improve significantly on the empirical fit of the BS model,
this literature has contributed significantly to our understanding of the re-
quirements of an option pricing model that can fit observed option prices.
Nevertheless, approaches that rely on modifying the stochastic process fol-
lowed by the underlying asset price do not provide an economic explanation
for the systematic shortcomings of BS.?

In this paper we relax the key assumption underlying the BS model
that investors have complete knowledge of the stochastic process driving
fundamentals. More specifically, we assume that fundamentals evolve on a
binomial lattice with 'up’ and ’down’ probabilities unknown to investors who
update their probability estimates through Bayes’ rule. Importantly, we do
not regard the underlying asset price process as exogenous since the learn-
ing mechanism is embedded in an equilibrium model in which asset prices
reflect all possible perceived future distributions of the parameter estimates.
In equilibrium there are no expected gains from implementing trading strate-
gies based on the unfolding of the estimation uncertainty. While there are
now many papers studying the implications of learning for asset pricing,
this paper is to the best of our knowledge the first to explore the derivative
pricing implications of Bayesian learning in the context of an equilibrium
asset pricing model.

Our paper is related to a large literature that infers the market’s proba-
bility beliefs from asset prices (Rubinstein (1994), Jackwerth and Rubinstein
(1996), Ait-Sahalia and Lo (1998)). However, there are two major differ-
ences between this literature and our approach. First our results are based
on an equilibrium model which accounts for investors’ behavior. Secondly,
our model delivers a rich set of testable restrictions on how the entire cross-
section of option prices changes over time. This is implied by our assumption

?While transaction cost models potentially provide an economic explanation for BS
biases, they have so far failed to improve systematically on the empirical fit of the BS
model.



that the market updates its beliefs through Bayes rule. It provides an un-
derstanding of the dynamics of how implied volatility surface skews evolve
over time.

We show that maintaining all other assumptions of the BS model but
introducing learning effects, pricing biases similar to those displayed by ob-
served market prices emerge. Consistent with recent empirical evidence
on state-price densities implied by option prices (e.g. Ait-Sahalia and Lo
(1998)), by adding to tail probabilities learning effects alter the shape of
the state price density perceived by investors. Furthermore, learning effects
can generate implied volatility smiles as well as a variety of non-constant
term structures of implied volatility.? Finally, we infer the dynamics of the
parameters characterizing our Bayesian learning scheme from a data set of
S&P 500 index option prices. Independently of the time horizon over which
theoretical option prices are matched with observed prices, we find that es-
timated parameters are remarkably stable over time and that our model
provides quite a satisfactory in-sample fit.

The outline of the paper is as follows. Section 2 introduces our data set
of option prices and confirms the presence of systematic biases in the BS
option pricing model. Section 3 briefly presents the binomial lattice model
without estimation uncertainty. Bayesian learning effects are introduced in
Section 4 which also derives explicit formulae for FEuropean option prices.
Section 5 presents analytical results that characterize the equilibrium effect
of learning on option prices. Section 6 calibrates the option pricing model
under learning and compares it to the option price data from Section 2.
The parameters characterizing the maintained recursive learning process are
then inferred from option prices. This allows us to estimate the dynamics of
learning and to provide an empirical test for the model. Section 7 concludes.

2 Biases in the Black-Scholes Model

This section establishes a benchmark for the systematic pricing biases in
the BS option pricing model. Our data set of option prices from the CBOE
consists of S&P 500 index option prices covering the period Jan. 4, 1993
to Dec. 31, 1993.% Put prices were converted into call prices through the

3Das and Sundaram (1999) show that the most popular alternatives to BS — jump-
diffusion and stochastic volatility models — fail to simultaneously generate implied volatil-
ity smiles and (ATM) term-structures that match the complex features of the data.

* As stressed by Rubinstein (1994) the market for S&P 500 index options on the CBOE
provides a case study where the conditions required by BS seem to be well approximated
in terms of volumes, continuity of the trading process, hedging opportunities, likelihood



put-call parity relation. The data set is identical to that used in Ait-Sahalia
and Lo (1998) and has been filtered in exactly the same way.?> ©

2.1 Implied Volatility Surfaces

Initially we confirm the existence of a systematic skew in the relationship
between BS implied volatility and moneyness. For this purpose we plot in
Figure 1 the implied volatility surface against moneyness, keeping maturity
constant. CBOE rules create option contracts with monthly maturities and
Figure 1 in Appendix B include 12 plots covering the period February 1993
to January 1994.” For most of the days in the sample period, the curve
relating BS implied volatilities to the strike price is skewed. This is or
course inconsistent with the maintained assumption of constant diffusion in
the BS model.

of jumps in prices, etc. Therefore it is natural that our empirical tests concentrate on this
market.

®We thank Yacine Ait-Sahalia for making his data set kindly available to the public
for research purposes.

Since in-the-money options are thinly traded, their prices are notoriously unreliable
and are discarded from the data set. Also, out-of-the-money and near-at the money (ATM)
put prices are translated into call prices using the put-call parity for European options.
All information contained in liquid put prices has thus been extracted and converted into
corresponding, liquid call prices. The remaining put options are discarded from the data
set without any loss of information. We explicitly take into account that the index pays
out daily dividends and follow Ait-Sahalia and Lo (1998) in using the continous dividend
yield implied by daily values of the index and prices of future contracts of given maturity.
By the spot-futures parity

Fir= Ste(”’Tﬂs[”T)T = 0¢r = l In < . ) + T
; , p Fix ,
The implied value of §; - is a measure of the continuously compounded dividend yield
that, as of time ¢, is expected between ¢ and ¢t + 7.
Finally, to guarantee the absence of arbitrage opportunities, the futures price for a given
maturity ¢ + 7 is itself implied by the put-call parity relation for a dividend paying stock
index:

O(SHK,T,TLT, 6t,7—) —+ Xeir[”‘r‘r = P(St, K,T,Tt,-”ét’q—) =+ Ft,Tefr”’TT

To infer reliable futures prices, we need reliable option prices. Therefore ATM call and
put closing prices are used.

"There are not enough data to build a representative plot for the maturity of January
1993, while there are still enough data to obtain January 1994, although the sample ends
on Dec. 31, 1993.



2.2 Term Structure of Implied Volatility

The data also reveal a systematic term structure in the implied volatility.
Using three alternative values of moneyness over the period Jan. 18, 1993
to Jan. 25, 1993, Figure 1 shows that the implied volatilities of at-the-
money options and options with moneyness less than one clearly increase
with time to expiration. For options with moneyness above one the pat-
tern is somewhat weaker: some days implied volatility is an increasing and
convex function of time to expiration; other days implied volatility is a con-
cave function of moneyness and occasionally the pattern is constant or even
declining.

Figure 1. Sample term structure of implied volatility. The three graphs plot implied
volatility as a function of maturity for S&P 500 index options, period Jan. 18, 1993 - Jan.
25, 1993. The three graphs plot the term structure for three alternative moneyness levels:
0.96 (in the money), 1 (at-the-money), and 1.04 (out-of-the-money).

Term structure of implied volatilities for out- Term structure of implied volatilities for
of-the-money (call) options - moneyness=0.96 ATM options
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2.3 State Price Densities

Recently Rubinstein (1994) and Jackwerth and Rubinstein (1996) have pro-
posed to extract state price densities (SPD) from implied binomial trees.
This is another powerful procedure for demonstrating biases in the BS model
whose assumption is that the state price density is log-normal. Using this



approach, figure 2 shows the SPD inferred from option contracts with at
least 50 calendar days to expiration and averaged across different maturities
(a total of 334 estimated SPDs for different maturities).® To ensure that
SPDs on different days are (roughly) comparable, all plots use standardized
logarithmic returns. Particularly important in economic terms is the tail be-
havior of the SPD since this may provide information about the jump risk
expected by markets (Bates (1991)). For this reason we plot in the bottom
of Figure 2 the estimated tail behavior of the average SPD.
Figure 2. Average stateprice density estimated from S&P 500 index options and the S&P
500 cash index over the period Jan. 4, 1993 - Dec. 31, 1993 compared to a lognormal SPD.
The estimated SPD is the average of all SPDs estimated from options data with more than
50 calendar days to expiration (approximately 35 trading days), for a total of 334 cstimated
SPDs. SPDs are estimated using the nonparametric, implied binomial tree method of

Rubinstein |1994] and Jackwerth and Rubinstein [1996]. The objective function is the
maximum smoothness function:

Z)(Pjﬂ - 2P + Pj+1)2 P,=P, =0
£

Tor every day in the sample and for each cross section of contracts (over strike) defined by
maturity, we minimize the objective function subject to martingale restrictions imposing
correct pricing of the options and of the index. The constraints are imposed by a penalty
method that progressively raises the penalty parameter over various steps of the numerical
optimization (sce Judd |1998, 123-125]).
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8Details on the relevant technical choices are given in the caption of the figure.



When compared to the lognormal benchmark, the SPD implied by the
options data is clearly leptokurtic: there is more mass (higher state-prices)
around the center of the SPD, less mass in the range [-4,-1]U[+1,+4] stan-
dard deviations of logarithmic returns and fat tails occur in the form of
lobes between [-8,-6] and [4+6,+8] standard deviations of returns. Hence the
markets appear to have very different perceptions of future S&P 500 returns
than those implied by a lognormal SPD. We conclude that the markets seem
to perceive state-price densities that are — at least on average and most of
time — quite different from the lognormal density underlying the BS model.

In particular, market participants attach value to future ’extreme’ out-
comes — crashes as well as strong bull markets — that under a lognormal
SPD would receive a much smaller state price. To demonstrate this point,
we also compare no-arbitrage prices for a state-contingent asset paying off 1
dollar when the S&P 500 returns over a certain time span are below (above) a
certain number of standard deviations of returns under the estimated SPDs
and under a lognormal benchmark. Table 1 reports the results from this
exercise. Estimated SPDs imply state prices for ’tail’-contingent securities
that are larger by a factor of 108 when the asset pays out in case the S&P
500 return is below —7 standard deviations, and by a factor of 10'© when
returns exceed 7 standard deviations. Higher prices for tail-contingent secu-
rities reflect the fact that under the estimated SPDs the market attaches a
much higher risk-neutral price to a dollar paid out in either crash or strongly
bullish states of the world.

3 Asset Prices under Full Information

The empirical findings reported in the last section confirm the presence
of serious systematic biases in the BS model widely commented on in the
literature, and suggest that a more general option pricing model is required.
In this section we characterize option prices in a full information equilibrium
model which has the BS model as a limiting case. This sets up a natural
benchmark from which to evaluate option pricing biases and the effects of
learning. Next section introduces learning and derives option prices in this
setting.



Table 1. The table reports the price of a statecontingent claim that pays out 1 dollar when
(demeaned) S&P 500 returns are below/above X times their standard deviation, calculated
from the SPD estimated from option contracts with at least 50 calendar days to maturity.
As a benchmark the table also reports the price of the same contingent claims based on a
lognormal SPD. The SPDs are normalized by demeaning them and dividing them by oT
so that the standard deviation is set to 1. The price of the contingent-claims are calculated
according to the formulae:

LR PRI
YT T Rseenar TR R DS Tl seenaa

=20

\4 ]
where the Ajs are the state-prices, y:;ln%%mt{s'm :u'd‘”s}, and
= 0S
02_v J[w ij l{sl =uld”l } itk { i — iV } isk-neutral
_Z U ProhS'w =u S with Prob\S’uv =u'd"'S, a risk-neutra
=009 g

probability, either based on the normal density or estimated from options data. I(') is a

standard indicator function. We report both the average the median stateprice densities
estimated from S&P 500 index options and the S&P 500 cash index over the period Jan. 4,
1993 - Dec. 31, 1993 using the nonparametric, implied binomial tree method of
Rubinstein [1994] and Jackwerth and Rubinstein [1996]. The objective function is the
maximum smoothness function:

X Average price Median price
Lognormal SPD Fstimated SPD Lognormal SPD Fstimated SPD
< 3707 0.0000126 810" 100"
0< 1001 0.00002244 1001 400"
5< 2007 0.00002402 20107 9o[0™°
Q 4< 0.00001857 0.00003413 0.00001870 200
3< 0.001505 0.00026 0.001515 700°
2< 0.01974 0.01264 0.01987 0.0000028
1< 0.1744 0.1742 0.1747 0.1203
>1 0.1381 0.07197 0.1381 0.0679
> 0.02334 0.00376 0.02334 0.00159
>3 0.000865 0.000849 0.000865 0.000173
Q" >4 0.000235 0.000428 0.0000235 0.0000391
>5 610°® 0.000241 6010° 0.0000170
>6 100" 0.000186 100" 0.0000117
>7 80 0.000126 80 700°

3.1 A Binomial Lattice Model

Before pricing options we introduce the fundamentals process determining
the price of the underlying asset. Our starting point is a version of the
infinite horizon, representative agent endowment economy studied by Lucas
(1978). There are three assets: A one-period default-free, zero-coupon bond
in zero net supply trading at a price of P, and earning interest of r, =
(1/P; —1); a stock traded at a price of S; whose net supply is normalized at
1; and a European call option written on the stock with 7 = 1" — ¢ periods
to expiration, strike price K and current price Cy.



The stock pays out an infinite stream of real dividends { D1} 5o - Divi-
dends are perishable and must therefore be consumed in the period in which
they are received. They evolve on a binomial lattice so dividend growth rates
Jt+k = D?i:f - — 1 follow a Bernoulli process that is subject to change m
times in each unit interval. Within the interval [t, t+7] dividends thus follow
a v = Tm-step binomial process. Each period [t + k, ¢ + k + 1] the dividend
growth rate can be either g, with probability = or g; with probability 1 — 7:

gn  with prob.

g with prob. 1 — 7 vk 20, me(0,1) (1)

Gt+k+1 = {

Without loss of generality we assume that g5, > g; > —1 so that dividends are
non-negative provided D; > 0. This gives a standard recombining binomial
tree similar to the one adopted by Cox, Ross and Rubinstein (1979) for the
underlying asset price process. We follow the literature in normalizing the

dt
parameters to the incremental time unit: 1+g, = eg\/7, 1+g = (1+gn)7 Y,
and T = 4+ 1£,/%  As & — 0, the distribution of dividends (weakly)

v
converges to a Geometric Brownian motion with constant drift and diffusion

(w,0).°

To price assets we assume a perfect capital market. There are unlimited
short sales, perfect liquidity (no price impact from sales or purchases of secu-
rities), no taxes, no transaction costs or borrowing and lending constraints
and markets are open at all points in time in which news on dividends are
generated, i.e., on all the nodes of the binomial lattice.

The representative investor has power utility

G 7<1
=< 17 2

where Cf is real consumption at time t. We focus on the case where v < 1;
models where v > 1 have the counter-intuitive property that stock prices
decline when fundamentals are high.! The representative agent chooses
bond, stock, and call option holdings to maximize the discounted value (at
a rate of impatience p) of the infinite stream of expected future utilities
derived from consumption:

“See for instance Neftci (1996).
0For further explanations of this property, see Abel (1988).



max [Zﬂ U Ct+k

{CH’“ Wi tkr tJrk}k 0

s.t. Cyyp + Wiy xSk + wt+kpt+k:wt+k_1(5t+k—1 + Dyyp-1) + w55)+1€—1 (3)

where 3 = 11— + >
in the agent’s portfolio as of period ¢ + k.'*

Standard dynamic programming methods yield the following Euler equa-
tions for stock and bond prices:

and wy , and wt 1, represent the number of stocks and bonds

Si = E[Quy1(Sey1+ Diy1))
P = E;[Qu+1] (4)

where Qi1 = 5“,;(:%:)1 L = B (%—f) " is the pricing kernel defined as the
product of the discount factor and the intertemporal marginal rate of sub-
stitution in consumption.

Guidolin and Timmermann (1999) price the underlying stock and risk-
free bond in this setting subject to transversality and no-arbitrage condi-
tions.'? For convenience, we state the result using the transformed param-

eters gf = (1 +g,)' " — L and g = (1 +g5)' 7 - 1.

Proposition 1 (Guidolin and Timmermann (1999)) There exists an
equilibrium in which the full information rational expectations (FIRE) stock
price is given by

SFIRE _ 1+ g7 +7(g;, QI)D
p—gf — 79} —g/)

[

Gince the call is a redundant asset which does not let agents expand the set of at-
tainable consumption patterns, option holdings do not enter into the program and the
equilibrium stock and bond prices can be determined independently of the option price.

12The transversality condition is,
T
(H Qt+k> St+T:| =0
k=1

g +mlgn—gl) <p<m(l+gp)+ (1 —7) [(1+gn)(1+g)"] -1

sz Et
T— o0

and no-arbitrage conditions are

10



while the FIRE bond price is

pFIRE _ AI4+g) " +7[(1+gn)" —(1+g)7"
¢ 1+p '

A property of the solution is that the stock price is homogeneous of
degree one in dividends and that the ez-dividend stock price follows the same
binomial lattice {gy,g;,7,m} as dividends.'® Guidolin and Timmermann
(1999) also show that the stochastic process followed by dividends and the
stock price can be alternatively characterized as a stationary Markov chain,
a fact that will be useful later on.

3.2 Option Prices under Full Information

Pricing European calls is straightforward under full information. This fol-
lows from noting that (i) we have ruled out arbitrage opportunities; (ii)
markets are complete; (iii) Ex-dividend stock prices inherit the binomial
lattice structure {gn, g;, 7, m} from dividends; (iv) although the underlying
asset pays out cash dividends, the option is European and early exercise is
not possible. Therefore all possible contingent claims (consumption profiles)
are marketable and we can apply the results in Cox et al. (1979) to price
the option by no-arbitrage:

Proposition 2 Suppose the dividend process is binomial. Under full infor-
mation rational expectations, the price of a European call with T periods to
expiration and strike price K is given by

U.) (1 —2)v7

CHEE(K T, 8) = (1 —l—r)*”Zmax{O,Sth) - K} <]
=0

where v = Tm, S{M =(1+gn)(1+g)" 7S, and z, is a risk-neutral prob-
ability measure given by

1+r
1+p

Z=m (14+gpn)7"

YFrom this and the result in Pliska (1997, 133) that a multiperiod securities markets
model is complete if and only if all possible sequences of single period models obtained by
decomposing the binomial lattice are formed by complete models it follows immediately
that the asset market in our model is complete. Therefore the (conjectured) redundancy
of the call option does hold in the FIRE equilibrium and our approach is valid.

11



Proof. See Appendix A. =

This proposition shows that the results of Cox et al. (1979) fully extend
to our framework where dividends rather than stock prices are assumed
to follow a binomial lattice. This is an implication of the fact that stock
prices evolve on the same lattice as dividends. Notice, however, that while
CRR take the process for the underlying price as exogenous, we derive the
underlying stock price in an equilibrium model in which preferences matter.
This result can also be related to Stapleton and Subrahmanyam (SS, 1985),
who value options in an equilibrium model when markets are incomplete
and the stock price follows an exogenous binomial lattice. In both cases
preferences affect the equilibrium price of stocks and (indirectly) options.

Harrison and Kreps (1979) prove that in the absence of arbitrage op-
portunities and with complete markets there exists a unique risk-neutral
probability measure f(Sy ) such that the price of a European option with
payoff function A(S:+7) and 7 periods to expiration can be represented as

C, = (1+nr)™" Z M Sy ) PN P {SHT = Sg-‘rT}
§=0
= Ep[h(Sir) (5)

where P(Sy,7) is the SPD. In our case this is given by
P {St+T = sg’+T} =(14r"" <;’> 2(1—2)" (6)

and is simply a transformation of the binomial process Bi(v, z). The risk-
neutral measure thus characterized retains a Markov chain structure. In-
spection of P 5§+T reveals that the transition matrix is

1—=2 z 0 ... 0
0 1—2 2z ... 0

{15 {Xerpy1 = j\XtHc:i}} =M = : S : (7)

0 0 0 .. 1
where P{Xy4po1 = T|Xpon =T} = 1 is set arbitrarily. Computation of
the risk neutral probability of the final nodes associated with the binomial

12



lattice for stock prices is hence very simple:
P {5t+v = SthrT‘St} = P{Xy4o = j|Xe1x = 0}

:ell

v
H M ejy1 = e'lﬁvejH = (v) 21— 2)v
k=1 J
(8)

which is the same expression as (6), apart from the constant of proportion-
ality (14 7)~", the SPD for time ¢ + 7" stock prices.'*

To establish the link between our option price under FIRE and the Black-
Scholes price, we use the result of Cox et al. (1979, 246-251) that, provided
the parameters are suitably adjusted as the number of increments to the
lattice goes to infinity, the price of a European option converges to the
BS value. Let r be the risk-free rate, § the dividend yield, with x and o
respectively the (annual) mean and volatility of the dividend growth rate.
The following proposition restates this result stressing the mapping between
the deep parameters of our model and the BS inputs.

Proposition 3 Suppose that the parameters have been scaled as follows:

m - - m m)\ 1 m 1 1 [dt

o™ = (1) % { (1™ 4™ [(14) 7 = (14g™) 7|} -1
(L) { (g™ 1 4x [(14") 7 = (149 ] |7

{(1+gz)14+77(m) {(Hg}(:n))l,7 B (1+9zm))1*7} }di —1.

5=

&

Also assume that p™ > 0. As m — oo, the price of the European call
converges to its BS value:

CPF = S @(dy)e " — e T K@ (dy)
S 1 (m)y]?
In () + (r = 8)dt + 3o [In(1 + ™)

Voln(1 + g,™)
dy = di—vIn(1+ gp)

MErom these definitions it is clear that

prNp {SerT} =(1 +T)U15{Sg+T}

d =

13



where v = Tm, and ®(-) is the c.d.f. of the standard normal distribution.

Proof. See Appendix A. =

Since the BS option price obtains in the limit when no learning is present,
our model is ideally suited to discuss the origin of BS pricing biases.!”> Propo-
sition 3 is hardly surprising. As m — oo, % = % N\, 0, validating the con-
ditions under which the binomial lattice weakly converges to a Geometric
Brownian motion with parameters (p, o), the distributional assumption re-
quired by BS in continuous time. Alternatively, this point can be shown by
realizing that as m,v — oo the discrete SPD converges to a transformation

of the lognormal (r — &,v [In(1 + gx)]?):

~ 1 1
S — - -
f( t+T) € \/ﬁ()’ﬁ St—i—T

[111 (5¢) — (7“ —0+3 Un(lwh)f) “} 2
ey T 2v [In(1 jgh)ﬁ )

4 Option Prices on a Learning Path

It is common in the option pricing literature to assume a given process for
the underlying asset price and then price the option as a redundant asset
whose payoffs can be replicated in a dynamic hedging strategy invested in
the risky asset and a riskfree bond. The standard setup assumes that the
asset price process is stationary and hence that there are no learning effects.
Once learning is introduced, in equilibrium the asset price process will also
change, and a model for the underlying asset price is required. In this
section we briefly describe the main properties of this model based on the
more extensive analysis in Guidolin and Timmermann (1999).

Suppose that the proportion of times dividends move up on the bino-
mial lattice, 7, is unknown to agents who estimate this parameter using all

5 Notice that the preference parameter p has to be made a function of the number of
binomial steps ‘per period’ m. To see this, consider the effect of an incremental increase in
m, holding p fixed. For a given 7, an increase in m implies that dividends are paid out more
often. This does not in itself change the current value of the stock index as m does not enter
the solution of StFIRE = qgiﬂgo Zstl Ey [(HZ:l Qprk) Dt+s] + E [(szl Qt+k> St+T:| .
However, the kernel Q:yr (kK > 1) depends on the rate of time preference p. Increasing
m makes the assumed p (that pertains to a single step of the lattice) apply to a shorter
interval of time, and this will depress the current stock price by increasing 3. One can
show that as m — oo the European call value converges towards zero. The adjustment of
p as a function of m serves to ensure that the BS option price is independent of m.

14



available information. Agents are assumed to recursively gain knowledge on
7 through the simple maximum likelihood estimator:

Zm(tJrk)JrM
j=1 {gm(t+k)+j:gh} Mk M

m(t + k) + M - NtJrka

Tk, M = M=01,..m-1

(10)

where T _ is a standard indicator function taking the value 1
{gm(LJrk)Jrj—gh}

when at the step m(t + k) + M of the lattice the high dividend growth
rate attains, and zero otherwise. n; denotes the number of high growth
states recorded up to node j, while N; is the total number of nodes since .
Investors are assumed to start out with prior beliefs {ng, No}. The indices
m(t+k)+ M (M =0,1,...,m—1) take into account that learning happens
on the binomial tree and not over calendar time. This of course corresponds
to a Bayesian learning process in which the agent updates a given prior on
the distribution of (the random variable) 7 using Bayes’ rule.

Despite the presence of learning effects, the same features that simplified
the solution of asset prices under FIRE are still in place: (i) consumption and
dividends must coincide in general equilibrium; (ii) if markets are complete,
investors form portfolio choices based only on the stock index and the bond;
(iii) being redundant assets, options can be priced by no-arbitrage, using
the unique risk neutral probability measure.

Guidolin and Timmermann (1999) prove the following result:

Proposition 4 Suppose the representative agent is on a Bayesian learn-
ing path and that the stock price is homogeneous of degree one in the level
of real dividends, S;=VP (g, g1, 7,7, p, e, Ni)Dy. Then the (ex-dividend)
Bayesian learning (BL) stock price is

J

v
SPE=vPlD, = Dtvfﬂ& 251 z%(l +g1) (1 +g)) PPt (Di+i|ntaNt)
i= j=

where Pr PL (Dg—i-i =(1+gn)(1 +gl)i_th|nt,Nt> is given by

: AN )TN (v — k
pep (ot i} — () B L %
J jeo(NVt + k)
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The BL bond price is

(I+g) " +7[(1+gn) "= 1 +g)"] ‘

PPH (@) = B [B(1+ gie1) 7] = 1+p

Proposition 4 has many implications. First, the price-dividend ratio is no
longer constant depending (through n; and N;) on the current estimate 7.
Dividend changes acquire a self-enforcing nature: Positive dividend shocks
lead to an increase in the stock price not only through the standard propor-
tional effect, but also through the revision of the dividend multiplier, W%,
Second, while under FIRE the risk-free rate was constant, on a learning path
it also changes as a function of the state variables n; and N, 16

Under BL, the stock price process is described by a recombining, flexible
binomial tree with time-varying estimated state probabilities. Since divi-
dend yields, though time-varying themselves, are still a fixed proportion of
the stock price, in principle binomial methods to obtain the no-arbitrage
price of European options on flexible trees could find application (see for
instance Chriss (1997)). However, our equilibrium model delivers risk-free
rates that are not only time-varying, but also a function of the state vari-
able Ty, . Unfortunately the interest rate process cannot be characterized
as a recombining, flexible lattice. The value today of one dollar in the future
depends not only on the number of high and low growth states occurring be-
tween today and the future, but also on their sequence. In other words, the
appropriate discount factors become path-dependent. Since risk-free rates
show up in the general risk-neutral valuation formula proved by Harrison
and Kreps (1979), it also means that also the induced lattice for the call
option is non-recombining. Therefore no-arbitrage pricing under learning
has complicated elements of path-dependency.

This path dependence means that no-arbitrage methods are more com-
plex in an equilibrium model with BL. Nevertheless, European call options
can still be priced by employing a risk neutral change of measure from the
BL perceived probabilities. The following proposition derives the price of a
European call and the SPD under Bayesian learning.

Proposition 5 On a Bayesian learning path, the no-arbitrage price of a

Y6 More specifically, when v < 1, [(1 +gn) -1+ gz)fﬂ < 0, so high dividend growth
raises the risk free rate by raising 7y 11 above Ty . Incidentally, the yield of zero-coupon
bonds stops being risk-free.
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FEuropean call with time-to-expiration T and strike price K is

—y |

S (2 st
) S

Zmax{ 5_%3 _K} pEL pp{ t+v\nt,Nt}

(1—|—gh)j(1+gz)” ISPL =
U) Dt+v = (1+gh) (

CPMEK, T, SPY)

(1+gn) (1+g1)" 70 L (ng+
gl)v J-Dt (.] = 07 17 '“71})7

wherev = Tm, SHU
j,Nt+U)Dt (J —0,1
and

SBL,SPD 50 i i\’
B {St+v} = P{Di+v|nt,Nt}=ﬁ” T:v X

y (v) [T o + ) TL 20 (Ny — g + k)
J ro(Ne + k)

Proof. See Appendix A. =

Under BL the Markov chain characterization of the stock price process
and of the risk-neutralized stock price process are no longer stationary, since
both the possible rates of change of the stock index and the (perceived)
probabilities of these changes follow heterogenous Markov chains. Indeed!”

PP X1 = IF ey = PPP X1 = 51X} (11)

where X measures the number of high dividend growth rates occurring be-
tween t and t+k+1. Therefore only information useful to predict realization
of dividends up to time ¢+ k + 1 is the current level of dividends. The time-
varying transition matrix determining how beliefs are updated is given by

[PPY{X k1 = | Xepn = i} = Megr(i+1,5+1)

_ K} prBL {S{+v\nt,Nt}

i Nt-&-k*nt Tt 0 0 0 ]
Nijk Nijk
0 Niyrp—ne+1 ne+1 0 0
Nitr Ntk
= (12)
Nijr—ri—k ni+k
0 0 0 Niyk Nevk
0 0 0 0 1
"More precisely, the information structure F' = {F ;yx;k = 0,1,...} is a filtration com-

posed of an infinite, nested (Fiyrt1 2 Ferrx Vk > 0) sequence of o—algebras, with F ¢
corresponding to the first ¢4+ k& movements of dividends, that is, associated to the partition
P:yx consisting of 2F cells, one for each possible sequence of dividends growth rates up to
time t 4+ k. See Guidolin and Timmermann (1999) for further details.
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where PBL{X; ;.1 = T|X; =T} = 1 is simply a normalization. Obvi-
ously, the probabilities appearing in this matrix change over time.

Similarly, the risk neutral distribution becomes a heterogeneous Markov
chain with transition matrix:

PBLEND (X i =ne+ |1 X g = +i}| = Myg(i + 1,5 +1)

i=0,d —y Nipk=ns =0, -
R ()™ %ka ,ngku(1+gh)N7N7%“+1 i—1 ’ +1
=1, - —t R h
=0 0 Rt-i—k (1+gl) PYHJ}\CTT Rt—i-k (1+gh) ’Y%tﬂk
0 0 !
(13)

where P {X; 1541 = T|X¢pp = T} = 1 is set arbitrarily. i_fk =1+ Tifk is
the gross interest factor applicable when at time ¢ + k& Xy = ¢ and the
dividend growth is low, etc. Although the computation of the risk neutral
probability of the final nodes associated with the binomial lattice is a simple
matter of matrix multiplication and matrix element extraction, this now
requires keeping track of the risk-free rate as we move along the information
tree, a path-dependent and therefore tedious task. Hence the Markov chain
characterization of the risk neutral process no longer simplifies calculations
a great deal.

5 Option prices on a learning path: Comparative
statics

In view of the empirical biases of the BS option pricing model documented
in section 2, it is important to establish conditions under which learning
has systematic effects on option prices. Guidolin and Timmermann (1999,
prop. 3) show that although estimation uncertainty reduces the underlying
asset price when agents are risk averse, it also increases the asset price
through the positive covariance between future asset payoffs and parameter
estimates. When risk aversion is not ’too high’ the second effect dominates.
A similar result can be established comparing option prices under learning
to BS option prices:

Proposition 6 Suppose dividends follow a binomial process subject to the

. 1 ltgp 14g; -
parameter restrictions ™ > 3, _LLl—i-p > 1, _Ll+p < 1. Conditional on a com-
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mon stock price, if agents have optimistic beliefs then'®
CPH(K) 2 O (K).

Proof. See Appendix A. =

More specifically one can show that CPF(K) — CPS(K) is positive at
K =0, increases over some interval (0, KMAX) and then decreases towards
Z€ero.

The technical conditions 114;9/;*1 > 1 and % < 1 are sufficient for the
price-dividend ratio to be a monotonically increasing and convex function of
the estimates 7y x.tY Second, optimistic beliefs (7. > 7) are sufficient for
the difference between option prices CPL(K)—CP%(K) to be monotonically
increasing for low strike prices (K € [0, W25 (nyqk, Nk +0)(1491)" Dy)).
For medium-range strike prices, the assumption 7 > % guarantees that
enough probability mass for the payoff of the underlying asset is redis-
tributed to ensure a higher option price under learning.

In general there will be intervals for the strike price over which CP*(K) >
CFIEE(K) and others over which this inequality is reversed. Proposition 6
shows that subject to placing additional restrictions on the parameter space
we can establish conditions under which learning induces systematic effects
on option prices. These restrictions may provide valuable information about
the markets’ perception of fundamentals, once the model is confronted with
option data (see Section 7). For instance, market prices for European calls
systematically above BS predictions and an implied volatility shape similar
to the one implied by proposition 6 would suggest that learning effects are
important and that investors are somewhat optimistic.

5.1 Learning Effects and BS Anomalies

The significance of Proposition 6 can best be illustrated by relating it to the
option pricing anomalies reported in the finance literature.

First consider implied volatility skews. BS implied volatility is a highly
nonlinear function of option prices and a formal treatment is difficult. In-
stead we provide the following heuristic explanation. At-the-money BS
option values are known to be sensitive — their vega is high — to the
volatility input while deep out-of-the-money and in-the-money BS option

"The notation CP%(K) assumes we are focusing on a parameterization of our FIRE
model which as Black-Scholes option pricing formula as its limit as v — oco.

19 Convexity turns out to be important for the proof. However, to establish a local result
we only need the restriction %} >1, as \I/f_,_Lk is required only to be convex in a range of
values of Ty k-
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values are not so sensitive to changes in 0. Now, when K = 0, CP! starts
out above the BS value and their difference initially increases as the strike
price rises. Therefore, for K << S, the BS implied volatility satisfies
6Bl > /min(1 + gn) = oBS. For very low strikes, 4P can even be in-
creasing, but as moneyness approaches one from above, %% will turn out
to be above oP¥ (a constant) and decreasing, as the vega increases and
CPL(K) — CPS(K) starts declining too. For K >> S;, K exceeds KMAX
so that the difference CPL(K) — CPY(K) declines towards zero and with
it 8L also declines towards oP5. If traded strikes do not extend to lev-
els for which the vega is very low, an implied volatility skew where 5% is
decreasing everywhere results. However, for very high strikes, a vega ap-
proaching zero might also make a locally increasing profile for 62 possible,
i.e. a volatility smile. In summary, under the assumption of proposition 6,
plausible patterns of implied volatility can result.

To see how state price densities perceived on a learning path change
option prices, notice that there are two distinct learning effects: (i) the SPD
perceived by agents changes w.r.t. the FIRE case; (ii) BL widens the support
of the set of time t + T stock prices that are achievable in equilibrium. As
for the first effect, by taking the log-ratio of the state price density under
BL and under FIRE, we see that

In ﬁtB;L {Sg—i-T’n‘hNt} [JE: <7Tt+k>
k

R (500}

v

EJ:I

m(l—w)]
1—m
k=0

If 7 = 7, a limiting case of the conditions imposed by proposition 6, it
follows that

jBBL v ~ v—1 ~
I’l( FII%{;t+T‘ﬂt}> :Zlnw >0
PARE{SY 2} ) = T

implying that Pt { +T‘7Tt} > PFIRE {Sf T} as iy > wforall k>0
since the dividends grow in all periods at a high rate. Similarly,

n ]BBL {SngT‘%t} vzil 7Tt+k >0
PFIRE{ +T} 1— 7

implies P, PELSY i}y > PFIRE{ Sport, as (1 —fgn) > (1 —m) for all
k > 0 since d1V1dends always grow at a low rate. This shows that if the
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initial beliefs on 7 are unbiased, under BL the SPD is above the FIRE SPD
at both the extremes of the possibile realizations of dividend growth rates

: . IStBL{Sg+T‘%t} :
between ¢ and ¢t + T. Letting Y(j) = In TFRE(s], be the log-price

ratio, notice that

g (ﬁt+j—1> T (M) j=1,2, 01

dj m 1—m
and %(.j) > 0 for j > int(vr) + 1?° and %](.j) < 0 for j < int(vmw) — 1,

ie. T(0),T(v) >0, and Y(j) at first decreases in j, it reaches a minimum
and then increases. Hence there exists one lower and one upper point,
J1 <int(vm) and ja2 > int(vr), such that Y(j) changes sign when j crosses

these points. For j < j; and j > jy Y(j) > 0, that is, PBPL {Sg+T\7?t} >

]StFIRE {SthrT} . Therefore for 77, = 7 the BL-SPD has fatter tails than the

FIRE-SPD and lacks mass at the center of the distribution of future stock
prices. Extreme events drawn from either end of the tail are perceived as
more likely on a Bayesian learning path than under a lognormal distribution.
Adding the second effect of BL, this conclusion is strengthened, since a wider
support for the SPD means that more extreme events now become possible.

When 7, > 7 and 7, decreases towards w (7 \, 7), BL continues to
inflate the tails of the SPD perceived by the agents, relative to the lognor-
mal benchmark. Hence higher call prices and the implied volatility skew
still result. The fact that 7y > 7 implies that the right tail receives more
probability mass than the left one. However, the picture changes somewhat
when 7; >> 7. In this case, we may have that

PP St} _ Ny, (L e
TO) = In [ = +7 =N\ "p [ —— Ttk 0
0) n<PtFIRE{SO Zn( 1—7r><

t+T} k=0
since the sum of the terms 1_1—2;"—’“ < 1 may dominate the sum of terms
for which 17171—;*’“ > 1. All other findings hold and PPE {Sg +T\frt} has a

fatter right-hand tail than the lognormal, though the left tail might now be
thinner. When we take into account also the second effect described above,
the net result is uncertain with respect to the probability mass in the left
tail. Intriguingly, the net effect could be similar to the stylized facts for
SPDs found for the S&P 500 option data: densities are located more to the

20imf(av) denotes the integer part of the real number z. These derivatives obviously
ignores the fact that j is by construction an integer index.
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right than a lognormal benchmark but also attach positive probability mass
to some crash events.

6 Simulation exercises

This section investigates whether the option pricing model with learning is
capable of explaining some of the empirical evidence on implied volatility
surfaces and SPDs reported in Section 2 for S&P 500 index options. As a
reference point we take the plot of the implied volatilities versus moneyness
for the S&P500 option contracts expiring in April 1993. As a matter of fact,
these results are representative of what we have found in other subperiods
of our overall sample.

We calibrate the parameters of the dividend process and fix the risk-
free rate at a plausible level. Dividends are assumed to be paid out daily
(m = 1). For a wide market index such as the S&P 500 this assumption
is a fairly good approximation. The annual dividend growth rate () is set
to 3%, while the volatility (o) is set at 5%. The growth rate matches the
average dividend growth rate during the sample period June 1992 - June
1995 around our option simulation period. While our choice of o is lower
than the standard deviation of the annual dividend growth rate (11.6%),
this latter estimate is likely to be inflated by the presence of periods where
no dividend changes show up, even though markets receive news in a much
smoother manner. The annualized risk-free rate (r) is set to 4%, while the
dividend yield is fixed at 3%, matching its estimate of 2.82% during the
period 1992-1995. The (annualized) discount rate is 0.02.2*

Furopean call options with 50 days to maturity, 7 = v = 50 are considered.
From proposition 2 it follows that the no-arbitrage option price in an equilib-
rium model with dividends follows a binomial lattice model with parameters

gn = 0.00315, g, = —0.00314, 7 = 0.5189, p = 7.96- 1073, ~ = 0.999
(14)

We assume marginally biased initial beliefs and quite mild learning effects:
ng = 42 and Ny = 80, i.e. #; = 0.525 > 0.519 = 7.?2 BS prices are calculated

2l is determined according to proposition 3 to guarantee that CE!EE — CPS

as
m — oo.

22Under pessimistic beliefs the BL model is less able to produce option prices that fit
the stylized facts of Section 2. For example the implied volatility surface tends to increase
as a function of the strike price. Although the SPD still produces fatter tails than the
log-normal model, most probability mass is shifted to the left of the return distribution

when beliefs are pessimistic.
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by using the FIRE approximation. Learning effects are studied by modifying
the FIRE model as described in section 4. Figure 3 plots the difference
between FIRE and BL call prices for a wide range of strike prices. Since all
of the assumptions of proposition 3 are satisfied, CP*(K) > CF1EE(K) for
all strikes.

Figure 3. Difference between the price of a Furopean call with 50 days to expiration (T=50)
calculated under full information rational expectations and with Bayesian learning. The
parameters are: z=1, g,=0.00315, g=0.00314, 11=0.519, p=0.02 (annual), and y=0.999. For
this combination of parameters the I'IRL call price approximates the Black-Scholes price,
while the annual risk-free rate under I'IRL is 4% and the dividend yield is 3%. I'or BL
prices, we take n, =42 and N,=80, implying only a slightly biased initial belief 77, =0.525.
"lhe current price of the S&P 500 index is taken to be 436.38 dollars, the closing price on
Teb. 22, 1993.

Difference between BS and BL call
prices (in dollars)

dollars

0 T T T
0 200 400 600 800

Strike price

6.1 Implied Volatility Surfaces

Initially we study implied volatility as a function of moneyness. Figure
4 and 5 plot implied volatilities as a function of moneyness for the April
1993 maturity. The resemblance between the implied volatility of simulated
prices under learning and market prices is striking. Noticeably, the lattice
model under Bayesian learning prices options far more accurately than the
BS model.

To further underline this point, Figure 6 compares option prices on
February 22, 1993 and BL simulated prices when n; = 43, Ny = 80 (7; =
0.538). The fit is even more striking than in Figure 5 and it is clearly in-
dicative of the ability of the model to fit the stylized facts concerning the
skews of implied volatility. Assuming that our model correctly captures the
main dynamic features of the underlying process and that the markets really
were on a Bayesian learning path on that day, it seems that the estimate

23



7 = 0.538 with a precision of Ny = 80 accurately characterizes agents’
beliefs during that period.

Figure 4. Implicd Black-Scholes volatilitics as a function of monceyness for a Huropean call
with 50 days to expiration (1=50) calculated under full information rational expectations.
The parameters are set as follows: #=1, g,=0.00315, ¢=0.00314, 11=0.519, p=0.02 (annual),
and y=0.999. Dor this combination of parameters the BS call price approximates the Black-
Scholes price, while the annual risk-free rate under FIRK is 4% and the dividend yield is
3%. 'The current price of the S&P 500 index is taken to be 436.38 dollars, the closing price
on I'eb. 22, 1993. The left panel reports for comparison implied volatilities as a function
of moneyness for (put and call) options expiring in April 1993.
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Figure 5. Implicd Black-Scholcs volatilitics as a function of moncyness for a Luropcan call
with 50 days to expiration (1=50) calculated on a Baycsian learning path. The paramcters
are set as follows: #=1, g,=0.00315, =0.00314, =0.519, p=0.02 (annual), y=0.999, n =42,
and N,=80, implying an initial belief /I, =0.525. The current price of the S&P 500 index is
taken to be 436.38 dollars, the closing price on lich. 22, 1993, The left pancl reports for
comparison implied volatilitics as a function of moncyness for (put and call) options
cxpiring in April 1993.
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Figure 6. Implied Black-Scholes volatilities as a function of moneyness for a European call
with 50 days to expiration (T=50) calculated on a Bayesian learning path, and for market
data on February 22, 1993. The parameters are set as follows: #=1, g,=0.00315, g=0.00314,
10.519, p=0.02 (annual), y=0.999, n,=43, and N, =80, implying an initial belief 77, =0.538.

Market vs. BL implied volatilities on Feb. 22,
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6.2 State Price Densities

Systematic differences between BS and BL. European option prices must re-
flect differences in the underlying equivalent martingale measures employed
by the market under the two alternative models or, equivalently, in the SPDs
(cf. Harrison and Kreps (1979)). Sections 4 and 5 showed that the SPDs un-
der BL can be very different from the Black-Scholes SPD. Figure 7 compares
the SPDs of the two models from our previous exercise.

Bayesian learning produces SPDs that are skewed to the right and have
fatter tails than a lognormal. Once again our model fits better the stylized
facts for estimated (average) SPDs documented in Section 2. While esti-
mated SPDs are leptokurtic with positive excess kurtosis essentially caused
by side ’lobes’ between six and eight standard deviations from the demeaned
S&P500 returns. Furthermore, BL generates a SPD which displays sensibly
lower state prices around the mean of the distribution of the index returns,
with smooth fat tails.
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Figure 7. Stateprice densitics for the 50 days ahcad (T=50) values S&P 500 index derived
from a FIRTY/BS vs. a Bayesian learning model on T'eb. 22, 1993. The parameters are set as
follows: m=1, g,=0.00315, =0.00314, 11=0.519, p=0.02 (annual), y=0.999, n,=42, and N,=80,
implying an unbiased initial belief 77, =0.525. The current price of the S&P 500 is 436.38
dollars, the closing price on Feb. 22, 1993, The third panel compares the FIRE SPD with
the BI. SPD adjusting for differences in their respective supports.
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6.3 Term Structure of Implied Volatilities

Next we vary the time to maturity (7) from 10 to 150 days in steps of 10 days
to study which type of implied volatility term structure Bayesian learning
implies. Figure 8 reports the outcome of this exercise for three sets of strike
prices: Ky = 420 (moneyness 1.04), Karar = 435 (moneyness 1), and
Kora = 455 (moneyness of 0.96). There is a strong resemblance with the
stylized facts discussed in Section 2. Bayesian learning generates an upward
sloping implied volatility term structure for ATM and out-of-the money call
options, while the term structure at first decreases and then increases for in-
the-money call options. These patterns are broadly consistent with what was
found in the data, cf. figure 2. The increase of about 2 percentage points in
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implied volatility between close-to-expiration options and long-term options
is also plausible.?

Figure 8. Volatility term structure plots for Buropean calls calculated under full
information rational expectations (squares) and with Bayesian learning (diamonds). In the
simulations, #=1 while the other 'deep' parameters (g, g, T, p, and y) are adjusted
according to proposition 2 to guarantee that the FIRE option price is an approximation of
the Black-Scholes value with an annual FIRE risk-free rate of 4% and a dividend yield of
3%. In the case of BL prices, we take n, =42 and N =80, implying an slightly biased initial
belief 77, =0.525. The current price of the S&P 500 is taken to be 436.38 dollars, the closing
price on Feb. 22, 1993. The first panel sets K=455, the second panel K=435; and the third

K=420.
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6.4 Weak Learning Effects

In our setup investors use a consistent estimator of 7, and as the precision
goes to infinity (V; — o0), @&y — 7 and learning effects diminish. To study
the consequences of this, we set n; = 182, Ny = 350, implying 7; = 0.52 2
0.519 = 7. The representative agent now brings experience of over 16 months
of trading and dividend realizations. Figure 9 shows the outcome of this new

*¥See Campa and Chang (1995).

27



set of simulations.

Figure 9. Weak learning effects [0 Plots of differences in dollars between call prices,
implied volatilities as a function of the strike price, 50 days ahead stateprice densities for
the S&P 500 index on Feb. 22,1993 for the FIRE and BI. asset pricing models. The first
three graphs refer to a Luropcan call 50 days to expiration (T1=50). lhc fourth plot
represents with squares the SPD calculated under full information rational expectations
and with diamond the SPD calculated under Bayesian learning. The parameters are set as
follows: m=1, g,=0.00315, g=0.00314, 1=0.519, p=0.02 (annual), y=0.999, n =182, and
N,=350, implying an initial unbiased belief 77, 0.52 O 1. The current price of the S&P 500
is taken to be 436.38 dollars, the closing price on L'cb. 22, 1993.
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When learning effects are weak and agents have a more accurate estimate
of 7, BL option prices converge to BS prices. This is unsurprising and it
follows since learning is the only source of non-stationarity in our model.
The first panel of Figure 9 stresses that differences previously of the order
of 1-2 dollars, now decline to a quarter of that range. Indeed panels two
and three show that BL implied volatilities continue to display a precise
pattern over moneyness. However, the implied volatility surface is flatter
than the one exhibited in figure 5, with a left-hand tail that bends upwards.
As Ny — oo and 71y — 7 (from above) a smile is obtained instead of the
smirk in figure 5. This indicates that at times when option markets are
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characterized by smiles, learning effects are weak in the sense that agents
attach high precision to their initial beliefs. On the other hand, smirks are
indicative of markets with strong learning effects as agents are still highly
uncertain about their beliefs. Finally, the fourth panel shows how BL and
FIRE prices converge: The two underlying SPDs are now very close.?!

7 Inferring Learning Effects from Option Prices

So far we have studied the ability of the BL model to generate option prices
(BS implied volatilities) that match typical shapes and stylized facts on
individual days. However, the Bayesian updating algorithm implies a set of
dynamic restrictions on how implied volatility surfaces and term structures
evolve over time as agents update ;. Such testable restrictions do not have
a counterpart in the BS model which does not consider the effect of changing
probability beliefs. By tracking option prices on several consecutive days,
not only do we get insights into how agents change their beliefs but we also
get a more precise estimate of the initial beliefs.

Estimating the dynamics of beliefs from observed option prices is a very
different inferential exercise that needs to be put in perspective. When asset
markets are (dynamically) complete, equilibrium asset prices contain infor-
mation about preferences and beliefs. Rubinstein (1985) observes that any
of the following implies the third: (1) the preferences of a representative
agent; (2) agents’ beliefs; and (3) the state-price density (SPD). Therefore,
a vast literature has attempted to use the observed prices of risky assets
to infer preferences, the (objective) stochastic process of prices, or both.
For instance, Bick (1990) and He and Leland (1993) impose parametric re-
strictions on the generating process of asset prices and infer the preferences
of a representative agent in an equilibrium asset pricing model. Further-
more, Bates (1991), Jackwerth and Rubinstein (1996), and Ait-Sahalia and
Lo (1998) (among others) back out the perceived (risk neutral) stochastic
process of asset prices from observed market prices of options.

Bayesian learning provides an as far unexplored possibility to expand
Rubinstein’s list to a fourth and separate item: the dynamics of the learn-
ing process followed by a representative agent in an equilibrium model. Akin

24We are omitting the discussion of the impact of large N; on the volatility term struc-
ture effects. What happens is easy to see: though the patterns remain as shown above,
all the implied volatility schedules as a function of time-to-expiration get flatter and their
level moves down towards the FIRE/BS value of ¢ = 5%. Surprisingly, a N¢ of the order of
more than 16 months of observations implies effects that are still close to those observed
in real option markets data.
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to Rubinstein (1995) and Jackwerth and Rubinstein (1996), our objective
is to fix preferences and infer a vector of unknown parameters from ob-
served option prices on a standard binomial tree. However, our exercise also
proceeds to impose restrictions on the stochastic process of the fundamen-
tals (dividends) underlying stock prices. Since the dynamics of beliefs on a
learning path determine the time-varying SPD, and the SPD ties down op-
tion prices to the underlying price in a precise manner, the very parameters
characterizing the learning process can be inferred.
The model in section 4 imposes a precise structure on the temporal
dynamics of beliefs which evolve according to
m(t+k)+M
ijl I{gm(tJrk)ij:gh} Nyt ks, M

m(t -+ ]{2) + M N NtJrk;,A,[

Ttt+k,M =

If only one piece of news arrives every period, this intertemporal structure
rules out very volatile beliefs and jumps in the precision. This flexibility
might be required since m is unknown and may vary over time. To account
for such effects, we solve the program?’

Tt K'rt

min Z Z Z CBL (14, Kry, St e, Nyms oy, 5), (Tt7KTt7St))

{me} i Nom i = T, Ky =K,
(15)
TN N +m
. < < -
g N—&—m_m—i_l_ N+m
0<m <1 t=1,...T (16)
N>0, m>0 (17)

where CBL (1, K;,, St, ¢, N,m; v, 3) is the theoretical price of a call option
on a learning path provided by proposition 5, C(7y, K;,,S;) is the observed
call price at time ¢ for an option expiring in 7; days, with strike K,, when
the underlying stock index is S;. The indexes appended to 7; and K, reflect
the fact that traded maturities and strike prices change over time, following
the dynamics of the underlying price and the financial cycle. Finally, g(-) is
a function measuring the distance between the cross-section of option prices
observed in the market and the corresponding cross-section of theoretical BL

5 Qur approach is similar to Bates (1991), who imposes CRRA preferences to estimate
by NLS the parameters of an asymmetric jump diffusion model in which jump risk is
systematic (priced in equilibrium).
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prices. For instance, we might choose to minimize the sum of the squared
pricing errors across days/strikes/maturities.

Notice that the precision is a fixed constant N to be estimated and the
program acquires an explicit intertemporal nature. Therefore, the estima-
tion procedure provides an estimate N which represents how much precision
the market assigns to its beliefs, an estimate m of the frequency with which
these beliefs are updated over the sample period, and a T x 1 vector &
whose dynamics is constrained by Bayes rule. Notice that N can also be
interpreted as an estimate of the length of the time window the agent is
basing his knowledge about the stochastic process of the fundamentals on.

In the following we distinguish between two alternative empirical exer-
cises that impose further restrictions on the fairly general program repre-
sented by (15). All of these estimation problems share a common set of
inputs and extract some estimated outputs. Again, we assume that the an-
nual volatility of the fundamentals is ¢ = 5%. Given o, g5 and g; can be
determined by applying the formulas in proposition 3. We assume v = 0.9
and 8 = 155 02 ~ (.98 on an annual basis.?® These choices are either based on
the features of our data on the S&P 500 index and index options, or based
on what seems plausible. Nevertheless we also explore the sensitivity of our
results to these choices by experimenting with alternative values of o, v, and

B.

7.0.1 Inferring learning effects from daily cross-sections of option
prices

The objective of the first exercise is to infer from option prices the belief 7,
its precision level V;, and the frequency with which beliefs are updated and
new information arrives (my) for each day in the sample:

Tt ?‘Ft
. 2
T III\ITH}W, Z Z CBL TthTt7Stv7Tt7mt7Nt) C(Tt7K7't7 St)] (18)
t,Nt,mit
T_Tt K‘rt

26 3 also needs to be adjusted as a function of the frequency with which dividend news
arrive (m) to avoid that the actual subjective discount rate varies as m varies. Therefore,
with reference to each single step of our binomial lattice for dividends, we will be using a
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Figure 10. Beliefs regarding the probability of good news (high growth of dividends, 7:[l )
precision of these beliefs (number of previously observed states, I\All), and number of state
realizations (dividends news, m,) implied by observed S&P 500 index option prices during
the period Jan. 4, 1993 - June. 30, 1993 (125 trading days). {f[‘ , l(ll,r'f'll}T

.., are estimated by
solving the program:
7& R’K

2
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=T Ky =Ky
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min
NG m,

i.e. by minimizing the daily (cross-sectional) sum of the squared pricing errors from the
theoretical model with Bayesian learning. The exercise assumes =98 (annually), CRRA-
power preferences with y=0.9, and a volatility for dividends ¢g=5% (annually). Future
payoffs are discounted employing the 3-months average T-bill rate, measured on a daily
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fort =1,2,...,7" This amounts to minimizing the in-sample squared pricing
errors produced by the model for each daily cross section of option prices.
T, Nt, and 7, can be viewed as approximate NLS estimators. This exercise
ignores the intertemporal restrictions imposed by our model on the updating
of beliefs by agents and therefore does not provide the strongest possible test.
We do not rule out high volatility of the estimated belief 7; or unbounded
variation in the estimated precision level Ny. On the other hand, the exercise
is quite simple, requiring the estimation of only three parameters on a data
set with a number of observations equal to the number of traded contracts
in day t along the dimensions of maturity and strike price.

Figure 10 reports findings for our 1993 S&P500 index options data, us-
ing a total of 252 trading days. Program (18) was independently solved
252 times, i.e. for 252 different cross-sections of option prices yielding 252

. !
vectors of daily estimates [fr N m} . Figure 10 stresses that the estimated

parameters are quite stable over time and that the model fits observed prices
quite precisely. Following the same criteria as Dumas et al. (1998), this ar-
gues in favor of our model. In general option markets display weak optimism
(i.e. #t; > & Vt). Over the period analyzed, news on the S&P 500 seem to
flow at a quite slow and stable rate: option prices imply that on average
the fundamentals change about every two days, 0.3 < my; < 0.7 Vt. The
flow of information seems to reach higher peaks between February and mid-
April, when 7y is often above 0.5. On the contrary the flow of information
perceived by option markets slows down between June and September. In
general learning effects — and therefore also the slope of the implied volatil-
ity skew — are quite mild, since for most of the days N stays around 200.
Such a level for N, implies that market participants would tend to use a
moving window of past observations of almost 20 months trading.?” How-
ever in several periods (February, June, and October) the average precision
drops on many occasions (to about 180-190) while in the same period 7 is
often subject to drastic downward or upward revisions. Apparently infleun-
tial news induce the agents to feel much less confident about the precision
of their knowledge than they normally are. However it is difficult to link
the behavior of the estimated 7#; to current and previous returns on the
underlying stock index.

*TSince 7 is on average around 0.5, N =200 implies that about 400 trading days have
to elapse before receiving 200 pieces of information concerning the fundamentals.
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Table 2. Summary statistics concerning the perceived probability (77,) of high dividend
growth, its precision (number of previously observed states, Nt), and the number of state

realizations (dividends news, M) implied by observed S&P 500 index option prices during

the period Jan. 4, 1993 - June. 30, 1993 (125 trading days). {ﬁ[ , N[ , ﬁ’\}[T:l are estimated by
solving the program:
T, Ky 2
mm!n Z Z< [CIBL(TIIKUS’"U Ntlm)_CtBL(THKtISt)]

™ T=T Ky =

i.c. by minimizing the daily cross-section of squared pricing errors from the theoretical
model with Bayesian learning. The exercise assumes (=98 (annually), CRRA-power
preferences with y=0.9, and a volatility of dividends 0=5% (annually). Future payoffs are
discounted employing the 3-months T'bill rate, measured on a daily basis.

The innovation in M is measured as the residual from the autoregression m, = o + Bm,, +

C.
Minimum Maximum Mean Median SD

At 0.510 0.534 0.526 0.525 0.00313
|<| 180 218 199.9 200 6.35

t
rﬁl 0.3 0.7 0.463 0.4 0.098
Average daily 0.12 0.75 033 033 0.12
pricing errors
(dollars)

Correlations Current Lagged Return  Absolute return A[\] ﬁ]l innovation
return !

f[I 0.065 0.037 0.000 0.054 0.352

J 0.041 0.051 0.151 1.000 0.145
AN,
Aﬁ][ 0.152 0.281 0.310 0.084 1.000
rhl innovation 0.338 0.012 0.083 0.145 1.000
Average daily 0.011 0.034 0.100 0.053 0.074
pricing errors

The fourth (in clockwise direction) panel of figure 10 highlights that our

model achieves a very good in-sample fit. The fit deteriorates only around
abrupt changes in the precision levels.?® This is possibly a sign that our
model is too simple to entirely capture the effects of fundamental shocks
on beliefs and prices. Table 2 provides a few summary statistics: the mean
(across maturities and strikes) of the average daily pricing error is of the
order of 33 cents (median: 33 cents). This means that on average over
the sequence of cross sections, each option was misspriced by only 33 cents.

¥ Furthermore, the in-sample fit worsen toeards the end of the sample period (Summer
and Fall 1993). However this feature is likely to mainly depend on the appearance in the
sample of longer maturity (around and above 200 days to expiration) options after July
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There are also days in which the fit of the model is really impressive (for
instance a mean of 12 cents is reached on May 14 over 32 different option
contracts). In no day out of 252 the mean pricing error exceeds 1 dollar.
The table stresses the extremely low standard deviation of the estimated

parameters.29

7.0.2 Inferring learning effects from the dynamics of the implied
volatility surface

Next, we infer the dynamics of learning from observed option market out-
comes by imposing the intertemporal restrictions implied by the BL model.
Fixing preferences, we solve the program:

Tt K‘rt

min Z Z Z CBL TthTmStvﬂ—tvN m:9, /6) (TthTmSt)]Q

{ﬂ't}t 17 t=1 7= ItK-rt K

=y

st 7TtN < <7TtN+1
TN+ =T N
0<m <1 t=1,..,T—-1 N >0 (19)

on a bi-weekly basis, i.e. for the panel of option prices observed in the trading
days of the first 15 days of January, then for the panel relative to the last
16 days of January, etc. The reason for limiting the problem to periods of
13-16 calendar days (hence 12 trading days at most) is to avoid the curse
of dimensionality implicit in this NLS estimation program: as T — oo,
the dimension of the parameter vector § = [{m;}]_, N]' tends to infinity
making the optimization problem practically impossible. Limiting ourselves
to a bi-weekly basis we thus approach the estimation of a vector with 10-
13 parameters employing a number of observations usually well above 400.
Notice that we are imposing much stronger requirements on our model than
in the previous sub-section, narrowly restricting the temporal dynamics of

29To check the robustness of our results we repeated the same exercise for a few alter-
native choices of the deep parameters we have been calibrating, particularly the volatility
of news on fundamentals o and the CRRA coefficient . To save computing time, these
robustness checks were applied to the shorter period Jan. - Feb. 1993 only, for a total
of 39 trading days. The series of estimated parameters are still very stable (if any, they
are even more stable) and the changes with respect to figure 12 are minor. In all three
experiments, some degree of optimism prevails and the precision is around 200. Only
the average level of the estimated m seems to strongly depend on the assumption on o,
although this is to be expected since the overall variability of the fundamentals over a
fixed span of time depends both on ¢ and on the frequency with which news are assumed
to flow in the market.

35



agents’ beliefs with regard to the probability of good states. Therefore the
ability of our model to adequately fit market prices should be considered a
challenging test of its capability to effectively organize the available data.

Figure 11. Beliefs regarding the probability of good news (high growth of dividends, 7, ),
precision of these beliefs (number of previously observed states, N[), and number of state
realizations (dividends news, M) implied by observed S&P 500 index option prices during

bi-weekly periods, Jan. - Feb. 1993. {fl} }‘T:l, Nl arc estimated by solving the program:

T
min
{Aaka N Z z

=I1=1 K, =
Sn

Ky ’
Z[C[BL(TI,K(,Si,rr[,Nl,m[)—C[BL(r(,KI,S.)]
TN, <7, < N, +1’
N, +1 N, +1
N,>0, N;ON

t.c. by minimizing the (cross-sectional) sum of the squared pricing crrors implied by the
model under BI. and the implied volatilities of observed market prices. The exercise
assumes [3=98 (annually) , CRRA-power preferences with y=09, and a volatility for
fundamental news 0=5% (annually). Future payoffs are discounted using the 3-months
average T-bill rate, measured on a daily basis.

st

O0sm <lt21

2
S&P retyrns (daily %) | A
N \r’/ \\ AVA
N/ / ~ vV O\ I\
\/ \4/ V ) \/
180
1704 \
160 - \ Estimated|N(t)
150 4
140
Fist part - Jan. Second - Jan. First - Feb. Second - Feb.
2
S&P retyrns (daily %)
A\ ’,’“‘\
ANV

058 \/ N~V

v
0.56 4
054 |
0.52] F-3
0.50 4

Estimated Pi(t)
0.484
Fist part - Jan. Second - Jan. First - Feb. Second - Feb.

Figure 11 reports preliminary results for the two month period January
- February 1993. Although the in-sample fit deteriorates®”, the estimated

30Due also to the fact that with o = 5% we are de facto imposing m = 1 as implied
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sequences {#;}._, remain very stable and lie in the interval [0.51,0.54]. Also
the estimation results concerning the data window used by the agents to
infer the unknown process for fundamentals is consistent with the levels un-
covered in the cross-sectional exercises and expands smoothly over time in a
manner fully consistent with our learning-based explanation of BS mispric-
ings. Although other and even more restrictive tests can be designed, we
consider these findings prima facie evidence of an extraordinary ability of
the model in section 4 to adequately fit observed option prices along many
different contract dimensions.

8 Conclusion

This paper has proposed a new equilibrium model for asset prices under
Bayesian learning and investigated its ability to match a variety of empirical
biases in the Black-Scholes option pricing model.

The model with Bayesian learning proved to be able to match both
the presence of skews in implied volatilities and the existence of a term-
structure in implied volatility for given moneyness. In this respect, the
model offers an approach to the correction of BS biases which is competing
with the standard benchmarks in the literature, such as jump-diffusion and
stochastic volatility models, which were found by Das and Sundaram (1999)
to be unable to correctly fit both stylized facts for plausible parameters
values.

When the model is fitted to daily prices for a panel of S&P 500 index
options, it provides a satisfactory in-sample fit on a daily basis. The esti-
mated parameters characterizing the state of learning each day are stable
over time. Episodes of strong revision of the beliefs implied by options prices
are rare and tend to involve the precision of these beliefs rather than their
level, which we find plausible. The model is then fitted to short periods of
time (two weeks) in order to test the intertemporal restrictions which are
built-in our maintained learning scheme. Although the in-sample fit per-
formance cannot but worsen, we still find that the estimated parameters
are quite stable across periods and that they do not deviate much from the
results obtained through the daily inferences.

by the model, although the estimates of the preceding subsection strongly stress that the
information flow is likely to be much slower than that.
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Appendix A.

Proof of proposition 2.  The condition g + w(g; —¢gf) < p <
7(1+g;)+ (1 —m)[(1+gn)(1+g) 7] is invoked to guarantee the absence
of arbitrage opportunities and hence®! — with complete markets — the
existence of a unique risk-neutral measure. Then a unique linear pricing
measure exists and this implies that the law of one price holds, contingent
claims with same payoff profile will receive the same price. Start noticing
that

—
CHFIRE(K. T, 8))= Zﬁ”( H”) max{O,Sgﬂ—K}ﬂj(l—ﬂ)”*j
(20)

is an equivalently good expression for the equilibrium price of a European
call. This formula expresses the no-arbitrage price of a contingent claim

paying off max {O,S{Jrv — K} of the consumption good as of time t + 1"

Given that dividends follow a known binomial lattice {gp, g, 7, m}, (20) is
equivalent to:

[H(Hgo S

i=1

FIRE_v 1 " [{
ct=3 (55) [Ha+a

X max {0, St - K} (”> w1 —myr

J

v

=(1+0) > [(1rgn) ) [(1rg) ] max{o, Sthrv—K} X

=0
x (;f)ﬁja — o
—(14r)" Zmax{() S, o K} (;) {W%(l—kgh) ]j ”

31Under certain technical conditions (Schachermayer (1994)). Indeed for infinite horizon
models the risk neutral measure may not exist even in the absence of arbitrage opportu-
nities. Pliska (1997, 246-248) provides an example of such a model.
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1+7r ke
X (1 —m)— (1 + v
-mprsasa) ]
v
:(1 + T)_v Zmax {O, Sg—i—'u — K} (U) zj(l — z)v—j
i=0 J
where z = W%i;(l + gn)7 is a risk-neutral probability measure. Indeed,
calling z* = (1 — ) ﬂ';(l +a) 7,
1+7r

z4+2* = T, [71’(1 +gn) T+ (1 —7)(1 "‘91)77]

1 1+p
4 [r(14gp) 7 + (1-m) (1+g) 7]

[ (1gn) " +(1-m) (1+g) 7] =1

from the expression for the equilibrium risk-free rate found in proposition
1. As such, z* =1 — 2. Since z is a positive quantity, z defines a probability
measure. We now check that z is a risk-neutral measure. In the affirmative,
the discounted return process

T =T
I+r
(77,4 1s the stock return) is a martingale under the risk-neutral measure (see
Pliska (1997, 97-98)):
TP, —T
F? {—tf—ﬁ—r ] =0« F? [er —r] =0

since r is a deterministic constant under FIRE. Then

S D
E? [rf —7] =E7 {M—l—r]

St
= Ef [(1 +gt“)qjl?1j;t(1 toe)De g, (21)
= 2220 )] — (L) 22)
— e [r(a) T 1) T = () (23)
_ (1+p) L+r * * K\ r
= T (g 149 [1+g7 +m(gh-97)] — (1+7) (24)
=0 (25)
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where the line before the last derives from the definitions of g/ and gj.
FEquivalently, the measure z induces an expected return from holding the
stock index in each period which is exactly equal to the risk-free rate, which
is what risk-neutralization implies. m

Proof of proposition 3. The result sets the parameters g}(_bm), gl(m),
7(m)  pm) and (M) ag a function of the annual values for y, o, the risk-free
rate r and the dividend yield 6. This is a system of five equations in five
unknowns that has a recursive structure that makes its solution particularly
easy. In fact g}(_bm), gl(m) and 7™ can be directly set p and o are fixed.

Therefore the restrictions on the process for dividend growth involving g,(Lm) ,

gl(m), and (™) are the same as in Cox et al. (1979, 246-251). As for p(™) and
’y(m) they jointly depend on 7 and 6. However this sub-system of equations in
general admits a solution, i.e. a subjective discount factor and a coefficient
of relative risk aversion that can be dynamically adjusted as m — oo to hold
the period [t,t 4 7| risk-free and dividend rates constant and independent
of m:
14 7m) = L+ p™ = (147)%
(g™ =14 [(14g™) 7 = (1+9™) ]

Therefore the gross interest rate over [t,¢ + 7|, including v periods of length

L is [(1 + r)%} = (1+7)%, or (14+7) per year (dt=1). Asm — oo, p(™ de-
creases as both (1—&—7‘)% and {(1 + glm))_'y +7 [(1 + g}(Lm))_7 —(1+g ))_7} } .
0. Therefore the decrease in 7™ is exactly compensated by the increases of

v. As for the dividend yield,

14 pm

O 1 (1)t [(1g )L™ |

14+ 6m=1+

()% {gl™) ™ [(1g™) 0 = (™) 7 ) .

= (14+6)~
(Lg)' 7 7 | (14g™)1 10 — (Lg{™)1 |

so that the gross dividend yield over [t,t 4 7], is {(1 + 5)%}1} =(1+6)%, or
(14-6) per year (dt=1). Notice that 6™ is adjusted downwards, i.e. ¥(™ is
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revised upwards as a function of m, allowing for a fixed current underlying
price conditionally on which the option is priced. This completes the proof
of the first statement.

As for the second part of the proposition, see Cox et al. (1979, 246-
251). Notice that adjusting p and 7 as a function of m brings us in their
exact framework, with a periodal (say, yearly) risk-free rate (adjusted for the
dividend payouts) which is independent of the number of nodes v modeled.
Just replace 1’ = % for the risk-free rate in their standard formulation
and the result follows through the same steps. The result differs from theirs
only for the fact that the BS formula is interpreted as an approximation in
continuous time of our discrete time framework and it is therefore expressed
entirely in terms of the parameters of the discrete time lattice model for
dividends. In particular notice that

g}(Lm) _ em/dt/v —1l=0=, l%ln(l +g;(1m))

dat

and (147) 74 = (1470m) 0 — 147 = (1+r<m>)%:[(1 +r)ﬂ T =14
so that the 7" in the BS formula and 7 correspond. Analogously it can be
shown that (1+06)"% = (1 +6M™)~¥ = § = § so that

dy = {a\/ﬁrl {m (%) + <?—Z§+ %02) dt]

= [Voln(1 +gs)] {m (%) + (r—68)dt + % In(1 + gp)]? v}

as v = Tm. Substituting this expression in the standard BS formula CP° =
S, ®(dy)e™t" — e TTK® (dy — 0\/T) gives the formula. m

Proof of proposition 5. The equations easily follow from the expres-
sion for the no-arbitrage price of a contingent claim paying off max {0, ngjj — K }
of the consumption good as of time ¢t +7 = ¢ + v once the relevant proba-
bilities perceived on a learning path are employed.

We check that the probabilities appearing in the expression for the SPD
are actually risk-neutralized in all the underlying single period models as-
sociated with the information structure. Pliska (1997, 98) shows that in
a model with cash dividends, a risk-neutral probability measure must be
such that the discounted price process augmented by the discounted sum
of dividends paid out is a martingale. From the Euler equations under
Bayesian learning, we know that (see Guidolin and Timmermann (1999))
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Stk = EA{Qtyk+1(Digrs1 + Stakt1)|Terr . Dividing through by the price
of the one-period zero coupon bond issued at time ¢ + k we have:

(1+p) _
L4+g)™ 7 + 7 [(L+gr)™7 = (1 +g1)77]

St+k(

_ (1+p) .
= £ { QD= g i (g

where we have used the fact that by definition a zero coupon has unit price
at expiration. Define now the discounted price and the cumulative dividend

1+ k
process, S = Suk == A Dipk = Sizo Dets

respectively. Adding Dy, to both sides we obtain

St tDie = ElQuiai1(Stipp1 Dl 1)

X (1+p) 7 }
(1+g1) "+ ek [(14gn)~7-(1+g) 7] t+k

showing that the process Sy, +Dj; is a martingale under the (conditional)
probability measure

(L+p) "
L4+g1) V + 7k [(14gn) 7-(1+91) 7]

P {S§+k+1|7?t+k} = Qt+k+1(

. D - .
~ k ~ ~
x P{D], o [Fean} = 8 (5—;) 1+ rE5 Gl P DL oo}
(26)

(26) represents the one-period risk neutral density. Since the one-period
state-price density is simply

~ . 1 ~ .
P LSt lfeen) = P {80, e
t+k-+1 14 rﬁl]/g(/]rt“rk;) t+k-+1

Di k+1 -
=7 (%) [T=y T + (1= Tgy=y) (1= o)
t+k
(27)

it is immediate to derive the expression for the one-period ahead state-price
measure, once it is recalled the form of (??). Notice that the advantage of
working with the SPD is that it does not depend on the risk-free rate.
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Well-known results — for instance in Pliska (1997, 96-98) — guarantee
that the existence and uniqueness of the risk neutral measure in the un-
derlying single-period models is sufficient for the existence and uniqueness
of the risk neutral measure for the infinite horizon model. This risk-neutral
measure can be found by ’pasting’ together all the paths leading to a certain
state of the world ¢ 4+ v periods ahead and exploiting the fact that realiza-
tions of the dividend growth rate are i.i.d. notwithstanding the learning

process. For instance, Pr {St] +U|n7g,]\ft} corresponds to the product of the

state-price densities of type (27) that a high dividend growth occurs j times
out v, multiplied by the number of sample paths that can lead to this final
outcome, (3’) :

Dyyi

o v Dl - R R
Pr; {Stjw} = <U) [Is <M> L=y Frert (10 =13) (1T o)

(’U) Bv nt(nt—w — 1)(Nt — TLt)...(Nt+U -7 — Tbt+1)

% H ( t+l€+1>
k=1

Dy
_ (1}) . nt(nt+1)(nt+j—1) (Nt—nt)...(Nt+v—j—nt+1)

j Nt(Nt+1)(Nt +j— 1)(Nt+1))

o N N
. [<D21H> (Diiz> < D}y, >
Dy DE, Dyt

o (Dl <> Lol ) T T Ne —neth)
— e 8
’ (Dt ) j 1T .

1o (netk) 320~ H(Ne—matk)
I o (Ne-+h)

and Zelnet 7]\1[2((]]\\2;?)‘)(](\[1:7_13) —Jmt1)  Therefore (28) is the desired multi-

period risk neutral measure. Notice that as expected from the general result

in Guidolin and Timmermann (1999, prop. 1), the time ¢ risk-neutral dis-

tribution of the time ¢ + v stock prices depends on the entire sequence of

possible future probability beliefs. m

as it is easily checked the correspondence between

Lemma 7 Define Pﬁi(s) = Pﬁ’;; {Dt+k+j =(1+gp)° (1+ gl)j_s|nt+k,Nt+k} .
1 1+g/

+9;, . .
1+; > 1 while Ty < 1. Under the same assumptions of

Suppose that
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proposition 4, the time t + k BL pricing kernel

UEL (neik, New) = fzm Zﬁjz (L4 g7)*(L+ gy > PLi(s)
= s=0

is an increasing and convex function of Ty = ‘*’“ Vk when v < 1.

Proof. Consider an alternative estimate 7}, > Tyix. For j = 1 the
probability of the two possible final dividend nodes under Bayesian learning
are:

Pt+k(8 = 1|7AT;:+lc) = ﬂﬂg > Tk

PR (s =07 ) = (1= 70p) < (1 — Rpsp)

and since for v < 1 (1+g}) > (14 gf), the probability mass is shifted from
the bad to the good outcome,

1 1

BY (A +gi)* (L4 *PRE(slrie) > 8 (L+ ) (1 + g7 *PRL(slern)
s=0 s=0

Therefore the first summand in the definition of ‘Ifﬁ_fjg is bigger under 7y, >
Titvk- For j = 2 and using the fact that the time t 4 k estimator of 7 can be
re-written in a recursive fashion as

A - Hagini)=04gn)} I .
Titk+1l = Tt+k + [ Nor + 1 - New + 17Tt+k]
we have:
1

Pﬁi(SZQWM):ﬂM {ﬂ+k+ (1'ﬂ+k)} STk {%t-i-k‘i‘ (1-7?t+k)}

Niprptl Nijppt1

~ ~ Nivk > Nivrk ~
P =1 / -9 / 1- t+ ! =9 1. +
t+k(5 [y 7Tt+k{ A Ttk < Ttk —Nt+l€+1ﬂ—t+k

t1xt1
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~ ~ Nevke - ~ Nevke -
PBL(s=0[7, ) = (1 -7 l—4k 2 Ve -7 - —* 7
ik (s=0[T 1) = ( "y Nyt 1tk ( vk Ny g1 "

Again, probability mass is shifted from the least favorable (s = 0) to the
best outcome (s = 2), so that

2 2

B2 (L+g)* (L + g7 P (slien) > 82D (1 +3)* (1 + g7V~ PEL (s erw)
s=0 s=0

Repeating this argument as j — oo one can show that, provided v < 1,
under Bayesian learning the time ¢ 4+ k pricing kernel increases with the
current estimate 7y, . As for convexity, observe that as 7y \, 0,

BL __BA+g)
Uik (Terw) N fim Zﬁ” L+g) —TH_QI*)>O

under the hypothesis that +gl =B +gf) <1, while as T4 1

UL Regr) / flm Zﬁ] L+g4) o — o0

if 1119/;*1 = (1 +g;) > 1. For instance, for all p > 0 a g; < 0 will be sufficient

for the condition 5(1 4 gf) < 1 to hold. Now, UL (7, 1) is defined on the
compact [0,1], it is a monotonically increasing and continuous function, it
is everywhere differentiable (it is just a sum of differentiable functions of
7, the BL ’objective’ probabilities), it goes to a finite positive quantity as
ek \, 0 and diverges as Ty " 1. Then \I’fffk (Ti+%) must be convex. m

Proof of proposition 6. To simplify the notation, define VB, - (K) =

Cfs-Lk( ) — C’fj_I,fE(K) and Pfi_%( s) = fi_% {Df+k+v’nt+k7Nt+k}- We start

by observing that conditioning on a common, current stock price S;1; has
implications for the array of possible future stock prices in t + k4 v. In fact

BL _ ¢BL o Yo (ks Neprto)
Sivko(0) = Uik (Meh, Ner +0)(1+ g)" Dy = BL (ny 1k, Niy) T+
91)" St+k < < SELRE(0) = WITRE(1 + g))"Dy = (1 + g1)"Sp1x holds if and

. N1k, Nt g +v .
only if “\ij’}{,{; ((nt:; ]Vt::;) ) <1 as SEFI,fE = SE@ by assumption. By the
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previous lemma, this is guaranteed by the fact that T 44,(0) = %}ﬁ"—v <
Ntk

sk = N 50 that \IJtBikl;erv (Ntsk, Newio +v) < \I’g%(nt+k,Nt+k). Similarly,
SBE (0) = WL (ny i, Ny +0) (L gy ) Dy = Letplrek 20Nt t) oy
tiktv = A kto\TU+Ek s 4Vit+k gn t — ‘Ith+Lk (Pe1mNetr)
9n)" Stk > Sﬂ,ﬁg)(v) = OFIRE(1 4 g,)" Dy = (1+g1)"S; 1 holds if and only
i \Ij,gB+I;€+v(nt+k+U7Nt+k+U)
‘lff_,_Lk(nHk,NtJ,-k)
a Bayesian learning path a few time ¢ + k + v stock prices become possible

that could not be reached under FIRE, both below the minimum attainable
FIRE stock price and above the maximum time t + k£ + v FIRE price.

We study VPE, £ (K) in five disjoint intervals for the strike price: [0, SﬁLkJrv (0)),

S (0), SELE(0)), [SERE(0), SERE (0), [SEAE (v), S (v), and

[SPL L, (v),400). As for the first interval, observe that when K =0

> 1, which follows from the lemma. Therefore on

v DS Y —y
V() = 3 5 (—“’“* ) SBL  (s)PEL(s) +
5=0

Dk
v DS -y
Sy ) st (] e
=0 t+k S

v Ds 1—’}/
= Siik ZB” <M> OO (e wts, Ny tv) PRE(s) +
s=0

Dy
v D3 1—v
_ St—i—k Zﬁv ( t+l€+v> <Z> 71'5(1-71')”_5
s=0

Dy

. N . D 1=y
= St By {Et+k+1 [...EtJrkJrvl (‘l’thkﬂ <%> ) ] }
t+k

D 1=
M) ] >0 (29)

Dyyi

= St4 k0 Ep vk [(

Ds 1—y
BL t+k4v 4 . . o~
as W/ +v( Dy r > is an non-decreasing, convex function of Tiigis

(equivalently, of s, the number of high growth states between ¢t + k and

~ . . D3 1—
t + k + v, once Ty is given). Indeed both \IIF+L]€+U and (ﬁ) are

positive, non-decreasing and convex functions of 7y1g,, and as such it is
straightforward to check that their product possesses the same properties.
Then, for 7,1 = m, Jensen’s inequality implies that

49



BL 1— BL 1—y
uBL § \I}t+k+1 Dt+k+1 5 \I’t+k+2 Dt+k+2
-k Lit4k ‘IIBL D t+k+1 ‘IIBL D
t+k t k41 t+k-+1

BL 1—y
E \Ijt—&—k—i—v Dt+k+v
oLy ke o—1 ‘IIBL D ’ T ’7( "ﬂ'
t+k+v—1 t+k+v—1

BL D 1—v qwBL D 1—v
> \I/BL E \pt—i—k—i-l t+k+1 qlt—‘rk—i—Q t+k+2
= Y kttk

‘l’ifjg Dyiyy ‘l’ifjﬁl Dy
BL 1—
U ko < Dy pro > K
ChL 1 \Ditkto—1
pBL D 1—v D 1—y

= UPLEpy Ikt ( t+k+v> =uBLE, . <—t+k+v> 30
since under knowledge of =, \I’F-i—Lk-s—v = \Ilg_Lk For Ty, > m, Cg_Lk(()) _
CELEE(0) > 0 holds as the actual

- ~ ~ D 1=
BL t+k+v ~ o~ ~
Et+l€ {Et+]€+1 [---Et+k+v1 <\Ijt+k+v ( ’7Tt+k ...’7Tt+k ’7Tt+]€
Et—i—k

is always bigger than the first line of (30) since for 7y > m probability
beliefs under Bayesian learning are no longer a pure mean-preserving spread
of RE beliefs (as implied by Guidolin and Timmermann (1999, prop. 4)),
but for v < 1 probability mass is transferred from bad to good states of the

Ds 17’}/
: : : tkty BL
world, that is, states in which ( Drir ) Ve

Consider any K € (0,55%.,(0)). Then:

takes higher values.

v DS -y
Vitrp(E) => B (M) SES o (eprts, Nep+v) PR (s) +
s=0

Dy
v DS —y
_ Zﬁv < ]_‘t)JrkJrv) SE}-IIEE;(S) (1}) 71_5(1_7_‘_)va+
e t+k 8
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N C I I B o)

D
= ik

> K@ Z <M> B KZ) A1 — ) - Pﬁ_ﬁ(s)} >0

=\ Dt

where we have recognized that the first two terms of V2%, .(K) correspond
to VBL.(0) > 0. The last inequality obtains if and only if Ty > 7, as
assumed. Notice that for 7, = 7 a Jensen’s inequality argument would

make us conclude that K3 0_, (%)_7 [(5)7s(1 — m)v=s — Pﬁ’;;(s)]

. . . ~ . D3
is negative instead. If 7. > 7, since (ﬁ

function of the number of high dividend growth states, under BL probability

is now a decreasing

. . . . D3 LA . .
mass is shifted from the states in which (ﬁ) is high to states in which

it is lower, and as such the positive sign results. Formally,

v DS -y v R
K3’ Z (M) {(S> (1 —m)" 7% — Pt]ﬂ; {D}. jro|Tisn > W}}

D
s=0 t+k

v

v v s v—8 s ~
> KBy KS>7T (1—-m)" - P} {Dt+k+v‘7rt+k:77}} =0

s=0

as both sequences in square brackets (as a function of s) define a discrete

probability measure. Therefore for K € (0,55% . (0)) VEizp(K) > 0
while our argument also implies that V&, . (K) — VEE, 2(0) > 0, and that
VB (K) increases in the interval (0, SEL . ,(0)).

It is convenient to proceed backwards for the rest of the proof. Suppose
K> Sfi_"jg+v(v). Since max{0, Sg_fjﬁv(v) — K} = 0 = max{0, Sﬂ,ff,(v) —

K} =0as SEL . (v) > SELEE (v), the two call prices are both trivially nil

and their difference is therefore nonnegative. Hence V&L, (K) = 0 in the
[SPL.,(v),+00) interval,

Consider now the interval K € [SEFEE (v), SEL | (v)). Since max{0, SELEE (v)—

K} = 0 while max{0, S2% _  (v)—K} > 0 VK, it follows that while CEAFE(K) =

0 everywhere, CEL(K) > 0. Hence Vi pp(K) > 0. Also, VE{g(K) is de-

creasing in K € [SEEE (v), SPL . (v)) as CEL(K) is obviously decreasing

in the strike price.

o1



We can gain some insight by splitting up the third interval for the strike

price, [SEAEE(0), SELEE (v)), into two sub-intervals. Define a”/fF(K) as

the smaller natural number s.t. (1 + ¢3)%(1 + ¢)?"%S; > K and a1 (K) as
Pk, (Reprta, Ny +v) (14+gn)4(1+g)" S, >

the smaller natural number s.t. BT
K. Observe that as for s’ = int(vTk) + Irum, - Znt(vﬂt+k)>0} > Uik

Ot Netw)

~ _ Nepr o~ 1 Nijrp =~
Tttktv = N, oo Mk T NeS 2 Nt+k+v7‘—t+l€ + Nt+k+” U1k = Teyk, the

. X \I’BL
lemma implies that &fT’“LZ“ > 1Vs > s'. Therefore, aP(K) > int(vTyx) +
t+

Iiuiy o —int(vi, ) >0} implies that o /#7(K) > oPL(K), while for a”*(K) <

. o~ \I’BL
int(VTeyk) + Ijwr, o —int(vr, ) >0} a"RE(K) < aPH(K) as % < 1.In

other words, 3K € [SEAEE(0), SELEE (v) st aPH(K) > int(v@ir) +

I{Wt+k —int(vey)>0p SO that VK > K aFIRE(K) > aBL(K) and Vs >
aBL( ) Sth,HU(s) SFIRE( ), while VK < K aFIRE(K) < aBL(K).

t+k+v
This is consistent with the fact that when K < SEIEE(0), oPF(K) >
af1RE(K) = 0, while for K > Sﬂ,ﬁg)(v) v =aRE(K) > aPL(K). Suppose
first that K € [K, S/} (v)). Then

v Ds . —
VErre(K) = Z B (t;#?) 1S5 — KIPTE(s) +

. v DS v - v S v—8
-y () s -x(U)ea-n
t S

S:aFIRE‘(K)

_ Z /61)< t+k+v> [St+k+v—K]Pt+k()+

s=aBL(K)

-
Z 3° < t+k+”> max {0, S{LEE K} <v> 7(1-m)"° >0 (3la)
s=aBL(K) 5

as [SPL., — K] > max{0, S//EY — K} Vs > oPF(K). As for the differ-
ence between probability beliefs on a learning path and under RE f(s) =
Pt]i% {Df+k+v]nt+k,Nt+k} — (Z)?Ts(l — m)¥"*%, Guidolin and Timmermann
(1999, prop. 4) shows that for 7, , = 7 probability beliefs under learning
are a mean-preserving spread of RE beliefs and that there exists a range of
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values for s such that

e (e (B
Nitk Nitk

s—1 v—s—1 s—1 v—s—1
I (sr) 1T (Nerenesn) 1] () T (Neprmmagr+0)
_1=0 =0 1=0 1=0
- v—1 < v—1
[T (Nevr) [T (Newr +1)
=0 =0

Dividing through by the expression on the left-hand-side and taking logs,
we obtain for the last inequality:

s—1 v—s5—1 v—1
) ) )
0<l250€n(1+n—t>+ l:EO €n<1+Nt—nt>_l:EO€n(1+ﬁt> (32)

which can indeed be verified to hold when s is either very large (’close’ to
v) or very low. Differentiating (32) with respect to s it follows that the
expression increases when s > (v— 1)y, and decreases for s < (v —1)T¢yp-
Therefore 3 two values of s, s; > 0 and s < v such that Vs € [0, s1] U [s2, V]
PJBL(s) is greater than (?)7®*(1—m)"~*. Though the mean-preserving spread
result implies that >, , f(s) = 0, for 7 > % the function f(s) contains a
nonnegative weighting mass in the interval [vTy 1, v] in the sense that the
positive values of f(s) over [sa,v] at least compensate the negative values
between [vT ik, s2) For Ty > m, the two values of s such that f(s) > 0
move 'right’, to 8] > s1 and s, > sy as increasing probability mass is shifted
from states with low final dividends to states with high final dividends. For
the same reason, for 7 > 1 f(s) contains an even larger (positive) weighting
mass in the interval [vTy4g,v]. Since the summation in (31a) runs from
aPL(K) to v, for K s.t. aPH(K) > sy > vTpqp, PEL(s) > (D) (1 —m)v*
Vs > aPl(K), the result obtains. Furthermore, VPE,  (K) is decreasing in
K. If K is s.t. aPH(K) € [aPH(K), s,) the result follows from the fact that
the wedge between [SZL | — K] and max{0, SEIEE — K} increases with s,
while in [vTk,v] f(s) contains a positive weighting mass. In this interval,
VEE, o(K) can be either increasing or decreasing in K. When K increases,
states of the world in which PB%(s) < (2)n%(1—m)"~* are *discarded’. If for
these states of the nature it was [SEL . — X'|PEL(s) < max{0, S —
K}(Y)m*(1 —m)"~* then the difference in option prices increases, otherwise
it decreases.

Suppose instead that K € [SFLEE(0),K). This implies o' *F(K) <

- t+k+v
aPL(K) while Vs < oPH(K) SELEE(s) > SBL  (s). By the same argu-
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ment made above, C2L(K) — CFLFF(K) can be either increasing or de-

creasing in K over this interval. First, note that aPL(SEIEE(0)) is s.t.

SPL  (@PE(SELEE (0))) > SELEE(0), while Vs < aPE(SEIEE (0)) SEL L (s) <

SELEE (0). Given this, we check that Ve (SEIEE (0)) is nonnegative:

Virre(S{(0) = VETRe(Si1.(0) +

aBL (SFIRE (0))71

R Dieo\ ' eBL  pBL

v

- Z B (Tt) Siihrolin(s) +
s=0

- v Dy k—+v -
+SELLL (0> (t;#;) PEL(s) +

v Ds i -
SsEE0) Y () R+
s=aPL(SEIEE (0)) !

BL - v Dts+l€+v v s v—s
— 5i4k10(0) Zﬁ D, ok (1—m)"" +
s=0

- v Dy v (v s v—s
ety o (e (Ve
s=0

> [SEHE (0)-5 o (0)] Z;ﬁ (Zz2) () w0emr—rtheo] +
(33)

G, O D i\ 7 oFIrE BL BL
=X () SO - SERLPe) >0 (3
5=0

where the first inequality follows from the fact V2%, (0) > 0 and the second
from the [SEAEE(0) — SEL ] > 0 for every term in the summation, plus

S0 (Gt ) T [ = ) = PEEADE ek Nesk}] 0 as al

ready recognized. Consider now a strike K = SEIEE (0) 46, 6 > 0 such that
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aPL(SELER(0) 4 6) = aPH(SELER (0)). Then

v Ds v -y
Vihs(K)= 3 @ (*—’H) SPL L — KIPPL(s) +

s=aBL(K) DH_IC
v DS -y
o (Shee) sttt - ([ )ntamy
p— t+k 8

v DS v —y
— V(SO —0 Y (S5 A+
s=aBL(K) t+k

oS (Zike) (e
s=1

Dyy
aBL - B
BL FIRE S o [ Divkio\ | (V) s s
= Virre(Siii.(0))+6 Z p Dok L (1-7)
s=1
v D3 — v
46 3 t+k+v> {( >7T5 1) _PBL s }
> () {(D)m - ik

s=aBL(K)

which is positive and increasing in K since
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from the fact that with a®/(K) < vy, — > s—abL(x) f(8) contains a non-
negative probability mass. Repeating the same argument for all the subinter-
vals of [SEAEE (0), K) formed by increasing the strike without letting o (K)
to change and exploiting the continuity in K of V2%, .(K), we conclude that

this function is everywhere positive and increasing in [S{/24(0), K). The

differential in call prices is at first increasing, though IKMAX s t. for strike
prices higher than KMAX the wedge starts decreasing towards zero, level
reached for K = kaLk 4(v). Furthermore, by the argument just displayed

we know that KMAX must belong to [K, SELER (v)).

Finally, we are left with the interval [SEL | (0), SELEE(0)). However,

Vi rp(K) is a continuous function and we have already proven that Vg5 (SEE . (0)) >

0. Take now any K’ = SBL . (0) 4 ¢, where § > 0 is a small number such
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that a®L(SEL . (0)) = aPL(SEL , (0) +6) = 1. When v — oo, § must be
picked very small. Notice that V2, .(K’) can be decomposed into:

Vitre(K') = VgILRE(SﬁLIHv(O)) +
- 2 Df+k+v - BL VY s v—s
=) (=) s PEk(s) - L )T =m) +
s=1

Dy
PO\
+ 3 (—”’“*”) §(1 —m)?
Dy

implying that VE{rg(K') > VE[re(SEL . ,(0)) > 0. Therefore VEfpp(K)
is increasing and positive in [SE% . (0), S84, (0) + 6]. We can repeat the
same argument for all the subintervals of [SF% . (0), SEAEE (0)) in which al-
though the strike price increases, a®”(K) does not change. Since VZ£, . (K)
is a continuous function this implies that it is everywhere increasing over
[SBL ,(0), SELEE(0)). Since VEfrp(SEL . ,(0)) > 0 positivity everywhere
follows. Summarizing, VEILRE(K ) starts positive at K = 0, increases over
(0, KMAX) and then decreases between KMAX and SEBL  (v), where it is

t+k+v
zero, with KMAX ¢ [Sﬁfﬁﬁ(O),SﬂIﬁ%(v))- u
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Appendix B.

Figure 1. Implied volatility as a function of moneyness for S&P 500
index options with maturity over the period February 1993 - January 1994.
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Figure 1 (cont’d). Implied volatility as a function of moneyness for
S&P 500 index options.
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