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Abstract

Exchange rates typically exhibit time-varying patterns in both means and variances.

The histograms of such series indicate heavy tails. In this paper we construct models

which enable a decision-maker to analyze the implications of such time series patterns

for currency risk management. Our approach is Bayesian where extensive use is made of

Markov chain Monte Carlo methods. The e�ects of several model characteristics (unit

roots, GARCH, stochastic volatility, heavy tailed disturbance densities) are investigated

in relation to the hedging decision strategies. Consequently, we can make a distinction be-

tween statistical relevance of model speci�cations, and the economic consequences from a

risk management point of view. The empirical results suggest that econometric modelling

of heavy tails and time-varying means and variances pays o� compared to a eÆcient mar-

kets model. The di�erent ways to measure persistence and changing volatilities appear to

strongly in
uence the hedging decision the investor faces.
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1 Introduction

When investing abroad investors are naturally confronted with the problem whether or not

to hedge their currency exposures. Currencies do add short-term volatility to the portfolio.

Another time series feature of exchange rates is that periods of depreciation and appreciation

alternate.1 From an investor's viewpoint this `local trend' behaviour is very interesting, as

it provides opportunities to formulate an active currency hedge program, that could improve

the eÆciency of the international portfolio.

In this paper we concentrate on tactical strategies for exchange rate management. We

assume that the correlations with the underlying exposures are zero. This means that the

decision whether or not to hedge currency exposures is made independently from the under-

lying portfolio allocation. In the �nance industry this approach to currency hedging is called

`currency overlay management' for obvious reasons. The hedging is performed through for-

ward contracts. We are interested in examining the impacts of several univariate time series

models on the hedging decision.

In order to make the currency risk hedge strategy operational we need to be explicit on the

objective functions. We investigate the consequences of (1) a standard mean-variance utility

function and (2) an objective function based on Value at Risk.2 In our setup the variable

of interest to the decision maker is the exchange rate. In Figure 1 we plotted the German

DMark/US dollar daily exchange rate series for the period January 1982 until January 1999,

which we use in the empirical part of this paper. By casual inspection of this series several

prominent features show up. First, the exchange rate is either appreciating or depreciating

locally. A second feature is that exchange rate volatility is clustered, i.e. periods with low

volatility are followed with periods with much higher volatility. This can be seen more clearly

from the lower panel in Figure 1, which presents the daily returns on the Dmark/US Dollar.

Third, the time series and simple histogram analysis indicate that the distribution of returns

is heavy-tailed.

We introduce a State Space model for the time-varying mean, which is augmented with

a Generalized Conditional Heteroscedastic (GARCH), a Stochastic Volatility (SV) for the

time-varying variance, and with a Student t model for the heavy tailed disturbances. State

Space models are nowadays widely used for describing time varying patterns in economic

series, see e.g. Harvey (1989) and the references cited there. For inference and decision

purposes we apply Bayesian methods where extensive use is made of Markov chain Monte

Carlo (MCMC, see Smith & Roberts 1993, Chib & Greenberg 1995). In the recent literature

these methods have been succesfully applied for studying separately the pattern of varying

means (see Carter & Kohn 1994, Koop & van Dijk 1999) and the pattern of varying volatilities

(see Kim, Shephard & Chib 1998). In this paper we integrate the models for the analysis

of varying means and varying variances, and the models of varying means and heavy tailed

distributions. Then we obtain a 
exible general framework which enables us to study the

e�ects and relevance of di�erent model speci�cations for hedging decisions. The topics that

we investigate in this respect are unit roots versus persistent but stationary behaviour in

expected returns; heavy tailed distributions, and di�erent ways to model conditional volatility.

The outline of this paper is as follows. In Section 2 we introduce the econometric models

and our Bayesian estimation method using MCMC. In Section 3 we present the decision

1This observation has been successfully captured in switching regime models, which were �rst introduced

by Engel & Hamilton (1990).
2See Jorion (1997) for more information on Value at Risk.
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Figure 1: Daily exchange rate (upper panel) and returns (lower panel) of Deutschmark vs.

US Dollar, 1/1/1982 until 26/1/1999

problems that we use in order to determine the actions an international investor can take

with respect to the management of his currency exposures. Section 4 contains the results of

applying the modelling techniques and hedging decisions on the German DMark/US Dollar

exchange rate. Concluding remarks are given in Section 5.

2 Models for exchange rate returns

2.1 The models

Many models have been suggested for describing the time series properties of exchange rates,

see e.g. Engel & Hamilton (1990). In this paper we concentrate on models that describe the

most prominent data features of 
oating daily exchange rates. In Figure 1 we saw that the

DMark / US Dollar exchange rate exhibits local trend behaviour. We model this feature by

the following State Space model

st = �t + �t (1)

�t = ��t�1 + �t; t = 1; ::; T; (2)

where st is the return on the exchange rate St, i.e. st = 100�(lnSt�lnSt�1). The unobserved
mean component �t is modelled as an autoregressive process with disturbances �t. Typically,

the autoregressive parameter � would be close to one, signifying that the underlying state

2



evolves slowly. This feature is hoped to pick up the periods of rising or falling prices. In-

tuitively, this equation states that the underlying return is persistent. The disturbances �t
are assumed to be independently and identically normally distributed with constant variance

�2� . The AR(1) model incorporates as a limiting case the fully integrated mean return model,

when � = 1. This implies that the (log) level of the exchange rates follows an I(2) process. We

note that in practice, the variance of �t is so small that the I(1) behaviour of St overwhelms

the I(2) e�ects. One can also take the limit case �2� = 0. Then a model for st results which

is white noise around a �xed mean �. Though extremely simple, it is a basic model in many

�nancial market models. More speci�cally, this model does not violate the eÆcient market

hypothesis. 3

The second main feature of �nancial series concerns the variance structure. Several model

speci�cations have been suggested to account for the variance clustering in the data. See

Bollerslev (1986), Nelson (1990), Engle (1995) or Taylor (1994). Conditioning on all informa-

tion It�1 available at time t, we write

�tjIt�1 � N (0; �2�;t): (3)

The simplest model, ignoring the time dependance of volatility is written as

�2�;t = �2� (4)

in which case a pure State Space model results. More 
exibility is obtained when a GARCH

disturbance process is allowed for, which is written as

�2�;t = Æ�2�;t�1 + ! + ��2t�1 (5)

Æ � 0; ! > 0; � � 0; Æ + � < 1: (6)

The restrictions on the parameters are suÆcient to ensure strict positiveness of �2�;t and the

existence of a �nite value for the unconditional expectation E(�2�;t) (see Kleibergen & van

Dijk 1993).

A second family of disturbance processes for �t results when we let the variances �
2
�;t change

over time according to a stochastic volatility process. See, for example, Jacquier, Polson &

Rossi (1994). The model used here is given as

�2�;t = exp(ht) (7)

ht = �h + �(ht�1 � �h) + �t 0 � � < 1 (8)

�t � N (0; �2� ) (9)

The GARCH and stochastic volatility models both allow for periods of lower or higher

variance, where the variance process is correlated over time.

A third option is to assume the disturbance process �t in the observation equation has

heavier tails than the normal density. We replace the assumption (3) with

�tjIt�1 � t(0; ��; �): (10)

The expectation of �t still equals zero; the variance Var(�t) = �2� �=(� � 2); � > 2.

3See also Fama (1991) for more details on the eÆcient markets hypothesis.
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GLL-GARCH(D) GLL-SV(E) GLL-Student t(F)

Figure 2: Relation between assumptions and models

Figure 2 summarizes the models that are evaluated in subsequent sections. The basic

model is the one based on normality of the returns. Then there are three directions of

generalization: At the mean of the process �t, at the variances �2t , or at the shape of the

density of the innovations �t.
4 More speci�cally, the third line in the �gure indicate the

models that we consider. The Generalized Local Level (GLL) model is combined with each of

the other three generalizations, such that a broad range of competing models is found. The

models are indicated by the letters A-F in the �gure and are summarized in Table 1.

Model Description Corresponding equations Parameters

A White noise (WN) (1)-(4), � = 1, �2� = 0 �; ��
B Local level (LL) (1)-(4), � = 1 ��; ��
C GLL (1)-(4) �; ��; ��
D GLL-GARCH (1) - (3), (5) �; ��; Æ; !; �

E GLL-SV (1) - (3), (7)-(9) �; ��; �h; �; ��
F GLL-Stud (1), (2), (10) �; ��; ��; �

Table 1: Summary of models

2.2 Prior structure

The inference and decision analysis is performed within a Bayesian framework. In this section,

we present a set of priors on the parameters of the models.

In model A, White Noise, � is a parameter for the mean return. On a daily basis the

mean return is rather small. No further strong information is available. Therefore, a 
at prior

[-0.1%, 0.1%] is used.

4Note that the assumption of student t distributed disturbances can also be explained as a generalization

in the direction of the variances �2t , as is explained in Appendix B.
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For the other models, the varying mean equation (2) applies. The parameter � governs

the persistence of the mean series �t. From the stylized fact on the evolution of exchange

we expect a large value of �, which is larger than 0, representing the local trend behaviour

of the exchange rate series. A Beta prior with parameters �� = 10 and �� = 3, which has

expectation 0.77 and standard deviation 0.113, incorporates this empirical prior information

on expected values of �. The prior for �2� is the Inverted Gamma-2 distribution, which is the

conjugate prior for the residual variances as in Kim et al. (1998). The prior is chosen such

that it has a mean of 0.008 and a standard deviation of 0.016.

In models A, B and C the disturbances �t are normally distributed with a variance �2� .

The prior on �2� is also taken to be inverted Gamma-2, with parameters that imply a prior

mean of 0.5 and a standard deviation of 1
2

p
2, respectively.

In model D, where GARCH-type disturbances �t; t = 1; ::; T are modelled, priors are

needed for the parameters Æ; ! and �. The unconditional expectation of the variance of such

a process is

E(�2�;t) =
!

1� Æ � �
(11)

We choose to be non-informative on the unconditional precision, i.e.

�(Æ; !; �) / 1
Æ
E(�2�;t) =

1� Æ � �

!
(12)

Note that the original restrictions (6) ensure the strict positiveness of this prior density.

The Stochastic Volatility model, model E in Table 1, contains extra parameters �H , � and

�2� . These are the mean and the correlation coeÆcient of the varying variance equation (8)

and the variance of the disturbances. A uniform prior for �h on the interval [-3, 0] is weakly

informative. The expected value of �2�;t lies between roughly 0.2 and 1 with these choices.

Likewise, � is a parameter of similar meaning as � above, modelling the persistence of the

stochastic variance process. Positive correlation is expected, and also reasonable persistence.

We use a Beta prior with parameters �� = 10 and �� = 3. The variance parameter is assumed

again to come from an Inverted Gamma-2 distribution, with hyperparameters s� = 1:5 and

�� = 5, as in the case of the �2� parameter.

The last model, F, includes the degrees of freedom parameter �. A priori we want to allow

for a broad range of values �. Preliminary investigation learned us that no posterior mass is

found at values of � < 6 or � > 17. To reduce the amount of computations we limit the prior

to the discrete range � = 6; : : : ; 16. Each of the values of � has equal prior weight. The �xed

variance factor �2� has the same prior as in models A-C.

In Table 2 we have collected all the prior distributions. We note that our priors may be

characterized as weakly informative.

2.3 Constructing a posterior sample

For models A-D it is possible to write the likelihood function in a convenient prediction-error

form, see Harvey (1989). The posterior distribution is obtained by multiplying the corre-

sponding prior distribution with the likelihood function. Though the shape of this posterior

might be highly non-normal, a general adaptive independent Metropolis-Hastings sampler

(see Carter & Kohn 1996, Chib & Greenberg 1995, Koop & van Dijk 1999) with a normal

candidate works well for obtaining a set of simulated parameter vectors from the target den-

sity. An adaptive sampling scheme is used: Several rounds of the sampler are run, with an
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Parameter Prior Hyper-parameters

� Uniform(L�;H�) L� = �0:1;H� = 0:1

�2� IG-2(s�; ��) s� = 1:5; �� = 5

� Beta(��; ��) �� = 10; �� = 3

�2� IG-2(s�; ��) s� = 0:02; �� = 4:5

Æ; !; � `Non-informative' / (1� Æ � �)
Æ
! -

�H Uniform(L�H ;H�H ) L�H = �3;H�H = 0

� Beta(��; ��) �� = 10; �� = 3

�2� IG-2(s�; ��) s� = 1:5; �� = 5

� Discrete uniform(L�;H�) L� = 6;H� = 16

Table 2: Description of priors used

update of the estimate of the location and scale of the target density to be used in the normal

candidate density. The sampler is started at the maximum likelihood estimates of the location

and scale.

For modelsE and F, the Stochastic Volatility and Student t models, we found the posterior

distributions by a data augmentation scheme in order to integrate out the unobserved state

variables �2�;t. We make use of a Gibbs sampling scheme as in the article by Kim et al. (1998).

See Appendix B for more details.

3 Currency hedging

3.1 The hedging decision

As noted in the introduction, we concentrate on tactical strategies for exchange rate man-

agement. The setting may be summarized as follows. Let st+1 be the exchange rate re-

turn in the time interval [t; t + 1], de�ned as st+1 = ln(St+1=St). Let Ft;� be the current

value of a forward contract with maturity date � , which by arbitrage restrictions is equal to

Ft;� = St exp(r
h
t;� � r

f
t;� ), with rht;� and r

f
t;� , the home and foreign risk-free interest rates with

maturity � , respectively. De�ne Ht as the fraction of the underlying exposure that is hedged

with forward contracts. We refer to this variable as the hedge ratio. Through the de�nition

of a forward contract we �nd that the currency return, hedged with forward contracts, is

a weighted average of exchange rate return st+1 and the di�erence between the home and

foreign risk free interest rates with weights equal to the hedge ratio:

rt+1 � (1�Ht)st+1 +Ht(r
h
t;� � r

f
t;� ) (13)

Given a time series model that captures exchange rate behaviour and all information up to

time t, the investor wants to determine the hedge ratio that should apply to the next periods.

In order to perform this task the investor needs to specify an objective function that captures

the risk and return attitudes over some future time horizon.

Consider the situation that the investor wants to determine the hedge ratio for the next

period [t; t + 1]. Assume that the investor has a simple mean-variance objective function.

In order to determine the value of the objective function we need projections for expected

returns and variances. Based on a time series model we can compute the predicted mean
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(E(rt+1jIt)) and its variance (Var(rt+1jIt)).5 The variable It represents the information set

containing information up to and including time t. Introduce the risk preference parameter

�. This parameter needs to be set by the investor in order to express his attitude towards risk

in relation to expected returns. The problem of �nding the optimal hedge ratio now becomes

max
Ht

[E(rt+1jIt)� �Var(rt+1jIt)] : (14)

The optimal hedge ratio can easily be calculated as

Ĥt(�) = 1� E(st+1jIt)� (rht � r
f
t )

2�Var(st+1jIt)
; (15)

with E(st+1jIt) and Var(st+1jIt) the predicted mean and variance of the exchange rate returns.

The mean-variance hedge ratios are very similar to hedge ratios computed with a standard

power utility function, like the Constant Relative Risk Aversion. In order to see this, consider

the power utility function de�ned over the investor's wealth Wt:

U(Wt) =
W



t



; 
 < 1:

Wealth Wt is recursively de�ned as Wt+1 = exp(rt+1)Wt, with rt+1 the currency return on

the exposures over the period [t; t+1], de�ned in Equation (13). We suppose that the investor

maximizes expected utility, conditional on information from the previous period. The investor

needs to solve

max
Ht

EU(Wt+1jWt) = max
Ht

E

�
exp(
rt+1)W



t




�
;

which, assuming normality of predicted returns, leads to the following optimal hedge ratios

(see Appendix A)

Ĥt(
) = 1� (rht � r
f
t )� E(st+1jIt)

2
Var(st+1jIt)
:

If � = �
=2, the hedge ratios for the mean-variance and power utility functions are identical.

Remember that the more negative 
 the more risk-averse the investor is. This corresponds

with a higher positive value of �, signifying that the investor is more concerned about variance.

3.2 Incorporating the Value-at-Risk in the hedge decision

The mean-variance objective function is a very simpli�ed, although convenient, way of looking

at the risk and return trade-o� that investors make. A popular measure, advocated by

�nancial regulatory institutions, is the Value-at-Risk (VaR) of a portfolio. VaR measures the

maximum loss that is expected over a �xed horizon with a prespeci�ed con�dence probability.

In our case we de�ne the one-period VaR asZ 1

VaR

f(rt+1jt)drt+1jt = 1� �; (16)

5We will also use the shorthand notation rt+1jt for conditional variables.
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with 1� � the con�dence probability, which typically ranges from 90% to 99%.6

What we calculate using our models is the predictive density of the exchange rate re-

turns st+1jt, conditional on a vector of parameters �. In case of a normal predictive density,

with expectation E(st+1jIt) and variance Var(st+1jIt), the VaR can be calculated analytically.

Subsequently, the return rt+1 conditional on information up to time t is also normal. with

mean �r(H) = E(rt+1jIt) = (1 � Ht)E(st+1jIt) + Ht(r
h
t � r

f
t ) and �2r (H) = Var(rt+1jIt) =

(1�Ht)
2
Var(st+1jIt). The value at risk can then be computed as

VaR(Hj�)t = �r(H)qN (�) + �r(H) = (�sqN (�) + �s) +H((rht � r
f
t )� (�sqN (�) + �s));

(17)

where qN (�) is the �-th quantile computed of a standard normal distribution. If we have

a sample of �'s from the posterior distribution, we can estimate the posterior density of the

Value-at-Risk. Furthermore, it is suÆcient to calculate the Value-at-Risk for just a single

value of the hedge ratio, as the VaR is a linear function of H.

These calculations are based on the normality assumption that the mean and variance

of the future return describe the predictive density completely. This assumption holds for

models A-D(for the GLL-GARCH model it only holds one period ahead), but it holds only

approximately for the GLL-SV and GLL-Student t models. In the subsequent sections the

normal approximation to these models is used in making the �nal hedging decisions, which is

a good second order approximation.

4 Hedging against the D-Mark/US dollar currency risk

4.1 Stylized facts

Our data set consists of daily observations on the D-mark/US dollar exchange rate for the

period January 1, 1982 until January 26, 1999 which gives a total of 4454 observations. For

this same period we have the 1-month Eurcurrency interest rates for the German DMark and

the US Dollar.

In the upper panel of Figure 3 the time series are presented in levels (on the left) and in

�rst di�erences of the logarithms (on the right) for the whole period. In the levels one can

observe the changing trend which implies a changing mean in the exchange rate returns. The

volatile behaviour of the series makes it diÆcult to recognize the changing mean in the graph

that shows the exchange rate returns. The left panel at the bottom of this �gure depicts the

average return over a three month period. Here, the changing mean return is immediately

apparent. The last panel graphs the evolution of the three period mean absolute return. The

mean absolute return is an indicator for the volatility in the series. Periods of high volatility

alternate with periods of more stable behaviour.

A subperiod analysis con�rms these �ndings. Figure 4 shows the graphs corresponding

to the ones in the previous �gure, for the years 1992 and 1993. A one month average was

taken for the two graphs in the bottom panels. The depreciation of the dollar over the period

April 1992-September 1992 is followed by several months of appreciation. The changing mean

return is modelled through the autoregressive process on �t, in equation (2). The absolute

values of the returns show clearly the clustering of volatility. The GARCH or Stochastic

6The choice of con�dence level is motivated by the risk attitude of the investor in relation to the horizon

over which the VaR is calculated. See Jorion (1997).
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Figure 3: Exchange rate between German DMark and US Dollar, January 1, 1982 until

January 26, 1999. Panels contain data in levels (top left), in returns (top right), the three

month average return (bottom left) and the three month average absolute return (bottom

right)
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Volatility process on the disturbances is aimed at modelling this stylized fact. Note that the

data in levels is nonstationary. After taking �rst di�erences, a stationary series results.

4.2 Posterior results

In this section posterior results are presented for the di�erent models.

The �nal round of the Metropolis-Hastings sampler applied on the models B-D continued

until a sample of 10000 accepted drawings had been accumulated, after an initial period in

which 1000 accepted drawings were disregarded to get rid of a possible initial e�ect. Table

3 summarizes the acceptance rates during the four rounds of the adaptive MH sampler and

also reports the size of the �nal sample.7 Acceptance rates are all at least 0.65 in the �nal

round, which is rather good. Models E and F, incorporating the Stochastic Volatility and the

Student t disturbances, were sampled using a Gibbs sampling scheme. Convergence of the

sampler is evaluated in this case using the autocorrelation function of the sampled parameter

vectors. From a series of preliminary runs it was found that a �nal Gibbs run of 250.000

iterations was suÆcient for the analysis. Of these iterations, every 25th vector of sampled

parameters was used. Retaining all sampled parameter vectors was not useful as there was

strong serial correlation in the original posterior sample.

Acceptance rate

Model 1 2 3 4 Sample size

Burn in 0 0 0 1000

Acc. dr. 500 1000 5000 10000

B LL 0.91 0.91 0.93 0.93 10753

C GLL 0.61 0.70 0.70 0.72 13889

D GLL-GARCH 0.55 0.59 0.57 0.65 15385

Table 3: Acceptance rates over the rounds, for the models White Noise, Local Level, Gener-

alized Local Level and GLL-GARCH

Figure 5 plots a histogram of the sampled values of the parameters � (left panel) and ��
(right) in the White Noise model, against the priors that were used.8 In this pure White

Noise model, the posterior mean of the parameter controlling the average daily return on the

DM/US exchange rate is approximately -0.005. This estimate approximates the empirical

mean closely. However, the highest posterior density region is rather wide, and includes zero.

From an informal Bayesian statistical viewpoint, including a mean appreciation in the model

might not be signi�cant. A conclusion on its decision-theoretical relevance is postponed until

Section 4.4. The posterior density of the standard deviation is strongly concentrated compared

to the prior. This indicates the high information content of the data on the variance.

The second model, the Local Level model, allows for a non-zero standard deviation ��
in the transition equation of the mean process. In Figure 6 it is seen that the posterior of

�� shifts away from the prior distribution. We note that little correlation between sampled

parameter vectors was found.

7Note that the posterior for � and �
2 for case Acan be determined analytically as a normal-inverted gamma

density. Posterior results for this model were also computed with a Metroplis-Hastings sampler, however.
8For the purpose of the illustration, the prior is scaled up such that it integrates to one over the range of

support of the posterior.
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The Generalized Local Level model introduces a parameter � in the �t process.The pos-

terior density of �� does not change strongly in comparison to the previous results on the

White Noise and Local Level model (see Figure 7, second panel). The histograms of both

the autocorrelation parameter � in the mean series and of its standard deviation, ��, mimic

closely the shape of the prior density. Apparently there is little extra information in the

likelihood. The posterior of �� is, however, much more plausible in the GLL model than in

the LL model. This result is due to the presence of the autoregressive parameter � in the

GLL model. Again, the autocorrelation in the posterior sample is low.
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Figure 7: Marginal posterior density, model C, Generalized Local Level, for � (top left), ��
(top right) and �� (bottom)

In Figure 8 the assumption of homoskedastic disturbances on the observation equation is

relaxed, allowing for a GARCH process to model the changing volatility (model D). The �rst

two panels, on � and �� of the transition equation (2) are similar to the corresponding plots

in Figure 7, though slightly stronger correlation is found. Note that the plots on the GARCH

parameters Æ, ! and � do not contain the curve of the prior density: The non-informative

joint prior on Æ and � does not allow for a straightforward calculation of the marginal prior.

12



0

1

2

3

4

5

6

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Posterior �
Prior �

0

5

10

15

20

25

30

35

0.03 0.045 0.06 0.075 0.09 0.105

Posterior ��
Prior ��

0

5

10

15

20

25

30

35

40

0.855 0.87 0.885 0.9 0.915 0.93 0.945

Posterior Æ

0

20

40

60

80

100

120

140

160

180

0.009 0.012 0.015 0.018 0.021 0.024

Posterior !

0

10

20

30

40

50

60

0.04 0.05 0.06 0.07 0.08 0.09 0.1

Posterior �

0

2

4

6

8

10

12

14

16

18

0.57 0.6 0.63 0.66 0.69 0.72 0.75 0.78

Posterior �GARCH
Prior �GARCH

Figure 8: Marginal posterior density, model D, Generalized Local Level-GARCH, for � (top

left), �� (top right), Æ (middle left), ! (middle right), � (bottom) and the unconditional

standard deviation �GARCH (bottom right)

13



Instead, in the last panel of the �gure, the sample information in Æ; ! and � is combined

into the implied unconditional standard deviation �GARCH(Æ; !; �) =
p
!=(1� Æ � �). The

histogram of this standard deviation is compared with its prior in the bottom right panel of

Figure 8. Some extra correlation is found in the posterior sample of the parameters of this

model, but after about 20 periods the autocorrelation is negligible.

As was described in Section 2.2, sampling the Generalized Local Level-Stochastic Volatility

model requires the use of Gibbs sampling. The Gibbs sampler was run for 251.000 iterations.

The �rst 1000 were skipped to allow for a (short) burn-in period. Afterwards, only every

twenty�fth sampled vector of parameters was recorded (see Geweke 1999). The resulting

sample of 10000 parameters was used in the histograms in Figure 9.

In the two upper panels, it is seen that the parameter � as well as the standard deviation

of the disturbance �� are smaller. The mean series reverts more quickly back to the no-

information level of �t = 0, and it does not divert from this level too much as the unconditional

variance of �t, �
2
� = �2�=(1� �2) is smaller than in the previous models. The posterior mode

of �h, the mean level of ht which governs the unconditional expected volatility level, implies

an expected standard deviation of the observation equation of 0.59. For comparison with the

plot on the GARCH model the unconditional standard deviation of the Stochastic Volatility

model this standard deviation �SV(�H) � exp(�H=2)
9 is added in the bottom right panel of

the �gure. The correlation between successive values of the volatility, governed by parameter

� in equation (8), is found to be even larger than its a priori mean of 0.8.

Finally we consider the Generalized Local Level-Student t model (model F). Again, the

Gibbs sampling scheme was used to obtain the posterior in Figure 10. The posterior on �,

indicates a rather persistent mean. The standard deviation parameter �� is estimated as

below the values found with the GLL model. We note, however, that this parameter �� only

governs part of the variance in the observation equation; the variance depends also on the

value for the degrees of freedom parameter �, in the fourth panel. A Student t density with 10

degrees of freedom �ts the data best. It is of interest that, even though the prior information

on the � parameter was weak, such a clear posterior is found.10 Only in model E, the GLL-SV

model, the standard deviation of � was lower. The �fth panel depicts the standard deviation

of the disturbance process in the observation equation, calculated as �Stud = ��
p
�=(� � 2).

This model indicates a higher variance in the observation equation, and is more certain about

this variance than in the GLL-GARCH and GLL-SV cases, as can be seen from the smaller

range [0.69, 0.74] instead of [0.6, 0.71] or [.55, .64].

In the Gibbs sampling algorithms the method of data augmentation is used, to sample the

states of �t and of ht, and of an auxiliary indicator variable st (see Casella & George (1992)

on the general idea of data augmentation, and Kim et al. (1998) for details on the need for

sampling ht and st; a similar reasoning holds for the sampling of the state �t, see e.g. Koop

& van Dijk (1999)). Figure 11 plots the autocorrelation of the sampled parameter values.11

These graphs indicate that the present sample is big enough for convergence to have taken

place.

9Note that this calculation of the standard deviation is not entirely correct, as the expectation operation is

applied on a non-linear transformation.
10In preliminary runs, a wider range of values for � was allowed. This did not change the outcome. For

reasons of computational eÆciency, in the �nal run the bounds on � were more restrictive.
11Note that only every 25th sampled vector of parameters was saved. Autocorrelation between parameters

40 elements apart in the sample that was saved indicates autocorrelation between parameters 40� 25 = 1000

elements apart in the original sample.
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4.3 Predictive density

The investor in our setup is confronted on a daily basis with the problem of making a predic-

tion for next day's return on the market, on which to base his investment decision. In this

section we compare the di�erent predictions that result for each of the four models that were

proposed in Section 2. The one-step ahead prediction densities are calculated for each of the

vectors of parameters in the posterior sample. We repeated this exercise for each of the days

in the last month of the data set (observations 1/1/1999-26/1/1999).

When the returns on the exchange rate are modelled as white noise (model A), The

predictive mean and variance are constant. The three graphs in the upper row in Figures

12-13 show the median12 of (1) the predicted means (left panel), (2) variance (middle panel)

and (3) the mean with con�dence bounds (right panel). On the x-axis the days in January

1999, for which the prediction has been calculated, are given. These graphs are important in

order to study the consequences for the hedging decisions.

Model B, the pure Local Level model, has by construction a prediction of the �rst moment

which follows a random walk and a constant predictive variance, see the second row of Figure

12.

In model C, the predicted variance is still constant. The prediction of st has however less

memory than model B, see the third row of graphs in Figure 12.

The GLL-GARCH model, with graphs in the �rst row of Figure 13, allows for changes in

the predicted variance. As common to GARCH explorations, the variance can undergo sharp

upward swings as a result of unanticipated shocks. Afterwards, the higher volatility slowly

declines.

Model E incorporates a stochastic volatility process instead of the GARCH e�ect in the

second moment. This results in a series with smoother variance changes, as the large shock

can be \anticipated" in an increasing variance some days ahead. Note that the predicted

variance is higher than for the GLL-GARCH model, with less predictability (the predicted

st's are closer to zero) in the �rst moment. This increased uncertainty makes the GLL-SV

12Each of the parameter vectors in the posterior sample leads to a value for the predicted mean and variance.

Of these, the medians have been used in constructing the plots.
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Figure 12: Medians of predicted means (left column), variances (middle) and mean with

con�dence bounds of two standard deviations for the White Noise, Local Level model, and

Generalized Local Level model (top to bottom, one model per row)
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Figure 13: Medians of predicted means (left column), variances (middle) and mean with

con�dence bounds of two standard deviations for the GLL-GARCH model, GLL-SV and

GLL-Stud model (top to bottom, one model per row)
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model more in agreement with the White Noise model than with the GLL-GARCH model.

Incorporating Student t disturbances in the observation equation, as in model F, implies

that no correlation is modelled in the second moment of the data generating process. In a pure

linear state space model with normal disturbances (like models B and C) the variances of the

predicted state and observation converge to a steady state (see second and third row of Figure

12).13 Notice that this model produces the highest variance of all models, except for a period

of 7 days where the stochastic volatility of model E is estimated higher. Due to the higher

estimated variance, a shock in an observation exerts less in
uence on the estimated underlying

mean. The resulting predictive return is more stable than for the GLL or GLL-GARCH case,

but it is more informative than for the GLL-SV model.

4.4 Optimal hedging decisions

In this section we investigate the in
uence of the model speci�cation on the optimal hedge

decisions.

The risk tolerance � of the investor is a parameter in the decision process. Low values

of the tolerance indicate that the investor does not mind risk, higher values signify that the

investor demands stronger positive expected return before being willing to take the risk. In

the calculations, the value of the risk tolerance was varied between 0.001 and 0.1.

For all available trading days in 1999 in the sample the one step ahead prediction of

exchange rate return and variance have been calculated, based on the posterior sample for

each of the models A-F. The interest rate di�erential rht;� �r
f
t;� ranges from -0.0052 to -0.0048

over the period 1/1/1999-26/1/1999.

Two sets of graphs are displayed, in Figures 14 and 15. In Figure 14 the hedging decision

is made for the last day in the data set, January 26, 1999. The panels show the optimal

hedge ratio for di�erent values of the risk tolerance, for each of the models. The horizontal

lines indicate the interquartile range, whereas the curve connects the medians of the optimal

hedge ratio as calculated for all sampled vectors of parameters in the models. In Figure 15

the medians of the optimal hedge ratios are drawn for all of the trading days between January

1 and January 26, 1999.

In the upper left panel of the �rst �gure, results for the White Noise model are graphed.

Since the predictive mean are constant, the results in this panel are driven by the interest rate

di�erential at January 26. In case the sampled parameter � is smaller than the di�erential,

running risk is of no use and the investment should be fully hedged. As the error bars reach out

to a hedge ratio of one, at least 25% of the sampled �'s is smaller than the di�erence between

home and foreign interest rates (see also the upper left panel of Figure 5, the histogram of

the posterior sample of �'s). When turning to the �rst panel in Figure 15, we �nd that there

is hardly a di�erence between hedging decisions made on each of the trading days in the last

month of the data set. As the hedging decision is based solely on the value of the parameters,

with no in
uence for the history of the series, the only e�ect of changing the date of the

decision lies in the changed interest rate di�erential.

The second panel in both �gures covers results for the Local Level model. As this model

allows for a varying mean return, it introduces more variety in the hedging decisions. In

Section 4.2 it was recognized that the integrated mean process did not �t the data well. This

translates to even wider interquartile ranges on the hedging decisions. From the plots on the

13Also see Harvey (1989) for more details.
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Figure 14: Optimal hedging decision made on January 26, 1999, for the White Noise, Local

Level, Generalized Local Level, GLL-GARCH, GLL-SV and GLL-Stud model
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Figure 15: Optimal hedging decision made between January 1, 1999 and January 26, 1999,

for the White Noise, Local Level, Generalized Local Level, GLL-GARCH, GLL-SV and GLL-

Student t model
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predictive expected return we saw that E(st+1) changes over the days. This results in slightly

di�erent hedging decisions over the investigated period (see the second panel in Figure 15).

The Generalized Local Level model had a smaller range of predicted means (compare the

left panels of the second and third rows in Figure 12) than the Local Level model. Therefore,

also the hedge ratios change less over time (Figure 15, third panel). On average less hedging

is needed according to this model, when compared with the white noise model. The GLL

hedge ratios are higher than the hedge ratios for the Local Level model.

Using a GARCH component for the disturbances in the observation equation (1) led to

more 
exibility in predicted mean returns (again, left panels of Figures 12 and 13). The

predicted volatility is varying, but over the investigated period lower than with the previous

models. This leads to even more pronounced hedging decisions: As the investor claims to be

relatively sure of tomorrows expected return, he does not hedge the currency risk.

Sampling the parameters for the GLL-SV model, and calculating the predicted returns and

variances led to a predicted mean series with little movement over time. Also the estimated

uncertainty was generally higher. On the last day of the sample, the predicted return and

variance approximately equal the same quantities for the GLL model C. Therefore, also the

hedging decision for that day is very similar to the decision made for that model, as can be

concluded from panels 3 and 5 in Figure 14. In Figure 15 the di�erence between the decisions

for the GLL-SV and pure GLL model can be recognized: As the GLL-SV model tends to

predict a smaller return and a larger variance, or in short a more risky investment, it advises

to hedge more than is the case for the GLL model. In the present setting the estimated

predictability of the returns is not strong enough to make it worthwhile for the investor to

run the risk; the optimal hedging curves in Figure 15 quickly tend to one already for small

values of the risk tolerance.

Model F assumes a heavy tailed density for the disturbances in the observation equation.

The hedging decision on the last day of the sample mimicks the results for the GLL-SV model

for the di�erent choices of the risk tolerance parameter. However, there are days that the

predicted positive return on the exchange rate is such that the fully hedged position is left in

order to take advantage.

4.5 Evaluating the Value-at-Risk

In Section 3.2 we presented the Value-at-Risk (VaR) as a linear function of the hedge ratio.

This means that the optimal hedge ratio will be either zero or one. From a practical risk

management viewpoint it is still very valuable to report VaR measures, see for example Jorion

(1997). In this section we present results for one �xed value (H = 0:5) of the hedge ratio.

Figure 16 plots the posterior distribution of the VaR with a 95% con�dence level for models

A-F on the last day of the prediction period, January 26, 1999.14 Notice that the scale on

the x-axis is equal for models A, B, C and F; the GLL-GARCH and GLL-SV model results

in di�erent locations for the posterior VaR.

The results for the White Noise, Local Level and Generalized Local Level model are

similar. Apparently the mean process is not strong enough on itself, without accounting for

varying volatility or heavy tails, to change results in the tail of the predictive density. The

VaR is a characteristic measuring the thickness of the tail of the predictive density of the

returns.

14Other days give results very similar to this last day; only the location of the posterior is changed slightly.
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Figure 16: Posterior distribution of the Value-at-Risk for the WN, LL, GLL, GLL-GARCH,

GLL-SV and GLL-Student t models (left to right, top to bottom)
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The extensions of the GLL model result in di�erent conclusions. Of the GLL-GARCH,

GLL-SV and GLL-Stud the GLL-SVmodel has the largest VaR range in the posterior distribu-

tion of the VaR. The VaR range in the GLL-GARCH and GLL-Stud models is approximately

equal (notice again the di�erent scaling). The GARCH model generates higher expected

returns for the last day in the data set. Losses of more than 1.34% are deemed very un-

likely. The di�erence stems from di�erent predictions for the variance. While the Student t

model takes possible heavy shocks into account, resulting in a predicted variance of 0.51, the

GARCH model is quite positive with a variance of 0.3.

5 Concluding remarks

During the past twenty years many models have been developed for the description of �nancial

time series. Changes in variance are one of the most outstanding features of �nancial time

series, and, as a consequence, much attention has been put on modelling the variance of these

series. Many �nancial decision problems, however, depend on the full probability density

of �nancial returns. In this paper we focused on hedging foreign exchange rate risk for an

international investor and investigated a set of competing models that describe the most

prominent features of the DMark /US Dollar exchange rate. Special attention has been

given to describe the mean of the exchange rate returns. It was found that including the

varying mean process resulted in predictions of the mean with an order of magnitude which

corresponds to the order of magnitude of the interest rate di�erential. Even though the

numerical value of the mean process is not large, it cannot be disregarded in the hedging

decision, where the relative size of the mean process versus the interest rate di�erential is at

play.

The predicted volatility is, of course, a key element in the hedging decision. Especially in

the combination of the Generalized Local Level-GARCH model a relatively small variance was

forecasted over the period 1/1/99-26/1/99. The implication of this low predicted volatility

is a hedging position which changes strongly throughout January 1999. Further research is

needed to check whether this result is robust or very speci�c for our data and/or model. The

GLL-Student t model was more conservative in its estimation of the future risk. This resulted

in a more risk-averse position being taken in the hedging decision, and was also re
ected by

a higher estimated loss in the section on Value-at-Risk.

The topic of integrating models for risk and return into a framework for �nancial decision

making can be extended in several ways. First, the AR(1) structure that we applied in this

paper describes the local trend behaviour, but other models may be investigated. Secondly,

the models could be extended with information from other economic variables. Within the

exchange rate literature much attention has been given to UIP and/or PPP as building blocks

for predicting exchange rates. References to this �eld include Mark (1995), Bansal (1997),

Bansal & Dahlquist (1999), and Evans & Lewis (1995).

Thirdly, the consequences of decision making over longer periods could be investigated.

In the hedging decision we focussed attention on deciding whether or not to hedge over a one

day horizon. Over longer horizons the estimation of the varying mean process gets a larger

weight in the results of the inference.

Fourth, simple mean-variance utility functions correspond to a utility function with Con-

stant Relative Risk Aversion. This hold for the White Noise, Local Level, Generalized Local

Level models, and also for the GLL-GARCH model one period ahead, but not for the GLL-
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Stochastic Volatility and GLL-Student t models. In these cases, the hedging decision based

on the mean-variance utility function is only on approximation to the decision made using

the CRRA utility function.

Finally, one may perform the hedge decision for several currencies simultaneously. Obvious

advantage of this approach is that hedging costs could become lower due to diversi�cation.

Crucial input for making hedge decisions in this way is the availability of multivariate time

series models for exchange rate returns. Another possibility is to incorporate the currency

hedging decision in portfolio choice models. This approach steps away from the 'currency

overlay' principle that we pursued in this paper, and integrates the hedging decision into

the international allocation problem. Bayesian references on portfolio choice include Jorion

(1985), Jorion (1986), Geweke & Zhou (1996), McCulloch & Rossi (1990), McCulloch & Rossi

(1991), and Kandel, McCulloch & Stambaugh (1995).

A A di�erent utility function: Constant Relative Risk Aver-

sion

For ease of notation we rewrite the objective function of an investor with a CRRA utility

function as

max
H

E(U(H)) = max
H

E

�
1



exp(
R(H))W 


�
R(H) = (1�H)s+H�r Hedged return

s � N (�; �2) Return on exchange rate

�r = rh � rf Interest rate di�erential

The �rst order condition, assuming that we can interchange the expectation and di�eren-

tiating operation, is given by

dE(U(H))

dH
= E

�
dU(H)

dH

�
= E

�
dU(H)

dR
� dR

dH

�

= E

�
1



e
R(H) 
W 
 � (�s+�r)

�

= E

h
e
((1�H)s+H�r) W 
 � (�s+�r)

i
= W 
 e
H�r

E

h
e
(1�H)s � (�s+�r)

i
= 0

, 0 = E

h
(�r � s)e
(1�H)s

i
� E[(�r � s) g(H)]: (18)

The last line follows because W > 0; 
 < 1; 0 < H < 1 and �r is bounded away from

�1. Consequently, elements before the expectation sign cannot become zero. Note that

we have not made use of the normality assumption on the expected exchange rate returns

yet. For arbitrary distributions the hedge ratios can be found by numerically solving 0 =
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E[(�r � s)g(H)]. Now assume that normality holds. Then it is possible to obtain analytical

solutions for the hedge ratio.

First note that the expectation is taken over two terms, we have E[(�r � s) g(H)] =

�rEs(g(H)) � Es(sg(H)), where the expectation is with respect to the normally distributed

s. We start with the �rst part, write c = 
(1 � H), and exclude the multiplication by the

constant �r. We obtain

Es(g(H)) =

Z
ecs

1p
2��

e
� 1

2�2
(s2�2�s+�2)

ds

=

Z
1p
2��

e
� 1

2�2
(s2�2�s+�2�2�2cs)

ds

=

Z
1p
2��

e
� 1

2�2
((s�(�+�2c))2�(2��2c+�4c2))ds

= e�c+
1

2
�2c2

Z
1p
2��

e
� 1

2�2
(s�(�+�2c))

2

ds

= exp

�
�c+

1

2
�2c2

�

In a similar fashion, the second term Es(sg(H)) can be calculated.

Es(sg(H)) = : : : = e�c+
1

2
�2c2

Z
s

1p
2��
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� 1

2�2
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2
�2c2

�
� (�+ �2c)

Combining terms, we get for equation (18)

E[(�r � s) g(H)] = �r exp

�
�c+

1

2
�2c2

�
� (�+ �2c) exp

�
�c+

1

2
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�

=
�
�r � (�+ �2
(1�H))

�
exp

�
�
(1�H) +

1

2
�2
2(1�H)2

�
= 0

, �r = �+ �2
(1�H) , 1�H =
�r � �


�2

, H = 1� �r � �


�2

B Sampling from the posterior density

B.1 Models A-D: Metropolis-Hastings

In Section 2.3 a very brief description of the sampling methods used for the construction of

a sample from the posterior density is given. In this appendix, further details are presented.

For models A-D the prediction-error decomposition of the likelihood function can be

written down. For the White Noise model, this decomposition is immediate, for the Local

Level and Generalized Local Level a thorough explanation is given in e.g. Harvey (1989), and

for GARCH element in the GLL-GARCH model one can consult Bollerslev (1986). Given the

likelihood of the model L(Y ; �) for a set of parameters �, and given the prior �(�) as speci�ed

in Section 2.2, the posterior density is

p(�jY ) / L(Y ; �)�(�)
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As we are not able to sample directly from this posterior distribution, as it is not a standard

distribution, we have to take resort into other sampling methods. For the �rst four models,

we apply the Metropolis-Hastings algorithm using an independent normal candidate density.

In short, given an estimate of the location � and scale � of the vector of parameters �, we

sample �� � N (�;�). When the algorithm reached a certain �(i) after iteration i, we calculate

the acceptance probability �MH(�
(i); ��),

�MH(�
(i); ��) = min

"
p(��)fN (�

(i))

p(�(i))fN (��)
; 1

#
:

With this probability � the candidate vector �� is accepted as our new �(i+1), else we set

�(i+1) = �(i).

We start with the algorithm using an estimate of the mode of the posterior as the location,

and calculate a local approximation to the scale of the density. After a round of sampling of

a relatively low number of �'s, we update our estimates of � and � and start anew, sampling

a larger number of vectors. Four rounds are executed, where the last contains 5000 accepted

drawing from the posterior.

This method is explained in various articles and textbooks. Basic references are Carter &

Kohn (1996) and Chib & Greenberg (1995).

B.2 Models E and F: Gibbs sampling with data augmentation

In model E, the GLL-Stochastic Volatility model, the variance process ht is not observable,

and therefore it is not possible to write down the likelihood function of the model. However,

given the variances the MH sampler of the previous section could be used. Calculations in

model F are not trivial since the distribution of the disturbances is Student t. It is, however,

possible to write the Student t density as an uncountable mixture of normal densities with an

Inverted Gamma as the mixing density. Conditioning on a variance gives normality, so that

basic sampling methods can be used.

The Gibbs sampling scheme that we apply is an extension of the scheme in Kim et al.

(1998). Our models di�er from the models in Kim et al. (1998) since we have also included a

process for the mean �t. The Gibbs sampling scheme is augmented with the following steps

1. Sample a new vector of �1; ::; �T conditionally on h; �; �2� and the data. As we condition

on the variance elements h, a linear state space model with normal disturbances results.

We sample � using the simulation smoother of de Jong & Shephard (1995).

2. The parameter � can be sampled conditionally on the values of the process � and the

variance of the transition equation, �2� . The posterior of � would be a normal density

with least squares estimates of mean and variance if the prior would be uninformative.

With our Beta(��; ��) prior, a slight change in posterior occurs. We sample a candi-

date �� from the approximating normal density and accept or reject it according to

the Metropolis-Hastings acceptance probability. This way, the prior is accounted for

correctly.

3. Conditionally on � and �, the variance �2� , and given the IG-2(��=2; s�=2) prior, the

posterior can be shown to be IG-2 with parameters (s� +
P
(�t � ��t�1)

2 and �� + T ).

This posterior can be sampled from directly.
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The posterior for � in the Student t model F is discrete. The posterior is p(�jz; ::) /
t((yt � �t)=��j�; ::)�(�) which is not hard as the prior for � has a discrete support, over a

limited number of values of �.
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