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Abstract

This paper presents a complete characterization of the local dynamics for optimal
control problems of 4-dimensional systems of ordinary differential equations, by using
geometrical methods. We prove that the particular structure of the Jacobian implics
that the 8th order characteristic polynomial is equivalent to a composition of two lower
order polynomials, which are solvable by radicals. The classification problem for local
dynamics is addressed by finding partitions, over an intermediate 4-dimensional space,
which arc homomorphic to the sub-spaces tangent to the complex, center and stable
sub-manifolds. Then we get local necessary conditions for the existence of 1- to 4-fold,
Hopf, 1- and 2-fold-Hopf and Hopf-Hopf bifurcations.
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1 Introduction

This paper presents a complete characterization of the local dynamics for optimal control
problems in systems governed by four non-linear ordinary differential equations (ODE). We
focus on the infinite horizon, continuous time, autonomous and discounted problem.

The local dynamics of the Hamiltonian system for scalar and planar optimal control
problems is well understood. For the scalar problem, (Hartl, 1987) showed that the stable
sub-manifold has maximum dimension equal to one and that its tangent stable sub-space
will only display monotonous trajectories. For the planar problem, (Dockner, 1985) and
(Feichtinger, Novak, and Wirl, 1994) showed that the stable sub-manifold has maximum
dimension equal to two and that the tangent sub-spaces can display monotonous or oscilla-
tory paths. Fold and Hopf bifurcations may occur (see (Feichtinger et al., 1994) and (Brito,
1997), and for all these definitions see (Guckenheimer and Holmes, 1990) or (Kuznetsov,
1995)). For the 3-dimensional problem we showed (see (Brito, 1998)) that: (i) the stable
sub-manifold has maximum dimension equal to three, (ii) several combinations of oscilla-
tory and monotonous behaviors may occur, and, (iii) the set of possible local bifurcations
includes: fold, Hopf, double fold and fold-Hopf bifurcations.

In this paper we add one further dimension. Though the characteristic equation for the
Jacobian of the modified Hamiltonian dynamic system is a 8th order polynomial, we prove
that it is equivalent to a composition of two polynomials of 2nd and 4th orders. Therefore,
the eigenvalues can be explicitly determined.

The eigenvalues map the primitive parameter space into a six-dimensional complex field.
Local bifurcation analysis consists in finding partitions over the primitive parameter space
which are the sub-ranges of an inverse mapping from the local center, stable and oscillatory
sub-manifolds. As the decomposition of the characteristic polynomial implies the existence
of an intermediate 4-dimensional real field, then the classification problem can be both sim-
plified and solved in general, by partitioning this intermediate space. However, from the
galois field theorem, as general polynomials of order larger than four are not solvable by
radicals (see (Brison, 1997)[p.110] or (Hungerford, 1974)[p.308] a theorem by Abel), then we
deal in this paper with the largest system for which we may determine explicitly the eigen-
values for the associated Jacobian matrix, and therefore present a complete characterization
of the variational system.

The paper proceeds as follows. Section 2 states the problem and our method for solving
it. Section 3 characterizes the algebraic structure of the Jacobian and determines explicitly
the eigenvalues as functions of the intermediate coefficients. In Section 4, we derive a
taxonomy for local dynamics by performing three overlapping partitions on the domain of
the intermediate mapping. Section 5 presents the local stability theorem and locates the
possible local bifurcations.

2 The problem.

We deal with the optimal control problem, defining the value functional,



V(xg, ¢, 8) := max { /0+00 F(u,x,¢)e % dt - & = f(u,x,¢), x(0) = 5170} )
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where 2 € R* denotes the state vector, © € R” denotes the control vector and ¢ € ®* C R™
denotes the vector of given primitive parameters. Let the instantaneous rate of discount,
6, and the defining mappings, (u,z,¢) — F(u,z,¢) € R and (u,z,¢) — f(u,z,¢) € R,
verify the following assumption:

Assumption 1. (1): The function F' and the components of f are continuous and at least
one of them is C",r > 2 in (u,x). (2): 6§ > 0.

Now, let ¢ := (¢,6) € ® where ® = &* x R™" C R™ x R*". From the maximum
principle of Pontriyagin, there are piecewise continuous co-state variables, p € R?, such
that the cwrrent-value Hamiltonian, H(u,x,p,¢) = F(u,x,¢) + (p, f(z,u,¢)) is maxi-
mized by @ = argmax,H(.), for each t € [0,400). Additionally, {2(t),p(t)},5 solves
the canonical dynamic system, (p, &) = (6.p — H,(x,p, gp),[':fp(m7p7 ©)), for x(0) = xy and
limy 4 oo (p, 2)e™? = 0, where fI(:L',p, ¢) = H(u,z,p,p). Let the modified Hamiltonian
dynamic system (MHDS) be written as § = G(y,¢), where y := (p,z) € R®. Assume that
it has a non-empty local attractor set, 5 := {y : G(y,¢) =0, ¢ = po € ® given}, which
contains all the isolated equilibrium points and/or limit-cycles.

With G(.) non-linear, the Jacobian of the variational system, y = D, G (7, vo)(y—4)+O(|
y—y |>7 is

6214 - f{mp _-HT'I'

D, Gy, = .
Yy (4, %0) i, Hp

The vector sub-spaces, which are tangent to the local sub-manifolds, are the generalized
eigenspaces corresponding to the union of all its eigenvalues (see (Guckenheimer and Holmes,
1990), chap. 3). Near an hyperbolic equilibrium point, the structure (dimension and cyclical
properties) of the local sub-manifolds is, from Grobman-Hartman’s theorem, topologically
equivalent to the structure of the tangent vector sub-spaces. However, if an element of
the attractor set g is non-hyperbolic then we will have a local bifurcation, whose local
bifurcation theorem ! involves not only necessary conditions related to the linear part of
the variational system (number of eigenvalues with zero real parts) but also to the non-
linear part. Therefore, from the tangent vector space we can both locate and give a first
generic classification to a central manifold.

The eigenvalues define a mapping from the primitive parameter space into the complex
field, A : & C R™ — C® which transform ¢ — (). Let ny, ng and n_ be, respectively, the
number of eigenvalues with positive, zero and negative real parts and let n” be the number
of real eigenvalues and n¢ be the number of pairs of complex conjugate eigenvalues. From
the fundamental theorem of Algebra, ny +ng+n_ =8, and n" +2n° = 8, and, then, n® < 4

!See (Kuznetsov, 1995) for a recent systematic presentation.



and, as we prove ahead, n_ < 4 and ng < 4. Following a geometrical approach, we will
present general classification results for local dynamics, characterizing the stable, center
and complex vector sub-spaces, by the following overlapping partitions over the primitive
parameter space: S;:={p € ®:n_=i},Cj={peP:ng=jlandL;:={pc ®:n°=1}
for i,5,1=0,...,4 2.

However, as the parameter set ® cannot be defined independently of any particular
application, we will prove that there is an intermediate field X C R* which is the domain
of a mapping, [, such that A(¢) is equivalent to a composition of the mappings k: & — K,
transforming ¢ ~ k(y), and I : K — C8, transforming k + I(k). Therefore, we can derive
general classification results by defining the following overlapping partitions over K: If =
{keK:nc =i}, S]]?" ={keK:n_=j}and CF:={k € K:ng=1} fori, jl=0,1,2,34.

3 Eigenvalues of the variational system.

The characteristic equation of the jacobian matrix D,G(.) is the fourth-order polynomial
over a generic eigenvalue, A,

8
c(A) = det(DyG — M) = Y (1) Ms_;N =0, (1)
7=0
where M is the sum of the principal minors of order jand My = 1 (see Gantmacher (1960),
p. 70). Hence,M; is the trace and Mgy is the determinant of D,G. From the Galois field
theory we know that a general eight-order polynomial is not solvable by radicals. However,
from the symmetry properties of the MHDS’ Jacobian matrix, the principal minors of odd
order are linear combinations of the principal minors of even order, as the next result shows.

Lemma 1. (Principal minors) If Assumption 1 holds then the principal minors of DyG(.)

verify:
M, = 46,
M = —146% + 360>,
My = 2885 — 58 My + 26 My,
My = —1767 + 36°My — 63 My + 6 Mg

2 A given set C; belongs to the common boundary between two adjacent S;4; and S; sets. In the boundary
between two adjacent Z;1; and Z; sets there is multiplicity of order j. Note that there are also two other
overlapping partitions, among the unstable manifolds, U; := {¢ € ® : ny = i}, i = 0,...,4 and the real
sub-manifolds R; := {y € ®:n" =i}, i =0,...,4. But these can be determined residually. That is, locally,
pelinS;NU WhereiJrijl:GandgoeRlﬁI] where i + 25 = 8.



Proof. If Assumption 1 holds, then it is trivial to prove that that H,, = (ﬁm)T and H,.,
and H,, are symmetric. Then, by direct computation we prove that the former relations
between the principal minors hold. O

Let k := (kg, k1, ko) where

§ -8

ko = <§> Ms (2)
5\ ° .

ki = <§> (—176% + 3Mo6" — Mus® + M) (3)
§ —4

ky = <§> (176% — 30162 + My) (4)
§ —2

by = <§> (~65% + M) (5)

As M := (My,..., Mg) define a mapping M : & — R® such that ¢ +— M(yp) then,
as k = ko M, we have just defined another mapping k : ® — K C R* which transforms

@ k(p).
Next, we prove that there is a composition of a quadratic and a quartic polynomial

which is equivalent to the characteristic eigth-order polynomial.
Lemma 2. Consider the polynomials w(X\) := (X — g)Q (3)72 and
g(w) = w* + kyzw?® + kyaw? + Eyiw + Eyo. (6)

Then c(\) (%)_8 =gow iff

kwo = —ks+ko—ki+ko+1 (7)
kwi = 3k3—2ky+k —4 (8)
kywo = —3ks+ka+6 (9)
kus = ks — 4. (10)
Proof. Let z:= (X — %)(%)’1, and consider the polynomial, ¢(r) = ?:0(—1)ij.1;j. Then
c(N) = (%)Sc(m) iff the coefficients of the monomials of the new polynomial are: B; =

By = By = By =0, By = 1385 — 61 (8) " Mo +5(3) "My — (§) ° M + ()" M,
By=—1708+75(8) ™" Mo — 6 (2) ™" My + (8)° Mg, By =350 — 15 (2) > My + ()" My
and By = 28 + ()72 My. Tf w := 22 then g(w) (§)° = ¢(A) iff kwo = Bo, kw1 = Ba,
kw2 = Bg and ky3 = Bg, where kyo to kyo are given by equations (7), (8), (9) and (10). O



As the two lower order polynomials are solvable by radicals, we can determine the roots

of the characteristic polynomial equation, ¢(A) = 0.

Theorem 1. The eigenvalues of the Jacobian DyG are

1)
X o= -V i=l...4
1)
NCo= S+ VE) =l
where
kw3
w12 ————[\/_i(V_ﬂLV_)}
kw3
w34 = ——+ [\/_i(f—f)}
where i = /=1, = —sl—l—SQ—% and z273:—%(31—|—32)—
1
3
soi= (-4 bh - (5) £ vE)
and 3
2
ks ks
ks \
I = 3<7> — k3ky 4 kiks 4 k3 — 4kg
k 2
lo = —3<73> + 2ko,
I 1 /N2 [y Iy iy [lo\?
ss() = (=) —=(2) (2) -1 =2
0= (5) -5(5) (3) u(5) g (s

3The discriminant can also be written in terms of k as
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L : . -1 2
Proof. From Lemma 3, A solves the characteristic polynomial equation iff w := ()\ (%) — 1)

solves the polynomial equation g(w) = 0. Then A" = (g) (1F /w;) where w;, i =1,...,4
are the solution of g(w) = 0. From Abramowitz and Stegun (1972) the roots of the poly-
nomial are given by equations (13) and (14). z1, 22 and z3 are the roots of the polynomial

3 2
equation 23 4+ 1922 + 112 + Iy = 0 with coefficients Iy := — {(%) — kyo (k%?’) + kfwl] ;

4 2
ho=3 (52 ) = Kukuz + Runkus + K, — 4huo and Iy i= =3 (552) + 2k, and the dis-
criminant is given by equation (19). Upon substitution of the expressions for kg to kys,

given in equations (7) to (10), we can see that the coefficients Iy to Iy are formally identical
function of kg to ks (see equations (16) to (18)). O

The next result follows naturally.

Corollary 1. (Dimensions of the sub-manifolds) If 6 > 0 then n_ < 4, ng < 4 and n° < 4.

From equation (?7), the eigenvalues A := (Af,...A}) are equivalent to the composite
w o ky ok, where ky := (kwo, kw1, kw2, kw3). Let I := w o ky, define a mapping [ : L — C®
which transforms k& — [(k). Then A = [ o k. The inverse mapping k¥ = [71()\) allows
us to define partitions over the field K, which are homomorphic to the vector sub-spaces
tangent to the complex, center and stable sub-manifolds. In the present paper we address
the location of the center manifolds as subsets of K.

4 Types of eigenvalues

From equations (11) and (12) it can be seen that both the number of complex eigenvalues
and the magnitude their real parts depend on w. The polynomial equation g(w) = 0, may
have real or complex roots.

Let

6 _2
vi = <§> AN (20)

As the eigenvalues involve square roots of the w, then the following types of (pairs) of
eigenvalues may occur:

o type [ eigenvalues if w; is real and non-negative. Therefore, the associated eigenvalues,
Is Iu o T I t I _ o Isy.
A% and AJ¥, are real, v; is real and sign{y; } = sign{A;*};

e type Il eigenvalues if w; is real and negative. The associated pair of eigenvalues are
complex with a positive real part, as /\f157/\{1“ = g(l F \/ﬂﬂ), where §; > 0 and
i:=+/—1. Then v/! =1+ 3 is real and larger than 1;



o type III eigenvalues if there is a pair of complex conjugate w; (w;). Therefore the
associated pair of eigenvalues is complex, as AfHS, AfH“’ = % [1 F (w/oci + 571)] and

. . . . ~IIIs ~II1 .
there is a conjugate complex pair of eigenvalues, A; % A Y= % [1 F (1/a7; — \/ﬂﬂ)],
where a; > 0, 3; > 0 and 7 := +/—1. Then there is an associated complex conjugate

pair ViHI and ﬁ{H. However, their sum and product are real, as ViIII —1—3{11 =2(1 -

o+ 3;) and V{HE{H = (1—a;+;)? +4a;3;. While the former sum has an ambiguous
sign, the latter product is always positive.

This classification allows us to observe that a necessary condition for the existence
of eigenvalues with zero real parts is that the eigenvalues should be of type I or III. In
particular:

e zero eigenvalues will occur only if the pair of eigenvalues is of type I, if the associated
w;j is equal to 1. This implies that V{ = 0;

e a pair of complex conjugate eigenvalues with zero real parts will occur only if the pair
of eigenvalues is of type III, if the associated «;, that is the real part of the associated
w; is equal to 1. This implies that V{H + ﬁ{H = 203; and that V{HE{H = @2 + 45;.

4.1 Analytical derivation of the 7*-sets

Next we present necessary and sufficient conditions for the existence of zero to four pairs of
complex eigenvalues.

Lemma 3. (The I}V sets) Let T}V := {k € K : n® =i} where i = 0,...2 is the number of
complex roots of g(w) = 0. Let kyo, kwi, kw2 and kys be given by equations (7) to (10).
Then

Iy = {k: 6, <0, >0,ls <0} (21)
I = {k: 6s>0tU{k: 65=0,11 <0 or Iy >0} (22)
7y = {k: 65<0,l1 <0 or ly > 0}. (23)

Proof. The roots of the polynomial equation g(w) = 0,
wiz = —— = -5 (VaE(Vat+ V) (24)
ko 1
wia = —=F+5(VAE VB VE), (25)

where z1, 29 and z3 are the roots of the reduced cubic polynomial equation B4l 42+

l0:07

z1 = (81 + 82) - = (26)

23 = ——(Sl =+ 82) - — —(81 — 32)7: (27)



2 3
where 7 := /—1, 519 = v/r+ /8 and ¢ = % — (%) , = —%0 + %% - (%2) and the
discriminant is &5 := ¢ 4+ 2. According to the Fundamental theorem of Algebra the roots
z; verify:

21+ 20423 = —I
2120+ 2123+ 2023 = g
212923 = —lo.

First, 6, < 0 and I;1 < 0 or Iy > 0 iff n® = 2. Sufficiency: As §; < 0 then the three
z; are real and also as Iy < 0 then, v. g., z; > 0 and sign(z2) = sign(z3). Assume that
the last two are non-negative. Then /> < 0 and /; > 0 which contradicts the assumption.
Therefore z9 and z3 are negative and their square roots are complex. As they are not
complex conjugate then \/z3 + /23 and /22 — /23 are also complex and, therefore, there
are two pairs of complex conjugate eigenvalues. Necessity: Assume that there are two pairs
of complex conjugate eigenvalues A\ o = a1 + 612 and A34 = oo + 622. Then given equations
(7?) and (?7), there is no complex conjugate pair of z; and there should be at least one
negative z;. From equations (26) and (27), for having three real z then 65 < 0 and as lop < 0
there should be two negative z;, v.g. 29, 23 < 0. As 21 is non-negative, then lo 4+ 20 4+ 23 <0
and Iy + la(z2 + 23) < 0. Then I3 < 0 or Iy > 0.

Second, 6; >0 or 65 =0 and I; < 0 or Iy > 0 iff n® = 1. Sufficiency: If §; > 0 there is
one real z (v.g. z1) it is non-negative because Iy < 0 and a pair of complex conjugate (v.g.
293 = a%3i). Then \/z1 and \/z2+ /73 is real and /z3 —/z3 is complex. Therefore n® =1,
that is, A1 and Ag are real and A3 and A4 are complex conjugate. If 65 = 0 then there are at
least two real z (v.g. 20 = 23 = 2). If [; < 0 or Iy > 0 they are non-zero and negative, as we
saw in the last point. However as their square roots are also equal then /z3 — /23 = 0 and
\/Z2 + /73 is complex and n® = 1. Necessity: Assume that there are two real eigenvalues
and a pair of complex conjugate. Then, for instance, between the two terms, /z2 + /23
and ,/z3 — /23, there is one real and one complex. There are only two possibilities: they
are complex conjugate, z3 = Zs, or real, equal and negative, z;, zo0 = z3 = z < 0. In the first
case s < 0 and in the second é; = 0 and Iy < —2z and [; 4+ 2zly < 0, which implies that
l1 <0orly>0.

Third, 6, < 0,17 > 0 and Iy < 0 iff n¢® = 0. Sufficiency: If 6; < 0 then the three z;
are real. If additionally, I > 0 and /o < 0 they are non-negative. Then, as their square
roots are also non-negative, there are no complex eigenvalues, i.e., n® = 0. Necessity: If the
four eigenvalues are real then the three z; are non-negative and then 65 < 0 and /1 > 0 and
lr <0. O

4.2 The geometry of the Z7%-sets

Figure 1 and Figures 2.A to 2.N present implicit plots for §; = 0. These figures must be
read in the following way: first, a point in the space (ko, k1) is fixed in figure 1, second,



the points labeled by a letter refer to a figure 2 labeled with the same letter. The letters
in figure 1 refer to the qualitatively different cases. This representation allows for a direct
comparison with analogous figures for the optimal control problems for 2-dimensional (see
(Brito, 1997)) and 3-dimensional ODE systems (see (Brito, 1998)).

There are three main cases, separated by the axis for kg = 0 and by the curve y :=

(16ko)> — (2k1)* = 0, which is the locus in which lg = 1 = Iy = 0:

o if kp < 0 we will only have cases Z;" and Z§, that is, there will be no two pairs of
complex w. Additionally, if kg = k1 = 0 (see figure 2.A), §; = 0 will have two branches,
one corresponding to the well known quadratic case and the ks-axis; if kg = 0 and
k1 # 0 (see figures 2.B and 2.C) the discriminant will be asymmetric around the
ko axis and will display two branches such that one will have a singularity giving
birth to a Zj'-subset ”inside” a Z}’-area; and if kg < 0 (see figures 2.D, 2.F and 2.G)
then 6, = 0 will display two separate Z§j-branches starting at two singularity points
spreading away from the ks-axis when ki becomes different from zero. Again, the sign
of k1 will only control for the asymmetry of the singularity points around the ko-axis;

o if kg > 0 and x > 0 then all cases, Z¢, 71" and Z§', are possible (see figures 2.E, 2.H,
2.1, 2.J, 2. and 2.N). Now we always have a new kind of singularity point (called
double point) in which two tangents to 65 = 0 intercept, and which separates the three
Z% subsets, and, in particular Z§ from Zg'. Again, the sign of k; is only important to
locate that singularity point as regards the kg-axis (it will be located in the ko-axis
when k1 = 0). In the borderline case (figures 2.J and 2.L), when y = 0 we will have

1 (ka)? 1 (ks )? 3 (ks)?
a particular discontinuity point, ko = 15 (73) s k1=35 (73) and kg = 3 (73) , that

will give birth to the behavior described next;

o if kp > 0 and x < 0 we may also have all cases, 73, Z{" and Z§ (see figures 2.K
and 2.M). However, there will be a transition subset (whose location as regards the
ko-axis is again controlled by the sign of k1) between the two former cases. This will
be materialized by a closed I}’ subset inside a Z3’ area.

4.3 The ZF-sets

In some cases, related to the location of the local bifurcations it is important to know the
number of pair of complex eigenvalues, defined over the K-space. This is done in the next
result.

Lemma 4. Let If ={ke:n° =1} fori=0,...4. Let kyo, kwi, kw2 and kys be given
by equations (7) to (10). Then

Ig = {]4 S Iéu 2 ko > 07 kw1 < 07 kwa > 0, kw3 < 0} (28>
IV = {k€TY : kwo < 0,kyy > 0,kya <0, 0 kya >0, ky3 < 0} (29)
Ig = {k€Zy :kwo >0,ky2 <0 or ky2 >0 and ky1 > 0,kys <0 or



or kw1 < 0, kw3 > 0 U {k € T¥ : ko > 0, kw1 < 0, kwo > 0, kw3 <0} (30)

Th = {k€T¥ ko <0,kys <0, kya <0, or kya>0,kys>0}U
U{k € I : kwo < 0 or Eyo =0,k > 0} (31)
IF = {ke€Z¥ :kwo > 0,kys > 0, kyg > 0, kys > 0} U
ULk € Zy : kwo > 0,ky1 >0 or ky1 < 0,kye <0 or; kya > 0, ks <0} U
U{k e T¥}. (32)

Proof. As we have seen, the number of pairs of complex eigenvalues depends upon the type
of eigenvalues. These depend, first, on the types of w;, which are solutions of a quartic
polynomial equation (6), which determine the sets Z§’ to Z3’ in equations (21) to (23). A
necessary and sufficient condition for the existence of j = 0, ..., 2 pairs of complex conjugate
w is that & € 7. Then k € 73 is a sufficient condition for the existence of four pairs of
complex eigenvalues, ie for n® = 4. If k ¢ 73’ complex eigenvalues are related to type two
eigenvalues which are associated to real but negative w;. Then we have to further partition
the subsets Zg and 7} according to the number of real and negative w. We will use the
fact that

4 4 4 4
Zwi = —kuws Z wiwj = ky2 Z wiwjwy = —ky1 H = kuwo- (33)
=1 =1

j>i=1 I>j>i=1
Let £ € 77’, and assume, with no loss of generality that w; and wy are real and that

w34 = o £ Bi. Then n can be equal to 2, 3 or 4 if there are zero, one or two negative real
w. The system (33)becomes

w1 +wo + 200 = —ksy (
wiwi + 2wy + wa) + o? + 8% = ko (
20w + (wl + WQ)(OLQ + 52) = —ky1 (36

wlwg(a2 + ﬂQ) = kuwo. (

Note that the term o2 + 32 is always positive, even if a = 0. First, kyo < 0 or kyy =0
and k1 > 0iff n© = 3, i.e. if there is one negative w, say wo < 0. As sign(kq0) = sign(wjws)
then ko < 0 iff wy > 0 and wg < 0. And wy = 0 and wy < 0 iff ko = 0 and k.7 > O.
Second, kyo > 0 is a necessary condition for both n® = 2 or n® = 4. In the first case,
wy and ws are non-negative and in the second case they are negative. Basically, we have
to determine the boundary between the two subsets. Obviously the point kyg = k1 = 0
belongs to this boundary (and it implies n = 2). And locally if kg is slightly positive and
if ky1 > 0 then n€ = 4 and if k1 < 0 then n¢ = 2. Given the structure of the non-linear
system (34) to (37), before determining the signs of w; and wa we have to know the sign of

/ 2 2
a. The locus a = 0 is equivalent to (%)1 , = k%zi <k%2> — ko for (%) > kyo > 0,

kw2 > 0 and sign(ky1) = sign(kys). Several things can be said about the a = 0-locus: (i)

10



it belongs to subsets of K sets in which ky1 > 0, kyo > 0 and kyz > 0 or kw1 > 0, kyo > 0
and k3 > 05 (ii) for every value of ko and kyo, verifying the former restrictions, it defines
kwl kwl

one subset, (<—> L <—>2>, in the interior of the two former sets, (iii) the two limiting

ka kw3
locus converge to a common point in the kyo = 0-locus in which k2 > 0. Then the sign of

« inside and outside those two regions are symmetric. To determine the signs of « in the
interior of those subsets note that we have the following sufficient conditions: if kg > 0,
kwi > 0, kyo > 0 and kyg > 0 then n¢ =4 and a < 0 and if kg > 0, ky1 < 0, kyo >0
and k.3 < 0 then n° = 2 and a > 0. However as while the first condition define a closed
(or empty) subset in the space IC, the second condition defines an open region. Then «

will be negative if k& € ((@) , (@) ) and positive in the complement. Then, obviously,
1 2

ka kw3

kwo 2 0, ky1 <0, kyo > 0 and kys < 0iff n© = 2. And k belongs to the complement of the
set in which kg > 0 iff n® = 4.

Now, let k € 7 and the four w; are real and the number of them which are negative
is equal to n®. Let kyo = 0. Then n° is an even number equal to 0, 2, or 4. The following
necessary conditions hold: if n¢ = 0 then kyg > 0, kw1 < 0, kwo > 0 and ky3 < 0 and if
n® = 4 then ko > 0, ky1 > 0, kyo > 0 and kyz > 0. We will prove that they are indeed
necessary and sufficient conditions by proving that they exclude the n¢ = 2 case. With no
loss of generality assume that w; and wy are negative and that ws and w, are non-negative.
Will this case hold if ki1 < 0, kyo > 0 and kys < 07 First, kys < 0iff | w) +ws |<| wz+wy |-
Second, the third equation in (33) will only be true when k1 < 0 iff wsws > wiws, which is
consistent with the former inequality. At last taking into consideration the magnitudes of w
in the second equation of(33) we get and interval for ko, w% + w% < —kyo < wg + wi which
contradicts the assumption that k.2 is non-negative. Now, will it hold if k1 > 0, kyo > 0
and kg > 07 First, kys > 0 iff | w; + wo |>]| wg 4+ wyq |. Then wiws > wswy. Second, those
relations imply that w? + w5 > —ky2 > w3 + wj which again contradicts the assumption
that k9 is positive. Summing up: the former conditions for n¢ = 4 and n® = 0 are indeed
necessary and sufficient and n® = 2 is defined in their C-complement in which kg > 0.

At last, let kyo < 0. Then n¢ is an odd number equal to 1 or 3. With no loss of
generality assume that wq > 0, we < 0 and that sign(ws) = sign(ws). If it is negative then
n® = 3 and if it is non-negative then n® = 1. There is not a natural starting point for
looking at the system (33). However, solving the first two equations of (33) for w1 + wo
and wiwy and substituting the values into the third and fourth equations of (33), we get
(w3 +wy) <%) = —ky1 + kws(ws +ws) and kg + kys (w3 +ws) + (Wi +wsws +w3) < 0.
As kyo < 0 and sign(ws) = sign(ws) then those equations will only hold if

sign(ws + wy) = —sign(—kw1 + wawikws) (38)
kwo + kws (LU3 + W4) <0. (39)

Next we prove that n¢ =1 iff k1 > 0 and kyo < 0 or kyo > 0and kg < 0. Let by >0
and n¢ = 1. Then conditions (38) and (39) will only be met if k,3 < 0 irrespective of the
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sign of ky1 < 0. If kw2 > 0 and »° = 1 then condition (38) can hold for any sign of k3.
Additionally, condition (39) will only be met if ky; > 0 * The case n = 3 holds in the
complement. O

5 The location and characterization of local bifurcations

After characterizing the subsets of the space K according to the numeric features of the
eigenvalues we can locate the two main sources of bifurcations, fold and Hopf bifurcations.
The first are located by zero real eigenvalues and the latter to complex eigenvalues with
zero real parts. In a system of this dimension we may also have higher-dimensional fold and
Hopf bifurcations and combinations between them, as well.

5.1 Analytical derivation

The former results on the classification of the complex sub-manifolds allows us to observe
that a necessary condition for the existence of eigenvalues with zero real parts is that the
eigenvalues should be of type I or III. In particular:

e zero eigenvalues will occur only if the pair of eigenvalues is of type I, if the associated
w;j is equal to 1. This implies that V{ = 0;

e a pair of complex conjugate eigenvalues with zero real parts will occur only if the pair
of eigenvalues is of type III, if the associated «;, that is the real part of the associated
w; is equal to 1. This implies that /! + /! = 28; and that v/ T = 32 + 43,

Now, consider all the roots of the polynomial g(w) = 0. As, if k € ZJ’ there are 2 pairs
of complex conjugate w;, if k € Z7" there is one pair of complex conjugate and two real w;
and if £ € Z§ there are four real w;, then:

o Lk €7y is a necessary condition for the existence of Hopf or Hopf-Hopf bifurcations;

e Lk €7}’ is a necessary condition for the existence of 1- or 2-fold, Hopf or 1- or 2-fold-
Hopf bifurcations;

e k €7} is a necessary condition for the existence of 1- to 4-fold bifurcations.

In this section we will characterize the following subsets

Cri={keK:ng=1i} i=0,...,4 (40)

In all the next proves we will use the following result

“Note that if kwo = kw1 = kw2 = 0 then n° = 1 iff kws > 0. The case kwo = kw1 = kw2 = kw30 belongs
to the set T%.
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k‘g = Z V; (4]-)
ko = Z ViVj (42>
ki1 = Z ViVjlg (43)

ko = 1_[1/7 (44)

Lemma 5. A necessary condition for the existence of a Hopf-Hopf bifurcation is that k €
654, where

Chy = {k € T3 : hy(k) = 0} (45)

]4‘3 2 ]4‘3
R U N RG]
k3\? k3 2
ko — <73> — 2!4:3] [k:g — <73> + 2k3 + 32

2 2
y 3 /k
<—3> + 2k <k < 5 <—3> +2ks, k3 >0, ko >0, kg >0, ko > 0} (46)

2

Proof. The linear part of the Hopf-Hopf bifurcation (see (Kuznetsov, 1995)) has two pairs of
complex eigenvalues with zero real part. Therefore we should have four pairs of eigenvalues
of type IIl,associated with two pairs of complex w with a real part equal to 1. Therefore
k € Z¥, and without loss of generality we may write system (41) to (44) as

ks = 2(1—0&14—514—1—0524-62) (47)
ks = (1—a1+81)% 440181 +4(1 —ay + F1)(1 — g + F2) + (1 — ag + B2) + 400 /048)
ki = 2(1—ag+ B)[(1— a1+ B1)? +4a181] 4 2(1 — a1 + B)[(1 — az + 32)? + 4aa8D)
ko = [(1— a1+ 8124 40181][(1 — ag + 52)? + das 3], (50)

where 31 and 33 should be real and positive. Four the eistence of two pairs of eigenvalues
with zero real part then oy = g = 1 and the system (47) to (50) becomes

ks = 2(B1+ B2) (51)
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ky = B2+481+ 45102+ 33+ 45 (52)
k1= 26208 +451) +261(55 + 452) (53)
ko = (5% +451)(53 + 45), (54)

where 81 and (33 should be real and positive. Then k£ >> 0. Solving equations (51) and
2
(52) we get B = %3 — 9 and 622 — %362 + % <k2 — (%) — 2k3> = 0. The conditions
2
for the existence of positive and real 3; are that: k3 > 0, ko — (%) — 2ks > 0 and that

2
% <%3> + 2kg — k9 > 0. These conditions define restrictions on the values of k9 and k3. As

equations (53) and (54) should also hold, if we substitute the values for 3; and 2 then we
find the two equations which define hy = 0. O

The set hy = 0 defines a 2-dimensional manifold over the 4-dimensional space K. There-
fore, we may fix two co-ordinates and get particular values for the other two.

Lemma 6. A necessary condition for the existence of a Hopf bifurcation is that k € C}%,
where

Chy = (KT - ha(k) = 0} (5)
and
: : k
hg(k) = {0,10051 — a11621a20 + 0,12050 : 420 <0, 1-— g0 _ I <0, kg >0
asy asgy 2
; 2 2 ; 2
0< 020 k2 1 fan\", (k3" axks 1 [, an ks
asy 4 2 \ag 2 4ao 4 asl 2
1 a k a a 2 :
(-2 B s ok 43 () k) 1 (56)
2 as 2 asi agl
where
a0 = —dko (8(32 + kg + 22ks) — (16 + 3k3)(80 + k3)) (57)
a1l = (3]471 + 16]{‘2) (8(32 =+ ]472 + 22]{‘3) — (16 =+ 3]{‘3)(80 =+ k‘g)) —
- (80 + k‘g) (16]470 — k1 (80 + ]473)) (58)
alp = —2(32 + ko + 22]43) (8(32 + ko + 22]43) — (16 =+ 3]43)(80 =+ ]473))
— (80 + kg) (2(80 + ]473)(]472 + 2]{?3) — 4(3]{?1 + 16]{?2)) (59)
asg = ail2 (2(80 + ]473)(]{?2 + 2]473) — 4(3]471 + 16]{?2)) —
— a1y (8(32 + ko + 22k3) — (16 + 3k3) (80 + k3)) (60)

agt = a1y (16kg — k1(80 + k3)) — a1o (8(32 + ko + 22ks) — (16 + 3k3)(80 + ks)) (61)
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Proof. Again, we take the system (47) to (50) and set, without loss of generality oy = 1
and as # 1 and F1 > 0 and B2 > 0. Then, we have three unknowns and four equations.
From equation (47) we get ag =1+ 31 + 2 — %”, from equation (48), upon substitution of
g, we get 16532 + (16 — 8ks + 1631) B2 + 1631 — dka — 837 + k2 + 481 k3 = 0 and, again upon
substitution, from equations (49) and (50), we get

381 + (8 — 2k3) BT + (ko — 8(2 + k3)) 5} + 4kofl1 — kg = 0 (62)
463 — (3k3 + 16) 82 4 2(ky + 2k3) 31 — ky = 0. (63)
From this system we get both a solution for g; = —% and a restriction over k, which is

the 3-dimensional manifold which defines hgo(k). The restrictions on the values as, 31 and
B9 determine the restrictions on the space in which that manifold is defined, as in equation

(82). O

The set ho(k) = 0 defines a 3-dimensional manifold over K.
Now we will present the bifurcations associated with 77".

Lemma 7. A necessary condition for the existence of a 2-fold-Hopf bifurcation is that k €
C}]foQ, where

Cliaps = {k € I{" : hafa(k) = 0} (64)
and
k3 \?
h,gfg(k) = {kg — <7> — 2k3 : kg > 0, ]{72 > 0, kl = ko = 0} (65)

Proof. Now, as the bifurcations will be related to zero real parts of eigenvalues of types I
and III, system (41) to (44) will be in general

ks = vi+vi+20—a+p) (66)
ke = vivh 42l + 1 —a+8)+ (1 —a+B)? +4apB (67)
ki = 2v{vd(1—a+B)+ (1] + )1 —a+ B)*+ 4a8] (68)
ko = vivd[1—a+B)? +4ap]. (69)

As, in this case we should have 1/1] = 1/5 = 0 and o = 1, then the system simplifies to

ko =k =0, B2+48 = ky and kg = g for 8 > 0. Then the manifold and the restrictions
on the space of k£ in which it is defined, represented by set hofs, are easily derived. O

Now, set hafo = 0 defines a 1-dimensional manifold in the space (kg, k3) and the corre-
sponds to a point in the space (k1, ko) = (0,0).
The next result locates the fold-Hopf bifurcation.
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Lemma 8. A necessary condition for the existence of a fold-Hopf bifurcation is that k €
C])?th, where

k a .
Chn = {Femtimpm -0+ 2 <o oyred]
1—-k !
or — 3<Zﬂ<07k1>07k2>07k3>1ifk:eI§} (70)
121
and
hafi(k) = {a10a3; — a11a21a20 + a12a3g : ko = 0} (71)
where
a9 = 3k1 (72)
al = —(2/472 + 12k3) (73)
als = 32+ ks (74)
asyg = 9k — kQ(SQ + k‘g) (75)
ag1 = 2(2 + ]{‘3)(32 + ]473) - 3(2]42 + 13]4‘3) (76)

Proof. For the existence of one zero and one pair of complex eigenvalues with zero real parts
we sould have one type I and a pair of type III eigenvalues. The other eigenvalue may be
of type I or II. In the first case k € Z5 and the system (47) to (50) becomes

vl = ks —23 (77)
—332+2(ks+2)3—ka =0 (78)

—233 + (k3 — 8)? + 4k3f — k1 =0 (79)
ko=0 (80)

with the restrictions v # 0 and 3 > 0. Then we get the 2-dimensional manifold hafi, a

solution for § and the restrictions which define the set Cff: However, in the second case

k€ I:’f and the system and letting 1!/ = 1 4+~ we get v = k3 — 1 — 28 > 0, equations (78)

and (79) and kg = 0, with the restrictions v > 0 and g > 0. O
We may also have Hopf bifurcations when k € Z7°.

Lemma 9. A necessary condition for the existence of a Hopf bifurcation is that k € CﬁQ,
where

Cky = {keT¥: ha(k)=0and

1
2

ks a ks ax)’ 0\’ a
By I0y (—3+”ﬂ> —k2+3<”ﬂ> 92909 1 k)| #£04fkeTE or
2 an 2 an asy ao
k3 ag ks as\? aso\* . am :
1424204 <1+—+—> —k2+3<—> — 20 4 kgt ks — 1| >0
2 a1 2 asy ansy a1
itk e Tk uL’f} (81)
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and

hg(k) = {0'10(131 — a11621a90 + a,12a§0 ko £0, k1 # 0} (82)
where ayg to agy are formally identical to equations (57) to (61).
Proof. The demonstration is done by using system (47) to (50) and by stating § > 0
always and 1/1[ and VQI different from zero when there are no type II eigenvalues, ! # 0
and v = 14~ > 1 when there is a pair of type I and a pair of type II eigenvalues and

v =1+7 >1and 4! =1+ 79 > 1 when there are two pairs of type II eigenvalues. We
also get the 3-dimensional manifold hs. O

Lemma 10. Necessary conditions for the existence of a 1 to 4 fold bifurcations is that
k€ C;ﬁi fori=1,...,4, where
Ch = {keTPVUTY :ko=0,ki #0,ky # 0,k # 0}
Chy = {keTPULY tho=ki =0k #0,ks #0}
Chy = {keTPVUTLY :ko=ki =ky=0,ks#0}
6}74 = {kEI}UUIg:kQZklszZkg:O}.

Proof. Obvious. O

The main results of the paper are gathered in the next result on the characterization of
the center sub-manifolds.

Theorem 2. Let CF:={k € K :ng =i} fori=0,...,4 be a central manifold with dimen-
ston equal to ng. Then

cf = Ch (87)
C; = CiuCh (88)
C; = C?:};UCﬁzﬂ (89)
Ci = CiUCH;, UCE,. (90)

5.2 The geometry of the C*-sets

Again, we fix several representative values for kg and k; in figure 1. The letter which labels
each point refers to the related figure 2.

Let us start with the fold bifurcations. These are the simplest, and are related to the
number of consecutive k;, starting with 7 = 0, which are equal to zero. Therefore: figure
2.A, which is associated with kg = k1 = 0 contains the locations from 2-fold (in all points
except the kz-axis and the curve hofs = 0) 3-fold (in the ks-axis with the exception of
the origin) and 4-fold (in the origin) bifurcations and figures 2.B and 2.C, and in general
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all the analogous figures related to the kj-axis in figure 1, contain the locations of 1-fold
bifurcations (in all points with the exception of the hyof; = 0-locus. Geometrically, the
4-fold corresponds to a point in the k-space, the 3-fold corresponds to a line, the 2-fold to
a surface and the 1-fold to a cube.

The Hopf bifurcation theorem has as a necessary condition that there should be one
(and only one) pair of complex eigenvalues with zero real parts and no zero eigenvalues.
Geometrically, we may have Hopf bifurcations for any value of k1 and for any non-zero kg,
except for the points corresponding to the Hopf-Hopf bifurcation that we will discuss later.
Also, as ha(k) = 0 defines a 2-dimensional manifold in the 4-dimensional K space, then it is
represented geometrically by a folded plane. As the values for kg and k; represent particular
"slices” in the four-dimensional parameter space then the projections in the (kg, k3)-space
will be given by particular curves. Therefore we have a projection of the ho = 0-locus in
all figures 2 with the exception of those related to kg = O-values, figures 2.D to 2.N. When
ko < O (see figures 2.D, 2.F and 2.G) it seems that the locus has only one branch which
cuts vertically the k3-axis in a way which is dependent upon the sign of k1. When kg > 0
(see figures 2.E and 2.H to 2.N) the locus hy = 0 is multivalued with two branches, and
these branches are almost everywhere located in the ko > O-orthants. If ki changes sign,
they tend to change their position as regards the upper part of the ko-axis.

When these two branches intercept, and if that interception is located in the Z§'-space
we would have a Hopf - Hopf bifurcation (see figure 2.N). We saw that the set (4 = 0 defines
a 2-dimensional manifold over the 4-dimensional space K. From the presentation in Lemma
(82) we may see that: first, the Hopf-Hopf bifurcation will be represented by a point in the
space (ko, k1) and a point in the space (k2, k3); second, in the space (ka, k3) it will be located
between lines ky =< % (%”)2 + 2k3 and k9 = <%3>2 + 2ks3; third, as it is a 2-dimensional
manifold, the restrictions which were expressed over space (ko, k3), may be mapped into
space (ko, k1). As our representation presupposes taking (ko, k1) parametrically, then hy =0
is represented as a 0-dimensional manifold, that is, a point. After some tedious algebra we
found that, for kg < 192, the following two conditions should be met ky — 2k; < 0 and
16k1 — (k3)%(k% + 16 < 0 where k3 = 8(2k0—3k¢1)2;fikv’(?4+k0—2k1 for k1 > 0. The geometrical
analogs are curves H4,; and H4,, in Figure 1. Intuitively, two pairs of imaginary eigenvalues
will only exist if kg and k1 are inside the two lines, like in point N corresponding to Figure
2.N.

By now, the geometrical location of the fold-Hopf bifurcations in the C-space should be
straightforward: the 1-fold-Hopf bifurcation is located along the kj-axis with the exception
of the origin as in figures 2.B and 2.C and the 2-fold-Hopf bifurcation is located in the origin
of figure 1 and in the semi-parabola in figure 2.A.
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Figure 1: kg and k; values

Figure 1

The letter refers to a particular set of values for ky and k1 which were used in a particular
figure 2.
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Figure 2: ko and k3 for kg = k1 =0
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Figure 3: ko and k3 for kg =0 and k1 =1
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Figure 4: ko and ks for kg =0 and k1 = —1

Figure 2. C
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Figure 5: ko and ks for kg = —1 and k1 =0

Fi gure 2. D
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Figure 6: ko and k3 for kg =1 and k1 =0

Figure 2. E
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Figure 7: ko and ks for kg = —1 and k1 =1

Figure 2. F
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Figure 8: k9 and k3 for kg = —1 and k; = —1
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Figure 9: ko and k3 for ko =k1 =1
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Figure 10: ko and k3 for kg =1 and k1 =4

Fi gure 2.1

h2=0

-10+

29




Figure 11: ko and k3 for kg =1 and k1 =4

Figure 2.3
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Figure 12: ko and k3 for kg =1 and k1 = 8
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Figure 13: ko and k3 for kg =1 and ky = —4

Figure 2. L

del t a_w=0

-10+

-20+

32



Figure 14: ko and ks for kg =1 and k1 = —8
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Figure 15: ko and k3 for kg = 2.5 and k1 = 2
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