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1 Introduction

A widely used method in the analysis of large-sale econometric models is to
replace the “true model” by an aggregative one in which the variables are
grouped and replaced by sums or weighted averages of the variables in each
group. These aggregative variables are put into relation with one another in
a way that mimics the corresponding relation in the “true model” (cf. Theil
(1954), Malinvaud (1956), Fisher (1962)). Moreover, the aggregative model
is generally treated as if the structural characteristics of the detailed model
carry over to it without change, enabling one to have—or to believe one
has—an understanding of how the economy operates as seen through the
model. As Geweke (1985) has pointed out, the distortions introduced by
the assumption of perfect aggregation—known as that of the “representa-
tive agent” in current macroeconomic models—may be of the same order of
magnitude as the much-studied distortions introduced by ignoring expecta-
tions.

When there is no way to avoid this common practice, for example for
the simple reason that the number of explanatory variables in the real data
set exceeds by far the number of available observations, it should at least
be carried out intelligently. Two distinct problems arise: The first is that
of choosing an aggregative model that best approximates the “true model”
when the modes of aggregation are specified in advance; the second, which
chiefly concerns us in this paper, is that of choosing the modes of aggregation
optimally.?

In this paper we adopt an objective criterion of industrial classifica-
tion along the following lines. We suppose, as Samuelson’s (1953) theory
predicts, that within a country following fairly liberal trading policies, do-
mestic price movements will closely follow movements in world prices, in-
dependently of consumer preferences. On the assumption of fixed technical
coeflicients, a linear-homogeneous multivariate multiple-regression model is
postulated with the detailed average import and export prices as exogenous
(independent) variables and the detailed average domestic prices of these
same groups of commodities as endogenous (dependent) variables. The ob-
jective is to partition these industries into a smaller number of groups at a
higher level of aggregation. Comparison of the aggregative endogenous vari-
ables with the conditional predictions of these variables from the aggregative
model leads to a criterion of mean-square forecast error for a given grouping

*For analyses of these two problems see Chipman (1976) and (1975) respectively.



of the data. Given this objective function—which we shall denote by ¢ in
the sequel—one wishes to choose a grouping that minimizes mean-square
forecast error.

Of course, a classification system is designed to serve a wide variety
of uses, and the criterion used in this paper refers to only one of these
possible uses. However, most other uses that come to mind are closely
related to this one; for example, one may wish to study the relations between
quantities instead of prices. Leamer (1990) studied the mapping from a
country’s factor endowments to net exports and found that the nine one-digit
SITC (Standard International Trade Classification) groupings of the 56 two-
digit SITC categories formed a far-from-optimal classification. Remarking
(p- 157) that the “calculation costs of a global minimization ... will ... be
unacceptably high” he settled on a local optimization algorithm.? In this
paper we apply a heuristic global optimization algorithmn.

We limit ourselves to the problem of optimally partitioning a set of
medium-level categories (two- and some three-digit categories) into a spe-
cific number of groups. It is obvious, however, that a complete solution
of the problem of optimal industrial classification would entail derivation
of a hierarchical classification system at many levels. An approach to this
problem has been carried out by Cotterman and Peracchi (1992), who stress
the importance of “consistency,” i.e., the requirement that categories once
combined should not be broken up at a coarser level of aggregation. How-
ever, owing to the tremendous complexity of finding a complete and optimal
hierarchical classification system they content themselves with a sequential
procedure which cannot guarantee good or even optimal groupings at any
stage of the classification system. As our aim is to generate good or optimal
groupings, we have to restrict our application in this paper to the more man-

3 As pointed out in Leamer (1990, p. 157), the number of m xm* proper grouping matrices
for modestly large m™ is enormous. In fact, the restriction on exactly one nonzero entry
per row and at least one per column leads to the following combinatorial expression
for the number P(m,m™) of equivalence classes of m x m™ proper grouping matrices
(considered as unordered sets of m* column vectors each of order m x 1), i.e., for the
number of ways of partitioning m objects into m* groups (cf. Chipman (1975, p. 150)):

P(m,m") = ”3*! S (- (”z‘) (m* — i)™
=0

For the application to the German price data analyzed in this paper this amounts to
P(42,6) = 6.665 x 10?°. For Leamer’s application it is still higher, namely P(56,9) =
7.455 x 10*7.




ageable problem of classifying a given number of industries into a specific,
relatively small, number of groups.

The problem of finding a partition of a given number of industries into
a smaller number of groups that minimizes mean-square forecast error falls
under the heading of integer programming problems. With regard to its
computational complexity the problem is similar to problems such as the
classic travelling salesman problem. In fact, it falls into the class of so-
called NP-complete problems,* which means that there is probably no exact
optimization algorithm that works in economic computing time.?

In order to close this gap, we pursue our problem by employing a local
search heuristic known as Threshold Accepting (TA).® “Heuristic” means
that for a given input of computer resources using these algorithms it cannot
be guaranteed that the exact optimum will be found. However, their velocity
makes it possible to find approximative solutions even for problems of a very
high degree of complexity, when deterministic algorithms cannot give any
solution at all in economic computing time.

In this paper we study a problem of optimal grouping of 42 industries or
commodity categories into six sectors for the purpose of analyzing the inter-
national transmission of price changes. The internal German producer-price
indices of 42 commodity categories are put into relation with the corre-
sponding indices of import and export prices. The Statistisches Bundesamt,
Wiesbaden, which issues these data, provides an official grouping of these
42 commodity categories into six sectors. Using a TA implementation we
have calculated other groupings that minimize the objective function ¢.

Unfortunately, the objective function considered for this problem in-
cludes some matrix inversions. Thus, even with the TA algorithm we were
restricted by computing time. Nevertheless, we can report some computa-

“For discussion of NP-completeness (“NP” stands for “nondeterministic polynomial-
time”) see for example Garey and Johnson (1979). In nontechnical language, an op-
timization problem is said to be NP-complete if the problem of finding the optimal
solution with certainty is intractable. See Winker (1992) for a proof that the unre-
stricted problem of optimal aggregation is NP-complete.

*By “economic computing time” we mean a “reasonable” consumption of computer re-
sources, i.e., one that would today be feasible in terms of time and financial resources.
We hesitate to specify a precise definition, but for example a time of 10%® years for the
“correct” solution would certainly not be considered “reasonable.”

5This algorithm was introduced by Dueck and Scheuer (1990) for the travelling salesman
problem. See also Dueck and Winker (1992), Winker (1995,2000), Winker and Fang
(1997), and Fang et al (2000) for some successful implementations in statistics and
econometrics.



tional results which show in particular that the search for optimal aggrega-
tion turns out to give better regression results than the use of the official
grouping. The resulting groupings tend to be “vertical” as opposed to the
official “horizontal” grouping by stages of production.

The rest of the paper is organized as follows. The next section provides
an introduction to the theory of approximate and optimal aggregation lead-
ing to the objective function for optimization. In Section 3 the application to
price indices for the Federal Republic of Germany is introduced; the applica-
tion is not restricted to a static model, but allows for a dynamic specification
of the exogenous variables (the technical details for the dynamic version are
provided in Appendix A). Section 4 is devoted to the heuristic optimiza-
tion algorithm TA and Section 5 to the results achieved with the method of
optimal aggregation for the problem of price indices both in a static and a
dynamic setting. The paper concludes with a summary of the basic findings
and an outlook to future research.

2 Optimal Aggregation

We may formulate the problem of optimal aggregation in terms of the mul-
tivariate multiple-regression model

(1) Y =XB+E

where Y is an n X m matrix of n observations on m endogenous variables,
X is an n X k matrix of n observations on k exogenous variables, B is a
k x m matrix of unknown regression coefficients to be estimated, and F is
a random n X m matrix of error terms with zero mean and covariance

(2) E{(col E)(col E)'} =2 QYV,

where “col E” denotes the column vector of successive columns of E, ¥ is the
m X m simultaneous covariance matrix and V the n x n sample covariance
matrix. £ denotes the expectation operator. We shall assume that V is
positive definite.”

Letting G and H respectively denote kx k* and mxm* (proper) grouping
matrices, i.e., matrices with exactly one nonzero (in fact, positive) element
in each row and at least one nonzero element in each column, it is customary
to deal with an aggregative model

(3) Y* = X*B* + E*

"The more general case rank V < n is treated in Chipman (1975).



mimicking the true one, where
X*=XG and Y*=YH

are n X k* and n X m* matrices of observations on £* and m* aggregative
exogenous and endogenous variables respectively. The situation may be
depicted in the commutative diagram of Figure 1 as first done by Malinvaud
(1956).8 We may consider three aggregation concepts in connection with
this model:

Figure 1: Commutative Diagram for the Aggregation Problem

X B Y
G||G# H
B*

X* y*

1. Perfect aggregation. For the original detailed model (1) and the ag-
gregative one (3) to be consistent with one another, one must have

(4) XGB* =&*Y* = EYH = XBH,

where £* denotes the expectation operator associated with the aggregative
model. This can happen in two ways, as first observed by Theil (1954):

(a) Structural similarity. There exists a solution, B*, to (4), for all X,
hence to the equation
(5) GB* = BH.

Referring to Figure 1, this is the case in which the diagram commutes. Equa-
tion (5) is known in the literature as the “Hatanaka condition” (cf. Hatanaka,
1952).

(b) Multicollinearity. The domain, X, of the mapping B : X — Y is
restricted by
(6) X = X*G = XGG,

8The meaning of the reverse mapping G¥# appearing in the figure will be explained later
(see equation (10) below).



where G is a k* X k matrix such that GGG = G. Then (6) has the interpreta-
tion given by Theil (1954, p. 32) that the “microvariables [are proportional
to] the corresponding macrovariables.” For there to exist a B* satisfying (4)
for X satisfying (6) we require that there exist a solution, B*, to

(7) GGGB* = GGBH.

This holds automatically, since one may choose (GGG)~ = G and the Pen-
rose (1955) solvability condition [I — (GGG)G)GGBH = 0 is verified to
hold.

(¢) Mized cases. There can be many cases of partially restricted structure
complemented by partially restricted domain (cf. Chipman (1976, pp. 657—
665, 726)).

2. Best approzimate aggregation. Since perfect aggregation is an ideal
situation that cannot be expected to be fulfilled in practice, the approach of
best approximate aggregation is to define a suitable measure of aggregation
error and choose B* in such a way as to minimize this error. If the aggre-
gation error achieves its minimum possible value, this approach reduces to
the previous one.

To arrive at a criterion of forecast error, we may consider the discrepancy
between the random variable Y* = Y H to be forecast and its forecast by
X*B* on the assumption that the model (3) is true; this discrepancy is

Y* - X*B* = (XB + E)H — XGB* = X(BH — GB*) + EH.

In terms of the former notion of discrepancy we define the mean-square
forecast error as the matrix

(8) F=&{(Y*-X*B*V {Y*=-X*B*)|X}=A+nHSH,

where
(9) A= (BH -GB*)X'V™'X(BH - GB*).

is the matrix of “aggregation bias” (cf. Chipman, 1975, pp. 125ff).

If either there exists a solution B* to (5), or X satisfies (6)—hence there
exists a solution B* to (7)—then for such B*, A = 0. Clearly there could be
combinations of partial bilinear restrictions on B and partial restrictions on
the domain of variation of X for which one would also have A = 0. Thus,
best approximate aggregation includes perfect aggregation as a special case.

The matrices F' and A may be ranked in terms of the nonnegative defi-
niteness of their differences. For fixed G and H, minimization of F is clearly



equivalent to minimization of A. It is shown in Chipman (1976, p. 668) that
A is minimized with respect to B* for fixed G and H when

(10) B* = G¥BH,
where
(11) G* = (G'X'V X))\’ X'vIX,

if, as may be expected in practice, the matrix X* = XG has full rank &*.°
(11) corresponds to the interpretation given by Theil (1954, p. 65) as the
“auxiliary least-squares regression equations” of the microvariables X on the
macrovariables X*. In Figure 1 one may read off (10) as the composition of
the mapping B* into the three mappings shown.!0

3. Optimal aggregation. In perfect aggregation and best approximate
aggregation, the grouping mappings G and H are taken as given. In optimal
aggregation, G and H are chosen optimally. For each pair (G, H) in a set
G one determines B* so as to minimize the matrix (8) of forecast error,
resulting in the minimizing matrix

(12) F*=H'B'(I-GG*YX'V"X(I - GG*)BH + nH'SH,

where the first term on the right is the minimizing bias matrix, A*. This
may then be used to determine G and H optimally. However, the problem of
minimizing (12) with respect to G and H is ill posed: in general, there will
not exist a minimizing F* matrix. A scalar-valued objective function must
therefore be chosen. Now, the problem of best approximate aggregation
remains invariant with respect to replacement of F by W*Y2FW*1/2 where
W* is some symmetric positive-definite matrix. In general, therefore, one
may choose as criterion function

(13) ¢=a+ntr HSHW*.
where
(14) a=tr HB'(I - GG*)X'V-X(I - GG*)BHW™.

®For the general case see Chipman (1976, p. 668.)

ONoting that X*F XX} = X*F, where Xt = (X'V-'X)"X'V~! and B = X1V, etc.,
and X~ denotes any generalized inverse of X in the sense of Rao (1966), it follows that
a formula analogous to (10) holds for the estimated matrices, namely B* = G¥*BH;
thus, generalized least-squares estimation of the aggregative model provides best linear
unbiased estimation of the best approximate aggregation.



We choose the Euclidean metric W* = I+ for the application.!! This
choice seems to be the most suitable one as the price data used in our
application are already measured in a natural common unit. However, as a
time period of nearly 30 years is covered by the data, undue weight might
be given to commodity categories whose value is subject to considerable
fluctuation and, in particular, inflationary processes may overshadow the
more fundamental effects we are interested in. The standard procedure to
cope with heteroskedasticity introduced by price inflation is not applicable
here for obvious reasons, as it consists in dividing the time series by some
price index. Consequently, we choose

(15) V = diag{ X X'} = diag {Xk: zf}

i=1

to correct for possible heteroskedasticity.

It is doubtful whether use of the objective function (13) could be justified
for sets of G and H matrices of different dimensions £* and m*, hence it
will be assumed that these dimensions are given.

In general, one could (in principle) follow a two-step procedure of op-
timizing over the set of £ x k* matrices G for each fixed m x m* matrix
H, then optimizing over the set of matrices H. In the application to be
considered in the next section the problem is simplified by the fact that G
is dependent upon H.

From the discussion of conditions for perfect and best approximate ag-
gregation it is clear that the process of optimal aggregation selects grouping
matrices G and H that will approximate the conditions for perfect aggre-
gation as closely as possible. For example, if a subset of columns of X are
highly collinear, it will tend to aggregate the corresponding variables to-
gether; alternatively, if X is well conditioned, it will tend to group variables
together so that the corresponding submatrices of B have row sums which
are as equal to each other as possible. These conditions are closely related
to the intuitive ideas about “similarity” of commodities and of processes of
production.

"1 Alternatively, one could choose the “Mahalanobis distance” defined by the choice W* =
(H'SH)™!; ¢f. Chipman (1975).



3 An Application to Price Indices

For our application we examine the structural relationship between commod-
ity prices in a country’s home markets and the corresponding world prices as
represented by the prices (expressed in the country’s own currency) of its im-
ports and exports. By Samuelson’s (1953) and Shephard’s (1953) theories,
the rentals of the factors of production employed in the country’s export
and import-competing industries are determined from the external prices
by inverting the system of minimum-unit-cost functions dual to the produc-
tion functions, while the prices of non-traded commodities are determined
from the factor rentals directly via the corresponding minimum-unit-cost
functions. This composed mapping from external to internal prices can be
regarded as a “generalized Stolper-Samuelson mapping”. If the production
technology is of the Leontief fixed-coefficients type, then the minimum-unit
cost functions are linear-homogeneous. This assumption has been chosen
here in order to permit the application of the theory of linear aggregation,
since published price indices have, since the time of Irving Fisher, been
presented by statistical agencies as weighted arithmetic means.'?

Our aggregation problem may therefore be formulated as follows. X
and X5 denote n x m matrices of n consecutive monthly observations on
import and export price indices of m commodity categories, respectively,
and Y denotes the n X m matrix of internal producer prices for the same
commodity categories. Let X = [X, X2] denote the n x k matrix of ob-
servations on the £ = 2m independent variables. The regression model is
then
(16) Y:XB+E:[X1,X2][g;]+E,
where F is a random n X m matrix with zero mean and covariance given
by (2), where V is given by (15). From the assumptions postulated, the
matrix B depends entirely on the production coefficients in the country’s
industries.

The natural aggregation process is quite simple. We define H to be an

2 An economically more reasonable assumption might have been that of a loglinear (Cobb-
Douglas) technology, in which case the minimum-unit-cost functions are of the same
loglinear type. This would be practicable if the price indices issued by statistical agen-
cies were geometric means, as used to be the case in the time of Stanley Jevons. Then
all the ensuing relations would be loglinear.

10



m X m* grouping matrix. We define the £ X k* grouping matrix G by

H 0
G—lo H]—I2®H

where k& = 2m and k* = 2m*. Now the object is to choose the optimal H
out of the class of m X m* proper grouping matrices.
Replacing B by its generalized least-squares estimator

B=(X'V'x)"'x'v-ly
and X by the pseudo-maximum-likelihood estimator S/n,'® where
S=Yv1ly -vvixXx'v-1ix)'x'v-ly

(from the given data set these can be computed once and for all, if nec-
essary using generalized inverses based on singular-value decomposition'4)
the objective function to be minimized corresponding to the criterion of
mean-square forecast error is, in accordance with (13) above,

A7) ¢ = te{H'B'(I - GG#)X'V-'X(I — GG#*)BHY + tr{H'SH},
and
é# — (GIle—lXG)—IGIle—lX — (X*IV_IX*)_IX*IV_IX’

in accordance with (11) above.

The most convenient data set available for a first implementation of
TA for optimal aggregation consists of monthly observations on import and
export price indices (which are formed as weighted averages of prices with
fixed weights) and internal producer-price indices (formed the same way).
Since the natural way to group them is by forming weighted averages with
the given weights, it was most convenient to work with the price indices
multiplied by their weights. Unpublished import and export price-index data

131f the usual best quadratic unbiased estimator S/(n — k) is used instead, then in the
formula for ¢ below the term m* would be replaced by m*n/(n — k).

“T.e., using the oblique generalized inverse x# =)O(TV_1/2, where )O(= V~Y2X in place
of (X'V'X)™'X'V~!, where x1 is the Moore-Penrose generalized inverse of X.

11



of this type, called “Wertziffern,” have been furnished by the Statistisches
Bundesamt, Wiesbaden, for the Federal Republic of Germany.'®

Then aggregation means just summation and the nonzero elements of
the grouping matrices are all ones. We considered the series of m = 42
commodity categories to be aggregated into m* = 6 groups.'® There exists
an official method of grouping these 42 industries into six groups which
makes it possible to compare our results with results based on the official
grouping.'”

One problem with the available data set is that the price-index series
come in blocks of time periods with different base years. We performed
our calculations with a data set which includes a total of 328 months from
January 1968 to April 1995.

4 Optimization

As pointed out in footnote 3 above, the number of m x m* proper grouping
matrices for modestly large m* is enormous. Hence, an optimal aggregation
cannot be found by enumeration of all possible grouping matrices. In fact,
in Winker (1992) it was proved that the problem of optimal aggregation in
its most general form, i.e. without restricting G to be equal to Io ® H, is
NP-complete.!® There is a nearly general consensus that no deterministic
algorithm can give an exact solution to such roblems without using computer
resources—i.e. computing time or storage capacity—that grow faster than

'5The published price-index data consist of these Wertziffern each divided by the weight
of the respective commodity category, and then rounded to one digit after the decimal
point. Because of the rounding error, accuracy is lost especially in the case of the most
important (high-weight) commodity groups. In the case of the internal producer-price
index, Wertziffern were not available, and the series used were the published price
indices multiplied by their weights.

'8 Appendix C contains a table of the commodity groups and their weights in imports,
exports, and internal production.

1"The classification system used is the Guterverzeichnis fir Produktionsstatistiken, for-
merly known as the Warenverzeichnis fir die Industriestatistik. The 42 industries are
two- and some three-digit categories (and because of lack of data in some mining cat-
egories, combinations of some three-digit categories) called Giiterzweige, and the six
groups of industries are called Giitergruppen. A few commodity categories, such as that
of electricity, gas, central heating, and water, as well as watercraft and aircraft, are
not represented in the import- and export-price-index series, and have therefore been
omitted from the producer-price-index series.

8For a formal definition and a discussion of NP-completeness see Garey and Johnson
(1979).
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every polynomial in the size of the problem. Consequently, not only the
trivial enumeration algorithm is infeasible for this problem, but there exists
no feasible algorithm giving the exact optimal solution with certainty.

A way out of this dead end for practical applications of the theory of
optimal aggregation is the use of optimization heuristics. These algorithms
do not give the global optimum to a discrete optimization problem with cer-
tainty, but in general perform well in giving a good approximation to this
optimum. We implemented the local search optimization heuristic TA as in-
troduced in Dueck and Scheuer (1990). TA is a descendant of the Simulated
Annealing algorithm discussed in Kirkpatrick, Gelatt und Vecchi (1983).
Successful implementations include applications to the travelling salesman
problem (Dueck and Scheuer (1990)), optimal portfolio selection (Dueck
and Winker (1992)), lag structure identification in VAR models (Winker
(1995, 2000)), and experimental design (Winker and Fang (1997), Fang et
al (2000)).

Since the focus of this paper is on the application of the theory of opti-
mal aggregation, the optimization method used for this purpose is of interest
only in as much as an optimization heuristic such as TA enables actual calcu-
lations for real data. Furthermore, the implementation of the algorithm and
some discussion of its tuning for specific problem instances is documented
in the literature.'® Therefore, we may content ourselves with a short layout
of the basic principles of the algorithm and its application to the optimal
aggregation problem.

Given an objective function ¢ to be minimized over a set of possible
solutions #, any local search heuristic like TA proceeds as follows. It starts
with a randomly selected element Hy € H. In each iteration, the value of the
objective function for the current candidate solution @(H,) is compared to
&(Hn) for an element H,,, which, in some sense to be defined later, is close to
the previous element. In our implementation, the H,, are selected randomly
in a neighbourhood of H.. The local search algorithms differ mainly in the
rules for deciding when to accept the new element as the current solution.

The simplest local search algorithm accepts H,, if and only if it leads
to a decrease in the objective function. Consequently, it convergences to
a local minimum. However, for problems with many local minima such
as the problem of optimal aggregation, the probability of being stuck in a
“bad” local minimum is high and the mean performance of the algorithm
is not satisfactory. The refined versions of local search algorithms accept

19See the references in Winker and Fang (1997) and Winker (2000).
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a temporary worsening in order to escape such local minima. Hence, these
algorithms may exhibit a “hill-climbing” behavior?’

In the case of TA this idea is implemented using the so—called threshold
sequence. This sequence of non negative numbers decreases to zero during
the iterations of the algorithm. At each iteration the current threshold
determines up to what amount a worsening of the objective function ¢ is
accepted when moving from H,. to H,. Given a treshold T, H,, is accepted
if and only if ¢(H,) — ¢(H,) < T, i.e. always if H, is “better” than H, and
up to the threshold 7 if it is worse. This way the algorithm escapes local
minima, but may happen to jump back in the next iteration. However, this
is unlikely to happen if the neighbourhoods are large enough.?! Then, TA
converges eventually to a solution arbitrarily close to the global optimum
with probability larger than 1 — § for any given positive § (Althéfer and
Koschnick (1991)). Unfortunately, the number of iterations has to grow
very fast to obtain this result.

Given this general outline of the algorithm, the implementation to the
problem of optimal aggregation requires to impose a neighbourhood struc-
ture on H, which is the set of proper grouping matrices in our application,
and to select a threshold sequence.

The choice of neighbourhoods or a metric on # is crucial for the perfor-
mance of TA. If they are chosen too small, the risk of getting stuck in bad
local minima increases, if they are too large, TA will perform like a random
search procedure, i.e. loose efficiency. For the application to proper group-
ing matrices, the Hamming distance (Hamming (1950)) seems a natural and
appropriate concept. The Hamming distance di between two grouping ma-

trices H = (h;;) and H = (hy;) is given by the number of differing entries:?2
(18) dH(HaH):ZZ|hij_hij|
i=1j5=1

For a given proper grouping matrix an element with a Hamming distance
of 2 can be obtained for example by moving one commodity from one group
to another. Likewise, two elements with a Hamming distance of 4 might be

20¢f. figure 2 in section 5.

*11n addition, TA could be combined with ideas from tabu search to avoid such cycling.

22F. Ronchetti proposed to us a modification of this standard concept of Hamming dis-
tance by weighting the differing entries with their base-year weights. This modification
did not lead to a very different local behavior. Hence, the application is based on the
standard concept.

14



generated by simultaneously moving two commodities to different groups.
The choice of spheres of radius 4 with regard to dy proved to be a good
choice for the application to proper grouping matrices.?

The final ingredient to our TA implementation consists of the choice of a
threshold sequence. We use a relative definition of the threshold values, i.e.
the threshold describes up to what percentage a worsening of gg is admitted
when moving from H, to H, in one iteration step. We generate the threshold
sequence from an empirical distribution of local relative deviations. This
empirical distribution is generated by randomly generating a large number
of proper grouping matrices H; and neighbouring matrices H;. The relative
deviations are calculated as (¢(H;) — ¢(H;))/d(H;). From the resulting
absolute values of relative deviations sorted in decreasing order the values
of some lower quantile (between 25 and 50 per cent) are chosen as the
threshold sequence.?*

Finally, the number of iteration has a positive influence on the quality of
the obtained results though with a decreasing rate. The result of the algo-
rithm is the minimum of all past evaluations and the associated H matrix.
If the number of iterations is large engough and the algorithin is well tuned,
in general, this best result corresponds to the final candidate solution.

5 Computational Results

In this section some computational results achieved with the TA imple-
mentation for optimal aggregation are presented and some remarks on the
robustness of these results are made. To begin with the computational
results, the TA algorithm has been coded in FORTRAN using some ESSL-
subroutines and was run on IBM RS 6000/3AT workstations at the Univer-
sity of Konstanz. The optimized grouping matrix presented in the sequel
has been achieved by 250,000 iterations in about 20,000 CPU-seconds for
one of 10 trials.

Figure 2 shows some details of the resulting sequence of values for the ob-
jective function gg for the current solutions during the optimization process.
In the beginning of the optimization the algorithm accepts a new current
solution nearly in every iteration whereas as the optimization proceeds fur-

TFor a more detailed analysis of neighbourhood structures for TA see Fang ang Winker
(1997).

*TFor the details of this data driven threshold sequence generation see Winker and Fang
(1997).
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ther the current solutions become more stable. Furthermore, in both parts
of the plot the typical “hill climbing” behavior of TA can be detected, i.e. in
order to achieve a better current solution it proves to be necessary to admit
a worsening of the solution first to escape local minima.

Figure 2: Aggregation bias ¢(H,) for first 10 000 iterations (top) and itera-
tions 190.000 to 250.000 (bottom)
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We recall that we considered a linear-homogeneous regression model for
price indices given by the “Wertziffern”. The grouping problem consists
in the aggregation of time series for 42 commodity categories into only six
groups per series (internal producer price, import price, export price).

The official grouping as given by the publications of the Statistisches
Bundesamt is presented in Table 1. This grouping can be classified as a
grouping by stage of production, or a “horizontal” grouping. As far as the
regression problem, as desribed above, is concerned, this grouping is far from
being optimal. The distance might be expressed in terms of the objective
function ¢. For ¢ this official grouping results in a value about three times
the best value achieved by TA optimization.

In contrast to the official grouping, most of the groupings obtained with
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Table 1: The Official Grouping

Agricultural, forestry, & fish. prod.
— Agricultural, forestry, & fish. prod.

Mining products
— Coal
— Crude oil and natural gas

Basic materials

— Petroleum products

— Quarrying products

— Iron and steel

— Nonferrous metals

— Iron, steel, and malleable cast iron
— Prod. of drawing & cold-rolling mills
— Chemical 41 (Inorganic)

— Chemical 42 (Organic)

— Chemical 43 (Fertilizer)

— Chemical 44 (Plastic)

— Chemical 45 (Chemical fibres)

— Chemical 46 (Colouring matter etc.)
— Chemical 47 (Pharmaceuticals)

— Chemical 49 (Other)

— Sawn timber, plywood etc.

— Wood pulp, cellulose, paper etc.

— Rubber products

Capital Goods

— Steelworking Products

— Structural-steel prod. & rolling stock

— Machinery (including farm tractors)

— Road vehicles (excluding farm tractors)
— Electrical products

— Precision and optical goods, clocks etc.

— Ironware, sheet-metal ware, & hardware
— Office machinery & data-processing eq.

Consumer goods

— Musical instruments, toys, film etc.
— Fine ceramics

— Glass and glassware

— Wood products

— Paper and paperboard products

— Printed and duplicated matter

— Plastic products

— Leather

— Leatherware (including travelware)
— Footware

— Textiles

— Apparel

Food, beverages and tobacco
— Food and beverages
— Tobacco products
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the optimization procedure contain at least some “vertical groupings”. For
a group of commodities they tend to contain the products of the preceding
stages of production rather than all the commodities at the same stage
of production. Of course, for real data one should not expect to find a
completely obvious grouping. Especially, it seems to be difficult to find
smaller categories such as fine ceramics or leatherware in the same group for
different optimization runs. Before discussing it in some detail we present
the optimized grouping:

Table 2: The Optimized Grouping

Group 1 Group 4

— Petroleum products — Quarrying products

— Iron and steel — Prod. of drawing & cold-rolling mills
— Nonferrous metals — Chemical 43 (Fertilizer)

— Precision and optical goods, clocks etc. | |— Printed and duplicated matter

— Chemical 47 (Pharmaceuticals) Group 5

— Fine ceramics — Coal

— Paper and paperboard products — Structural-steel prods. & rolling stock
— Plastic products — Ironware, sheet-metal ware, & hardware
— Leather — Chemical 41 (Inorganic)

— Food and beverages — Glass and glassware

Group 2 Group 6

— Iron, steel, and malleable cast iron — Agricultural, forestry, & fish. prod.

— Chemical 45 (Chemical fibres) — Crude oil and natural gas

— Wood products — Road vehicles (excluding farm tractors)
— Leatherware (including travelware) — Electrical products

— Footware — Chemical 42 (Organic)

— Textiles — Chemical 44 (Plastic)

— Tobacco products — Sawn timber, plywood etc.

Group 3 — Rubber products

— Steelworking Products — Apparel

— Machinery (including farm tractors)

— Office machinery & data-processing eq.

— Musical instruments, toys, film etc.

— Chemical 46 (Colouring matter etc.)

— Chemical 49 (Other)

— Wood pulp, cellulose, paper etc.

In contrast to our statement on “vertical groupings” Group 1 in our
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optimized grouping contains three commodities classified as basic materials
in the official grouping together with a set of final consumption goods. How-
ever, already in Group 2 a vertical grouping can be detected from chemical
fibres to textiles and footware. It seems reasonable to find leatherware in
the same group. Not much can be said about iron, steel, and iron products
and wood products, while tobacco products as very small commodity class
does not influence the objective function to a large extent. Hence, its place
in the final grouping should not be given much importance.

In Group 3 we find commodities related to machinery at different stages
of production together with basic materials for the printing and paperboard
industry. A strong vertical component is the one between quarrying products
and fertilizer in Group 4. The same holds true for the grouping of coal
together with structural-steel products and ironware in Group 5. In the
internal producer prices for coal in the Federal Republic of Germany are
determined more by political decisions than by market forces. Furthermore,
the separate development in prices for coal and oil after the two OPEC
oil price shocks makes it even more convincing to group coal with some
commodities of the steel and iron industry on the one side and oil together
with some chemical products on the other side in distinct groups.

The last group includes the important automobile industry together with
rubber products which enter into automotive manufacturing in an obvious
way. Related is the vertical grouping of crude oil, organic chemicals, and
plastic.

The forecast error gg for the above optimized grouping amounts to 20409.5
compared with 57678.0 for the official grouping. While there is no proof that
this result is optimal or at least nearly optimal, many attempts allow for
the conclusion that it is a good solution.

An interesting question concerns the robustness of the achieved group-
ings with regard to different data samples or base years for the weights,
and to different random starting matrices and parameter sets for the TA
implementation.

A first remark on the robustness of the real optimal grouping with regard
to changes or errors in the data can be made from a theoretical standpoint.
The optimal grouping H*, i.e. the proper grouping matrix minimizing 95, is
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an element of the discrete space #,2% and gg can be thought of as a function

(19) HxX — R,

where X denotes the space of data sets (X,Y). ¢ is uniformly continuous
in the second argument, as H is finite. Consequently, in the general case

(20) H+# H= §(H) # $(H)

and therefore ~ o

(21) d= _min _|¢(H)—¢(H)|> 0.
H,HcH,H£H

As ¢ is continuous in (X,Y) there exists a small positive € such that a
perturbation of the data by less then € in the Euclidean norm will lead to a
deviation in the values of gg for any H € H by less than §/2. Consequently,
the resulting optimal grouping will remain the same for small perturbations
or errors in the data.

Unfortunately, two aspects reduce the meaningfulness of this rather
strong result on robustness. Firstly, a heuristic optimization algorithm does
not behave in a completely deterministic manner and does not give the
global optimum with certainty. Thus, a small change in the data might lead
to a different outcome. Secondly, even if the algorithmm behaves determinis-
tically and always gives the global optimum, the order of magnitude of the
admissible perturbations in the data, i.e. €, remains unknown.

Therefore, we give some further empirical evidence on the robustness
of the results achieved by the method of optimal aggregation with regard
to a somewhat different understanding of the meaning of robustness. Here,
we are interested in knowing whether a slight change in the parameters of
the algorithm will lead to completely different outcomes with regard to the
values of the objective function gg and to the main features of the resulting
groupings.

To begin with the optimization parameters, we tried a huge bundle of dif-
ferent threshold sequences, used different numbers of iterations from 10,000
to 1,000,000 and many different initial values for the random-number gener-
ator. The general impression is a negative correlation between the number
of iterations and the achieved values for gg, a rather weak influence of differ-
ent forms for the threshold sequence—as long as the thresholds are not too

25 As the exchange of two columns of a grouping matrix does not change the resulting
grouping itself, we might assume # to be given by the set of equivalence classes of
proper grouping matrices with regard to this exchange operator.
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small—, and optimal values for gg nearly always in the order of magnitude
of 20000. The run with 10 trials leading to the optimal grouping presented
above gave a mean value of gg of 21807 with standard deviation of 999.1.

Furthermore, all these “good” grouping matrices shared some patterns
and the same tendency to “vertical grouping” as the best grouping presented
above.

6 Conclusion

In this paper we have studied a particular aggregation problem, namely that
of aggregating commodity categories into groups for the purpose of assessing
and forecasting the impact of changes in external prices on the prices in a
country’s internal markets, the country chosen being Germany. However, we
feel that it is appropriate to draw some general conclusions from the results
obtained:

1. Aggregation matters. The process of aggregation, and the mode of
aggregation chosen, can have a substantial impact on the results obtained
in econometric research.

2. Optimal aggregation is not trivial. The problem of choosing an optimal
mode of aggregation is far from trivial. Indeed, previous to the development
of optimization heuristics it was intractable, and even with these methods
it is still infeasible for very large sets and partitions.

3. Standard methods of aggregation are far from optimal. The modes
of aggregation implied by official classification systems and the groupings
provided by statistical agencies in presenting their data may be far from the
optimal classification system needed for purposes of econometric estimation
and prediction.

4. Optimization heuristics offer a way to better groupings. The reduction
in the value of the criterion function—mean-square forecast error, or aggre-
gation bias, in our formulation—by this method can be very considerable.

5. The economic meaning of “better groupings” is not yet completely
obvious. While we have detected a tendency for “vertical” groupings—
groupings which take account of input-output relationships between indus-
tries—to outperform “horizontal” groupings—which group commodities by
stage of production, certain commodity combinations which give better pre-
dictive results cannot be easily explained by intuitive reasoning.

We regard the present study as an initial exploration. We have kept
the model itself extremely simple, but certain obvious refinements could
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be introduced which might improve the results. In particular, a dynamic
modelling as discussed in appendix A could cope with time lags in the price
adjustment process. Secondly, we plan to apply our methods to different
data sets, in particular to Swedish and Dutch price-index data.

Appendix

A Extension to a Dynamic Distributed-Lag Model

A.1 Dynamic formulation

The formulation in section 3 is purely static: each domestic price is assumed
to be affected by external prices only in the contemporaneous month. How-
ever, it is well known that while the transmission of some international
price changes may be very rapid, changing world prices of raw materials
may take some time to be manifested in domestic prices of finished pro-
ducts. A distributed-lag model is therefore justified; retaining the linearity
assumption, this will be of the form

K L
(22) oy =D > m1ivii (D) + ey, Eeyy =0, Eeyjeyy = ojjv
i=1 1=0
(j = 1’2""’m)

where t = 1,2,...,n. The expectations are taken to be conditional on the
Zt—1,, and the vy are assumed to be known. The periods covered in the
sample are 1 — L,2—L,...,0,1,2,...,n, numbering T =n + L.

In our particular application, y;; is the value of the jth producer price
index (j = 1,2,...,m) in month ¢ = 1,2,...,n, where month 1 is January
1969 and month n = 316 is April 1995.26 The various price-index series
are linked together and expressed relative to the year 1991 as a base, and
multiplied by their 1991 weights. There are m = 42 of these indices; this dif-
fers from the number m = 42 used in the static application by reason of the
omission of “other mining products” (for lack of available data), the merging

26The data set used for the dynamic model in this appendix was generated based on
publications by the Statistisches Bundesamt Wiesbaden in printed form and on its CD-
ROM StatisBund. We are indebted to Ms. Knauer from the Statistisches Bundesamt
for helping us in filling gaps caused by unpublished price indices or weights.
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of categories 291 and 295 into the single category 29 (foundry products)—
again for lack of data—and the replacement of the chemicals category (40)
by its eight component subcategories.?”

The exogenous variable z;_;;, where [ = 1,2,...,L = 12 and i =
1,2,..., K = 2m, is the value of the ith import price index (i = 1,2,...,m =
42) or the jth export price index (i =42+ 74,5 = 1,2,...,42), also expressed
relative to the year 1991 as a base and multiplied by the 1991 weight, in
month ¢ — [, where t = 1,2,...,n =316 and [ = 0,1,...,L = 12. The
earliest month covered is thus month 1 — 12 = —11 which corresponds to
January 1968. Thus there are K = 2m = 84 exogenous variables. The 42
commodities and their weight s in the import, export, and producer price
indices are listed in Table 4 in Appendix C.

The (n+ L) x K and (n + L) x m raw data matrices Z and Y for this
problem may be constructed as

(23) Z = [2]t=1-1.2-1,..01,2,.n a0d Y =[ysls=1-12-1,..,0,1.2,.1 -
i=1,2,...,K i=1,2,...,m

From the (n + L) X m matrix ¥ we shall need only the bottom n rows.

We therefore define the n x m matrix Y as Y = [y4] ¢=1,2,...n - The required
i=1,2,...m

transformation of the matrix Z is considerably more complicated. From
(22) we see that the contribution of the ith exogenous variable to the jth
endogenous variable at time ¢ is given by

7i5(0)

L ..
Yij (1)

>z (1) = (240, 2t—165 -+ > 20— L) :

1=0 :
Yij (L)

*"Data for two of these chemical subcategories—categories 47 (pharmaceuticals) and 49
(other chemicals)—were unavailable for the export price index over the period January
1980 to December 1984; however, data for the combined category were available, as well
as data for SITC category 54 (medicinal and pharmaceutical products) whose weight
in the 1976-base series (12.38) differed only slightly from the weight of GP category
47 (12.90); consequently, SITC category 54 was taken as a proxy for GP category 47
over this period, and the residual figures computed by subtracting this proxy from the
aggregate series were used as a proxy for GP category 49. Another compromise made
was to use the 1970-base import price index for crude petroleum (GP 2121) over the
period January 1968 to December 1969 as a proxy for the export price index for natural
gas (GP 2122) over the same period.
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Its contribution to the jth column of Y is therefore given by

7 (0)
i (1)

21 20i Z_1i ot AL
Z9; 21 20 cr 2oL
Zni An—14 An—2i " RAn—Lji

Thus, defining the n x (L + 1) matrix Z; by

21i 20 21,

Z2i Zli 204
Z; = [zt—l,i]f

Zni RAn—14 2n—24
(24)
and the (L + 1) x m matrix I'; by

VijkL)

¥i1(0) 7i2(0) --- Yim(0)
Y1 (1) vie(1) -+ Yim(1)
Iy = [ ()] 01,k = Yi1(2) %'2.(2) 7@(2)

inl.(L) Y2 (L) 'Yim.(L)

(25)

the contribution of the ith exogenous variable to all m columns of Y is Z;1';.
Writing

(26) Z =1Zy,%,...,Zk] and T'=[I|,T5,...

we may express (22) in the form:

K
(27) Y=ZT+E=) ZI+E

i=1

Tk]

where E = [e4] is defined analogously to Y. Thus it is necessary to form
the K = 2m = 84 matrices Z; from the matrix Z. Each n x (L + 1) matrix
Z; is constructed from the ith column of the (n + L) x K matrix Z. The
first column of Z; consists of the last n elements of the ith column of Z ; the
second column of Z; consists of the next-to-last n elements of the ith column
of Z ; and finally, the last column of Z; consists of the first n elements of the

ith column of Z.
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B Fitting the lag distributions by spline func-
tions

The n x (L + 1)K = 316 x 1092 matrix Z of (24) having been constructed
from (23) as just indicated, we now need to transform it in order to fit
the distributed lags by cubic spline functions. Letting the contemporaneous
lag coeflicients 7;;(0) be estimated freely, and letting the remaining L lag
coefficients 7;;(I),! = 1,2,..., L be assumed to lie on a natural cubic spline
with N knots, denoted

(28) ].SKISK:Q,---,K:NSL,
it is known from the theory of natural cubic splines (cf. Greville, 1969) that

there exist N 42 coeflicients a;;(0), ai;(1), ¢ij (1), ¢i5(2), - . ., ¢;; (V) satisfying
the following conditions:

N
29) (D) = ai(0) + ai; (W + > cij() (I —sp)3 (1=1,2,...,L),
h=1

where d = max(d, 0), and where the coeflicients ¢;;(h) satisfy the following
two constraints:

N N
(30) Z Cij (h) =0 and Z Cij(h)h‘,h =0.
h=1 h=1

Conditions (29) and (30) may be expressed in matrix form as

i i (11 S(l—k1)d (1—@)1---(1—&1\,)1_ i i
i (1) ) a;;(0)
| [ 2iemml emml e eomt | | a)
R I e e | e
0 ] :
i 0 | 0 0 : 1 1 1 _Cij(N)_
L0 O : K1 K9 KN i

Restriction of the relations (29) to the lag coefficients +;;(I) at the knots
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I = Ky, leads to the (N 4+ 2) x (N + 2) system

[ i (K1)
Vij(K2)
Vij(K3)
(32) : =
Yij(kN-1)
Vi (KN)
0
- O -
155y 0 0 - 0 0] . i
Ly (kg — 1) 0 0 0| |2 8
1 - 3 _ 3 ... 0 0 ij
K3 (K,3 K)l) (K,3 K)Q) Cz’j(l)
P : : : cij(2)
1ey_1(kn—1 — k1) (Kn—1 — K2)3 -+ 0 0 :
Loy (kv —£1)° (kv —K2)® - (kv —KNn-1)* 0 cij(N —1)
00 1 1 1 LS
_OO K1 K9 KN_1 KN | ~ ” -

Defining the L x 2 and L x L matrices P and ) by
(33) P=[py) =" Niz12,.r and Q=[guw]=[(0—-1)3] =12, 1,

r=1,2

we may write (31) as

1 1
Vi || P QF aij
(34) l 0 ] l 0o PJ cij |-
Likewise, defining the N x L matrix J by
(35) J = [0y ) n=1,2,.,N
1=1,2,...,.L

where 4, ; is the Kronecker delta, the IV x 1 vector whose components are the
values of the spline function at the knots, 8;;(h) = vi;(kn), h =1,2,..., N,
may be denoted

(36) L Iy
Corresponding to (32) we then have

L JP JQJ ai; ai;

17 — 17 — %7
(37) l 0 ] l 0o PJ cj | 4 cij |’
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which defines the (N + 2) x (N + 2) matrix A.

Now it is implicit that v;;(I) = 0 for [ > L, so to ensure that the function
75 (1) is continuous and differentiable for [ > 1 we shall require that ~;;({)
and its first derivative vanish at [ = L. Thus we impose the end-point
constraints

N
(38) Yi5(L) = ai(0) +ag(DL+ Y ci(h)(L — kp)3 =0
h=1

N
(39) v (L) = ag(1) +3 cii(R)(L — k)5 =0.
h=1

Assuming k1 = 1 and kx = L in (28), these are realized by setting 5;;(N) =
v (kn) = 7i;(L) = 0, and replacing 7;;(kny—1) by 0 in (32) and, con-
formably, replacing row N — 1 of the matrix A by the row

s
pag; + gcij = (p, q) l C” ]
ij
where
p=(0,1) and ¢=3((L-1)% (L= ra)% ..., (L —rn1)%0).

We denote this modified A matrix by A.
In place of (37) we now have

1 i Gis _ L
o [R]-ala] = [ ]e8]
ij Cij

assuming A to be invertible.2® Substituting the second equation of (40) in
(34), we obtain the relation between the L restricted lag coeflicients and the
N — 2 values of these lag coefficients at the knots:

(41) v =®'B; where &' =[P|QJA™ [ 11\6_2 ] .
Defining the (L +1) x (N — 1) matrix

10
(42) ®— l Lo ] ’

28That A is invertible follows from the uniqueness theorem of natural splines (Greville,
1969). A similar argument could be used in the case of A, but is unnecessary since in
the present case invertibility is verified numerically.
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as well as the vectors

7i5(0) Bij (0)
7 i (1) 0 Bii (1)
Yij = [ ] = | 7(2) , and G;; = [ ] = Bii (2) ,
1 . 1 .
Vi : ij :
Yij (L) Bij(N — 2)
(43)
we have
(44) i =98 (=12,...,K;j=12,...,m).
Since +y;; is the jth column of the matrix I'; of (25), defining the (N —1) xm
matrix B; as the matrix consisting of the m columns 3;; for j = 1,2,...,m,
(44) implies
(45) I;=%B; (i=12,...,K).
Defining the (N — 1)K x m matrix B by
B, Bi1(0) Bi2(0) o+ Bim(0)
B, Bir (1) Bia(1) o Bim(1)
B=| . where B; = | Bi1(2) Bi2(2) o+ Bim(2) ,
By : : . :
Bin(N —2) Bip(N—2) --- Bim(N —2)
(46)
it follows from this and (25) that
(47) I'=(Ix ® ®)B.
Thus, (27) becomes
K K
Y = ) Z®B,+E=) X;B;+E
i=1 i=1
(48) = Z(Igx®P)B+E=XB+E,
where
(49) X;=2® and X =[X1,Xs,...,Xk] = Z(Ix ® ®).
We may denote
150 Tiir v T1,N-2
20 T21 - T2 N-2 .
Xi = [zoinlt=1,2,.n. = ) .. ) (i=1,2,...,K).
h=0,1,..,.N—2 : : . :
Tni0 Tpit - Tnpi,N-2

(50)
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The matrix Z of the original system (27) is of order n x (L + 1)K, while
the matrix X of the transformed system (48) is of order n x (N — 1)K,
representing a gain in degrees of freedom of (L — N + 2)K. Denoting k =
(N — 1)K, (48) has the general form of our multivariate model.

In our particular application in which L = 12, N = 4, and the four knots
are placed at k1 = 1, k9 = 4, k3 = 8, and k4 = 12, the first equation of (40)
becomes

11 0 0 0 077 ay0)] T ()]
1 4 33 0 0 0 aij(1) ¥i;(4)
(51) 0 1 3-112 3.8 3.-42 0 (1) | _ 0
1 12 113 83 43 0 cij (2) 0
0 0 1 1 11 cij(3) 0
L0 0 1 4 8 12 [lei@4] [ 0 |

The inverse of the matrix in (51), which we have denoted A, is

[ 11328 —3696 —1728 432 165888 —13824 ]
—3264 3696 1728 —432 —165888 13824
1 64 —112 —-192 48 18432 —1536

8064 | —120 231 528 —111 —54720 4560

64 —154 -—-528 90 82944 —6912

-8 35 192 —-27 —38592 3888 |

The relationship (41) then becomes:

i (1) 110000

i (2) 1 21000

i3 (3) 1 3 22000

¥ij (4) 1 4 330 0 0| 11328 —3696]

i (5) 1 5 431 0 0]|—3264 3696

v;6) | 1 |1 6 53230 0 64 —112||7;5(1)
v;(7) |~ 8064| 1 7 63330 0| —120 231 |v;(4)
7i;(8) 1 8 72430 0 64 —154

i3 (9) 1 9 851 0|l -8 35]

i3 (10) 110 9262230

i (11) 111103 7 3% 0

i (12) | | 112 11° 8% 43 0 |
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8064 0
4864 3584
2048 6496

0 8064
—1016 7847
1 | —1216 6328 [%ju)]
8064 | —936 4221 :

—512 2240

—216 945
—64 280
-8 35

0 0

The 12 x 2 matrix in (53) is ®', and B' is the 2 x 1 vector of lag coefficients
Bij (1) = vi5(1) = vi5(k1) and B;;(2) = 7ij(4) = 7ij(s2) at knots 1 and 2. We
define the 1 x 3 vector

Tti = (Tti0, Tei1, Tri2) = (Bti, Ze—145 Z—2,0s - - - » 28—12,i) D-

Our new variables are, from (53),

L0 = 2tis

Tl = 2p—1,; +0.6031742_9; + 0.2539682;_3; — 0.1259922;_5 ;
—0.1507942;_¢; — 0.1160712;_7; — 0.0634922;_g; — 0.0267862;_9 ;

(54) —0.0079372;_10,; — 0.0009922;_114;

Ttio = 2Zp—a; +0.4444442_ 9 ; + 0.8055562;_3; + 0.9730902;_5 ;
+0.7847222;_¢; + 0.5234382;_7,; + 0.2777782;_g; + 0.1171882;_9 ;
+0.0347222;_19,; + 0.0043402¢ 11,5

B.1 The aggregation process

Aggregation according to a system of industrial classification is a process
of partitioning the industries into groups and summing relevant entries in
each group. In the case of the matrix Y of observations on the endogenous
variables, this is most simply effected by postmultiplying the n xm matrix Y
by a (proper) grouping matriz H of order m x m* to obtain the n xm* matrix
Y* = Y H. The same applies, of course, to the T x m raw data matrix Y of
(23). In the case of the raw data matrix Z of observations on the K = 2m
exogenous variables, it is natural to classify the commodities appearing in
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the import and export price indices in the same way as the corresponding
domestic variables are classified. The corresponding grouping matrix is then

y H
(55) Gz[o SI]:IQ@)H.

However, given the rearrangement of Z that has led to the matrix Z , this
grouping must be applied to the matrices Z;. Thus our aggregated matrix
takes the form of the n x K*(L + 1) = 316 x 156 matrix

Judrn+1 Giodr41 - GirIr41

911141 Go2lr41 -+ GorIr41 o
Z* =2y, Zy, ..., Zk] : — : =Z(GRIL1).

gx L1 kol - - GrrIn41
(56)
But now we will wish to apply the same spline transformation to the dis-
tributed lags of the aggregated model as we did to the disaggregated model.
Defining from (56)

K
Zr = Zgijzi (j=1,2,...,K%),
i=1

the analogue of (49) is X7 = Z7®, or

®0---0
0®---0
X=X, X5,...., X =121, 25, ..., Z%-] .. L= Z* (Ig~@®).
00---®
(57)
We may now put all these results together as follows:
X* = Z*(Ig-® ) from (57)
= Z(G®I1)Ixk-®®)  from (56)
(58) = Z(G ® ®) by Kronecker multiplication
= Z(Ix ®®)(GQI5) by Kronecker multiplication
= X(G®Is) from (49).

We shall denote the £ x k* = 3K x 3K* = 252 x 36 matrix

(59) G=GoL=LHQIL.
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Defining the n x m* = 316 x 6 and n x k* = 316 x 36 matrices Y* and X*
by
Y*=YH and X*=XG,

the (false) aggregative model is
Y* = X*B* + E*.

The model (22) having been translated into the multivariate model (48),
the symbols Y, X,V, H, and G have exactly the same meanings as in sec-
tion 3, hence the objective function ¢ of (13) is computed in straightforward
fashion.

B.2 Numerical results

The dynamic distributed-lag model described in this appendix increases the
number of explanatory variables by the factor three. As the calculation of
the objective function ¢ requires some matrix inversion, computing time
increases by a factor of about 27. Therefore, we are only able to present
some preliminary results for the dynamic setting based on a limited number
of iterations for the TA algorithm.

As in section 5, in a first step we calculated the value of ¢ for the official
grouping of the 42 categories into only six groups as given by the publications
of the Statistisches Bundesamt. The official grouping is the same as the one
presented in section 5 and results in a value of ¢ of 898.1. The best grouping
achieved so far exhibits a mean-square forecast error as measured by ¢ of
solely 270.4. The optimized grouping is given in the following table:

Although the complexity of the problem does not allow for finding the
global optimum with probability one, some additional runs of the algorithm
for different parameter constellations might improve both the result and our
confidence in it.
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Table 3: The Optimized Grouping for the Dynamic Model

Group 1

— Structural-steel prod. & rolling stock
— Chemical 45 (Chemical fibres)

— Chemical 47 (Pharmaceuticals)

— Glass and glassware

— Leatherware (including travelware)

— Textiles

Group 2

— Coal

— Crude oil and natural gas

— Quarrying products

— Electrical products

— Chemical 42 (Organic)

— Paper and paperboard products
— Plastic products

— Leather

— Tobacco products

Group 4

— Petroleum products

— Nonferrous metals

— Iron, steel, and malleable cast iron

— Prods. of drawing & cold-rolling mills
— Steelworking Products

— Ironware, sheet-metal ware, & hardware
— Chemical 44 (Plastic)

— Office machinery & data-processing eq.
— Printed and duplicated matter

— Rubber products

— Footware

— Food and beverages

Group 3

— Chemical 46 (Colouring matter etc.)
— Fine ceramics

— Wood products

— Apparel

Group 5

— Machinery (including farm tractors)
— Musical instruments, toys, film etc.
— Chemical 41 (Inorganic)

— Chemical 49 (Other)

— Sawn timber, plywood etc.

Group 6

— Agricultural, forestry, & fish. prod.

— Iron and steel

— Road vehicles (excluding farm tractors)
— Precision and optical goods, clocks etc.
— Chemical 43 (Fertilizer)

— Wood pulp, cellulose, paper etc.
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C Commodity Groups and Their Weights

Table 4: Weights per thousand for German price indices 1991=100

Ttem | Category Code [ Imports | Exports | Prod.
1| Agricultural, forestry & fish. prod. 0000 56.07 12.10[152.48
[Electricity, gas, and water] 1000 0.00 0.00| 93.08
[Mining products] 2100| 63.93 5.93| 54.45
2 | Coal & lignite 2110 3.06 2.74| 15.20
3 | Crude petroleum & natural gas 2120| 53.89 10.69 | *38.58
Crude petroleum)] 2121| *37.55 0.00| 0.25
Natural gas] 2122 16.34 10.69| 38.33
[Other mining products]
(210 — 211 — 212) -| 16.98 13.19| 10.67
Iron ore] 2130 3.99 0.00 -
Nonferrous metal ore] 2140 2.24| 10.08 -
Potash salt] 2150 0.00 11.68| 0.37
Rock & pit salt] 2160| 10.13| 10.26| 0.22
Fluorspar, heavy spar, graphite, etc.] | 2170 10.57 10.08 -
Peat] 2180| 10.05 10.40 -
4 | Petroleum products 2200 28.21 5.94| 34.14
[Nuclear fuels] 2400 1.53 2.35| 0.00
5 | Quarrying products 2500 9.50 8.89| 25.04
6 |Iron & steel 2700 28.78 34.42| 20.97
7 | Nonferrous metals 2800 31.06 19.86| 11.82
8 | Foundry products 2900 2.92 4.56| 8.57
[Iron, steel & malleable cast-iron prod.] | 2910 2.50 4.04| 5.22
[Nonferrous-metal foundry products] 2950 10.42 10.52| 3.35
[Drawing, cold-rolling, & steelworking
products] 3000 9.77| 14.18| 20.45
9 | Drawing & cold-rolling products 3010 4.01 5.10| 5.88
10 | Steelworking products 3020 5.76 9.08| 14.57
11 | Structural-steel products & rolling stock | 3100 6.28 12.37| 21.50
12 | Machinery 3200 71.19| 161.81| 87.31
13 | Road vehicles (excl. farm tractors) 3300| 116.96| 176.42| 95.10
[Ships & boats] 3400 0.00 0.00| 0.13
[Aircraft] 3500 0.00 0.00| 0.00
14 | Electrical products 3600 107.98| 124.72| 90.74
15 | Precision & optical goods, clocks &
watches 3700 19.01 21.22| 9.77
16 |Ironware, sheet-metal ware, & hardware | 3800 23.17 29.87| 35.86

(Continued on next page)
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Table 4 (continued): Weights per thousand for German price indices

1991=100
Ttem | Category Code | Imports | Exports | Prod.
17 | Musical instruments, sporting goods, etc. | 3900 11.73 8.19| 461
[Chemicals] 4000 93.50 | 135.24| 70.18
18 | Inorganic materials & chemicals 4100 5.43 8.39| 4.66
19 | Organic materials & chemicals 4200 25.08 31.06 | 10.91
20 | Fertilizers & insecticides 4300 3.97 4.19| 1.68
21 | Plastic & artificial rubber 4400 20.13 25.58 | 12.08
22 | Chemical fibers 4500 2.20 466 2.24
23 | Dyes & paints 4600 4.83 13.93| 7.79
24 | Pharmaceuticals 4700 11.72 17.75| 13.10
25 | Other chemical products 4900 20.14 29.68 | 17.72
26 | Office machinery & data-processing
equipment 5000 41.84 22.63| 9.52
27 | Fine ceramics 5100 4.42 3.34| 254
28 | Glass 5200 6.57 6.81| 6.71
29 | Sawn timber, plywood, other
worked wood 5300 8.06 3.29| 6.99
30 | Wood products 5400 14.43 10.26 | 25.84
31 | Wood pulp, cellulose, paper &
paperboard 5500 22.97 11.49| 7.86
32 | Paper products 5600 6.13 9.60| 16.59
33 | Printed & duplicated matter 5700 4.58 9.19| 23.82
34 | Plastic products 5800 21.13 28.20 | 34.68
35 | Rubber products 5900 10.39 9.71| 8.22
36 | Leather 6100 2.23 181 0.73
[Leatherware & footware] 6200 16.25 4.33| 3.49
37 | Leatherware (incl. travelware) 6220 3.77 1.28| 1.13
38 | Footware 6250 12.48 3.05| 2.36
39 | Textiles 6300 53.64| 36.93| 20.09
40 | Apparel 6400 43.90 15.83 | 16.14
41 | Food & beverages 6800 61.06 45.41{113.63
42 | Tobacco products 6900 0.81 3.10| 17.43
[Prefabricated housing] 7000 0.00 0.00| 2.00

Legend: Square brackets indicate items omitted from the data set. An asterisk (*) in
front of a weight indicates data computed by aggregation. A dagger (}) indicates that
published data are not available. A double dagger (1) indicates a weight computed from
1991 data. The commodity codes used are those of the GP (Giiterverzeichnis fiir die
Produktionsstatistik).
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