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Abstract

We analyze the formation of partnerships as a sequential choice-of-sizes game with moral
hazard within coalitions; once formed, partnerships compete a la Cournot in the
marketplace. We show that when moral hazard within coalitions is very severe, no
partnership will form. However, when moral hazard is not too severe the coalition structure
will be either similar or more concentrated than without moral hazard. We also show that,
while without moral hazard too many coalitions are formed in equilibrium as compared to
the efficient outcome, moral hazard may be responsible for an inefficiency of opposite sign.
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1.- Introduction

Game theory has provided a framework to analyze market structure determination; the

incentives of firms to merge or to form associations can be usefully analyzed in games of

endogenous coalition formation with spillovers. In this literature, coalition formation is

analyzed as a two-stage game. In the first stage, players form groups and this process of

team formation is formalized as a non-cooperative game (either simultaneous or

sequential).1 Once the groups are formed, the members of each group are committed to

maximize a joint objective function in the second stage. This family of games defines two

levels of interaction among the players: first, within each coalition and, second, among the

coalitions. While the second level of interaction is formalized in a non-cooperative way, the

first one assumes complete cooperation among the coalition members.

Cooperation within a coalition can emerge if the coalition members have mechanisms that

allow them to commit to their behavior or all the relevant information is verifiable and

contracts are complete. However, one can imagine situations where full cooperation among

non-cooperative players is not possible. In other words, the previous approach ignores that

in some circumstances players in a coalition may retain some decision power over the

strategic variables in the second stage, and they may not share exactly the same interests.

The problem of opportunistic behavior within coalitions can arise in games considering the

determination of market concentration and size of partnerships, when partners can free-ride

on their colleagues. It can also be present in situations like the formation of custom unions

or international tax agreements, where countries agree to form a coalition but keep some

room to take decisions departing from the coalition global objective.

                                               

1 Different rules for coalition formation have been used in the literature. Bloch (1995, 1996), Ray
and Vohra (1999) and Montero (1999) examine an infinite-horizon game where coalitions form when
all potential members agree. The first papers assume a fixed rule of order; in the latter, the player
who rejects an offer does not automatically become the next proposer. Ray and Vohra (1997)
consider a model where deviations can only serve to make the existing coalition structure finer. Yi
and Shin (1995) study a game in which non-members can join a coalition without the permission of
the existing members.
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Within a coalition, a problem of moral hazard arises when partners decide individually the

second stage strategic variables.2 As Holmström (1982) proved, moral hazard in teams

leads to inefficiencies for any (balance budget) sharing rule since team members do not

receive the total revenue of their effort.

The aim of this paper is to analyze the equilibrium coalition structures and the efficiency of

the equilibrium outcome in a model with moral hazard within coalitions, under the

assumption that productive coalitions compete à  la Cournot and use an egalitarian benefit-

sharing rule.3 In this sense, a coalition is a set of players who agree to share (equally) the

output but behave throughout the relationship in a non-cooperative way. To our

knowledge, this is the first paper that takes into account this behavior. To highlight the

market competition and moral hazard effects we shall ignore any team economies; adding

team economies would partly obscure the moral hazard problem: big coalitions have more

severe incentive problems but (with team economies) they would be more efficient.4

We focus on the interaction between moral hazard within the partnership, product market

competition, and the emergence of different coalition structures. Our concern is the

determination of the number of partnerships active in the market and their size, taking into

account the demand and costs conditions. In the absence of moral hazard, two forces affect

the final market structure. On the one hand, decreasing the number of firms implies benefits

related to a lower degree of competition in the market, but, on the other hand, a player may

increase her profits by leaving a big coalition and setting up a firm by herself. Therefore, the

process of partnership formation may exhibit inefficiencies (from the industry point of view)

                                               

2
 See, for example, Macho-Stadler and Pérez-Castrillo (1997) for more details on incentives and

contract design under moral hazard.

3
 In this aspect, we follow Farrell and Scotchmer (1988) who define a partnership as a coalition

that divides its output equally.

4
 Bloch (1995) considers the case where firms form associations in order to decrease their costs.

This aspect is also taken into account in the existing theory of partnerships, where partners get
together to exploit economies of scale (see, for example, Farrell and Scotchmer, 1988; and
Sherstyuk, 1998). However, in this partnership literature there is no market competition, while in our
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due to a free-riding problem among coalitions.  Hence, too many firms are formed in

equilibrium (this is a well known result; see Salant, Switcher and Reynolds, 1984, Bloch,

1996, and Yi, 1997, among others).

The presence of moral hazard within coalitions adds a new effect to the previous ones:

building up a large coalition involves efficiency losses as the incentive problems are more

severe in larger partnerships. In the extreme case of a very moral hazard problem, we show

that the equilibrium market structure is very fragmented, with all players setting up their

own firm. However, if the moral hazard is not so severe, not only we will not find a very

fragmented industry, but the number of coalitions will be lower or equal than the number

that emerges without moral hazard. For intermediate levels of moral hazard, the number of

partnerships is strictly lower than without moral hazard. The reason behind this result is that

moral hazard makes it more difficult to free ride on other players, precisely because under

moral hazard other players are less willing to form large coalitions.

Concerning the efficiency of the equilibrium coalition formation, without moral hazard the

grand coalition is efficient (it maximizes the industry profits) but it is not an equilibrium

structure. In this paper we show that moral hazard may be responsible for an inefficiency of

opposite sign. For some values of the parameters, too few partnerships are formed in

equilibrium compared to the efficient outcome. Note that this effect is partially due to the

fact that moral hazard also affects the efficiency of the grand coalition. When moral hazard

is high enough, other market structures may be more efficient.

The paper is organized as follows. Section 2 describes the sequential model of partnership

formation, which follows Bloch (1996)’s sequential games of coalition formation, and

derives the utility function of each partner as a function of market structure. In Section 3,

we characterize the equilibrium outcome. Section 4 is devoted to a discussion on the

robustness of our analysis. Section 5 deals with the efficiency of the equilibrium coalition

configuration. Section 6 concludes.

2.- The model

                                                                                                                                             

approach partnerships form to get a higher market concentration, and thus higher prices and profits,
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We study the interaction among (ex-ante identical) partners as a game in two stages. In the

first stage, partners group into firms through a sequential process and, in the second stage

of the game, firms compete à  la Cournot with a homogeneous product. First, we describe

the process of constitution of partnerships. Then, we analyze the market competition stage

where the moral hazard problem inside firms is present. We assume that gross profits are

shared equally among the partners but they decide individually how much effort to exert;

this effort is not verifiable and cannot be contracted upon. The implication is that

partnerships competing in the market will not necessarily be profit maximizing firms. In the

last part of this section we derive the payoff function for each partner as a function of

market structure.

2.1.- The partnership formation game

The total number of partnerships competing in the market is determined endogenously.

There is a fixed number of ex-ante identical partners, n, and they have to decide, before

market competition, how many partnerships they will set up. We follow Bloch (1996)'s

approach and assume partnerships are formed sequentially.

Bloch (1996) and Ray and Vohra (1999) analyze an infinite-horizon sequential game, that

we will denote by Γ, in which a coalition forms if and only if all potential members agree to

form the coalition. There is a rule of order ρ (an ordering of the players) on the set of

partners, N, that determines the order of moves in the sequential game. Partner 1, according

to the rule of order, makes an offer to other agents to form a coalition of partners T⊂N, to

which she belongs. Each prospective member in T responds to the offer in the order

determined by ρ. If all members in T accept the offer of partner 1, the partnership is formed

and partners in T leave the game. Then, the first partner in N\T, according to the rule of

order, starts the game (with N\T players) by making a partnership proposal, and the game

continues. If some member in T rejects the offer made by partner 1, he makes a counteroffer

and proposes the formation of a partnership S⊂N, to which he belongs. The game continues

until all players have left the game. The outcome of this game is a market structure, that is,

a partition of the set of partners, P = {T1, T2, ..., Tr}, representing all the firms formed.

                                                                                                                                             

and they form despite the fact that there is a moral hazard problem.
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Bloch shows that, when players are ex-ante symmetric, the partitions generated by the

infinite-horizon sequential game (i.e., the stationary symmetric subgame perfect equilibrium

coalition structures) coincide with the partitions generated by the following choice-of-sizes

game.5 The first partner, according to the rule of order, announces an integer s1, interpreted

as the size of the firm, and the first s1 players form a coalition. Then, partner s1 + 1

announces an integer s2, and the next s2 players form a coalition, and the game proceeds

until s1 + s2  + s3  + ...= n. We shall solve the choice-of-sizes game, to determine the

equilibrium market structures brought about by partners' behavior under moral hazard.

2.2.- The Moral Hazard Problem

Each firm A is an association of nA ex-ante identical partners who own and manage the firm.

Partners produce a homogeneous output and for simplicity we assume the only production

costs come from the effort exerted to produce. Output is normalized to be equal to the

productive effort so that the production function in firm A is:

qA=    
eiAΣ

i= 1

n A

,                                                           (1)

where qA  is output of firm A and eiA is effort exerted by partner i in firm A.

Assume that there are r associations of partners competing in the market: 1, 2, ..., r. Gross

profits (ignoring the costs of partners' effort) for each firm A, A ∈ {1, 2,..., r}, are

   ΠA( ei1Σ
i = 1

n 1

, ei2Σ
i = 1

n 2

,..., eirΣ
i = 1

n r

) . Effort within the firm is not verifiable so that the output (or the

revenue) due to each partner’s effort cannot be identified. Partners are assumed to share the

gross profits of the firm equally.6 The level of gross profits is verifiable and thus partners

can commit to an equal sharing rule in the first stage.

                                               

5
 A property of non-decreasing equilibrium payoffs is needed for this result to hold; we discuss

this property after presenting the results. For more details on the infinite-horizon game and the proof
of this result see Bloch (1996).

6 When partners are ex-ante identical, the equal-sharing rule is a natural division of payoffs. Ray
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To compute the net profits of a firm we need to define the cost of a partner's effort, which

is assumed to be independent of the firm size, C(ei). Thus, net profits for firm A are:

                      ΠA
( e

i1Σ
i = 1

n 1

, e
i2Σ

i = 1

n 2

,..., e
irΣ

i = 1

n r

) – C (e
i
)Σ

i = 1

n A

.

The interaction among partners in the second stage is modeled as a non-cooperative game

in which the level of effort eiA is decided by each partner i and is non-verifiable. Thus, each

partner i in firm A decides her level of effort to maximize her own payoff function:

                
   1

n A
Π

A
( ei1Σ

i = 1

n 1

, ei2Σ
i = 1

n 2

,..., eirΣ
i = 1

n r

) – C ( eiA) .

Due to the moral hazard problem, this behavior implies that firms do not maximize profits.

2.3.- The Payoff Function

We shall assume that, after the process of constitution of partnerships, firms compete in the

market for a homogeneous product with linear market demand,  p = a  −  Q, where Q is

aggregate output. The production stage is formalized as Cournot competition. Gross profits

for firm A are:

   
ΠA ei1 , ... , eirΣ

i= 1

n r

Σ
i= 1

n 1

= a – e i1 + ... + e irΣ
i= 1

nr

Σ
i= 1

n 1

eiAΣ
i= 1

n A

The cost of exerting effort for partner i is: C(ei) = c ei, with c < a. The situation where there

is no moral hazard within the firm will be referred to as the benchmark case.

2.3.1.- The benchmark case. Assume that there is no moral hazard on partners' decisions.

Partners' effort is verifiable, so that the cooperative level can be implemented within a

                                                                                                                                             

and Vohra (1999), in an infinite-horizon model, make the sharing rule endogenous and show that
equal sharing is an equilibrium phenomenon. Note however that in their framework the sharing rule
will influence the decision of whether to enter or not a coalition, while in our model the sharing rule
will also affect the incentives of the members of a coalition. Limited liability arguments or
commitment problems can lead to equal sharing rules in our framework.
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coalition. Taking into account that partners are symmetric, the best response to the rival

firms’ effort can be expressed as:

A

Aj
jj

A n

cnea

e
2

∑
≠

−−
= ,

for A∈{1, ..., r}, where ej denotes the (symmetric) effort level by each partner in firm j.

Solving the system, from the optimal effort level, we have that:

                                             q n e
a c

rA A A
* *= =

−
+ 1

.  (2)

Note that q*A is independent of the size of the partnership nA, and the number of partners n.

It only depends on the number of firms r. The reason is that for each firm there is an optimal

output level as a function of market demand and cost conditions, and each firm just divides

the burden of producing the optimal output equally among its members. The payoff function

for each partner of firm A in the benchmark case is:

                                          
   

π
i(r, n A) =

a – c
2

(r + 1) 2n A

.

2.3.2.- The Payoff Function under Moral Hazard. Due to the moral hazard problem, firms

do not maximize profits. Rather, each partner decides how much effort she will exert to

maximize her own objective function. Each partner in firm A will maximize her objective

function on the effort level eiA. From the first-order conditions, we obtain:

2

2∑∑
≠≠

−−−
= ik

kA
Aj

jjA

iA

enecna

e

for A∈{1, ..., r}, i∈A, and where ej denotes the (symmetric) effort level by each partner in

firm j for j ≠ A. Efforts are strategic substitutes: if other players (form inside or outside)

increased their effort level, the best response for a member of firm A would be to decrease

hers. Solving the system formed by the first order conditions of the n partners, we obtain

the optimal effort for each partner in firm A, and the optimal output for firm A:
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[ ]

q n e
a c n r n

rA A A

A= =
+ − +

+
( )1

1
. (3)

Given the assumption of linear demand and cost, the effort level qA does not depend on the

distribution of sizes of all the coalitions in the market. It depends only on nA, n, and r. The

optimal effort for a partner is decreasing in nA, since nA is an element of the moral hazard

problem, and increasing in n since this variable is a measure of the aggregated output (the

relative size) of the other coalitions. As to cost c, the influence is positive (or negative) if

the coalition is small (big) as compared to the others. Note that, in contrast with the

benchmark, the output of a firm depends on its size.

The distortion introduced by the moral hazard problem can be seen comparing expression

(3) to the effort in the benchmark case, given by expression (2):

 e
A
* – e

A
> 0 ⇔ n

A
> n + 1

r + 1

Since   n + 1
r + 1 is approximately the average size of coalitions, for coalitions of size higher than

the average, moral hazard causes a distortion in the usual direction, that is, it decreases

output. However, for coalitions of size lower than the average the “best response effect” (or

strategic effect) dominates the partners’ incentives to take an opportunistic decision on their

effort. For these relatively small coalitions, the fact that rivals have a moral hazard problem

more serious than theirs induces them to expand output. With market competition, what is

important is how serious is a firm's moral hazard problem as compared to the average moral

hazard problem of the rivals, since this comparison determines the relationship between the

own cost of production and the rivals' cost of production.

We can also compare total output in the benchmark case and under moral hazard, for a

given coalitional structure. From the expressions:

1
*

+
−

=∑ r

rcra
ne j

j
j ,        and        

1+
−

=∑ r

cnra
ne j

j
j ,

it is immediate to check the intuitive result that total output is lower under moral hazard.

Moral hazard reduces production, even if the smaller coalitions produce more output than in
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the benchmark case. The strategic effect does not compensate the global distortion

associated to moral hazard. From the previous expressions, it can also be checked that this

distortion associated to moral hazard within coalitions is decreasing in r and increasing in n

and c. Note also that total output in the benchmark only depends on the number of

coalitions while with moral hazard it also depends on the total number of players which

summarizes (in this linear model) the inefficiency of the market due to the size of the

coalitions.

Substituting the equilibrium efforts, the payoff for a partner can be expressed as:7

   πi (r,n A) = 1
n A

a + cn
r + 1

– c a + cn
r + 1

– cn A

 .                                      (4)

Given the parameters of the model (n, a, c), payoffs depend on nA and r. This payoff

function for each of the n players, derived from competition in the product market, gives the

payoff to each partner as a function of the market structure, and it will determine the

outcome of the partnerships’ formation game.

3.- On the equilibria of the sequential partnership formation

game

We denote ∆(n, a, c) the sequential game of size selection with n players, demand

parameter a, unit cost c, and payoffs given by (4). We remember the description of the

game of choice-of-sizes. Player 1 starts the game and chooses an integer s1 in the set {1, 2,

…, n}. Player s1 + 1 then moves and chooses an integer s2 in the set {1, 2, …, n − s1}, and

so on. The game continues until the sequence of integers (s1, s2, .., sr) satisfies si
i

r

=
∑

1

 = n.

Any subgame of ∆(n, a, c) such that, when reached, h coalitions have been formed already,

h ≤  n − 1, and the number of players who have not yet been assigned to any partnership is

                                               

7 If demand and cost were non-linear, profits (with or without moral hazard) would depend also on
the sizes of other coalitions.
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x, x ≤  n − h, will be denoted by the pair (h, x).8 In subgame (h, x), the player who makes

the first announcement is player (n − x+1) and chooses sh+1 in the set {1, 2, …, x}.

A first result states the intuitive outcome that if moral hazard is very severe, which in our

model can be interpreted as c big as compared to a, then no player will join a coalition in a

subgame perfect equilibrium (SPE).That is, partnerships are not sustainable in equilibrium.

Proposition 1.- If the degree of moral hazard is high enough, 
a

c

n

n
<

− 1
, the unique SPE

partition is all singletons.

Proof.- See Appendix.

Next two lemmas state technical results that will help us to analyze the outcome of the

choice-of-sizes game.

Lemma 1.- Consider that player (n − x + 1), deciding in subgame (h, x), has to choose size

s, under the assumption that the remaining (x − s) players will announce size 1 when it is

their turn. Then, her optimal choice is either s = 1, or s = x. Formally,    max 1 ≤ s ≤ x  πn-

x+1(h+1+x−s, s) has always a corner solution.

Proof: See Appendix.

In order to identify which is the corner solution of the maximization problem defined in

Lemma 1, define the function g(h, x) as:

g h x h x h xn x n x( , ) ( , ) ( , )≡ + − +− + − +π π1 11 1 ,

                                               

8  In our model, at any time in the game h and x are the only relevant variables. More precisely,
(h, x) is a set of subgames with the same h, the same x and the same player (n−x+1) deciding
(although other aspects of the history may be different). All these subgames are equivalent as far as
the decisions of player (n−x+1) and posterior players (according to the rule of order ρ) are
concerned.
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where πn-x+1 is the function defined in (4). When g(h, x) is positive, the x players who have

not entered any partnership yet are better off joining a partnership than they are as

singletons. When g(h, x) is negative, however, they would rather form x firms than a single

firm.

Lemma 2.- (i)    For any subgame (h, x) of ∆(n, a, c):

sign[   g(h ,x) ] = sign[(a+cn) (x  −  (h+1)2)  −  c (h+2) (x2  −  (h+1)2)].

(ii) A necessary condition for g(h, x) ≥  0 is that:

                               x  −  (h+1)2 > 0.

(iii) In a subgame (h, x) such that x ≤ (h+1)2, it is the case that g(h’, x’) < 0 for any

subgame (h’, x’) of (h, x).

Proof:  See Appendix.

Lemma 2 (i) rewrites the condition on the sign of g(h, x) in terms of the parameters of the

game. Part (ii) gives a necessary condition for the sign of this function to be positive, i.e.

player (n − x+1) prefers forming a coalition with all the remaining players than a situation in

which all of them remain as singletons. Part (iii) says that if x ≤ (h+1)2, then it is better for

player (n − x+1) in subgame (h, x), and also for all the remaining players in the game,

staying as singletons (s = 1) than joining all the subsequent players.

We analyze now the outcome of the game ∆(n, a, c). More precisely, we are going to

provide necessary conditions for coalition structures to be sustainable in a SPE of the game.

For convenience, we shall consider that the player who is indifferent between forming a

coalition with the remaining players or breaking apart and induce all the remaining players

to form singletons, will choose to form the coalition. Next proposition starts the analysis by

providing simple necessary conditions for the two extreme coalition structures, monopoly

and all singletons, to emerge.

Proposition 2.- For n > 3:
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(i) A necessary condition for monopoly to be an equilibrium coalition configuration is g(0,

n) ≥  0, i.e.,  a
c ≥  n + 2.

(ii) A necessary condition for all singletons to be an equilibrium coalition configuration is

g(0, n) < 0, i.e.,  a
c < n + 2.

Proof.- (i) A monopoly forms only if s1 = n. We claim that this cannot be an equilibrium if

g(0, n) < 0, since s’1 = 1 is a better strategy for player 1. Indeed, after s’1 = 1, the worse

that can happen to player 1 is that the other players also choose si = 1 and this is preferred

by 1 to monopoly because g(0, n) < 0. Also, using Lemma 2 (i), it is easy to check that  a
c <

n + 2 is equivalent to g(0, n) < 0.

(ii)   a
c ≥  n + 2 is equivalent to g(0, n) ≥  0. In this case, player 1 would rather form a

monopoly by choosing s1 = n than playing a strategy that will lead to an n-poly.    Q.E.D.

In the following proposition we provide necessary conditions for other coalition structures

to emerge. The logic goes as follows. For an r-poly to an equilibrium structure, it is

necessary that at least in one continuation of the game, once (r−1) coalitions have been

formed, the responsible player join the others. The proposition discloses this argument in

terms of the parameters of the model.

Proposition 3.- A necessary condition for an r-poly to be an equilibrium coalition structure,

with n > r ≥  2, is:

 a
c ≥  

( )( )( )

( )

r n n r

n r r

+ + − +
+ − −

1 1 2 1

1 2  − n,            when n < r (1 + r + r 2 1− ) − 1, or

 a
c ≥  2 1 12r r r r( )( )+ + −  − n,         when  n ≥  r (1 + r + r 2 1− ) − 1.

The previous condition is also necessary for an r -poly to be an equilibrium outcome, for

any r , with n > r ≥ r.

Proof.- We sketch here the proof. See the complete proof in the Appendix. It proceeds in

several steps. We first prove that, for r < n, a necessary condition for an r-poly to be an



14

equilibrium coalition configuration is that g(r − 1, x) ≥  0, for some x ≤  n − r + 1. Then, we

rewrite this necessary condition in terms of the parameters of the model. Finally, we prove

that the necessary condition for an r-poly to emerge must also be satisfied for an r -poly to

emerge, with r ≠ n and r ≥  r ≥  2. Formally:

    ] ][ ]g r x x r n r( , ) , ,− ≤ ∀ ∈ − +1 0 12 ⇒ ] ][ ]g r x x r n r( , ) , ( ) ,< ∀ ∈ + −0 1 2 . Q.E.D.

In order to see if the number of firms in an equilibrium coalition configuration can be very

high, lets us consider the maximum possible size of the market, not taking into account the

possibility that all players stay alone.  In other words, we derive an upper-bound to the

number of coalitions that can possibly constitute an equilibrium coalition structure, different

than all singletons.

Proposition 4.-  If  an r-poly, with r < n, is an equilibrium coalition structure, then r ≤

rmax(n), where:   rmax(n) = 
− + +1 5 4

2

n
.

Proof.- For an r-poly to fulfill the necessary condition derived in Proposition 3,  there must

exist a non-degenerate interval with r2 < x ≤  n − r + 1. Hence, the maximum r that can be

stable is the rmax such that (rmax)2 = n − rmax + 1, i.e., rmax(n) = 
− + +1 5 4

2

n
. Q.E.D.

First of all, note that the upper-bound rmax(n) defined in Proposition 4 coincides with the

number of coalitions in the equilibrium structure when there is no moral hazard. Bloch

(1996) shows that without moral hazard the equilibrium coalition configuration is such that

all the first players choose to be singletons and the last coalition is formed by the last (the

first integer previous to) rmax(n) players. (For more details, see Bloch 1996, p. 122). Note

that rmax(n) is increasing in n.

When the moral hazard problem is not very severe (a/c ≥ n+2), we know (by Proposition

2ii) that all singletons can not be an equilibrium outcome. Proposition 4 states that, in this

case, the equilibrium coalition structure is never more deconcentrated than without moral
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hazard. In fact, for some values of the parameters it is strictly more concentrated.9 This is

the case even if moral hazard creates an inefficiency that grows with the size of the coalition

and, then, one would expect that partners would try to avoid it by forming smaller groups

than in the benchmark case. The intuition is related to the sequential nature of the game.

Consider first the case without moral hazard. In equilibrium, the first players free-ride on

the next players by standing alone, until the point where the responsible player faces the

alternative to induce a all singleton outcome or to join the left players in a single coalition.

With moral hazard this free-riding by the first players is more difficult. The las players find

forming a big coalition a very harmful strategy for themselves. They are only ready to form

small coalitions in not-very competitive markets. It can be the case that they only form a

partnership in environments where the previous players have also join in coalitions.

Anticipating this reaction, the first players have less incentives to split apart. This effect may

lead to a more concentrated structure than the equilibrium outcome without moral hazard.

We summarize in the next Corollary the most relevant feature of the equilibrium outcomes.

Corollary 1.- For a given n, the equilibrium coalition structure with moral hazard is either

the most deconcentrated outcome (all singletons) or one structure containing a number of

coalitions lower or equal that the number of equilibrium coalitions without moral hazard.

In our model of Cournot competition with homogeneous product and moral hazard, we can

not go further and find the precise partnerships and their size at equilibrium as a function of

the parameters of the model (a,c,n). However, we can compute the equilibrium outcome for

particular values of n. In Table 1 we present the equilibrium outcome for n =18. The last

row indicates the equilibrium outcome in the benchmark (without moral hazard).

[Insert Table 1]

From Table 1 we see that, unless c is high enough (  a
c < 20) so that the only sustainable

partition is all partners as singletons, moral hazard makes the market structure either similar

or more concentrated than in the benchmark case. As the game is sequential, the first

                                               

9 Our measure of market concentration is just the inverse of the number of partnerships.
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players know that moral hazard would prevent the last players from forming large groups;

the threat of a less concentrated market structure makes the first players not to chose to

stand alone. In fact, as it is shown in this case, this threat induces the first player to find it

optimal to form a coalition with some other players in order to left in the game a low

enough number of players to be profitable for them to collude.

4.- On the robustness of the results and the effects of moral

hazard under other stability concepts

We have shown the effects of moral hazard in a finite choice-of-sizes game The interest of

the analysis of this game comes from the following equivalence result by Bloch (1996) and

Ray and Vohra (1999): In a symmetric offer and counteroffer infinite game Γ, any

symmetric stationary perfect equilibrium coalition structure can be reached as the outcome

of a finite game of choice of coalition sizes ∆. Moreover, if the equilibrium coalition

structure of the finite game has the property that players' payoffs are non-increasing in the

order in which coalitions are formed, then any equilibrium outcome of the game of choice of

coalition sizes ∆ can be obtained as a symmetric stationary equilibrium coalition structure of

the sequential infinite game of coalition formation Γ.

However, as the example in Table 1 illustrates (for n = 18), in our model there are values of

the parameters (a, c, n) such that the payoffs of the first players are lower than the profits of

the last ones (a/c belongs to the interval [27, 28.2)). For those parameter values there is no

symmetric stationary equilibrium of the infinite game; nevertheless, in those cases the

choice-of-sizes game still identifies an equilibrium that corresponds to an asymmetric

stationary equilibrium in the infinite game Γ. The idea for constructing this equilibria is

simple. When players' payoffs are increasing in the order in which coalitions are formed,

then there is no symmetric stationary equilibrium since any player will prefer to deviate and

deny in order to be in the last coalition (the one having higher payments). The asymmetric

equilibrium is based on strategies such that a set of players accepts to form the first (big)

coalition in order to atteint a solution. Hence, in our example, the asymmetric strategy is

such that the first ten players are ready to form the big coalition (see the Appendix for the

details).
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Even when the property holds (and the equivalence between the finite choice-of-sizes game

∆ and the infinite game Γ holds) the question remains as to whether moral hazard would

have the same effect (increasing market concentration) had we used a different game. To

analyze this point we have looked into the effect of moral hazard in some other coalition

formation games and different stability notions.

A first observation is that the effect of moral hazard pointed out in this paper will not be

present unless the game is somehow sequential. Moral hazard makes unilateral defections

from a coalition more profitable so that, if the game with payoffs (3) is one-shot (see Yi and

Shin (1995) exclusive membership game), sustaining a concentrated coalition structure (as a

NE or a CPNE) is made harder when moral hazard is introduced.

We briefly consider here the effect of moral hazard using another sequential solution

concept. Ray and Vohra (1997) introduced the notion of equilibrium binding agreements. A

coalitional structure is an equilibrium binding agreement if there is no profitable deviation for

any set of players, but deviators take into account what happens after the deviation, in

particular, the strategies of its complement are not taken as given (the complementary

coalitions may break up).  Ray and Vohra define a profitable deviation (from one coalitional

structure to another) for a set of players as a deviation satisfying the following conditions: (i)

the final structure is an equilibrium binding agreement, (ii) the deviating players must be a

sub-coalition of one of the initial coalitions, (iii) the deviating set of players must gain from

this move, and (iv) the other deviators fear a worse outcome if they had not moved. In this

framework, under moral hazard the threat of inducing a deviation to a very competitive

market may induce a more concentrated structure (as compared to the stable structures

without moral hazard). To discuss the effect of moral hazard, we will present the results for

n = 6. The results are summarized in Table 2.

[Insert Table 2]

For n = 6, with no moral hazard, the most concentrated stable outcomes are triopolies. With

moral hazard, some of these triopolies are unstable when moral hazard is strong enough. As

in Section 3, for 
a

c
 high enough we have the same result as without moral hazard. However,

if moral hazard problem is important more concentrated structures are stable, because then
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the asymmetric triopoly structure {1, 2, 3},{4, 5},{6} is no longer a stable outcome. It is so

because the larger coalition is suffering form an important moral hazard problem and the

deviation to all singletons is profitable. This effect is the one explaining why some duopoly

coalitional structures are stable with moral hazard. For example, for 
a

c
 ∈ [57, 106[, if a

subset of players deviates from {1, 2, 3, 4, 5},{6} they will not reach a triopoly, but the

stable outcome ({1},{2},{3},{4},{5},{6}), where competition is very strong.

5.- Industry Efficiency

In this section we briefly discuss the efficiency of the outcome of the sequential process of

partnership formation previously described. An efficient partnership configuration is defined

here as one that (given that partnerships compete in the market in the second stage) yields

the highest industry profits among all the market structures.

With no moral hazard the efficient outcome is always the grand coalition, where industry

profits are maximized. The equilibrium market structure may be inefficient since duopoly or

even less concentrated market structures can be an equilibrium outcome. Moral hazard adds

an element of inefficiency to large firms which can make the grand coalition inefficient.10

Remark 1.- With moral hazard, the equilibrium market structure may be efficient.

We just present an example where it happens to be the case. Let us consider the example of

n=18. It can be easely checked that for some parameter combination the equilibrium is an

efficient configuration. More precisely, we find values of c for which the outcome

maximizes industry profits,    a
c ∈ [46,84), which is never the case in the absence of moral

                                               

10 Another way of understanding this point is that without moral hazard the grand coalition will
decide to form a single coalition, while with moral hazard the grand coalition can decide to form
more than one firm.
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hazard. When c is very low (  a
c ≥ 84) too many coalitions are formed. The reason for

inefficiency is the usual free-riding problem already present in the benchmark case. 11

6.- Concluding comments

Previous work on endogenous coalition formation with externalities (spillovers) is based on

the assumption that the outcome of a coalition should be efficient for that coalition. Even

though there is interaction among the players at two levels: within each coalition and among

the coalitions, the first aspect has been neglected in the non-cooperative models of coalition

formation. The only aspect of that interaction that has been taken into account is the

definition of the sharing rule agreed upon by the coalition members. However, there is an

important literature on the inefficiencies that arise within groups due to imperfect effort

observability and the lack of incentives to cooperate. This is the aim of our analysis: to

provide some insight on the effects that the internal organization of coalitions may have on

the equilibrium coalition structure.

In a model with ex-ante identical players, we analyze the non-cooperative process of

coalition formation (this process is formalized as in Bloch, 1995, 1996), with a moral hazard

problem within coalitions, and we study the equilibrium number and size of coalitions. As

compared to the case where members in a coalition fully cooperate, we show that when

moral hazard within coalitions is high enough, no coalition will form. However, and this

result is more surprising, when moral hazard is not too severe the coalition structure will be

either similar or more concentrated than without moral hazard (that is, a lower number of

partnerships in a subgame perfect equilibrium).

To emphasize some of the aspects of the relationship between the incentive problems within

partnerships, market competition, and stability of coalitional configurations, we have

ignored other important elements of the partnership’s organization. The firm may embody

interactions (joint task responsibilities, or specialization) among agents that increase the

                                               

11 For low values of c the comparison is more artificial since the produccion of the firms is not
interior.
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productivity of a worker when he works in a large team. Other central aspect of the model

is that we obtain our results under the assumption that a coalition splits gross profits

equally. Under moral hazard the sharing rule is crucial, not only to decide whether to join a

coalition or not, but also because it determines the partners’ effort decision and

consequently, gross profits. The lower the share of a partner, the more opportunistically she

will behave. However, equal sharing is the most natural sharing rule in a symmetric

framework and represents the spirit of what it is understood as a partnership.
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Appendix

Proof of Proposition 1.- From (4) we can deduce that π(r, s) > 0 if and only if 
a

c
+ n − s −

s r > 0, i.e., s < 
a c n

r

/ +
+ 1

. (Note that π(r, 1) > 0 for any r). Summing up for the r coalitions

we have that n < r 
a c n

r

/ +
+ 1

 is a necessary condition for π(r, s) > 0, which can be rewritten

as 
n

r

a

c
< .

If 
n

r

a

c
>  for any r < n, then the necessary condition for all the coalitions having positive

profits does not hold. Thus, 1 <
a

c

n

n
<

− 1
 is a sufficient condition for the partition r = n to

be the only SPE partition.                       Q.E.D.

Proof of Lemma 1.- Player (n−x+1) deciding in subgame (h, x) the optimal size s, under the

assumption that the rest of the players will remain isolated, solves:

 

   

max1 ≤ s ≤ x

a
c + n – (h + x – s + 2) a

c + n – s (h + x – s + 2)

s h + x – s + 2
2

The first-order derivative has the same sign as:

G(s) ≡  −  (  a
c  + n  −  (h + x + 2)) (h + x + 2  −  3 s)  −  s2 (h + x  −  s).

For s = 1, G is negative (and the objective function is decreasing). Now, given that G'(s) = 3

(  a
c  + n  −  (h + x + 2))  −  2 s (h + x) + 3s2, and G"(s) =  −  2 (h + x) + 6 s, we know that

G'(s) has a minimum at s =   h + x
3 . At this point: G'(   h + x

3 ) = 9 [  a
c  + n  −  (h + x + 2)]  −

h + x
2

3 .  Consequently:
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(a) If 9 (  a
c  + n  −  (h + x + 2))  −  (h + x)2 > 0, G'(s) is always positive, and G(s) is always

increasing.

(b)  If 9 (  a
c  + n  −  (h + x + 2))  −  (h + x)2 < 0, then G'(   h + x

3 ) < 0 and G'(s) has two zero

values (may be out of the range of our parameter selection). G'(s) = 0 for

   

s =

(h + x) ± (h + x)2 – 9 a
c + n – (h + x + 2)

1
2

3
. At the lowest of these values G(s) is

negative.

In both cases, G'(s) goes from a negative value at s = 1, to a (may be) positive expression.

Hence, the objective function is either decreasing in s or convex in s. In any case the

solution to the maximization problem will be reached at a corner. Q.E.D.

Proof of Lemma 2.-

2 (i)  By the definition of g(h, x):
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Then:  sign[   g(h ,x) ] = sign[(a+cn) [(h+x+1)2 − x(h+2)2]  −  c[(1+x) (h+2) (h+x+1)2  −  2x

(h+2)2 (h+x+1)]] = sign[(a+cn) (x  −  (h+1)2)  −  c (h+2) (x2  −  (h+1)2)]. Q.E.D.

2 (ii) From Lemma 2 (i), if x  −  (h+1)2 < 0 and x2  −  (h+1)2 ≥ 0, then g(h, x) < 0. If  x  −

(h+1)2 < 0 and x2  −  (h+1)2 ≤ 0, it can be checked that g(h, x) < 0. Thus, x  −  (h+1)2 > 0 is

a necessary condition for g(h, x) ≥  0. Q.E.D.
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2 (iii)  From Lemma 2 (ii), assume that x ≤ (h+1)2, and hence g(h, x) < 0. Let us consider

any subgame (h’, x’) of  (h, x). Then x’ < (h’+1)2 given that h’ > h and x’ < x. Therefore,

g(h’, x’) < 0.            Q.E.D.

Proof of Proposition 3.- We define a function φ(h, x) = 
(h + 2)[ x2 – (h + 1) 2]

x – (h + 1)2 , in the

interval n − h ≥  x > (h+1)2. Note that the argument that max x  g(h, x) is the same as the

argument that min x φ(h, x). Moreover,  a
c ≥  φ(h, x) − n is equivalent to g(h, x) ≥  0; and

 a
c < min x φ(h, x) − n is equivalent to max x g(h, x) < 0. Finally, it is easy to check that φ(h,

x) is an increasing function of h and it is convex in x. We proceed in several steps.

Step 1.- Let us define x(h) as the value of x that minimizes φ(h, x). Then,

x(h) = (h + 1) (h + 1 + h h2 2+ ).

Moreover, x(h) is increasing in h.

Proof.-  From the second-order derivative, it is easy to check that (in the relevant range)

φ(x, h) is convex in x. From the first-order derivative of φ(x, h) with respect to x we can

conclude that the minimum is reached at the solution of the following equation:

x2 − 2 x (h + 1)2 + (h + 1)2 = 0.

The solutions to this equation are:

x(h) = (h + 1) ((h + 1) ± h h( )+ 2 ).

Taking into account that we restrict our attention to x > (h + 1)2, we can conclude that the

minimum is reached at x(h) = (h + 1) ((h + 1) + h h( )+ 2 ). This function is increasing in h.

In fact, the solution in the set of the natural numbers is an integer after or before x(h). We

will show in due term that this is not a problem when looking for necessary conditions.

Step 2.- For r < n, a necessary condition for an r-poly to be a stable coalition configuration

is that g(r − 1, x) ≥  0, for some x ≤  n − r + 1.
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Proof.- For an r-poly to be stable, it is necessary that (r  − 1) coalitions are formed, and

then, either there is at least two remaining players and the player taking the decision

chooses to form a single coalition with all of them, or it is already player n’s turn. We are

going to show that a necessary condition for the previous property is that there is at least

one x, x ≤  n − r + 1, for which g(r − 1, x) ≥  0.

We do the proof by contradiction, i.e., we will assume that g(r − 1, x) < 0, for all x ≤  n − r

+ 1, and we show that:

(a)  if (r − 1) coalitions have been formed and there is at least two players, the deciding

player will never form a single coalition,

(b)  a situation in which (r − 1) coalitions have been formed when player n is called to play

cannot be part of a SPE of the game.

(a) Suppose that (r − 1) coalitions are formed and there are x ≥  2 remaining players. Since

g(r − 1, x) < 0, player n − x + 1 (who is called to play) prefers the remaining players to split

apart than forming a single coalition. We now claim that for player n − x + 1 staying alone

(i.e., choosing sr = 1) is a superior strategy than forming a single coalition (choosing sr = x).

Indeed, from this player’s point of view, the most damaging strategy by the subsequent

players is that they remain singletons (if some subgroup decided to form a coalition, the

profits of player n − x + 1 would increase). Even in this case, profits for player n − x + 1 are

higher than if she decides to form a single coalition.

(b) Suppose that (r − 1) coalitions are formed before player n. Now, take the last coalition

formed containing x ≥  2 players (note that we can make this argument because r < n). For

the player that forms this coalition, it must be the case that  π(r, x) ≥  π(r + x, 1), i.e., g(r

− 1, x) ≥  0, which contradicts our assumption.

Step 3.- For r < n, a necessary condition for an r-poly to be a stable coalition configuration

is:

i)  
a

c
 + n ≥

( )( )( )

( )

r n n r

n r r

+ + − +
+ − −

1 1 2 1

1 2  ,  if  x(r − 1) > n − r + 1, or
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ii)  
a

c
 + n ≥  2 1 12r r r r( )( )+ + − ,   if x(r − 1) ≤  n − r + 1.

Proof.- First note that for any 1 ≤  x ≤  r2, we always have that g(r − 1, x) < 0. By Step 2, a

necessary condition for an r-poly to be a stable coalition configuration is that g(r−1, x) ≥  0

for some x ≤  n − r + 1, i.e., g(r − 1, x) ≥  0  for some r2 < x ≤  n − r + 1. This condition is

equivalent to: 
a

c
 + n ≥  Min φ(r − 1, x) , for r2 < x ≤  n − r + 1.

i)  If  n − r + 1 < x(r − 1) then the minimum is reached at x = n − r + 1. Then, a necessary

condition for r-poly to be a stable coalition structure is 
a

c
 + n ≥  φ(r − 1, n − r + 1) =

( )( )( )

( )

r n n r

n r r

+ + − +
+ − −

1 1 2 1

1 2 .

ii)  If  n − r + 1 ≥  x(r − 1) then the minimum is reached at x(r − 1). Then, a necessary

condition for r-poly to be an stable coalition configuration is 
a

c
 + n ≥  φ(r − 1, x(r − 1)) =

2 1 12r r r r( )( )+ + − .12

Step 4.- ] ][ ]g r x x r n r( , ) , ,− ≤ ∀ ∈ − +1 0 12 ⇒ ] ][ ]g r x x r n r( , ) , ( ) ,< ∀ ∈ + −0 1 2 .

Proof.- The previous implication is equivalent to

                                               

12 As we have already mentioned, x(r − 1) need not be a natural number. But

] ]{ }Min r x x r n r x Rφ( , ), , ,− ∀ ∈ − + ∈1 12 ≤ ] ]{ }Min r x x r n r x Nφ( , ), , ,− ∀ ∈ − + ∈1 12 .

Therefore, ] ]{ }a

c
n Min r x x r n r x R+ ≥ − ∀ ∈ − + ∈φ( , ), , ,1 12 = φ(r−1, x(r−1)) is also a

(weaker) necessary condition for an r-poly to be a stable coalition structure.
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] ]{ }a

c
n Min r x x r n r+ < − ∀ ∈ − +







φ( , ), ,1 12 ⇒

] ]{ }a

c
n Min r x x r n r+ < ∀ ∈ + −







φ( , ), ( ) ,1 2 .

This in turn is equivalent to:

] ][ ]Min r x x r n rφ( , ), ,− ∀ − +1 12 < ] ][ ]Min r x x r n rφ( , ), ( ) ,∀ + −1 2 . This condition holds

since: a) φ is increasing in h, and b) φ(r − 1, n − r +1) < Min φ(r, n − r). Q.E.D.

An asymmetric stationary equilibrium of the infinite game ΓΓ

Let us denote by S1, S2, ..., Sh the coalitions already formed at subgame (h, x); X =

N\∪ h
k=1Sk the players not allocated to a coalition, and S(S1, S2, ..., Sh, X) is the ongoing

proposal. A strategy for a player must specify an answer to any proposal made to her if she

is not the proposer, and a proposal when she is. Formally,

σi(S1, S2, ..., Sh, X) ∈ {Yes, NO}           if S(S1, S2, ..., Sh, X) ≠  ø

σi(S1, S2, ..., Sh, X) ∈ {S ⊂  X, i ∈ S}       if S(S1, S2, ..., Sh, X) = ø

When S(S1, S2, ..., Sh, X) ≠  ø , player i is a respondent to the offer by some other player;

when S(S1, S2, ..., Sh, X) = ø , it is player i’s turn to make an offer. If the strategy’s

prescription at any subgame only depends on the number of coalitions previously formed

and the number of players still in the game, we simply write σi(h, x).

For n = 18 and [ [a

c
∈ 27 28 2, . , let N1 = {1, 2, ..., 10} and N2 = {11, ..., 18}. Consider the

strategy profile for game Γ shown in Table 4. It is easy to check that the equilibrium is not

symmetric since players in N1 and N2 follow different strategies; it is stationary because

players’ strategies only depend on (h, x).

[Insert Table 3]
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Given the one-stage deviation principle for infinite games, in order to check that the

strategies lead to a subgame perfect equilibrium it is sufficient to check that there is no (h, x)

where some player can gain by deviating from the action prescribed by the strategy for that

history and conforming the initial strategy thereafter. The one-stage deviation principle holds

whenever the infinite game is continuous at infinity, i.e., the events in the distant future are

relatively unimportant, which it is the case in our infinite game if future payments are

discounted.

In order to check the equilibrium, note first that for n = 18:

a

c
≥ ⇔27 g(1, 8) ≥  0  and   

a

c
< ⇔28 2.   g(1, 9) < 0.

In this interval, g(2, x) is always negative. Then, once two coalitions have been formed, the

best response for any remaining player is to stay alone, as the strategy in Table 4 states.

When one coalition has been formed, only coalitions sized 8 or less are profitable. That is

what the strategy also says. All the difference is what will be the actions for different players

when no coalition has been formed. Ten players, let us call them 1 to 10, are ready to form a

10 players coalition, while the others will not. For the first players, there is no gain in

deviating to other action (that will induce too much competition) since  the other players will

only join if the first merge. Q.E.D.
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         Demand
and cost conditions

Equilibrium market
        structure Partition

 a
c ∈ (1, 20) singletons [{1},{2}...,{18}]

 a
c ∈ [20, 27) monopoly [{1, 2, ...., 18}]

 a
c ∈ [27, 28.2) duopoly [{1, ...,10},{11, ..., 18}]

 a
c ∈ [28.2, 30) duopoly [{1, ..., 9},{10, ..., 18}]

 a
c ∈ [30, 32.143) duopoly [{1, ..., 8},{9, ..., 18}]

 a
c ∈ [32.143, 34.5) duopoly [{1, ..., 7},{8, ..., 18}]

 a
c ∈ [34.5, 37) duopoly [{1, ..., 6},{7, ..., 18}]

 a
c ∈ [37, 39.6) duopoly [{1,...,5},{6, ..., 18}]

 a
c ∈ [39.6, 42.27) duopoly [{1, 2, 3, 4},{5, ..., 18}]

 a
c ∈ [42.27, 45) duopoly [{1, 2, 3},{4, ..., 18}]

 a
c ∈ [45, 47.77) duopoly [{1, 2},{3, ..., 18}]

 a
c ∈ [ 4 7 . 7 7 , 1 2 3 .1 4 ) duopoly [{1},{2, ..., 18}]

 a
c ∈ [123.14, ∞) triopoly [{1},{2},{3,..., 18}]

        Table 1. Equilibrium partnerships’ configuration for  n=18
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Coalition structure Conditions for deviation
(with MH)

Stability without
Moral Hazard

Stability with
Moral Hazard

{1},{2},{3},{4}, {5},{6} (none) By definition By definition
{1, 2},{3},{4}, {5},{6} for any a/c, to

{1},{2},{3},{4},{5},{6}
No No

{1, 2, 3},{4}, {5},{6} for any a/c, to
{1},{2},{3},{4},{5},{6}

No No

{1, 2},{3, 4}, {5},{6} for any a/c, to
{1},{2},{3},{4},{5},{6}

No No

{1, 2, 3, 4}, {5},{6} for any a/c, to
{1},{2},{3},{4},{5},{6}

No No

{1, 2, 3},{4, 5},{6} for a/c < 160, to
{1},{2},{3},{4},{5},{6}

Yes Yes, for
a/c ≥ 106

{1, 2},{3, 4}, {5, 6} for a/c < 2.235, to
{1},{2},{3},{4},{5},{6}

Yes Yes, for
a/c ≥ 2.235

{1, 2, 3, 4, 5},{6} for a/c ≥ 106, to
{1, 2, 3},{4, 5},{6}
for a/c < 57, to
{1},{2},{3},{4},{5},{6}

No Yes, for
57 ≤  a/c < 106

{1, 2, 3, 4},{5, 6} for a/c ≥ 2.235, to
{1, 2},{3, 4},{5, 6}
for a/c < 2.235, to
{1},{2},{3},{4},{5},{6}

No No

{1, 2, 3},{4, 5, 6} for a/c < 3.55, to
{1},{2},{3},{4},{5},{6}
for a/c ≥  106, to
{1, 2, 3},{4, 5},{6}

No Yes, for
3.55 ≤  a/c < 106

{1, 2, 3, 4, 5, 6} for a/c < 106,  to
{1, 2, 3},{4, 5}, {6}
for a/c ≥  106, to
{1, 2, 3, 4, 5},{6}

No No

Table 2. Stable outcomes à la Ray and Vohra for n=6.
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           i N∈ 1               j N∈ 2

If   S(0, n) = ø

If   S(0, n) ≠  ø

σi(0, n) = N1

σi(0, n) = Yes    if # S(0, n) = 10

                 No    otherwise

σj(0, n) = N

σj(0, n) = No

If   S(1, x) = ø

If   S(1, x) ≠  ø

σi(1, x) = {i}     if x > 8

                X       if x ≤  8

σi(1, x) = Yes    if S(1, x) = X and

                                          x ≤  8
                 No    otherwise

σj(1, x) = X       if x ≤  8

               {j}     if x > 8

σj(1, x) = Yes   if S(1, x) = X and

                                          x ≤  8
                 No   otherwise

If   S(h, x) = ø,

             h ≥  2

If   S(h, x) ≠  ø,

             h ≥  2

σi(h, x) = {i}

σi(h, x) = No

σj(h, x) = {j}

σj(h, x) = No

Table 3. Strategies supporting the stationary and asymmetric equilibrium of  Γ


