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Abstract

This paper proposes a new approach for detecting the number of structural breaks in a time
series when estimation of the breaks is performed one at the time. We consider the case of
shifts in the mean of a possibly nonlinear process, allowing for dependent and heterogeneous
observations. This is accomplished through a simple, sequential, almost sure rule ensuring
that, in large samples, both the probabilities of overestimating and underestimating the number
of breaks are zero. A new estimator for the long run variance which is consistent also in
the presence of neglected breaks is proposed. The finite sample behavior is investigated via a
simulation exercise. The sequential procedure, applied to the weekly Eurodollar interest rate,
detects multiple breaks over the period 1973-1995.
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1 Introduction

The analysis of structural breaks in time series data has received a lot of attention over the
last ten-fifteen years, both from a theoretical and an empirical point of view. There are several
reasons why it is important to test for structural breaks and, if we reject the null, estimate
them. Parameter stability is typically kept as a maintained assumption in classical hypothesis
testing. Violation of such maintained assumption can lead to unreliable inference. A very well
known case is that of testing for unit roots in the presence of broken trends. Perron in his (1989)
seminal paper has shown that the failure to reject the null of unit roots may be attributable to
the failure of taking into account the presence of broken trends.! On a different ground, out of
sample prediction is typically performed under the maintained assumption of parameter stability
(see e.g. Hendry (1997) for an overview). If we are interested in out of sample forecast accuracy,
it is crucial to be able to detect and estimate the ”last” break in the series. A test for out
of sample stability based on a real time monitoring rule is provided by Chu, Stinchcombe and
White (1996). Recently Pesaran and Timmermann (1999) show that in the presence of structural
breaks by taking into account observations across different regimes we reduce the forecast error
variance, but we increase the bias and suggest how to find an optimal observational bandwidth.

While there is a very extensive literature on testing the null of zero versus one break and
on the estimation of a single break, the literature on the testing and estimating multiple breaks
is much more limited. Sequential tests for the null of m versus m + 1 breaks are provided in
Bai and Perron (1998) and in Bai (1997), the null of zero versus one break is sequentially tested
over the different subsamples. Improving upon this, Bai (1999) proposes a sequential likelihood
ratio test for the null of m versus m + 1 breaks constructed using all the sample observations.
Needless to say, sequential tests that avoid splitting the sample should have better finite sample
power properties.

The purpose of these sequential testing procedures is to obtain a consistent estimate of all

'Since then, several papers have considered test for unit roots that allow for the presence of broken trend
(see e.g. Banerjee, Lumsdaine and Stock (1992), Andrews and Zivot (1992), Lumsdaine and Papell (1997)).
More recently, Leyborne, Mills and Newbold (1998) found that a break occurring "early” in the series may cause

spurious rejection of the null of unit root.



the break fractions as well as to obtain a consistent estimate of the true number of breaks. If at
any step of the procedure we can ensure that the probability of failing to reject the null when
is false approaches zero, we can also ensure that the probability of underestimating the number
of breaks is asymptotically zero. On the other hand, in order to ensure that the probability
of overestimating the number of breaks is asymptotically zero, we need to ensure that at any
stage the probability of rejecting the null when is true approaches zero. Bai (1999) provides
an analytical expression for the critical values of his test and shows that by letting the critical
values grow with the sample size, at a rate slower or equal to T, we can have a procedure
that, at any stage, has zero asymptotic size and unit asymptotic power. However, in practice
there are infinitely many sequences of critical values ensuring size approaching zero and power
approaching one, so that it is not easy to decide which sequence of critical values should be used.

The object of this paper is to propose a simple sequential almost sure rule ensuring that,
in large samples, both the probability of overestimating and underestimating the number of
breaks is zero. As an immediate consequence, this rule provides a strong consistent estimate of
the true number breaks. Our simple procedure is based on a straightforward application of the
(functional) law of the iterated logarithm, (F)LIL.

We shall analyze the case of shifts in the mean of a possibly nonlinear process, allowing for
dependent and heterogeneous observations. We shall begin by considering the following statistic:
VT = SUD,¢ly,1-] dte | Zﬂ (Xy — X)|, with dp = TV/2\/2Toglog T, X is the sample mean,
and 62 is a strong consistent estimator for the long-run variance matrix. Under the null of
no breaks, the limsup of Vgr is almost surely less than 1/2. Under the alternative of at least
one break, the statistic diverges at rate J#/ii)gﬂ” where 7 is the lag truncation parameter
used in the estimation of the long-run covariance. If we get a number below the bound, we
decide in favor of zero breaks and stop. Otherwise we proceed to estimate the first break, using
all observations. We strengthen Bai’s weak consistency result into a strong consistency result.
More precisely we shall show that the estimated break fraction is 77 ~"-strongly consistent for
one of the true break fractions, with 1 > 0, arbitrarily small. Such a rate is slower than the
T-rate obtained by Bai (1997) in the weak consistency case, but it suffices for our purposes. We

then recompute the statistic above, by using estimators of the sample means over the proper



subsamples. In this way, at any step of the procedure we use all the observations in the sample.
If we get a value below the bound we stop. otherwise we proceed to estimate a second break,
by using all observations but those close to the break we previously estimated, thus ensuring we
won’t estimate the same break twice. This second break is also 7'~ "-consistent for some true
break, different from the one previously estimated. Then we shall proceed until we fail to reject
the null of say m breaks versus m+1 breaks. In this case we set the estimated number of breaks,
mp, equal to m, in fact at any step the rejection or not of the null depends on the sample size
T. As at any step, in large samples, the probability of accepting (rejecting) the null when is
correct (wrong) is one, mr is a strongly consistent estimator of the true number of breaks.
Furthermore an estimator for the long-run variance which is consistent also in the presence
of neglected breaks is proposed. The consistency under the alternative is attained by using an

estimator of the mean based on an appropriate window of observations. This ensures that the

test statistic diverges at rate % (instead of #ﬁoﬂ), under the alternative.

As the consistent estimation of the number of breaks depends on the fact that the size
approaches zero at a proper rate, consistent estimation can be obtained via the Schwartz cri-
terion (or BIC). In fact, broadly speaking, the Schwartz criterion amounts to comparing the
likelihood-ratio test statistic with critical values diverging to infinity, where the speed of di-
vergence is determined by the penalty term. Yao (1988) provided consistent estimation of the
number of breaks, via the Schwartz criterion, under the assumption of normal innovations. More
recently Liu, Wu, and Zidek (1997, hereafter LWZ) propose the use of a modified Schwartz cri-
terion, characterized by a more severe penalty term, and so extend Yao’s result to the case of
identically independent observations, plus an additional condition that they call local exponen-
tial boundedness (LWZ, 1997, p.511). Approaches based on the Schwartz criterion require the
estimation of all breaks at once; in fact for any given number of subsamples we obtain the breaks
estimator by least squares and then we choose the number of subsamples (that plays the role
of dimension of the model), by minimizing the (modified) Schwartz criterion. The potential ad-
vantages of our sequential approach over the Yao’s and LWZ’s approach are (i) we can allow for
dependence and heterogeneity, (ii) we can estimate one break at time, which is computational

less demanding, (iii) we provide a strongly, instead of weakly, consistent estimator of the true



number of breaks.

The sequential procedure has been applied to the same Eurodollar interest rate data
set investigated by Ait-Sahalia (1996a-b). Multiple breaks have been detected over the period
1973-1995, in line with ez post revisitation of the US monetary policy. While the autocorrelation
computed on the raw data displays a long memory type behavior, the one computed taking into
account the shifts in the mean displays a short memory type behavior.

This paper is organized as follows. In Section 2 we describe our set-up, stating the assump-
tions that will be used in the sequel , and describing the testing procedure. Section 3 presents
the asymptotic behavior of the procedure. Section 4 reports some Monte Carlo experiments.
Section 5 applies the procedure to the weekly eurodollar rate. Finally, some concluding remarks

are given in Section 6. All proofs are collected in the Appendix.

2 Set-up

2.1 Model and Assumptions

We shall focus on data generating processes (DGPs) characterized by shifts in the mean, such
as

Xy =pol{ko+1<t <k} +ml{ki +1<t <k} +... (1)
et g Wy +1 <t <kpoi1} + €
where 1{-} denotes the indicator function, equal to 1 if the argument is true, and zero otherwise,
hereafter kg = 0, kypyr1 =1, Vmg > 0.
In the sequel we shall need the following assumptions:

Al: {¢}2°_ is a zero mean, real-valued process, such that sup, E(|e;|*?19)) < Oy < o0, § > 0.

A2: {¢}72 o is a-mixing with size —545—%2, where 6 is the same positive constant defined in

T
Al. Also limy_,o ZEJTELE?) =02

A3: There exists a constant 0 < 02 < oo, such that

+T
T B(() ) a)?) — gl < CT
k=141



where 1) > 0 and Cy is independent of [. Note that, in general, 03 # 02, where 0 is defined as

in A2.
A4: Vi =0,...mq, kiy1 — k; > ~T, for some v >0, and kg =0, kg1 =T
A5 |pi — pig1| = A >0, Vi.

Assumptions Al and A2 are standard memory and moment conditions; as usual there is
a trade-off between the degree of heterogeneity and the degree of dependence we can allow for.
A3 is a condition on the rate of growth of the variance of the partial sums of ¢;, that is trivially
satisfied in the covariance stationary case (see Corollary 2.2, Corradi 1999). Note that we do
not constrain the innovation process to be linear, so allowing for a variety of nonlinear models.
Assumptions A4 and A5 put some restrictions on the type of breaks we can allow for. A4 rules
out the possibility that breaks are too close each other, that is we impose that the number of
observations between two successive break points grows at rate T. Finally A5 requires that the

magnitude of the breaks does not shrink as T gets large.

2.2 Testing Procedure

We now describe the proposed statistics and the steps of the sequential rule for detecting the
number of breaks. The procedure starts by testing the null of the absence of breaks versus the

presence of at last a break in the mean:
H} : no breaks

versus

H} : at least one break.

Thus under H{, the DGP is as in (1), with mg = 0, while under H} the DGP is as in (1), but
with mg > 0.2 In order to test H} against H}‘, we shall relay on the following statistic:

[Tr]

1 _
Vsp= sup =—d;'|} (X, —X)| (2)
TE[’le_’Y] or g ;

2The upper-script in the test hypotheses and in the statistics indicates the step of the procedure or differently

the minimum number of breaks under the alternative.



where 7 is defined as in A4, X = T~! Zthl X, dp = TY?\/2Toglog T, and 02 is an HAC

estimates of the variance, defined as:

T Ir T

o 1 > 2 > o

02 = = E (X —X)*+ = § ws § (Xy — X) (X5 — X) (3)
t=1 s=1 t=s+1

S

with ws the usual Bartlett window, i.e., 1 — g

The statistic in (2) is the supremum of the partial sum of the residuals with respect to
all the possible break points, taking into account that because of A4, the first break fraction
cannot be smaller than v and the last break fraction cannot be larger than 1 —«. The decision
rule of the sequential procedure will be to stop if we get a value below or equal to % and then
to decide in favor of no breaks. Otherwise we shall proceed to estimate the first break. As we
shall show in proposition 3.1 below, in large sample the probability of choosing H{ when correct
(resp. wrong) is one (resp. zero).

Having assessed the presence of at least one shift in the mean of the process, the first
break is estimated by finding the sample location of the break which minimizes the sum of the
residuals as in Bai (1997), that is:

k'= argmin  Sp(k) @
k=[yT],.. [(1-)T]

k T
= argmin {Z(Xt — /L(k/T))Q + Z (X¢ — M*(k/T))Q}

k:['yT]v"'v[(lfl)/)T] t=1 t=k+1

where pu(k/T) = %Zle Xy and p*(k/T) = 7% Zf:k+1 X:. In Theorem 3.4 we will show that
the estimated break is a T'~7 strong consistent estimator of the largest break in the sample,
where with "largest” we mean that asymptotically it is responsible for the largest reduction in
the sum of squared residuals.

Once we have identified the location of the first break, we test for the presence of additional

breaks, conditional to the one already identified, i.e.:
HE : only one break

versus

H? : at least two breaks



by using the following statistic:
(Tr]
V2 = ' sup N (X - X1 <t < B} =Xl {k + 1<t < [T0]})
or = rely,1-4] 145
where %1, %g are the means in the two subsamples which have been computed with respect to
estimated break points, and 3% is as in equation (3), but for the fact that we replace X; — X
with X, — Xy for t = 1,... 5! and with X; — Xy for t = il +1,....T.

As above, if we get a value for the statistic ngT below or equal to % we stop and decide in
favor of only one break.

If instead the statistic results larger than %, then we move on to the estimation of a second
shift in the mean, taking into account the one already identified in the first step. We locate it by
minimizing the sum of squared residuals with respect to the location of the second break point;
in this estimation step we use all the observations in the sample but for a proper interval around
the first break, so we do not rely on the idea of splitting the sample into different sub-samples
as suggested by Bai (1997). A4 and the T "-consistency of k!/T for one of the true break
fraction, ensure that we neither re-estimate the same break, nor we neglect some of the breaks.
We shall show in the next session that k2 /T is almost surely T~ "-consistent too, for some break
fraction, different from T&.

Again, the statistics VgT is computed by using the residuals of X; from the relevant sample
means over the different subsamples; we decide in favor of only two breaks if we get a value for
VgT below or equal to % The procedure finally stops, when we accept the null of m breaks
versus the alternative of more than m breaks.

Critical for the small sample performance of the decision rule is the use of an appropriate
estimator of the long run variance. Under the null, the estimator is strongly consistent for the
true variance, but it is no longer consistent under the alternative. In presence of neglected
breaks, any HAC estimator of the covariance matrix diverges at rate lp, where lp is the lag
truncation parameter, both in presence of dependent or martingale difference innovations. The
inconsistency of the variance estimator stems from the fact that, in the presence of neglected

breaks, the sample mean, constructed using all the observations, is no longer consistent for



E(X:),t=1,2,...,T. In the application section, we discuss how the effect of neglected breaks
on the autocoraviance function can be confused with a long memory behavior.

The upward bias of the variance estimator reduces the power of the test, both in finite and
large samples. To overcome this problem, we propose a new estimator of the variance, based on
the deviations of each realizations with respect to a local mean, which is computed by averaging
the observations in a given neighborhood. The use of a local mean, under proper conditions on
the size of the neighborhood, allows to obtain a consistent estimate of the variance also under

the alternative.
Spurious Breaks

Detection of spurious breaks in the presence of integrated error is a known problem, as
pointed out by Nunes, Kuan and Newbold (1995, 1996). Vogelsang (1998) proposes statistics
that do not detect spurious breaks in the case of integrated error. However he deals with the
case of only one break, and his purpose is not a consistent estimator of the number of breaks.
We now suggest a simple device for distinguishing between a rejection of the null due to the
existence of breaks and a rejection due to integrated errors. Suppose we have rejected the null
of zero breaks versus the alternative of at least one break. The divergence of the statistics can
be instead due to the fact that X; is an integrated process.®> So once we have rejected the
null, we want to able to know whether the rejection was indeed due to the presence or breaks
or was instead due to integratedness. We can proceed in the following way. Construct the
auxiliary statistic: Zr = -5 >0 (X — X)2. If X, is I(1), then Zr = 5 3 (X; — X)? =
%Zle(% Z;Zl €)? = o2 _]61 W2 (s)ds, where W), is a demeaned standard Brownian motion.
We can use as an estimator of 02, 52 = % Zthl(AXt)Q in order to construct the percentile of

the limiting distribution above.* If X, is I(0) with breaks, then TZ7 converges in probability

to a constant and so Zp vanishes to zero at rate 7~'. Thus if we get a value for the statistic

3In fact a statistic similar Va7 has been used in Corradi (1999) to distinguish between I(0) and I(1) processes

with no breaks. Under the I(1) alternative the statistic diverges.

452 in the dependent case is not consistent for the true long run variance. However we avoid to use an

HAC estimator as, if X; is I(0) with breaks and ¢, follows an ARMA process, then 5% would approach zero in

probability as T — oco.



below say the 5% — percentile, we decide in favor of I(0) with breaks, otherwise we decide in

favor of I(1) and stop searching.

3 Asymptotic behavior

Having described the procedure, we now show that the sequential rules described in the previous

sections indeed provide an almost surely consistent estimator of the true number of breaks.
Testing for the absence of breaks

The asymptotic behavior of the statistic Vi, defined in (2), is summarized in the following

result:

Proposition 3.1
Let A1-A5 hold, let Ip — oo as T — oo, and Ip = O(T"/*(log T)~'/“=), for some A > 0 .
Under H&, almost surely,

1
(i) limsup Viy = 5

T—o0
Under H}l,
T1/2
(@) (ngo (Iploglog T)1/2 57T )

From the proposition above, we see that to decide in favor of H}, no breaks, when we get a
value for VslT below or equal to % and otherwise to decide in favor of H}l, at least one break,
provides a completely consistent, almost sure rule. We also see that, under the alternative, the
statistic diverges at rate , /m, thus, in finite sample, a ”small” lag truncation parameter
will improve the power, although it may deteriorate the size, whenever the innovations show a
high degree of dependence.

As we pointed out in the previous section, the fact that the variance estimator is not
consistent for the true variance under the alternative is likely to be one of the main reasons
for the low power of tests for structural breaks. The inconsistency under the alternative occurs

both in the case of martingale difference innovations and in that of dependent innovations, as

10



the denominator diverges at rate Ir, the size of the Bartlett window, and so the statistic diverges
at rate \/T//Ir loglog T, instead that at rate v/T/y/IoglogT. As shown in the proof, this is
due to the fact that under the alternative X is not consistent for E(X;),Vt. We then provide a
modified version of the statistic VélT, based on a ”local” estimator of the sample mean, which
ensures the consistency of the variance estimator under both the null and the alternative. Let

denote VqlL o the modified version, where:

1 [Tr]
Vo= s L3 (x5 5
rely,1—y] OL,T —
with
1 & i )
(7% T - T Z(Xt Zws Z Xt)(Xt—s _ ths) (6)
t=1 s=1 t=s+1
with ws = 1 — - and
%2?51)(' if1<t<Té¢
_t E '
X' =0 gyt Xy  ifTé41<t<T-T¢ M

e Xy ifT-T¢+4+1<t<T

and X'* is defined in an analogous way. Thus, as an estimator of the mean of X; we use an
average over T¢ observations around t. We shall show that 52 . is consistent for 03 under both

the null and the alternative, provided we properly choose £&. We have:

Proposition 3.2
Let A1-A5 hold, let Iy — oo, as T — oo and Iy = O(TY*(logT)~/*=Y) | for some A >

Tt
— 0, and 2 loglog T¢

0, m)# — 0.
Under H&, almost surely
(4) limsup Vi p =1/2
T—oo
Under H}l,
T1/2
" <T£20 (loglog T)172 /57 ~ 0)

Note that differently from the result in proposition 3.1, the length of the lag-window does not

affect the rate at which the statistic goes to infinity under the alternative, as a result of using a

11



consistent estimator of the variance. Following the described decision rule, if the statistic results
above the threshold level, we proceed to locate the first break k! as in (4).

Using the following identity

* E _ T 7 — k (E)
WA\T) -1t~ 787"

where X is the sample average over the whole interval and after some algebraic manipulations,

the objective function in (4) can be expressed more properly as

Seth) _YPXE ko ky, T,k k
T ~ T TG~ 2 ),

this formulation will be largely exploited in the sequel. We now show that k! /T = 1 is almost
surely T "-consistent for 74, where 74 is one of the true break fraction. The following result,

ensuring the uniform convergence of the objective function, is necessary.

Lemma 3.3

Under A1 — A2 and A4 and for the estimation of the first break,

1 [TT}) a.s.
sup |=ST (— —-U(r)] =0
relri— 1T T
where
mot! T 9 1 9 T
—0+Zuz 7= 7i1) = 7 () = T+ 2 () (8)

with

mo+1

p=> m(n—m71)

=1

and

Z,Uz Ty — Ti—1 +,Uz +1(T_Tz ) )
with 7;+ denoting the last break pomt before T.

Before stating the consistency result, we need an additional assumption:

A6: 3{74,... 7"} with 7§ = 75, with i not necessarily equal to j such that U(7}) < U(7¢) ... <

U(7g), and for 0 < n < mg, U(rg ) < U™ (rg2) ... < UM(7™).0

5The first break we estimate is not an estimator of first break, but rather of the break that most contributes

to the reduction of the sum of squared residuals.

12



This assumption is rather standard and essentially requires that there is a ranking among the
break points in terms of their contribution to the minimization of the objective function. Broadly
speaking it is a identification assumption which ensures that we first detect the break point that

most contributes to the reduction of the sum of the square residuals.

Theorem 3.4
Let A1 — A2 and A4 — A6 hold, then

#1 =7 = Qs (T7177)
for 17 > 0 arbitrarily small, 71 = k! /T, with k! defined as (4).

From the theorem above we see that k! /T converges almost surely, at rate T~ to T&, the break
that most contributes to the reduction of the sum of square errors, or differently the break
dominating the others in terms of relative magnitude of the shift. Bai (proposition 2, 1997)
shows weak consistency at rate 7. Thus the price that we pay in order to get strong consistency,
is a slightly slower rate of convergence, T'~" instead of T, with 1 > 0 arbitrarily small. In fact,
for our purposes, we just need convergence at a rate faster than /T loglogT. As it is shown
more in detail in the proof, the reason why we get 71", rather than T consistency, is that, in
order to ensure almost sure convergence, we need to let M, which is the minimum distance from
the true break point after which the values of the objective function are almost surely increasing,
to depend on T, that is we have to let M = My = O(T"), while M is a constant in proposition
2 of Bai (1997).

Testing for the presence of only a break

Given k; we construct VgT, and test the null of one break versus the alternative of at least two

breaks. We have that the following proposition holds:

Proposition 3.5
Let A1-A6 hold, let I — 0o , as T — oo, and Iy = O(TY4(log T)~1/(*=N) | for some X > 0.
Under Hg , almost surely

(2) limsupVé%T <1/2

T—0o0

13



Under Hfl,

T1/2 )
i) P 1 Vip>0| =1.
(i) e (Iploglog T)1/2 "5T

Thus at the second step, to decide in favor of Hg if we get values below or equal to %, and

decide in favor of Hi otherwise, provides an almost sure rule. From Part (ii) of the proposition
we note that under the alternative the statistic diverges at rate v/T /+/Irloglog T. If we would
have scaled the statistic using Efj%j as defined in (6), properly modified to take into account the
already estimated break point and with Tg/l% loglog T — oo, l7T%loglogT/T — 0 as T — oo,
then under the alternative we should have had divergence at rate v/T/v/loglogT, by the same
argument used in the proof of proposition 3.2. As before, if the statistic is above the bound, the
estimation of an additional shift in the mean has to be considered.

Here we look at the general case of estimating the n + 1 — th break, 0 < n < mg, with mg
being the true number of breaks. We need to take into account the n breaks already estimated,
that is {71,...7"}. The objective function, S%:(k), for the estimation of the n + 1 — th break,

conditional to the previous n, is given for a generic k, with k € (l%z, l%i“) i < my, is given by:©

n d 2 Sitl 7 =k o R R 2 it1\2
SHk) = Y @i - (’f - k) [m#(k k)T + m#(k LK) (9)
t=1
=k i pil
—2m/~t(k k) (K B

i—1 n
_Z (,;Z-H _ k) pu(ed | i+ 1y2 — Z (,;m _ k) pu(e? | i+ 12
j=1

j=it1
k,*
where p(k, k*) = ﬁ > X:. Again the uniform convergence of the objective function with
t=k+1

respect to the estimated parameters is crucial:

Lemma 3.6

Under A1 — A2 and A4 and forn=1,...,myg

S%([TTD _ Un(T) a8 0

sup T

T€[y,1-]

5Remenber that k° = 0 and k™ot =T

14



where for 7 € (7, 7,11), we have that

m—+1
un(r) = o’ + Z i (i = 7i1) = (T — ) |
=1

T —T;

N2
T () (10)

Titl — Ti 9 T—T;
S i) — 2———— (r o
+ P —— M(Tu TH—I) Tl — T'U(T“ T)M(Tz; 7—2—1—1)}
i—1 n
- Z(Tiﬂ — )l i) — Z (i1 — ) (74, Tj41)?
7=1 j=itl
Ej1

with pu(75, 7j41) = limr_o m Zt:ijrl X; with k; = [7;7] and similarly for 7;41.
In the case of the estimator of the second break, n = 1 let k"1 = 1%2, be defined as

k? = ) argmin St (k) (11)
k:[’yT]v"'kl_[’YT]_lv k1+[’yT]+177[(1_’Y)T]

where 7 is assumed in A4. Let 75 = k2 /T, we have that the following corollary holds:

Corollary 3.7
Under A1 — A2 and A4 — A6
72— 78 = Oue (T~ 1)

for n > 0, arbitrarily small.

Thus the second break, estimated conditional to the first one, converges almost surely to
the second more prominent break, at rate 717 which is the same rate of the previously estimated
break; we then proceed sequentially, until we fail to reject the null of additional breaks. The

results can be easily extended to the case of a generic number of breaks.
The total number of breaks

The estimated number of breaks my is given by the number of breaks under the null, when
we finally accept it. The following theorem ensures that mq is strongly consistent for the true

number of breaks:

Theorem 3.8
Let A1-A6 hold, let Iz — oo, as T — oo, and Iy = O(T"*(log T)~"/#=Y), for some A > 0.

15



Then
P(lim mT>m0> :P<Tlim mT<mo> =0

T—oo —00

where mg is the true number of breaks.

From Theorem 3.8, we see that mr is a strongly consistent estimator of the true number

of breaks.

Remark:
For completeness, we now define an additional statistic based on the average of partial

sums, rather than on the supremum of partial sums. Consider:

t
1. _
V]&ITZG_QbTIZ| (X — X)
T t=1 j=1
and ) s R )
Vi, = E—Qb;l SO G -X{1 < <EY =Xk +1 <5 < T))
T t=1 j=1

with by = T%/2,/2Toglog T. By noting that V]&[T < VqlT and Vf[T < VQQT we have that under
the null of zero breaks and the null of one break respectively, limsupy o, Vi < 1/2 and
limsupy_, o V]E[T < 1/2, almost surely. Such a result is a substantial improvement over Corradi
(1999, Theorem 4.1(i)) where for the statistic V},, was provided a looser upper bound, equal
to % + % Overall we expect that in finite sample the average statistic has smaller type I error,

but larger type II error.

4 Findings from a Monte Carlo simulation exercise

In this section we analyze the finite sample performance of the testing procedure via a Monte
Carlo exercise. In all the experiments we have chosen the parameter £, governing the number of
observations used in the construction of the sample local mean (7) and (6) via cross validation,
although we are aware of the fact that the asymptotic validity of the cross validation procedure
holds only in the 7id case. First we consider the behavior of Va;r and Vgr when there are no

breaks, then in the case of one break and finally in the case of multiple (two and three) breaks.
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We consider two sample sizes: T' = 200 and 7" = 400. In all the tables below, each entry denotes
the (percentage) number of times we have chosen the number of breaks stated at the top of the

column.

4.1 DGPs with no breaks

We have generated Xy according to the following DGP: X; = ¢ = pes—1 +u; where the innovation
uy is independent normal with variance 1 — p? to ensure the same unconditional variance of
the process X; across experiments. The parameter 7, which regulates the minimal distance
between adjacent break points (see A5) has been set equal to 0.05.” Three values of p have been

considered.®

T =200 | Vsg Ve

n=0|n=1|n>2 | n= n=1|n>2

p=0.0 0.84 0.15 0.01 0.96 0.03 0.01
p=0.5 0.80 0.17 0.02 0.96 0.04 0.00
p=0.9 0.72 0.25 0.03 0.95 0.04 0.01

T =400 || Vsr Varr,

p=0.0 0.86 0.13 0.01 0.99 0.01 0.00
p=0.5 0.83 0.16 0.01 0.98 0.02 0.00
p=09 0.75 0.22 0.02 0.98 0.02 0.0

As the data have been generated with no breaks, the Vgz, has a type I error around 0.15
in the case of uncorrelated of the errors, the type I error rises to above 0.20 in presence of

high correlation in the data; the dimension of the sample size slowly improves the results. The

"All the computation were carried out in double precision FORTRAN, using a random generator from the

NAG library. All the reported simulation results are based on 2.000 Monte Carlo replications.
8The lag truncation in the heteroskedasticity and autocorrelation consistent estimation of the covariance ma-

trices has been chosen according to the automatic bandwidth of Andrews (1991).
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statistics based on the supremum can wrongly detect the presence of one break, however the
statistics never points to more than one break. On the other hand, Vj;; is around 0.02 for
T = 400, and around 0.04 for T" = 200. This is not surprising as at any stage of the procedure

Var < Vsi.

4.2 DGPs with a single break

We now consider DGPs with a single mean shift, i.e. Xy = pol{l <t < ki}+ml{k1 +1 <
t < T} + ¢ and the ¢ term is an AR(1) process, i.e., ¢ = 0.5¢,_1 + u; where the innovation
u; is independent normal with variance 1 — 0.52. For convenience we will fix o = 0 and we
will consider two different values of the mean in the second subperiod, @1 = 0.5, 1 and three

different positions of the break point in the sample, k—Tl =.2,.35,.5.

T =200 | Vir Varr

w1 =051 n=0|n=1|n>2|n=0|n=1|n>2

k—Tl =0.2 0.33 0.56 0.11 0.89 0.11 0.00
- =035 | 0.27 0.63 0.08 0.85 0.15 0.00
k—Tl =0.5 0.21 0.71 0.08 0.80 0.20 0.00

up =1 n=0]|n=1|n>2 n=0|n=1]| n>2

2 0.02 0.81 0.17 0.51 0.49 0.00
35 || 0.02 0.85 0.12 0.40 0.60 0.00
5 0.01 0.89 0.10 0.23 0.77 0.00
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T = 400 Vsr, VL
w1 =05 n=0|n=1|n>2 | n=0|n=1|n>2

k—Tl =0.2 0.20 0.73 0.07 0.82 0.18 0.00
=035 0.15 0.78 0.06 0.77 0.23 0.00
k—Tl =0.5 0.07 0.88 0.05 0.68 0.34 0.00

T =400 || Vs, VL

=1 n=0|n=1|n>2 n=0|n=1|n>2
k—Tl =0.2 0.00 0.88 0.12 0.24 0.76 0.00
k—Tl =0.351 0.00 0.90 0.09 0.13 0.86 0.00
k—Tl =0.5 0.01 0.95 0.05 0.03 0.96 0.01

In presence of a single break, the rule based on the supremum performs extremely well,
even with samples of relative short length, as typical with quarterly macroeconomic time series
(T = 200). The presence of break of small size, p; = 0.5 (half of the standard error of the
innovations) or positioned at the extreme of the sample slightly reduce the ability of the statistic
of detecting the break. On the other hand, Vj;r performs well only with relatively large shift

and break point not too close to the beginning of the sample.

4.3 DGPs with multiple breaks

We now look at the performance of the statistics in the presence of multiple breaks, and we will
perform two type of exercises. In the first one, we consider a DGP with two break points, i.e.
Xy =pol{l <t <k} +ml{k+1 <t <ko}+pul{ka+1<t<T}+ ¢ and the ¢ term is
an AR(1) with autoregressive parameter equal to 0.5. We keep fix the break dates at k—jl =1/3
and k—ﬁ = 2/3 and vary the relative size of the shift, measured as Zf—:’;—é We will fix gy — po =1

and we will consider samples of 200 and 400 observations.
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T =200 Vsr Varr
n=0|n=1|n=2|n>3 | n=0|n=1|n=2]|n>3
ﬁf—:’;—é =05 0.01 0.67 0.31 0.01 0.03 0.96 0.00 0.00
/ﬁ—:ﬁ—é =10 0.01 0.29 0.68 0.02 0.01 0.99 0.00 0.00
T =400 Vsr Varr
n=0|n=1|n=2|n>3 || n=0|n=1|n=2]|n>3
fﬁ—:’;—é =05 | 0.00 0.48 0.51 0.01 0.00 0.99 0.01 0.00
/ﬁ—:’;—é =10 | 0.00 0.09 0.88 0.03 0.00 0.99 0.01 0.00

We see that Vi1, in all cases is able to detect only one break, although it practically never
fails to detect it. On the other hand in the case of large shift (i.e. shift equal to the standard

deviation of the innovation) Vgr is able to detect both breaks about 68% of times (for 7" = 200)

and 88% of times (for 7" = 400); the procedure chooses either one or two breaks.

We now consider the behavior of Vgr when in the DG Ps there are three breaks? located

k k
at b= 1/4, B2 =

been analyzed.

T =200 Vsr,
(to, pt1, p2, p13) || =0 n=1 n=2 n=3 n>4
(1,2.5,1.5,0.5) 0.00 0.06 0.48 0.45 0.00
(1,2,3,4) 0.00 0.13 0.54 0.33 0.00
(1,2,1,2) 0.09 0.29 0.13 0.46 0.03

9n the case of three breaks Vi was able to detect only either one or two breaks, in all cases.
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T = 400 Vs,

(10, 1, 2, t3) || =0 n=1 n=2 n=3 n>4
(1,2.5,1.5,0.5) 0.00 0.00 0.20 0.79 0.01
(1,2,3,4) 0.00 0.02 0.25 0.73 0.00
(1,2,1,2) 0.03 0.15 0.06 0.74 0.02

In the first parameterization it is easier to detect all the breaks, as it is characterized by a
large shift at the beginning of the sample; while the second and third parametrizations have all
shifts of the same size. In particular the third scenario is the most difficult, given that difference
between the subperiod means and the mean computed on the whole sample is equal to half
standard deviation of the innovation.'® A sample size of 200 observations seems too small for
correctly detecting the number of breaks, as each subperiod has only fifty observations. However
the procedures correctly detects the presence of multiple breaks. In the first two cases it tends
to detect two breaks instead of three, while in the last case the procedure tends to find either a
single break or three breaks. With the larger sample size, the rule is able to detect the correct
number of breaks. As the errors display a relatively high degree of dependence (p = 0.5), these
results seem rather encouraging. Finally, as term of comparison, we repeat the experiment using
an estimator of the variance based on a sample mean computed over the entire sample (i.e. we
set £ in (7) equal to one). We note that the resulting overestimation of the variance, induced
by the neglected mean shift, slightly reduces the ability of the procedure of detecting multiple

breaks.

107f we had only two breaks with o = 1, gy = 2 and pe = 1then the moving estimates test of Chu, Hornik and
Kuan (1995) would be probably the most appropriate test, given that it has been properly designed to detect a

temporary parameters shifts.
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T =200 Vs

(10, 1415 142, 143) n=0 n=1 n=2 n=3 n>4

(1, 2.5, 1.5, 0.5) || 0.02 0.12 0.51 0.34 0.00
(1,2,3,4) 0.00 0.23 0.52 0.25 0.00
(1,2,1,2) 0.30 0.48 0.08 0.14 0.00
T =400 Vs

(10, 1415 142, 143) n=0 n=1 n=2 n=3 n>4

(1, 2.5, 1.5, 0.5) |  0.00 0.03 0.23 0.74 0.00
(1,2,3,4) 0.00 0.06 0.29 0.65 0.00
(1,2,1,2) 0.15 0.44 0.05 0.36 0.00

From the findings reported above, we see that if there are no breaks Vj;7 never finds a
break while Vgr tends to find a break in about 15% — 20% of the cases. On the other hand, if
indeed there are structural breaks then Vgr is able to detect the correct number of breaks in
most of the cases. Thus if Vgr detects zero break or more than one break we rely on such a
findings. On the other hand if Vgr detects one break, we cannot draw a clear cut conclusion
on whether there is a break or not. In such a case, it would be recommendable to test the null
of zero versus one break using some other testing procedure, such as Bai (1997,1999) or Kuan,

Nunes and Newbold (1995).

5 Are there mean shifts in the Eurodollar interest rate?

In finance theory, the pricing of a derivative security is based upon continuous time arbitrage
arguments, stemming from the specification of a diffusion process for the underlying asset. To
this end, the correct specification of the functional form of the drift and the volatility term
of the underlying diffusion process is crucial for the correct pricing of the derivative security.

Following this basic intuition, a large body of literature has paid attention to the issue of
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testing for the correct specification of a diffusion process. Given that the drift and the variance
uniquely determine the stationary density of the diffusion, a natural approach is to compare
the parametric density, implied by a parametric specification of the drift and the variance, with
a nonparametric estimator of the density. This is the approach proposed by Ait-Sahalia in a
sequence of papers (1996a, 1996b) and applied to testing continuous time models of the spot
interest rate.

Due to the usual change of measure argument the volatility term plays a crucial role in
the pricing of derivatives, it is nevertheless true that the choice of the proper functional form
for the volatility is not independent of the correct specification of the drift. Indeed one of the
main findings of Ait-Sahalia (1996b), when applying his framework to the characterization of
the properties of seven-day Eurodollar deposit rate, is that the linearity of the drift imposed
in the literature is the main source of mispecification. To this end he proposed a non linear
specification of the drift which is able to capture the mean reverting behavior in presence of
large deviations, while being virtually zero around the mean of the process.

In light with those findings, the same data set of spot rate has been analyzed via the pro-
cedure described in the previous sections, in order to test for the possible presence of shifts in the
mean. The data!! set consists of seven day Eurodollar deposit rate, bid-ask midpoint, continu-
ously compounded yield to maturity, from 01.06.1973 to 25.02.1995. The data has been sampled
at weekly frequency, considering closing of the week value, and total sample size amounts of 1131
weekly observations. The weekly data are the solid line in Figure 1, while the autocorrelation
function of the spot rate levels is displayed in Figure 2 with the solid line. The ACF exhibits an
extremely slow decaying pattern, in fact the correlation seems to vanish at a linear rather than

at a geometric one.

" The data are freely available from Ait-Sahalia’s homepage, www.princeton.edu/ yacine.
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Figure 1 - Eurodollar spot rate
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Figure 2 - Autocorrelation function (bounds equal to £1.9671/2).

The sequential procedure for the detection of the number of breaks as well as for the

locations of the break points, has been applied to the level interest rate, using the local mean
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statistic Vsr,, defined as in (5). The window length has been set equal to 320 periods (§ = .41)
according to a cross-validation type of argument, while the length of the truncation lag in the
computation of the unconditional variance has been set equal to 35, i.e., I = 35. The results of

the sequential procedure are reported in the following table.

Hy H,y Vs

>1 1.24
0.67
1.01
1.06
0.68
>6 0.48

L = W N = O

Thus we conclude in favor of five break points. In the table below, the first column displays
the six different subperiods (in terms of the week of the year), while the second column displays
the different means. The means over the different time spans are also plotted in Figure 1 with

a dotted line.

Subperiods Mean
1973/23 — 1975/1 10.414
1975/2 — 1978 /36 6.057
1978/37 — 1985/24 12.119
1985/23 — 1986/35 7.644
1986/36 — 1991 /4 7.883

1991/5 — 1994/7 4.238

The procedure detected the presence of five shifts in the mean of the spot Eurodollar rate
from 1973 to 1995. Those dates are in line with ex post revisitation of the US monetary policy
(e.g.: Romer and Romer, 1989; Rudebusch, 1995). The beginning of 1975 and middle of 1978

are two episodes discussed by Romer and Romer and the latter episodes is also included in the
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so called "Romer dates.” During the 1985 and 1986, there has been first a loosening of monetary
policy, followed by a change of behavior in the end of 1986, as reported by Rudebusch (1995)
in his study on the modification of the Federal Reserve interest rate target. Finally, the 1991 is
middle point of a process of rate reduction started in the early 1989, with a FED target rate of
9.75%, and terminated at the end of 1992, with an interest rate level of 3%.

While the break dates are consistent with our economic priors, the validity of the analysis
can be affected by the strong dependence detected in the data. To this end, the ACF has been
recomputed after subtracting from the spot rate an estimator of the mean for each subsample;
such ACF is plotted in Figure 2 with dashed line. Surprisingly the autocorrelations function
shows a completely different pattern with respect to the one computed without considering the
mean shifts. In particular, even if the correlation at lag one is still close to one, it seems to decay
at a much quicker (exponential type) rate. The correlation displays some limited dynamic around
one hundred lags, which, for weekly data, corresponds to a period of two years. So it clearly
emerges that neglecting the mean shifts induces a spurious overestimation of the autocovariance
and so a very slowly decay pattern of the autocorrelation function. Once we properly compute
the sample mean, taking into account the breaks, the memory of the error of the process decays
at an exponential-type rate, thus we can conclude that assumption A2, regulating the memory
of the errors, is satisfied and our findings are reliable. Furthermore the results of the sequential
procedure are not affected by the neglected breaks, given that the local mean has been utilized
in the computation of the variance.

This empirical findings are somewhat related to recent literature which points out the
problem of spurious identification of long memory due to neglected structural breaks (Diebold
and Inoue, 1999).!2 In fact, as we already discussed, in the presence of neglected breaks the
estimator of the variance of the partial sum is of the order O(T'r), where I7 is the lag truncation
parameter which is of order 7"/4(log T)~%/=% X\ > 0. Thus the behavior of the series can be
misleadingly confused with the behavior of a long memory process.

The correct specification of the drift term is crucial for the proper identification of the

120n the other hand Hidalgo and Robinson (1996) proposed a test for a single structural break in the presence

of long memory errors.
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volatility term characterizing the diffusion process; in this example, we show that the weekly
eurodollar spot rate presents several mean shifts, which are in line with the change in the
FED policy over the last twenty years. We have shown that neglecting those breaks can be
an explanation for the strong dependence (of long memory type), which is usually observed in
those data. In a recent paper Pritsker (1998) shows via monte carlo exercises, that in presence of
strong dependence, Ait-Sahalia’s specification procedure tends to overreject the null. Given the
almost T-strong consistency of the break point, it may be appropriate to perform the Ait-Sahalia

non parametric test over the different subsamples.

6 Conclusions

In this work, a simple sequential rule for detecting the number of shifts in the mean is proposed.
We show that if, at any stage, we accept the null of [ versus at least [ + 1 breaks whenever we
get a value smaller than or equal to 1/2, and we reject the null otherwise, then in large sample
the probability of both type I and type II error is zero. The sequential procedure delivers a
strongly consistent estimator of the number of shifts.

Critical for the performance of the sequential rule is the use of a consistent estimator for
the long run variance, under both the null and the alternative. Under the alternative, standard
HAC estimators of the variance deliver an over-estimation of the true variance of the process
due to the neglected shifts in the mean. This can heavily jeopardize the ability of rejecting the
null when it is false. We propose an estimator of the variance, based on deviations of the process
from a properly defined local mean, which is a consistent estimator under both the null and the
alternative, at any step of the procedure.

Some preliminary simulation results have shown that the procedure performs rather sat-
isfactorily with samples of 400 observations, in the case of more than two breaks, and with
samples of 200 observations in the case of at most two breaks. We have applied the procedure
to the weekly Eurodollar deposit rate and we have detected five breaks, which are located in

lines with changes in the U.S. monetary policy.
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7 Appendix

In the proofs we will make extensive use to the following notation: 1{k,k1} = 1{k <t < k1 };
dr = /T2log(log(T)).

PROOF OF PROPOSITION 3.1:
(i) The DGP under the null is: X; = 19 + ;. We need to show that :

(a)

[Tr]

lim sup sup dT|Zet—TZet|—

T—o0 rely,1—v]
where o2 is as in A3, and v is as in A4.
~2 a.s. 9
(b) 07 = 0.

We begin by showing (a). We have

[Tr] T
lim sup sup d ]Zet - rZet —rB(T))| <
T—>°°T€[%1 7l
lim sup sup d |Zet B(Tr)| +1lim sup sup rdp |Zet = I+1I
T—oorely,1-7] T—oorely,1-7]

where B is a Brownian motion with variance equal to (78. We show that I and IT are o,4.5.(1).
Given A1-A3, I = 045.(1) because of Theorem 1 in Eberlain (1986), once we have shown that
(12) and (13) below hold:

[1E(ST(m)[Fn)|2 < C (12)

where Sp(m) = Zk i1 €k, and C'is independent of m, and F;, = o (... €1, €p) and uniformly
in m,

T E|E(Sr(m)?|Fm) — E(Sr(m)*)| = O(T™) (13)

for some 6 > 0.

We begin by showing (12). By Lemma 3.5 in McLeish (1975a) and by Minkowski’s inequality,
[ESTm)[Fm)ll2 < [[E(emi1[Fm)ll2+E(em2[Fm) [24-0x2026[[E(em 1 [Fm )2
1/2-1/2(2+6 1/2—1/2(2+6
< 6072 e i lars) + - - 6agl T PE el
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< GSLth lecllagzee) Y a;/2_1/2(2+6) <60,**a<c
=0

because of the bound in A1 and because, given A2, > °° o/ 212248

o1 A < oo.

As for (13) it holds by the same argument used in the proof of Lemma 2.1, p.652-653
in Corradi (1999). IT = 04s(1) because of the law of the iterated logarithm for strong mixing
processes, that follows as a corollary of Theorem 1 in Eberlain.

Thus it suffices to show that

lim sup sup = |B(Tr) —rB(T)| = 001/2 (14)
T—oorefy,1—9] dT
as
(T'r] T
lim sup sup d;'| Zet - TZet\ =lim sup sup dj' |B(Tr) —rB(T)| + 04.5(1)
T—oorely,1—7] =1 =1 T—oorely,1—]
In order to show (14), we shall proceed in three steps.

STEP 1: Show that pointwise in 7, limsupy_,., dy.* |B(Tr) — rB(T)| = o9+/r(1 — 7).

STEP 2: Show that d;* |B(Tr) — rB(T)| is almost sure asymptotically uniform equicon-
tinuous (a.s. AUEC) in r over [y,1 —7].

STEP 3. Given Step 1 and Step 2, show that lim supy_, . Sup,cy,1-+] d;' |B(Tr) —rB(T)| =
ool/2.

PROOF of STEP 1: For any given 7,

1
lim sup sup — |B(Tr)—rB(T)]
T—oorely,1—] “T

= limsup sup dp'(l—1)|Z(~——T)| = oo/r(1—7) (15)

T—00 refy,1-7] 1—r

with Z be a Brownian motion with variance equal to 3. The first equality in (15) comes from the

fact that B(Tr) —rB(T) is a Brownian Bridge and has the same distribution of (1 —r)Z(:=T)

(see e.g. Sen, 1986, p.113). The last equality in (15) follows from the LIL for the Brownian

motion (e.g. Karatzas and Shreve, 1991, p.112), for any given r.

PROOF OF STEP 2:
d;t |(B(Tr) —rB(T)) — (B(Tr') — ' B(T))|
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< d;!|B(Tr) — B(T)| + dg'|(r — ) B(T))|
Let S(r,6) = (r' - |r —r'| < §). Now, because of the LIL for the Brownian motion, almost surely
lim sup sup  sup dpt|(r —7")B(T)| < 2809
T—oo refy,1—v] r'eS(r,6)
and it approaches 0 as § — 0, ensuring the a.s. AUEC of the term.
For given T, because of the Holder continuity of order € (0,1/2) of the Brownian motion (see

eg. Karatsas and Shreve, p.53-54), we have that almost surely,

_ !
sup sup —|B(T) B(r)] <C

rely,1—~] ' €S(r,6) |T - Tl|n
where C' is an appropriate constant. By noting that d}l — 0 as T — o0, it follows that almost

surely, as § — 0,

lim sup  sup sup d}1|B(7“) —B(r")|=0
T—oorely,1—v] r'eS(r,6)

PROOF OF STEP 3: Let S(6,7;) = (r: |r — ;| < 6), so that we cover the space [y,1 — 7] with

N balls of radius 6. Now for r € S(6,1;),
d;' |B(Tr) —rB(T)| < sup d;'|B(Tr') —r'B(T)|
r'eS(é,ri)

< sup d' [(B(Tr)—r'B(T)) — (B(Tr:) — riB(T))|

r'eS(é,r;)
+d | B(Tr;) — rB(T)|
and so
sup d'|B(Tr) —rB(T)|
r'ely,1-9]
< sup sup dy'|(B(Tr') —+'B(T)) — (B(Tr;) — i B(T))| (16)

r'€ly,1—y] r'€S(é,r)
+ max_d,'|B(Tr;) —r;B(T)|

i=1,...N
From Step 2, we know that as 6 — 0, the lim sup as T' — oo of the first term in the RHS of (16)

is almost surely zero. Now, from the proof of Step 1,

lim sup max d; | B(Tr;) — rB(T)|

r
= I d7'|(1 =) Z(——T)| = 001/2
tm sup  max, dp' (1 =) Z(; =Tl = ool/
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given (15). This concludes the proof of (a).

(b) 52 “% 02 from Theorem 1 in de Jong (1999), once we have shown that his Assumptions
(1)-(4) hold. (1) and (4) hold straightforwardly, given the Bartlett kernel we are using. Given
Al and A2, de Jong (2) holds (using his notation) for » = 4 and p = 2(2 + ¢) and (3) holds
given the rate of growth for the lag truncation parameter in the statement of the proposition.
This concludes the proof of (i).

(ii) First note that under A1 — A2, by the strong law of large numbers (e.g. McLeisch 1975,
Theorem 2.10),

1 k1 ko —ki 1
X=-S"Xx=21-%"x X
TZ ¢ Tklz ! T ke—ki >, Xt
t=1 t=1 t=k1+1
T—kym 1 as. K~
X — =
+ T T—k, Z t Z Tim1)pi = po
t=kmi1+1 =1
We shall now show that % = O,s(1). First
1 X
— ) (X X7 X2 CoX LN x, -
Tlr ;( t— TlT Z t + Tip Z t Oas

by the strong law of large numbers, and by recalling that ﬁf( = Oq.5.(1). Second,
og(log

1 It T

1 I T 1 lr T -
= T—b;wst;(xt—E(Xt))(Xt S—E(Xt_s>>+T—lT;wst§l<Xt E(X))(E(X—s) —X)
Ir T T T
b Do Y (e = QG ))(BX) =) = = > w3 (X = BQO)(X - B(Xi)
s=1 t=s+1 s=1 t=s+1

by noting that the first three terms on the RHS are o45(1) by the strong law of large number
and as sup, F(X;) < co. The last term is Oy (1), as X %2 Zmﬂ( — Tl = [
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As for the numerator, for r, such that [Tr] = k;, it can be rewritten as

k1
dy'| Z(Xj — B(X;)) — (X — p) + (E(X;) — )]

k1
>d;'|> (B(X;) —p 1IZX — E(X;)) = k(X — )| = Ap + O

k1
_ k1 5
Cr < d7' S (X; — BOX)| + e (X — 1)
= V2T loglogT’

because of the LIL for strong mixing processes, given that vT" < k; < (1 —~)T.

= Oqys(1)

k1 T
Ap = |po — pl— > Ay————=x
7 =lno M’dT - 7\/2TloglogT
because of A4 and A5. As d.! SUPycfy1-n] | ZET:TI] (X; —X)| > d, ! Z?LI(X]- — X)|, the desired

result follows.l

PROOF OF PROPOSITION 3.2.
(i) Given that T¢ — oo, as T' — oo, Vt, X -X% 0, the result follows by the same argument

used in the proof of (i) in Proposition 3.1.

(ii) It suffices to show that, under H 4, giT L% o2

T
1 —
Thr = 72 (K= mlLk) — ik +1,7) - (X" = uol{L, k1) — plfks +1,7})° +

= Zwr Z — ol {1k} = 1{k + 1,7} = (X' = pol{1, ka} — 1{ky +1,7})) %
s=1 t=s+1
(Xims = pol{1, hn} — 1 {ks + 1,73 = (X" = pol{1, bn} — 1 {ks +1,T}))
= I+ IT+IIT+1IV+V+VI
where
1 T
I== X, — uol{1, kgt — iy 1{ky +1,T1)?
T;(t pol{l,k1} — p1{k1 +1,T})*+
Zws Z — oLk} —m{k +1,T}) X (Xoms — pol{1, b1} — pu1{k1 +1,T})
s=1 t=s+1
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1 T

II=-= Z(Yt — ol {1, ka} — pul{ky + 1,T})?
t=1
2 o
[T = -7 Y (X —pol{ Lk} — by + 1,T}) x (X¢ — pol{1, b1} — ma1{ky + 1, T})

t=1
ZwT Z X' — ol {1,k — pl{ky + 1, TH) x (X' = pol{s, k1 } — ju1{ky +1,T})
s=1 t=s+1

4 —~t

=7 Zws > (X —pol{L b1} — i l{kr + 1,73 x (X" = pol{s, b1} — p1{ks + 1,T7})

s=1 t=s+1

Zws Z Xy — pol{s, k1t — p1{k1 + 1,T}) x (X' — pol{s, by} — gy 1{ky + 1, T
s=1 t=s+1

Now I %% 02 by Theorem 1 in de Jong (1999). Thus we need to show that I1, III,IV,V,VI

are 04.5(1). We shall begin by showing that V1 is 04.5.(1). We can rewrite VI as

Ir k1—T¢ . 9 Ir T .
ZwT Z Xt—s - MO)(X - MO) + T Zws Z (Xt—s - ,ul)(X - ,ul)
t=s+1 s=1 t=k1+T¢+s

Ir k1—1+T¢+s

+m > wr ) (Xes—pol{l b} — 1 {ky +1,T}) x (X" = pol{L, ki } — pa1{ky +1,T3)
s=1 t=k; —T¢+1

=Via+VIb+Vlic
Now Vt < kq, X' - o = Oa,s,(T_g/Q\/loglong) uniformly in ¢, and V¢t > k1 + 1, X' - =
_ ] —o7%€ 3
O,.5.(T~¢/%\/loglog T%). %Z{le W ESE{ (X¢—s — o) = 0q.5.(I7), thus as nggw — 00
as T — 00, Via is 045(1), and for the same argument VIb is 0,45 (1) too. Finally, as for Ve,
(Yt —polH{1L,k1} —ml{k1 +1,T}) = O45.(1), as X' satisfy a strong law of large numbers, also

I kE1+1+T¢—1+s

Zws S (Xes— pol{L ki) — 1 {k + 1,T}) = Ous (17T loglog T¥)
t:kl—TE—‘rl

Thus for M — 0, VIcis 045.(1) too. Now, V is 045 (1) by the same argument. As for

IV it can be written as

9 Ir T I k1—T¢
=t <t— — —~t—
V=25 ws Yy, (X =) x (X7 =) + E we > (X = o) x (X7 = o)
s=1 t=k1+T¢+s s=1 t=s+1
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Ir ki+T¢—1+s

7 Zws S X - pol{1 k) -l {k +1,T})

= t=k1+1-T¢

X(Yt* — pol{s, k1 } — pa1{ks + 1,7}

=1Va+1IVb+1Vc

IVa and IVb are Oa.s,(lTT*£ loglogT') and IVc is Oa.s,(lng&1 loglogT'), thus IV is 04.5.(1).

Finally /T and I11 are o, (1) by the same argument used above.ll

PROOF OF LEMMA 3.3

Recall that that we can write Sr(k), as

Sr(k) ZtT—1 i k ko T kK
= &= - 7?42 2.
)" = B+ 2 nlg)

T T 7T
(k)

where p and i are defined as below equation (5). The first term of qTT is

+1 mo+1 [T
ZT: 332 Z mo
S R M LI W o

t= [Ti_lT]-‘rl

the first and the last term on the RHS converge almost surely to o2 and to zero by a strong
law of large number (SLLN) (e.g. McLeish 1975), while the remaining term is deterministic and
goes to >, u?(1; — 7i—1). The sample mean 7 converges to p by SLLN. The mean in the first
subsample u(@) converges a.s. uniformly in 7 to p(7) given that for every 7 SLLN ensures the
convergence, also a strongly stochastically equicontinuity conditions (Andrews, 1992) is satisfied;
the same holds for p( s ]) Because all the stochastic terms have uniform limit on 7 € [y,1—7],

the result then follows.l

The proof of Theorem 3.4 requires three Lemmas.
LEMMA A1l

There exists a constant C' depending only on the break points such that

U(r) = U(m) = C|r — 13

where 7} = argmin(U(7), ..., U(Tim,)), S0 T3 is the break among the mg that most contributes

to the reduction of the sum of squared residuals.
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PROOF: Consider a 7 € [1;, T;+1] where 7; is a generic break point among the possible mg and

assume without loss of generality that U(7;+1) > U(7;). The expression for U(7) gives that

9 T
) JE—
T A 2y p(T)
2 Ti
—2
/1/ 1_

Ulr)-U(mn) = - pu(T)? —

1—7’2'

+ u(7:)? + —pupa(7s),

1—7’,’

and given that u(7) = =) piv1 + 2 p(7;) and after some algebra it follows that

T

U(r) —U(m)
- —((Z :77—_’)) {% (1(7s) = pis1)” = (piga — p)* — 1 fn (u(rs) — )%}

(1 = Tit1) Tit1
1=7) (Tig1 —7)

(Tix1 —Ti) , T 9o T 5
A—7m1) ‘ris (1(7i) — Hit1) P (tir1 — o) P g

= (1—m7) Py

T T;

(u(rs) — 1)}

. [ (I =Tiy)Tig1 ]
SR C e Cwn)
I () = ) = (s = 0 = o () = )
e[ Ommma Ve e
- ( ’l) _T(l—T) (Ti+1 _Ti)_ {U( ’l+1) U( ’l)}
> Ci(t—m7)

the second equality is obtained just arranging terms, the first inequality is due to 7 < 741,
the third equality follows by the definition of U(7;11) — U(7;) and finally the last inequality is
obtained by substituting to the expression into brackets the positive constant C; which is only
function of breaks fraction 7;,1 and 7; and the difference of the sum of squared residuals at
the break dates. Given that the number of break points is finite and given A4 then there is a
constant ¢ such that

U(m) —U(Tol) > C‘Ti —701}

and combining this with the previous finding

=
2
|
=
SL
Vv

C¢|T—T¢|+C}Ti—7(ﬂ

Y

C‘T—T(H
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where C' is the min of ¢ and the finitely many C;.

LEMMA A2
Under assumption A1-A2 and A4, |77 — 74| = Ous(T~V/2\/Toglog T).
PROOF: Let
Sck) _ Sr([T°T]) _ Sk _ Se(7°T) | oy 4
T~ T =—F = T +U((T) £ U(1y)
St (k)

—U%ﬂﬂ+Uﬁh—Wﬂ>

By the definition of the break estimator the left hand side of the above inequality is less then

zero and so we obtain that

%WE%Q—U%ﬂszﬁH—Wl
k

where the last inequality follows by Lemma A1l. Given that the left most term converges to zero
almost surely at rate T-1/2,/loglog T by the same argument used in the proof of Proposition

3.1 (i), the desired result follows.
LEMMA A3
Under assumption A1-A2 and A4, there is an My = O(T~"), n > 0 such that

min (Sr(k) — Sr([r0T])) >0 a.s.

k€eDr

where Dy = {k : T (1 +p) < k < T (1 - p), |k — [3T]| > My} with 7§ and 7471 being
the two break points just before and after 73, and p is a small positive constant.

1
PROOF: Rewrite for 7 = %, T& ’;, and assume, without loss of generality, k < ko Note that

the same result will hold for the case of 7 = limp_, %, in fact the steps below would hold up
to a term vanishing at rate T~!. Consider a k for which it is true that Sy(k) < Sy ([T'73]), then

it follows that
St(k) = Sr([rgT]) = T(U(r) — U(1g)

[k = [T

where C' is the constant of Lemma Al. Note that the numerator on the left hand side is

<-C (17)

negative. The set Dp represent the data points which are bounded away from the previous and
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the following break dates and which are distant from the date of the break 73 of at least My

observations.

The proof is based on arguing that with probability one for all k € Dy the absolute value
of (17) is zero and so by contradiction we have that Sp(k) > Sp([7°T]) for k € Dp. Consider

the numerator of the previous expression and indicate with k(l) = [T&T]
|St(k) — Sr(kg) — T(U(r) = U(mp))| =

k k T k k
T — — N2 & =2 ) — (Y
\ j__kuQr) T—F T2 kuu( )

Bk T, kK

- 2 m
Rl i s G s e

)

1
2 2
2
+1—T'M(T) 1—7 1—7' (7)
1 1
To 1\2 2 7o 1
— — 2
T— 6%0) 1_%u+-1_%wmwl

The proof is based on showing that the left hand side of the above expression divided by ’k — ké}

goes to zeros almost surely. By triangular inequality, it follows that
|St(k) = Sr(kg) — T(U(7) + U(rp))| <

ko k % %

T T
T — 2 Ey2 2 _ 2
T T 1 1
T 2 _ 2
e k“b+1—" 1—%“‘+
E _ k kd k¢ T Ta 1

2T | ——— Tip(=0y - 0 .
I Pulg) = 7 H»M ) LﬂﬂMﬂ+1_%ﬁM%ﬂ

We call the three elements on the right hand side as I1p, 127 and 137 respectively. The first

term on the right hand side, 1y, is equal to,

2 1 2
k ) kg >0 (p + ) T 2 To 142
T|— + _ <
| T—k( k T —k} k * wr)” =g rlm)T =

s () e ) i ()
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2
B oYeay Z“ﬁ N > gy i DOLDIL

pu(r)? ~

1— M E

where iy = p1{k; + 1, kis1}, Zk is the summation from 1 to k, while ZIZO is the summation
from k to kg. We will show that the right hand side normalized by ’k — ké} goes to zero. First

consider the first and the seventh elements on the right hand side

k SOk 2

k
) (4 (o))

which divided by ‘k — ké} it converges to zero, as ‘k — ké} > My, My — oo, by the fact that
k k
(Zk—”t — (1)) = O(T™1) and (Zk—“t + (7)) = O(1). The same result holds for the fourth and

the last term. The second and the fifth element are

2

1 E
T‘m(zet> le 1) th | =

1 £\ (E) (k— k) (T — k — k)
Tam—m) <Z€t> -2 TR Ok)le k(? (Z&) -

kL 2
T : T (k—k§) (T —k — kp)
|k3 (T —KY) zk:et _22&25’5 k(T — k) kg (T — k3) <Z€t>

all the terms are Ogs(loglogT') by the LIL and, divided by ‘k - ké} which is O(T""), n > 0,

approach zero almost surely. Finally the third and sixth terms
kl
e (zz) e (st -

k:)(T k— k)

1 o
Tm ZMtZ& ZMZ& - “ Rk (T - k) (ZMZ&:) =
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T (k—k) (T -k — k)

2
T k1 Zﬂtzé‘t ZMZ&: - k(T — k:)le k1 (ZM::Z&:)

again dividing both sides by }k — ké} it follows that it converges almost surely to zero by the

same argument. This implies that /17 normalized by ‘k — ké} converges almost surely to zero;
the same holds for 127 and 137.
Given that the LHS of (17) converges almost surely to zero, the proof of the lemma follows

by contradiction.

PROOF OF THEOREM 3.4

Pr< lim )kl ko‘—>0>

T—ook

< ( lim k!¢ DruU <TﬁmkE1 € DT,Tlim ’El — ké) > MT>>

T—ook

< Pr (kréljljnT (Sr(k) — Sr([roT])) < O> =0

This concludes the proof.ll

PROOF OF PROPOSITION 3.5: (i) Under the null, there is only one break, so let k} = k.

[r1]
dpt sup [ (X — 11, PN -1k + 1, TV X)| =
rely,l1-] 1
[rT] - .
dpt [sup | 1> (X = {1k} Xy — 1k + 1, T} X 2| + 04s(1)
rely, -] =1

given that k! — k; = Ous(T") and X; — X; = OGS(T_I/Q(l_”)\/loglogT), i =1,2 with X; =

. _
kll 1 Xy = 1 i1 (11 +€) and Xp = T+1€1 Zrirzklﬂ Xi = T+k1 Zrirzklﬂ (12 + €) , so we
have:
[T
dpt sup | (X5 — {1, k13X — 1{ky 4+ 1,T1X)| + 04s(1)
rely,1-v =1
[rT] k T
_ D omi €t Dtk 1 €t
=d;t sup |y (& — {1,k = — 1{k + 1, T} =0 )| + 044(1)
1D 5 T—h
[rT]
=dp' sup |y e —1{1k} [T Z’f Lk + 1L, TH(T) - )Z} ’“”,j %1+ 0s(1)

rely,1-1 =41
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) Sk
= d;' sup  [1{1,k1} Zet [rT) &=L

refy,1-] k1
[rT] ZTik €t
W+ LTHC Y. e = (7] = k) =)+ 0w(1)
t=ki1+1 1
[rT] k1
< dp max{ sup 141, kl}’zet rT] D=1 Et"
rely,1-] - k1
[TT] Z t
sup  1{k1 + 1, T} Z — ([rT) = k) &=L~ kl“ 1} + 0as.(1)

Finally, given that each terms inside the max operator converges to a brownian bridge, the
limsup as T' — oo of the right hand side of the last inequality is majorized by 1/2 by the same
argument used in the proof of proposition 3.1(i).

(ii) By the same argument used in the proof of proposition 3.1 (ii).l

PROOF OF LEMMA 3.6

Given the 7= consistency of the estimated break points, the difference between the expres-
sion in (9) and the one corresponding expression evaluated at the true break points is 04(1).
Thus the result follows by the same argument as in Lemma 3.3.

PROOF OF COROLLARY 3.7

Given A4, and given that k!/T — 78 = Ou(T~ 1), it follows by the same argument used
in the proof of Theorem 3.4. In fact at the second step we are dealing with a series of n — 1
unknow break and we detect the break among the remaining n — 1 that most contributed to the

reduction of the sum of square errors.

PROOF OF THEOREM 3.8
When we fail to reject the null, we stop; if we fail to reject Hi" : m breaks, we mean that we

have performed the sequential procedure m times.
m
P(li <Y P(lim Vi >1/2|H{true) =0
(Jim mp > mg) < 21: (fim Ver >1/2[H; true)

P( lim mp < mp) = P(limsup Vg < 1/2|Hy" false) = 0.

T—o0 T—00
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