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1 Introduction

Duration models with multiple destinations, also known as competing risks models,
have long been one of the principal tools of applied econometrics and other fields
such as biostatistics. These models seek to estimate changes in transition intensities
as time progresses (duration dependence) and differences in transition intensities
across subpopulations or treatments. This paper develops flexible semiparametric
estimators of conditional transition intensities, assuming only that the intensities
depend on regressors through a single index. In particular, it is not assumed, as the
literature generally has, that duration dependence is separable from the effects of
regressors.

Empirical durations model have traditionally been estimated by the maximum
likelihood method. However, nonlinearities and asymmetries in the distribution of
duration data complicate the choice of appropriate parametric functional forms, and
extensive specification searches are often necessary. The abundance of parametric
families used in duration models attests to the difficulty of finding appropriate forms.*
Over the past two or three decades, growing concern about assumed parametric forms
has lead to the development of nonparametric and semiparametric methods, which
allow estimation of transition intensities under much weaker assumptions. Fully non-
parametric estimators impose only mild smoothness assumptions.? Unfortunately,
these estimators are notoriously unreliable because of the now-familiar “curse of di-
mensionality” and have not gained widespread acceptance.

Most duration models used in econometrics today are so-called proportional inten-
sities models, which assume multiplicative separability between duration dependence
and the effect of regressors. In other words, it is assumed that the transition intensity
can be factored into a baseline intensity and a scale term, where the baseline intensity
depends on duration but not on regressors and the scale term depends on regressors
but not on duration. No economic justification for the proportionality restriction
has (yet) been found, and the popularity of proportional intensities models is due to
the fact that Cox (1972, 1975) developed a semiparametric estimator which allows
the baseline intensities to be estimated without restricting their shape to particular
parametric forms. Usually a parametric form is assumed for the scale term, the most
popular of which is an exponential transformation of a single (linearly additive) index
of the regressors. Nonparametric estimators of the scale term have been proposed
by Hastie and Tibshirani (1986, 1990a), who considered a proportional intensities
model where the scale term is an exponential transformation of a generalized (non-
linear) additive form.®> By assuming that the regressors appear in an index form, the
curse of dimensionality is eliminated. These estimators are an attractive compromise

1See for example chapter 3 of Lancaster (1990).

2Nonparametric estimators of conditional (integrated) transition intensities given regressors have
been analyzed by for example Beran (1981), Dabrowska (1987), McKeague and Utikal (1990), and
Nielsen and Linton (1995).

3See also chapter 8 of Hastie and Tibshirani (1990b) and the references therein.



between flexibility and reliability in applications where proportional intensities is a
reasonable assumption.

This paper develops semiparametric estimators of transition intensities without
assuming proportionality. The only maintained assumption is that the conditional
transition intensities depend on regressors through a single index. The paper thus
extends Cox’s model in a different direction than do Hastie and Tibshirani (1986)
and does not consider their generalized additive form. The single-index restriction is
a valuable means of reducing the dimension of the regressors, given that the tighter
structure (when valid) implies a faster rate of convergence to the asymptotic distri-
bution and better performance in applications with moderate sample sizes and many
regressors.

To fix ideas, suppose occupation of a given initial state can end with exit to one
of several possible destination states. If the data is subject to censoring, the event
of censoring is treated as a separate exit state without loss of generality. Let Y
denote the duration of stay in the initial state, S the destination state, and X a
g-vector of regressors. Let hg(y|z) be the conditional transition intensity of exiting
to state s at time y given X = x and let Hy(y|z) be the corresponding integrated
transition intensity. The maintained assumption is that there exist a vector §; and
functions h, and H, such that h,(y|z) = hy(y|2’3,) and H,(y|z) = Hy(y|2'3,). This
paper proposes estimators of [, BS, and H,. The estimation procedure consists of
several steps. In the first step, the index coefficients are estimated for the continuous
regressors. In the second step, the index coefficients are estimated for the discrete
regressors. The third step is to estimate hs and H, using standard nonparametric
kernel estimation techniques and x’'f,, as a proxy for x’'(,, where [, denotes an
estimator of ;.

Uniform consistency and asymptotic normality are established in several theo-
rems. The index coefficient estimator is shown to be root-n consistent. The rates of
convergence of the transition intensity estimators are found to be independent of the
dimension of X, and thus the curse of dimensionality is eliminated. The properties
of the estimators are also investigated through Monte Carlo experimentation. The
results suggest that the estimators perform well in small samples.

Existing estimators of index coefficients could be used in applications with uncen-
sored single-destination data and applications with right-censored single-destination
data when the censoring mechanism is independent of X.* However, the litera-
ture currently contains no semiparametric estimators for multiple-destination data,
nor for single-destination data when the censoring mechanism depends on X. This
research fills the gap by extending Powell, Stock, and Stoker’s (1989) average deriva-
tive estimator and Horowitz and Hérdle’s (1996) direct semiparametric estimator to
multiple-destination data.

Right-censored single-destination data where the censoring mechanism depends
on the regressors is a special case of multiple-destination data, given that right-
censoring formally is equivalent to an exit state. Therefore the new estimator of 35 has

4References to existing estimators are given in section 2.



wider applications in the literature on right-censored data. For example, it can also
be used in the first stage of Gorgens and Horowitz’ (1999) semiparametric estimator
of the censored transformation (GAFT) model and Horowitz’s (1999) semiparametric
estimator of the mixed proportional intensities model.

The paper is organized as follows. Section 2 considers estimation of index coef-
ficients. Section 3 discusses estimation of transition intensities. Monte Carlo results
are presented in section 4 and conclusions in section 5. The appendices contain proofs
of the theorems.

To estimate the transition intensity to a given state, the distinction between other
states is not necessary. Therefore the subscript s is suppressed in the rest of the pa-
per. Complicated notation is unavoidable, unfortunately, because of the need to
distinguish between the first and the remaining components of the regressors, be-
tween continuous and discrete regressors, between linear combinations of continuous
and discrete regressors, and between similarly defined subsets of index coefficients.
Hopefully, the notation chosen is the least confusing. Throughout the paper v; and
v_1 denote the first component and the vector of remaining components of any vector
v. A bar indicates a variable related to the continuous regressors and double-dots
variables related to the discrete regressors. In particular, X = (X', X’ ), where X the
a g-vector of continuous random variables and X is the g-vector of discrete random
variables. Similarly, partition z and § similarly so that #’3 = 7’8 + /3. Finally,
define the random variables Z = X3 and Z = X'f3.

2 Index Coefficient Estimation
Define the conditional distribution functions

Fi(ylz) = Pr(Y <y, 5 =s|X =), (1)
Fy(ylz) =Pr(Y = y|X = x). (2)

By definition the integrated transition intensity is

H(yl) = / ' % 3)

The key assumption of this paper is assumption 1.1. It is easy to show that if the
transition intensity h is of single-index form then so is its integral H and vice versa.

Assumption 1

1. There is a function H and a vector 3 such that H(y|z) = H(y|«'3) for all y
and x.

2. There is at least one continuous regressor, so q > 1.

3. The index '3 contains no constant term and (3; = 1.



Assumption 1.2 is a necessary condition for identification, as shown by Ichimura
(1993) among others. Assumption 1.3 contains location and scale normalizations,
which are needed because the addition of any constant to /43 or the multiplication
by any constant can be subsumed into H. Since q > 1, the assumption that (; can
be scaled to 1 is not restrictive.

A number of methods for estimating index coefficients in regression models have
been proposed, including for example average derivatives (Héardle and Stoker 1989
and Powell, Stock, and Stoker 1989) for continuous regressors, direct semiparametric
estimation for discrete regressors (Horowitz and Hérdle 1996), semiparametric least
squares (Ichimura 1993), maximum rank correlation (Han 1987 and Sherman 1993),
and semiparametric maximum likelihood (Ai 1997). Any of these methods can be
used here provided F; and Fj are single-index functions. However, in general F}
and F3 are not single-index functions, even under assumption 1. Assuming that the
density 0y F} corresponding to I} exists everywhere, this can be seen from the familiar
results that

Fy(yle) = exp(—Ho(ylz) — H(y|«'5)) (4)

and

O Fy(y|z) = hyla’'8) exp(—Ho(ylz) — H(y|2'B)), (5)

where Hy denotes the conditional integrated intensity for transition to any destination
other than s. In general, the transition intensities for the various destinations will
not depend on the same index; indeed Hy(y|r) may not satisfy any single-index
restriction. Therefore, F}; and F3 will be single-index functions only in special cases,
such as uncensored single-destination data where Hy(y|z) = 0 everywhere, or right-
censored single-destination data where the censoring mechanism is independent of the
regressors, that is, Hy(y|z) is independent of z. In case of censored single-destination
data where the censoring mechanism depends on the regressors or in case of multiple-
destination data, it is unlikely that F; or Fj are single-index functions, and existing
estimators do not apply.

In the remainder of section 2 an estimator of ( is proposed, which is applicable
to multiple-destination data.

2.1 Estimation of 3
Let X = {X1,... , Xm} be the support of X, and let £ denote the density of X. Define
Ay, z, @) =Pr(Y <y, 8 =5 X = #X = 2){(2), (6)

Ap(y, 7,5) = Pr(Y 2 y, X = #[X = 1){(3). (7)
Writing H(y|(Z',%")") as H(y|z, &) for simplicity, note that by equation (3)
Y Al (dU, ja l’)

H(ylz,z) = = ——,
(yl ) 0 A2(Ua$,$)

(8)



The new estimator of 3 is similar to the weighted average derivative estimator by
Powell, Stock, and Stoker (1989). The idea is simple. If the conditional transition
intensity is of single-index form, then® d;H (dy|%, i) = d,H (dy|Z' 5 + #'3)5. Let W
be a weight function. Then /3 is proportional to 3* defined by®

B = . W (y, z, x1)0:H (dy|Z, x;) dz, (9)
lzl// Y, T, X YT, x

provided
S [ Wiz miales+ i) ar (10)
=1

is finite and nonzero. Furthermore, 3_; = (3*,/3; by the normalization in assump-
tion 1.3. An estimator is defined below by replacing 0; H in (9) with a nonparametric
estimator. This paper considers the case where the weight function W is

W(y,z,%) = As(y, 2, &) *w(y, T, &), (11)

where w is another weight function. This choice is convenient because it avoids
random denominators in the estimation formula for 0; H (dy|z, &). Since

O:H (dy|z, %) = == n1) ! - , (12)

it follows that
= //w(y, 7, x1) A2y, 7, X1) 0z A (dy, 7, x1) dz
=1

_Z//w(yaanl)axAQ(yaxaXl)Al<dyax7Xl) dz. (13)
=1

Choosing the weight function w is not complicated. The main purpose of the weight
function is to provide a way of ensuring that the expression in (10), under definition
(11), is finite and nonzero. In the Monte Carlo experiments presented in section 4
the weight function is simply w(y,Z,%) = 1(y < ys5)(1/6), where yg; is the 85%
quantile of the conditional distribution of ¥ given S = s.

The estimator proposed here consists of replacing unknown functions in (13) by
sample analogs based on kernel estimation. The sample available for analysis is

5If f is a function, let 817 f denote the jth order partial derivative of f with respect to its ith
argument. With a bit notational abuse, let 5‘% f denote the g-vector of jth order partial derivatives
with respect to whichever argument represents the g-vector of continuous regressors.

SThroughout the paper, the range is not indicated whenever integration is over an entire Eu-
clidean space.



assumed to consist of n independent observations (Yi,SZ-,)_({,X{)’, 1= 1,2,... ,n.
Let b be a bandwidth parameter, and let K : R? — R be a kernel function. Define
K3(7) = b"9K(b™'Z). Then define the estimators

A7, 8) = 2 Y Ryo - XK =i < 1S =0), (19
Aoy, 7,8) = 37 Kyle = X)A(Es = B)1(Y; 2 ) (15)

The estimator of 3* is

B:L = Z//w(wauXZ)AQn(yaj7Xl)aiA1n(dyajyXl) dz
=1
- Z//w(y7j?Xl)amAQn(wa;Xl)Aln(dyaiyxo dj
=1

— %ZZZ/&;KE(?—X@') G (T — X;)

x w(Ys, Z, x))L(X; = x))1(X; = X)1(Y; > Y)1(S; = s) dz. (16)

Given (3, estimate 5_1,, by 3*,,,/3,. Uniform consistency and asymptotic normality
of 3% and 3_y,, are established in theorem 1 below. Computing 3* involves evaluating
a ¢-dimensional integral. It is possible to simplify this to ¢ one-dimensional integrals
with closed-form solutions by using a polynomial product kernel and weight function
as in the Monte Carlo experiments in section 4.

Let P denote the distribution of (Y, S, X’, X’)’, and let P, denote the empirical
measure formed from the n independent observations on P, that is, P, puts proba-
bility 1/n on each of the observations.” Assumption 2 defines the sample.

Assumption 2 The sequence {(Y;, S;, X!, X!)'}*_, is a random sample from P.

The derivation of the limiting distribution depends on applications of the mean
value theorem and Taylor series expansions. Hence, the underlying functions must
be smooth. Sufficient conditions are listed as assumption 3.8

"Linear functional notation is used throughout this paper. The expected value of a random
variable V is denoted EV, Pf(t) = Ef(Y, S, X, X,t), and P, f(t) = n=1 31| f(Vi, Si, X4, Xi, t).

8For simplicity of exposition, derivatives are assumed to exist everywhere on the domain of the
original functions. The result of theorem 1 continues to hold even if a function is not differentiable
everywhere, provided w is chosen to avoid “edge-effects” in the kernel smoothing. That is, if the
kernel estimates involve smoothing over X; near # then A;(y,-,#) As(y,-,4) must be smooth on
[z — b, 7 + b] for all b small. Similar remarks apply to the other theorems in the paper.



Assumption 3 For k € N, given below:

1. The G-vector X is absolutely continuous and has density & with respect to
Lebesgue measure.

2. & is bounded.
3. f|8§f11(dy, . )‘ exist and are bounded and continuous for j =1,...,1+ k.

4. &) Ay exist and are bounded and continuous for j =1,... .1+ k.

A researcher who wishes to use the estimators must choose a weight function, a
bandwidth, and a kernel function. To establish consistency and asymptotic normality,
it is necessary to restrict the choices. Sufficient conditions are given in assumptions 4
and 5 and in the theorem itself.

Assumption 4 The weight function w : R'T9t9 — R satisfies:

1. w is bounded.
2. The expression given in (10), with definition (11), is finite and nonzero.

3. Ozw and O%w exist and are bounded.

Assumption 5 For k € N, given below, the kernel function K : R? — R satisfies:

1. K is a bounded k-order kernel with support [—1,1]7.

2. 0.K exists and is bounded and continuous on RY.

These are standard assumptions in the literature on semiparametric estimation.
In order to state the theorem, define®

¢ (y,s, X, X)
= Q/w(v,f(, X)1(y > v)0: A1 (dv, X, X) — 2w(y, X, X)0: As(y, X, X)1(s = s)

+ [ Opw(v, %, %)1(y > v)A;(dv, %, %) — w(y, %, %) As(y, X, %)1(s = 5)
— 23

and, letting ®5.(y,s, X, X) and ®_,5.(y,s,X,X) denote the first and the remaining
components of the g-vector ®3.(y,s,X,X), define

(I)—l,é* (Y7 S, 3_{7 i) - B—lq)lﬁ* (Y7 S, }_{7 i)
i '

It is straightforward to verify that P®z. = 0 and P®5 , = 0. Define X5. = PCDB*CI)’B*
and 23_1 = P@B_l@lﬁ_l.

By (v.8,% %) = (18)

9Throughout the paper boldface lowercase letters are used as placeholders and integration dum-
mies for the corresponding uppercase random variables.



Theorem 1 Suppose assumptions 1, 2, 3, 4, and 5 hold. Then:

i. If nb**™2 — oo, then |3; — EB; — P, ®5.
N(0,%5.) as n — oo.

ii. If nb** — 0, then n'2(E3* — 3*) — 0 as n — oo.

= op(n_l/Q) and n1/2(5_;: — EB;) —d

iii. {fn52q+2 — 00 and nb* — 0, then |3 —3* — P, @5 =0, (nil/Q) and n'/?(3* —
B*) =4 N(0,25.) as n — oo.
Suppose the above-mentioned assumptions hold and that nb*2 — co and nb* — 0

as n — oo. Then:

iv. |Bo1n — B — Pa®s_ | = 0,(n71/?) as n — oc.

v. n'2(B_1, — 1) =9 N(0,85_,) as n — oc.

Given the approximation results in part i of the theorem, asymptotic normality in
part ii follows from the Lindeberg-Lévy central limit theorem and the Cramér-Wold
theorem. Part iii follows immediately from parts i and ii. Parts iv and v follow by
applying the delta method to part iii.

The most important conclusions of theorem 1 are that 3, converges at the root-n
rate, which is the familiar rate from parametric estimation, and that £, is asymp-
totically normally distributed. These nice properties are not unexpected, since they
are shared with the index coefficient estimators listed in the beginning of section 2.

Before turning to estimation of ﬁ is it worth pointing out that the condition
nb*? — oo in the theorem is determined by the “diagonal” terms where i = j in
(16). Examination of the proof of the theorem shows that if these diagonal terms
were omitted, the condition nb?7? — oo could be weakened to nb9™2 — oo, which is
the same as the requirement in Powell, Stock, and Stoker (1989).

2.2 Estimation of /3

The method proposed here for estimating the coefficients of the discrete regressors is
similar to Horowitz and Hérdle’s (1996) direct semiparametric estimator. Horowitz
and Hardle were concerned with estimating index coefficients for a single-index re-
gression function. Their ideas are here adapted to estimating ﬂ from H(p|z,%) =
H (2’3 + &' ﬁ), where p is some appropriately chosen constant.

Assume in this section that § > 1, so that some of the regressors are discrete.
Define Z = X'/3 and let ¢ denote the density of Z. Given u, define G' by

o ”Al(dv,z,i)
G(z, %) —/0 7142(@75’ P , (19)

where

Ay 28) = Pr(Y <y, 8 = 5, X = #lZ = 2)C(2), (20)
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and note that the single-index assumption 1.1 implies
G(z,i) = H(ulz + #9). (22)

To describe the idea of the estimator, assume, temporarily, that G(-, Z) is known
and monotone. Then to estimate 3, fix z and find the unique set of numbers
Ag, ..., A, such that

G(ZXl) :G(2+A27X2) = :G(5+Amvxm>‘ (23)

By equation (22), the numbers satisfy the equations A; = (] — X;)B, l=2,...,m,
and, subject to a nonsingularity condition, it is straightforward to solve these m — 1
linear equations for (3. In the case where G is unknown (but known to be monotone),
an estimator could be defined by replacing GG in these arguments by a kernel estimator
G- The only caveat is that G must be estimable at each of the points z and z + A,
[ =2,...,m. In other words, these points must be in the support of Z.

Horowitz and Héardle (1996) show that it is possible to estimate 3 under a much
weaker monotonicity assumption. Specifically, assume that there is an interval [, 7]
in the support of Z and another interval [co, c;] such that G(z,i) < ¢y whenever
z < my and G(z,%) > ¢; whenever Z > ;. Let J(&) be the integral over [mg, m ] of
G(-, %) “clipped” at ¢y and ¢;. That is, define

J(&) = /m (col(G(E, i) <o) +al(G(z,E) > )

0

+G(z,#)1(co < G(5,3) < 61)> dz. (24)

Using simple geometric arguments it can be shown that (Horowitz and Héardle,
lemma 1)

T0a) = J0a) = (e =) —x)B,  1=2,....m, (25)

which constitutes m — 1 linear equations in the ¢ unknown components of 6 If a

unique solution exists, these may be solved for 3. To do so, define the (m — 1)-vector
J(x2) = J(xa)

AJ = : (26)

J(xm) = J(x1)

and the (m — 1) X ¢-matrix
X2 — X1

/ /

Xm_Xl
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If W'W is nonsingular, then
B=(c1 — o) H(WW)'WAL (28)

To estimate ﬁ , replace the unknown G by a nonparametric estimator. Many estima-
tors could be used; the estimator used here is a kernel estimator.

Define Z;,, = X!B3,, where (3, is an estimator of 3 (for example the estimator
developed in the previous section). Let b be a bandwidth parameter, and let K :
R — R be a kernel function. Define K;(Z) = b~'K(b~'Z) and the estimators

n

1 . _

Ay 28) = = 3 Rz = Zu) (Ko = DAY 2 ), (30

=1

(31)

Let J,, be J with G,, replacing G in (24), let AJ, be AJ with J, replacing J in (26),
and define the estimator

Bn = (c1 — co) HW'W)'W'A,. (32)
Convergence of B, to [ is established in theorem 2 below. )
Assumption 6.1 contains the weak monotonicity condition used to identify j.

Assumption 6 Suppose § > 1. Fix p and suppose there are intervals [my, m1| and
[co, ¢1] such that:

1. H(u|z + #'0) < ¢y whenever z < my and H(u|z + i'3) > ¢; whenever z > m
for allz € X.

2. H(u|z 4 #'F) equals ¢y or ¢; at only finitely many values of Z in [mg, 7).

Assumption 6.2 is a minor technical assumption used in the proofs. The remaining
assumptions used to prove asymptotic normality are standard in the literature.
Assumption 7 is used to bound remainder terms and to ensure that the bias
vanishes sufficiently quickly. In particular, assumptions 7.3 and 7.4 are used to bound
remainder terms arising from the fact that 3, is random. If necessary, assumption 7.3
can be satisfied by artificially truncating X_;. Define Mp = {u} x [m, 1] x X and

Ay, s,2,2,2-1) =Pr(Y <y, S < S,X <i,X_ ;< 5:,1]2 = 2)5(2) (33)

Assumption 7.1 ensures that there is sufficient data in Mp to estimate G.



12

Assumption 7 For k € N, given below:
1. There is a constant Cy > 0 such that Ay > Cy on Mp.
¢ is bounded.
X_, is bounded with probability one.
93 A% and 92 A% exist and are bounded and continuous.

A, and &) A, exist and are bounded and continuous for j = 1,... k.

S vk N

82142 exists and is bounded and continuous. There is a constant C'| such that

|Ay(t) — A4 ()| Ci||t = t7|| for all t,t* € Mp, (34)

where t denotes (y, z, &)’

Assumption 8 is similar to assumption 5; boundedness of the second-order deriva-
tive of K is used to handle the fact that 3, is random.

Assumption 8 For k € N, given below, the kernel function K : R — R satisfies:
1. K is a bounded k-order kernel with support [—1,1].
2. 0K and 9*°K exist and are bounded and continuous on R.

_ The following assumption concerns the properties of the preliminary estimator of
(. 1t is satisfied by the estimator discussed in the previous section. If § =1 or 3 is
known, this assumption is not needed.

Assumption 9 The estimator (3, satisfies:
1. By normalization B, = (1.

2. There is a function Q : R'*'*4+4 — R~ such that PQ = 0, the components
of PQXY are finite, and n'/?(3_1, — B_1) = n'?P,Q + 0,(1) as n — oo.

In order to state the theorem, define

Hy 0% 5.8) — 1% — £) <1(yA$2 (/;)12(2): s) /Ou 1(y 124211(1142(?;,22, :c)) (35)

U(y,S,i,E, ZE) = 1(7T0 S z S Wl)l(c(] S G(Eu I) S Cl)f(Y7Sai7 2) ZE), (36>

and
I (i) = / / / / / o(y,8,%, 7, )% 10 A% (dy, ds, 7, d%, d%_1) dZ. (37)

Let @4 be the g-vector whose jth component is

m

[@B(y, s,i,i&)}j = (c1 — o) ! Z[(W’W)_lW'L’l_l <a(y, s,%,%'3,x1)
=2

—oly,s,% %5 0) + (M)~ Tn) Qy.5.8.%)). (39

It can be verified that P(I)ﬁ = (. Let ZB = P@BC%.
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Theorem 2 Suppose assumptions 1, 2, 6, 7, 8, and 9 hold with k > 2 and that
n~2p=* — 0 and n"/** — 0 as n — oo. Then:

i B, — 8- Podsl = 0p(n~1/?) asn — oco.

ii. n'/2(6, — ) = N(0, ¥j5) asn — oo.
Theorem 2 confirms the expectation that @L converges at the root-n rate and is
asymptotically normally distributed. As with theorem 1, given the approximation
results in part i of the theorem, asymptotic normality in part ii follow from the

Lindeberg-Lévy central limit theorem and the Cramér-Wold theorem. The band-
width requirements are satisfied, for example, if b oc n=/? and k = 4.

Put ﬁ—ln = (B—liw ;1)/ and (1)571 (y,S,}_(,i) - (Q/éfl (y,s,}‘c, i)/7q)5(y’S7}_(7i)/)/’
and let ¥5 | = Pds &} .

Theorem 3 Under the assumptions of theorems 1 and 2:
i |Bo1n — Bt — Pa®s | = 0p(n71?) as n — .
ii. nY2(B_1, — 1) =% N(0,%5_,) as n — oo.

Theorem 3 follows immediately from theorems 1 and 2.

3 Single-Index Transition Intensity Estimation

Define Z = X'(3. As shown earlier, in general F; and A; are not single-index func-
tions even if H is. It may therefore not be apparent that H(y|a’3) is not only the
conditional integrated transition intensity of Y given X = x but also the conditional
integrated transition intensity given Z = /(. That is,

/oy BUVD  Hiyle) = fi(w) = /y DR oot (39)

Fy(vlz) o Fy(v|z)
where
Fi(ylz) =Pr(Y <y,8 = s|Z = 2), (40)
Fy(ylz) = Pr(Y = y|Z = 2). (41)

To see why, additional notation is needed. Let P, denote the conditional distribution
of X_; given Z = z. Define the function 7 by

T(z,2_1) = <%}1lﬂ_l, xl). (42)

Then 7(z,x_1)'6 = z and

Bol) = [ F(olr(o) Pdey), =12 (43)
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By definition H(dy|z) = Fi(dy|z)/F2(y|x) and by assumption H (dy|z) = H(dy|z'5).
It follows that F}(dy|z) = H(dy|z'5) F>(y|z), whence

Fu(dyl2) = [ Fildylr(z. o)) Pufdo)
= [ ldylre o) B Faylr(-)) Peldo)

— A(dy]-) / Fylylr(z. 1)) Pu(dr_y)
= H(dy|z)Fy(y]2), (44)

and equation (39) follows. A nice implication of (39) is that estimators of H and h
can be based on probabilities conditional on Z instead of X.

3.1 Estimation of A

First consider the estimation of the integrated transition intensity. Let ¢ denote the
density of Z, and define A;(y, z) = F}(y|z)((z) for j = 1,2. Then by (39)

A(y]z) = / % (45)

Define Z;, = X|f3,,, where (3, is an estimator of /3 (for example the estimator discussed
in the previous section). Let b, be a bandwidth parameter, and let K, : R — R be
a kernel function. Define Km(z) = b, 'K, (b;'2) and the estimators

. 1 &
A n\Y, = - K..\(2 — Zin)1(Y; = y). 47
20 (1), 2) n; (2 = Zi)1(Yi > y) (47)
Consider the estimator
. Andvz I = Kon(z — Zi)1(Y; < 9)1(S; = s
Hn(y|2>=/ 17——2 U U ). (48)
0 Agn(v Z n i=1 AQn(Kaz)

Under conditions given below, H,(y|z) is uniformly consistent over a compact set,
asymptotically normally distributed, and achieves the rate of convergence for a one-
dimensional regressor. The precise results are stated in theorem 4.

The assumptions needed are similar to the assumptions used to establish conver-
gence of (3,. Define

Ay, s, z,x_1) =Pr(Y <y,S < s,X_1 <x_4|Z = 2)C(2). (49)

Suppose H(y|z) is to be estimated for (y, z) in a set M C R x R.
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Assumption 10 For k, € N, given below, suppose:

The estimation set M C R x R is compact.

There is a constant Cg > 0 such that 1212 > (g on M.
¢ is bounded.

X_1 is bounded with probability one.

93 Ay and 92 A% exist and are bounded and continuous.

8%/11 and 8%/12 exist and are bounded and continuous for j =1,... k..

NS Gk o=

821212 exists and is bounded and continuous. There is a constant C| such that

A

Ai(t) — Ay () for all t,t* € M, (50)

< Cyl[t —t*

where t denotes (y, z)'.

Note that assumption 10.7 does not require continuity of A since M need not be
connected.

Assumption 11 concerns the estimator of 3. It is satisfied by the new estimator
proposed in section 2.

Assumption 11 The estimator (3, satisfies:
1. By normalization [31,, = (3.

2. There is a function  : R'T'*9 — R9~! such that PQ) = 0, the components of
PQQ are finite, and n'/?(B3_1, — B_1) = n'/?P,Q + 0,(1) as n — oo.

Assumption 12 For k, € N, given below, the kernel function K, : R — R satisfies:
1. K, is a bounded k,-order kernel with support [—1,1].

2. 0K, and 0°K, exist and are bounded and continuous on R.

Theorem 4 Suppose assumptions 1, 2, 10, 11, and 12 hold with k, > 2, and suppose

further that n=Y/2b;"* — 0, and n*/26Y*"* — 0 as n — oco. Then

i sup(yyz)eM‘[:[n(y]z) — H(y|z)| = 0,(n~10;%) + O(b%=) + 0(71_1/21);1/2 logn) al-
most surely.

For j=1,2,...,J let (y;,2;) € M and define

min(y;,yx) A .
Cir =1(z = zk)/ Al(div,zg) /Kz(u)2 du. (51)
0 AQ(Uv Zj)

Then
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ii. /b, (Ho(n|21) — Hwil21), ... Ho(ys|2s) — H(ys|25)) —¢ N, where N is a
multivariate normal random vector with mean 0 and covariance matrix C =

[Cr]-

The three terms on the right-hand side in part i of the theorem represent the ran-
domness in (,, the bias, and the variance, respectively. The bandwidth conditions
are satisfied, for example, if b, o n=/8 and k, = 4.

Two properties are worth emphasizing. First, the rate of convergence of H, does
not depend on the dimension of the regressor vector. The rate of convergence is the
same as for a one-dimensional regressor. The single-index restriction thus eliminates
the curse of dimensionality problem. Secondly, the fact that 3 is estimated does not
affect the asymptotic distribution of H,. This is because 3, converges at the root-
n rate which is faster than the nonparametric rate. Asymptotically, the variance
inherent in the nonparametric estimator completely dominates the variance in 3,,.

3.2 Estimation of h

Having established the asymptotic properties of an estimator of the integrated tran-
sition intensity, this section consider estimators of the transition intensity itself. The
results are very similar, especially for discrete duration data. For continuous duration
data, additional smoothing is necessary which slightly complicates the notation and
the derivations.

Suppose Y given S = s is discrete with support Y = {’yl l=1,2,3,...;m >
%71}- Then

A~

h(y|z) =Pr(Y =~,S =s|Y >v,Z = z)

H if [ =1
H(vilz) — H(yi-1lz) ifl>1.

The asymptotic distribution of the estimator

oyl = § 1) =1 (53)
" Hy(m|z) — Ho(yi-1|z) ifl>1

follows immediately from theorem 4. For completeness the results are stated as
theorem 5. Let M be the (compact) subset of J x R on which h is to be estimated.

Theorem 5 Suppose the assumptions of theorem 4 hold. Then

i sup(yﬁz)eM‘ﬁn(y|z)—ﬁ(y|z)‘ = 0, (n10;3)+0(b%*) +0(n*1/zbz_1/2 logn) almost
surely.
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For y] = Fyl ]et y]l denOte 7[—17 and deﬁne A]_(’)/l_l’-) = 0 Forj — 172" . ,J let
(y;,2;) € M and define

Aiys, ) — Ai( y/,z
2 R ]

Then

iI. v/nb, ( n(y1]21) — (yllzl), . ,ﬁn(yJ\zJ) — fz(yj\zJ)) —4 N, where N is a mul-
tivariate normal random vector with mean 0 and covariance matrix ¢ = [c;y].

The typical element in the covariance matrix is c;;, = Cj, — Cjiy — Cjrg + Cjrgr, where
Cji, is defined in theorem 4. The proof of theorem 5 is trivial and hence omitted.

Now suppose Y given S = s is continuous. A number of different intensity
estimators have been proposed, going back to Watson and Leadbetter (1964a, 1964b).
Rice and Rosenblatt (1976) showed that the asymptotic variance is the same for
all these estimators, but the asymptotic bias may differ. Asymptotically unbiased
versions of the estimators are available, however, using higher-order kernels. This
paper considers the simplest, asymptotically unbiased, estimator.

Since Y given S = s is continuous F(y|z) and H(y|z) are differentiable with
respect to y. Define a; by a;(y, z) = 811211(y, z) = 81F’1(y]z)g(z). Then

nFa(ylz) _ an(y,2) 55
MO =)~ Aale) =

To estimate iL, it is necessary to smooth Aln(y, z) in the y-direction as well as the
z-direction. Let b, be yet another bandwidth parameter, let K, : R — R be a kernel
function, define Ky, (y) = b, K,(b,"y) and the estimator

(. 2 Zmn — Zi) Koy — YOS, = 5). (56)

The estimator of h(y|z) considered here is

a'ln(ya )
hn(yl2) = m, (57)

where A, is defined in equation (47).
Define

~

Ay, z,2_1) =Pr(Y <y, S =35, X1 <x_1|Z = 2)((2), (58)

and di(ya 2 17_1) = alAT(ya Z, ZL‘_1).
Sufficient smoothness conditions in the y-direction, complementary to assump-
tion 10, are listed as assumption 13. A special boundary problem arises because the
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support of Y is bounded below at 0. In general, the ordinary kernel density estimator
of a; defined above will have a bias of order O,(1) for y near 0. Following many other
theoretical papers, the problem is sidestepped in this section simply by not consid-
ering estimating h for y near 0. Specifically, assumption 13.1 requires y > € which
ensures that the boundary effect vanishes asymptotically. In practice, however, one
is often particularly interested in estimating h for y near 0 and a modification is
needed to obtain acceptable estimates. A simple but effective boundary correction is
discussed in section 4.

Assumption 13 For k, € N; and k, € N, given below, suppose:

1. There is a constant € > 0 such that if (y,z) € M, then y > e.

2. ay is bounded on M.

3. Dsa}, 010205 and O5a; exist and are continuous on Ry X R.

4. 8{&1 exist and are bounded and continuous on Ry x R for j =1,... ,k,, and
0%ay exist and are bounded and continuous on Ry x R for j =1,... k.

Assumption 14 For k, € N, given below, the kernel function K, : R — R satisfies:

1. K, is a bounded k,-order kernel with support [—1,1].

2. 0K, exists and is bounded and continuous on R.

Theorem 6 Suppose assumptions 1, 2, 10, 11, 12, 13, and 14 hold and that n~'/?
X by_l/Qb 3/2 logn is bounded as n — oo. Then

i sup(yyz)ej\;l‘ﬁn(y\z)—ﬁ(y]z)‘ = Op(n~'0,1b2%) +0(n_1/2b;1/2bgl/2 logn)+0 (b];,j'”)
+ O(b%) almost surely.

Forj=1,2,...,J let (y;,%;) € M, and define

a ,z

AQ y]a ZJ
If also n*1/2b51/2625/2 — 0, nl/Qb;/Hkybi/Q — 0, and nl/zb?l/zbi/ﬂkz — 0 asn — oo,
then

11. vV ”b b. ( (?Jl|21) - h(?/1|21) iln(yJ|ZJ) - ﬁ(?/ﬂ&])) — N, where N is a

mulmvanate normal random Vector with mean 0 and covariance matrix C =

[Cjx]-

Note again that the estimator achieves the rate of Convergence for a one-dimensional
regressor, although the rate is reduced from n~'/2b; Y2 4o n=1/2; 1/2b_1/ because
of the smoothing in the y-direction. The bandwidth requirements for part ii of the
theorem are satisfied, for example, if b, oc n™%/° b, oc n™ Y7 k, = 2, and k, = 4.
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4 Monte Carlo Experiments

This section reports the results of Monte Carlo experiments undertaken to investigate
the properties of the new estimators in a sample of moderate size. There are two exit
destinations in all experiments. It is convenient to refer to the event S = s as “exit”
and the event S # s as “censoring”. The focus is on estimating the index coefficients
and the transition intensity for the exit destination only.

The data generating process is defined as follows. Both censoring and exit are
governed by Weibull transition intensities

hy|z) = oy exp('3/2). (60)

The parameters o and (3 for the censoring destination are « = 1 and 5 = (1,0,0,0).
The parameters for the exit destination varies across experiments as indicated in the
tables. There are two continuous regressors and two discrete regressors, all indepen-
dent. The continuous regressors are standard normally distributed. The first discrete
regressor takes the values —1 and 1 each with probability 1/2. The second discrete
regressor takes the values —m, 0, and \/%, each with probability 1/3. All four
regressors have mean 0 and variance 1.

The sample size is 500. In the experiments where « is the same for both the
censoring and the exit destinations, expected censoring is 50%. The effective sample
size is therefore about 250. There are 500 Monte Carlo replications in each experi-
ment. The computations are carried out using GAUSS and GAUSS’ pseudo-random
number generators.

The weight function used to calculate the coefficients of the continuous regressors,
Bin and By, is w(y, Z, %) = 1(y < ys5)(1/6), where yg5 is the 85% quantile of the
conditional distribution of Y given S = s. The value of y g5 varies across experiments
as indicated in table 1. The kernel function is the product kernel K((Zy,7)) =
K (z1)K(Z3), where K is the univariate fourth order (k = 4) kernel

() = (0 70— 30)1 (] < 1) (o1

The bandwidth is b, = ccnl_l/ 7, where ¢, = 6 and n; is the number of observations for
which X, = X

Developing an optimal bandwidth selection procedure for the new estimators is
left for future research. Optimal bandwidth selection procedures were developed for
Powell, Stock, and Stoker’s (1989) original weighted average derivative estimator by
Hérdle and Tsybakov (1993) and Powell and Stoker (1996). They defined the optimal
bandwidth as the bandwidth which minimizes the second-order terms in an expansion
of the mean square error (the first-order terms do not depend on the bandwidth).
In applications they suggest estimating the optimal bandwidth by “plugging-in” pre-
liminary estimates of the bias and variance components in the formula. A similar
approach is likely to be successful in the present context.
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o 16 Censoring | g5 [70, 1] [co, 1]
Min Max

1 (1,0,0,0)’ .50 50 | 1.07 | [-2.50,2.50] [.31,3.71]
1 (1,1,0,0)’ .50 .50 99 | [-3.25,3.72] [.20,6.38]
1 (1,2,0,0)’ .50 .50 87| [—4.39,6.03] [.10,17.8]
1 (1,0,.5,0) 43 56 | 1.04 | [—2.49,2.50] [.38,2.82]
1 (1, 0,1,0)’ .38 .62 99 | [-2.49,2.51] [.47,2.09]
1 (1,0,1.5,0)" | .32 .68 91 | [—2.49,2.50] [.55,1.50]
1 (1,0,0,.5)" | .43 58 [ 1.06 | [—2.50,2.50] [.41,2.72]
1 (1,0,0,1) .35 68 | 1.00 | [-2.50,2.50] [.53,1.90]
1 (1,0,0,1.5)" | .29 71 93 | [-2.51,2.50] [.66,1.29]
5 (1,0,0,0) 45 .46 59 | [—2.34,2.63] [.24,2.87]
2 (1,0,0,0)’ .54 55 [ 1.27 | [-2.63,2.29] [.43,5.09]
The columns labeled Censoring Min and Max show the minimum and
the maximum of Pr(S # s|X = x;) across the support points x1, ... , X6
of X.

To compute the coefficients of the discrete regressors, the constant p is set equal
to y.g5. Horowitz and Héardle (1996) proposed a data-driven method for selecting the
intervals [mg, m] and [cg, ¢1], which can be used without modification in the present
context. However, in order to limit the computing time, the interval [mg, 7] is chosen
to be the intersection of the six intervals computed as 2.5 standard deviations on
either side of the mean of the conditional distribution of X’3; given S = s and
X =y for I = 1,...,6. Having determined [mo, ], [co, 1] is the widest possible
interval satisfying assumptlon 6. The kernel function K is set equal to K defined
above, and the bandwidth is bl = ¢4 stdlnl , where c¢; = 5 and std; is the sample
standard deviation of X/f3, conditional on X; = x;. Again, addressing the question of
optimal bandwidth selection is beyond the scope of this paper. No optimal bandwidth
selection procedure has been developed for Horowitz and Hérdle’s (1996) original
direct estimator either.

Experiments are carried out for different values of the parameters o and ( for
the exit destination. The values of the choice variables p (= ysgs5), [mo,m], and
[co, c1] are shown in table 1, together with the minimum and maximum censoring
rates for the six points in the support of X. Changing the parameters changes the
distribution of the dependent variables Y and S. This is reflected in the variation
in u, [mo,m], [co,c1], and the censoring rates across experiments. Because some of
these choice variables vary across experiments, the effect of changing the parameters
on the distribution of the estimators is ceteris paribus only in a limited sense.

Results for the index coefficients estimators are reported in table 2. The first three
experiments show that as (3, increases relative to 31, both the bias and the variance
of 35, increase considerably. The increase in (3, has two opposing effects on 3, and
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Table 2: Monte Carlo Estimates: Index Coefficients
« 5] Bon B3n Ban
Bias SD RMSE | Bias SD RMSE | Bias SD RMSE

1 (1,000 | 00 19 .19 | 00 .15 .15 | 0L .15 .15
1 (1,1,0,0) .06 .30 31 —-00 .14 14 -00 .14 14
1 (1,2,0,0)’ A1 .52 .53 .00 .13 13 .00 .13 .13
1 (1,0,.5,0 .00 .19 .19 -10 .16 .19 -.00 .17 A7
1 (1,0,1,0)’ .00 .18 18 -.03 .20 21 -.00 .20 .20
1 (1,0,1.5,0)’ .00 .18 18 A1 .22 .24 -.00 .19 .19
1 (1,0,0,.5) .00 .19 19 -00 .17 A7 -.09 .18 .20
1 (1,0,0,1)" | =00 .19 .19 -03 .20 21 .00 .22 .22
1 (1,0,0,1.5)" | —.00 .19 .19 -.04 .19 .19 -01 .19 .19
5 (1,000) | -00 .17 .17 | .01 .13 .13 00 .13 .13
2 (1,0,0,0)’ -.01 .23 .23 -.00 .16 .16 -.00 .16 .16

SD and RMSE indicate standard deviation and root mean square error, respectively.

Bin- On the one hand, the accompanying increase in the variance of s, increases
the variances of 33, and B4,. On the other hand, the increase in the variance of X3
facilitates estimation of (33, and (4, by allowing the choice of wider intervals [mg, ]
and [co, ¢1]. In these experiments the net effect is a slight decrease in the variances
of B3, and (y,.

In the next two sets of three experiments the coefficients 33 and [, of the discrete
regressors are increased. This widens the distance between G(-, x;), l = 1,2,...,6,
which in turn forces a reduction in the interval [cg, ¢;]. Here the effect on the bias
of B3, and [y, is ambiguous, but the variances and the RMSE increase compared to
the experiment with 5 = (1,0,0,0). The bias and variance of (s, are not sensitive
to the values of #3 and 4 in these experiments, but this will not always be the case.
Although the support of discrete regressors plays no direct role in estimating the
coefficients of continuous regressors, there is an indirect effect, given that changing
(3 and [, shifts the degree censoring between the support points, as can be seen from
table 1.

In the last two experiments « is varied. This causes the overall censoring rate,
and hence the effective sample sizes, to vary as well. In the experiment where a = .5
the overall censoring rate is 46% and when o = 2 it is 55%. The results are that the
RMSE is slightly lower when a = .5 and slightly larger when a = 2 compared with
the experiment where 5 = (1,0,0,0)".

Consider now the new estimators of the integrated transition intensity and the
transition intensity itself. To focus on the implications of the single-index restriction
and the curse of dimensionality, the new semiparametric estimators are compared
with estimators which require more or less information. The estimators which require
less information are ordinary nonparametric estimators. Since there are only two
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continuous regressors in these experiments the curse of dimensionality is not severe,
and the nonparametric estimators should be reasonably well-behaved. The estimators
which require more information are semiparametric estimators which impose the
single-index restriction, as does the new estimators, but which assume that the index
coefficients 3 are known. Although infeasible in practice, these estimators provide a
natural benchmark for the performance of the new estimators. Given the result that
the need to estimate ( doesn’t affect the asymptotic distribution, the performance
of the new estimators is expected to be similar to the performance when [ is known.
Let H!, HS HY denote the infeasible estimator, the new semiparametric estimator,
and the nonparametric estimator of the integrated transition intensity, and let hl,
hS. hY denote similarly defined estimators of the transition intensity itself.

The kernel function K, used to compute H., HS hl and hS is equal to the
fourth order kernel K given in equation (61). The kernel used to smooth in the X-
directions for HY and hY is the product kernel K ((Z, 7)) = K (%) K (). Since Y
is continuous, smoothing is required also in the y-direction to estimate the transition
intensity. As mentioned earlier, because of “boundary effects” unmodified estimates
are often unacceptable for y near 0. A convenient way of reducing the bias is to use
a boundary kernel. Many such kernels have been proposed. The one used here is
taken from Miiller and Wang (1994). The modification consists of replacing the term
Ky, (y —Y;) in equation (56) with K, (y,y —Y;) = K,(y/by, (y — Yi)/b,)/b,, where

KZ/(Q7U) -
(15
E(l —u?)?1(Ju| < 1), q>1,
15
m(u +1)%(¢ — ) (62)
><{2u(5ﬂ—1>+(3q—1)—|—5M 1(—1<u<q) g<1
\ l+gq 1+g¢ - e

This kernel satisfies assumption 14. The bandwidths b, and b, are chosen to approx-
imately minimize the mean square error at each estimation point in order to focus
on the relative performance of the estimators. In applications, the data-based band-
width selection procedure for transition intensity estimation developed by Miiller and
Wang (1994) can be used.

Estimation results are shown in tables 3 and 4 for the three experiments in table 2
where 5 = (1,0,0,0) and « is either 1, 1/2, or 2. The corresponding transition
intensities are horizontal, downward sloping, and upward sloping. The functions
are estimated at nine points for different values of (y,z). Since § = (1,0,0,0), the
conditional distribution of Y given X = x depends only on the first component of x.
The evaluation points are therefore chosen such that y and the first component of x
varies while the remaining components are constant.

The results confirm the expectations outlined above. In every case in table 3 is
it true that RMSE(H!) < RMSE(H?) < RMSE(HY), and in almost every case is
RMSE(H?) very close to RMSE(H!) and much lower than RMSE(H). Only when



Table 3: Monte Carlo Estimates: Integrated Transition Intensities

Root Mean Square Errors

a=1 a=.5 a =2
y x Hy Hy HY|Hy Hy HY|H, Hy HY
5 (-1,0,0,0)| .05 .07 13| .06 .08 16| .03 .04 .09
1.0 (-1,0,0,0)| .09 .11 23] .09 .11 22| .09 .12 .24
1.5 (-1,0,0,0)| .13 .17 34| .10 .13 27| .18 24 .51
5 (0,0,0,0) 04 04 10| .05 .05 12| .03 .03 .07
1.0 (0,0,0,0) 10 .11 20| .08 .09 18| .11 .13 .23
1.5  (0,0,0,0) A7 20 36| .12 14 25| 31 .40 .64
5 (1,0,0,0) A1 15 24| 15 20 31 .07 .08 .15
1.0 (1,0,0,0) 28 3 56| 25 35 B3| 30 .39 .60
1.5 (1,0,0,0) 62 75 97| 40 51 71127 141 1.71
Table 4: Monte Carlo Estimates: Transition Intensities
Root Mean Square Errors
a=1 a=.5 a =2

y x hy ha by | by hp BT | hy hy o AY
5 (-1,0,0,0)| .07 .08 19| .07r .08 19| .05 .05 .11
1.0 (-1,0,0,0)| .10 .10 28| .07 .07 17| .13 .15 .42
1.5 (-1,0,0,0) | .14 .14 42| .07 .07 17| 42 43 1.16
5 (0,0,0,0) 10 .10 23| 11 11 26| .13 .14 24
1.0 (0,0,0,0) A1 11 31 .09 .09 24| 29 35 .60
1.5  (0,0,0,0) A5 15 61 .09 .09 25| .54 54 1.64
5 (1,0,0,0) 20 27 44 13 13 30| .32 .39 .58
1.0 (1,0,0,0) 24 24 49 10 .10 24| .70 .97 1.40
1.5 (1,0,0,0) 25 25 77| 11 11 28 | 1.13 1.20 2.64

23
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y = 1.5 and x = (1,0,0,0) is the difference between RMSE(H?) and RMSE(H.)
less striking, ranging from 21% to 39%. In all other cases, RMSE(HY) is between
50% to 150% larger than RMSE(H?). Similar results hold for the transition intensity
estimators in table 4. Here the least favorable result is for a = 2, y = 1.0, and x =
(1,0,0,0) where RMSE(h?) is 39% larger than and only 44% lower than RMSE(hLY).
In all other cases, RMSE(hY) is only slightly larger than RMSE(hZ) and RMSE(hL)
is between 50% and 300% larger than RMSE(hL) and RMSE(h).

5 Conclusions

This paper has proposed new semiparametric estimators for transition data where
the transition intensity of interest satisfies a single-index restriction. In contrast
to existing semiparametric estimators, proportional intensities (separability between
duration dependence and regressors) is not assumed. Estimators were developed for
index coefficients, the conditional transition intensity, and the integrated conditional
transition intensity. The new estimators are “direct” in the sense that iteration is
not required.

The asymptotic distributions of the estimators were derived. The index coefficient
estimator is root-n consistent and asymptotically normally distributed, similarly to
index coefficient estimators developed for other settings. The estimators of the condi-
tional transition intensity and the integrated conditional transition intensity converge
at the rate typical for the case of a univariate regressor. Thus the single-index re-
striction eliminates the curse of dimensionality. The intensity estimators are also
asymptotically normally distributed, and the asymptotic distributions are as if the
index coefficients were known.

The Monte Carlo experiments suggested that the estimators perform very well
in samples of 500 observations with 45-55% censoring. The magnitudes of the root
mean square errors are reasonable. In practical applications, one has to be careful
when choosing the intervals [mg, 1] and [c, ¢;]. The automatic procedure described
by Horowitz and Hérdle (1996) may provide a good starting point. For the intensity
estimates, the root mean square errors are only slightly larger than if the index
coefficients were known and much smaller than for the nonparametric estimators
which ignore the single-index restriction. Thus, the asymptotic results hold up in the
Monte Carlo experiments.

One large problem, the question of optimal bandwidth selection for the index
coefficient estimators, was left for future research. The approach taken by Hardle
and Tsybakov (1993) and Powell and Stoker (1996) for Powell, Stock, and Stoker’s
(1989) weighted average derivative estimator seems promising. It may be worthwhile
investigating, both for Horowitz and Hérdle’s (1996) estimator of the coefficients of
the discrete regressors in a model where the regression function satisfy a single-index
restriction, as well as for the present coefficient estimator in a model where transition
intensity is of single-index form.
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A Technical Appendix
A.1 Proof of Theorem 1

PROOF OF THEOREM 1 Put 7 = (Y, S, X', X') and t = (y,s, %, %'). Then

Gi= 5 S mlTTy)

i=1 j=1

where
pO(ti7t )
= /8[_(5(3‘: — xl)l_(l-,(x —X)w(y:, T, %) 1(%; = X;)1(y; > yi)1(s; = s) dz
_ /K,,(f R0 K — Ry )wlys, 7 %) 1 (% = %,)1(y; > yi)l(si = o) dz
Define also
tivt' + t7t2
pl(tiytj) _ pO( ]) : pO( J )’
1 n
= W ZpO(E>T'z)7
i=1
1 n n
Un = ) Z ZM(TZ,TJ),
i=1 j=1
i
and

A

2 n
Un==2 Ppi(Ti,-) = P& Ppo= P, ® Ppo+ P@ Pupo = P Ppo.

To part i of the theorem, convergence is established for each term in the decomposi-
tion

G — BB = Vi + (Uy — Un) + (U, — EU,) + (EU, — EFY).

Note that E3; = P ® Ppy + (1/n)(Epo(T,T) — P ® Ppy) = P ® Ppy+ O(n7}),
EU, = (n(n —1)/n*)P ® Ppy = P ® Ppy + O(n~'), and EU, = P ® Ppy. It follows
immediately that EU, — EG; = o(n~'/?).

By change of variables and with d = 0, 1, the terms making up po(t;, t;) have the
form

d+1 = =
d 1-d X; + b
) = G [ piimapoic (25 )

X w<Yi7Xi + b%Xi)l(ii = Xj)1<Yj > Yi)l(si = 3) dz.
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Since 93 “K and w are bounded and 02K is integrable, V,, = O(n"1b~77) = o(n"/?)
almost surely provided n='/2p=9"1 — 0, or nb*™*? — o0, as n — oo.

By lemma 3.1 of Powell, Stock, and Stoker (1989), U,—U, = Op (n*1/2) provided!?
E(||p1(T;, T;)||?) = 0p(n) for i # j. To verify this condition, note that

E(lox (T T)IP) = 5B (oo(Te T polTs T3)) + SE (ool )0l T3, T).

By change of variables, the terms making up po(t;,t;)'po(t;,t;) have the form

Q1 (t,t;) 1)di+dz //adlK Yok dlK( X +bx1>
v 4b2q+2

x 02K (T9) 0%~ dQK( 119 ) (yi, % + b1, %)
By further change of variables,

E(Q:i(T3,T)))

( dl+d2 d1 dy 2 2
_ 4bq+2 //// OB R (21)04 1 K (%,)0% K (22)01 2 K (R, — 21 + )

X ’w(U,Xi + bZ1, x))w(v, X; + b, x1)
X Ag(U, )_(i + Bi’l — B)_(j, Xl)/_ll(dv, )_(i, Xl) dfl dfg d)_(i d)_(j.

Similarly, the terms making up po(t;, t;) po(t;, t;) have the form

( 1d1+d2 d1 1 & & Xz X —|—b.CE1 d2

b
X 1(Xz = X])]_(y yj)l( = S)l(Sj = S) di’l di’g,

(X=X, +0b - L .
X 8%_612}((&)10(&, X; + bz, X)w(y;, X; + bTa, X;)

and

E(ng,T-))

4qu;;Ld2 ////// 0% K (21)05 " K (%)) 02 K (22) 0y 2 K (T1 + T — X;)

X w(yi,xi + bJIl,Xl) (yj,x,' + bl‘l — ij + bl’g,xl)
x 1(y; = y;)Ai(dyi, %i, x1) A1 (dy, %i + bT1 — bR, x1) Ty dZg dX; dX;.

O]+ || denotes the Euclidean norm |[jul|* = )", u? = v'u.
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Since 8;_dj K, ¢ and w are bounded and 8? K is integrable, these results imply
E(||p1(T;, T;)|I?) = O,(b72) = o0,(n) provided that nb?™* — oo as n — co. Note
that this is exactly the same as the condition derived by Powell, Stock, and Stoker
(1989). It follows that the limiting distribution of \/n(3; — E3}) is the same as the
limiting distribution of \/n(U, — EU,,).

By change of variables and integration by parts

Ppo(t //K 8 cw(y, X + bT, %) Ay(y, X + bT — bX;, X)
+w(y, X + bZ,%)0; As(y, X + bT — B)‘g,i&)) 1(s = s) d7 dX;

//K w(y,X + bT, X)

X ajAQ(y,X + bl’ - b}_(],X)l(S = S) dzx d}_(]
= _aa?w(Y7)_(7 i)"le(ya)_(: X)l(S = 8)
- 2w(Y7)_(a X)G:EAQ(Ya)_(a X)l(S = 8) + Tl(t)a

where sup [r1| = O(b) because dzw, 2w, 0z Ay, and 92 A; exist and are bounded and
K is integrable. Similarly,

Ppo(-, // K&)K yz,x—i-bx X))y > vi)

x 0z A1(dy;, % + bT — bR;, ) dT d;

// KX, 0w(y,,x+bx X))y > y:)
x Ay (dy;, X + bz — bx;, 3 X) + w(y;, X + bT )1y > yi)

x 0z A1(dy;, X + bT — bR;, 3 )) dz dx;

where sup |ry| = O(b) because Hw and [ ‘G%Al(dy, ,+)| exist and are bounded for
7 =1,2 and K is integrable. It follows that

Ppo(t,) + Ppo(-, ) = 5.(y, s, X, %) + 26* + O(b)
and

U, —EU, = (P, — P)®;. + (P, — P)ry + (P, — P)ra,

The second moment of n'/2(P, — P)r;, j = 1,2, is P(r?) — (Pr;)? which is bounded
by P(r; 2) = O(bQ) using sup |r;| = O(b). Tt follows by Chebyshev’s inequality that
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(P, — P)rj = 0,(n"/?), whence the limiting distribution of /n(3; — E3;) is the

same as the limiting distribution of /n(P,®3. — P®3.) = /nP,®5.. Part i of the

theorem now follows from the multivariate Lindeberg-Lévy central limit theorem.
Turn now to the bias term. By previous arguments

EB: — 3* =EV, + EU, = o(n_1/2) + (n(n —1)/n*)P @ Ppy — (3.

By integration by parts and change of variables

P Py - f [ KRty

x As(yi, T ij>Xl)a Ai(dy;, & — by, x1) dz dX; dx;

—Z///K i) K (X;)w(y:, T, x1)

x 0z As(yi, & — bX;, x1) A1 (dyi, T — bX;, xi) dT dX; dX;.

Using the assumptions that [ |8%A1(dy,_-, )} and 8%[12_ exist and are bounded and
continuous for j = 1,... ,k and that K is of order k, a Taylor series expansion
implies

P®PP0 Z/ yax Xl (y,$ Xl)a Al(dyai‘7Xl)

— 3 As(y, 7, x1) Ay (dy, 7, x1)) di + O (b%*)
= 3"+ 0(b%).

Part ii of the theorem follows. B B
Recalling 51 = *,/07 linearizing f_1,, — f_1 yields

Fon B Ban—BaBi  Fan— BB -5  (Ban— B B
B, Bi B 2 BB

Parts iv and v of the theorem follow. ]

A.2 Proof of Theorem 2

Three lemmas are needed to prove theorem 2. Lemma 1, which is stated without
proof, contains some standard results on rates of convergence for kernel estimators.
Lemma 3 establishes convergence of GG,, to G. Lemma 2 deals with convergence of a
particular remainder term which appears in the proof of lemma 3.

Define

Aoy, s,2,8) =Pr(Y <y, 8 <5, X <ilZ =2)((3).
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Assumptions 7.2 and 7.5 imply that Ay is bounded and that the derivatives 8%/10
exist and are bounded and continuous for j = 0,1,... ,k. Given some function f
and (t,z) € S, where S is a bounded set, define

¢H(Ya S7 5&'7 )_() = f(y’ S? 5&'7 2’ t) b Y

K
QO(y,S,XX f<Y7SXZt> My )

o= ///fy,sxztAo(dy,dszdx)
b= / / / / f(y,s, %, 2, 0)X_10sA%(dy, ds, Z, d%, d%_,),

where Aj is defined in equation (33). Convergence of P,¢, is established in lemma 1.

S

Lemma 1 Suppose assumptions 7, 8, and 9 hold and that f is bounded. Suppose
also that the class F = {(y,s,X) — f(y,s,%,2,t) : (t,z) € S} is Euclidean for a
constant envelope (see Pakes and Pollard 1989).

i If nl/2p-1/2 logn is bounded as n — oo, then sup P,|¢,| = Op(n—l/QB—Q) 4

O(1).
ii. Ifn~'/2b=%logn is bounded as n — oo, then sup| P, ¢, — Popn| = O, (n~V/?) +
O, (n~17?).

iii. If n=Y2h=3/21ogn is bounded as n — oo, then sup| Pt — Poop — &P, Q| =
0p(n12) + 0, (n"17?).
iv. sup|Pn<pn ¢| bk +0( —1/2p-1/2 logn) almost surely.

v. If n=Y/2b=3/2log n is bounded as n — oo, then sup|Pn¢n — ¢‘ — Op(n_16—3) +
O(bk) + 0(n’1/2.6*1/2 log n) almost surely.

Let (t;,%) €S, j=1,2,...,J and let ¢,,; and ¢; denote the corresponding ¢,, and
¢. Define

Cpo = 1(% = 2) //f<y,s,sa, 5ot f(yss, &, Ek,tk)Ao(dy,ds,Zj,di)/K(u)Qdu

vi. If n=Y2575/2 — 0 and nY/2bY/%% — 0 as n — oo, then V/ né(Pn@Ll — 1,
P, —gz5J) —4 N, where N is a multivariate normal random vector with mean
0 and covariance matrix C' = [Cjy].

The proof of lemma 1 is standard and hence omitted. Parts iii, iv and v are essentially
lemmas A.6 and A.7 of Gorgens and Horowitz (1999); parts i and ii can be proved
by similar methods. Part vi can be proved using methods similar to section 2.5 of
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Pagan and Ullah (1998). In part vi, the condition n~'/2)~%2 — 0 removes the effect
of estimating rather than knowing 3, and the condition n'/26'/2tk — 0 removes the
asymptotic bias.

Let I:Ijn be defined as Ajn with Z; = X!3 replacing Z;, = X/3,. Let L be any
function and define

Py, 5, i) = /0 " L(v, 2 8) (1m0, 2, ) — Zin(v, 2, #)) (L (do, 2, #) — i (do, 2, 3))
and
iy, z, %) = /Oy L(v, Z,i)(/.ign(v, Z, &) — Ag(v, zZ, x)) (Aln(dv, Z, &) — Al(dv, zZ, x))

The integral 7 (y, Z,1) arises as a remainder term in the proof of lemma 3, where
L(v,z,%) = 1/A2(v z,#)%. Tt has the form of a U-process. A U-statistic can be
written as a P-degenerate U-process plus an empirical process, and the rate of con-
vergence is determined by the slower of the two, that is, by the empirical process.
Lemma 2 shows that for this particular U-process the empirical process part con-
verges faster than usual. The first part of the lemma deals with the case where 3
is known, whereas the general case where (3 is estimated is considered in the second
part.

Lemma 2 Suppose assumptions 7 and 8 hold and that L and 0oL are bounded on
Mp. Then

i supy, |ra] = o(n*H‘SIB*Q) + O(Tfl/%*l*’ié logn) + O(b.%) almost surely.

Suppose in addition that assumption 9 holds and that n~1+9)=3 is bounded for some
0 > 0. Then

i, sup rA] = o(n~10h2) + 0(n—1/2'5_1+ié logn) + O, (n~15%) + 0, (n~12) +
0(52’“) almost surely.

PROOF OF LEMMA 2 Define 7" = (Y, 5, X’,Z)’ and t = (y,s,X',z)’. Writing out
the integral gives

"y, 2, 7) ZZpo T}, 1)),
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. 4 .
(2 —7)1(%; = ge)/ L, 2, 8)1(v < y,) Ar(dv, 2, &)
0
Y . .
+/ L(v,z,%)As(v, 2, %) Ay (dv, 2, ).
0

Hence, except for diagonal terms and asymmetry,“rg(y, Z, %) is a U-process.
Let P denote the distribution of 7" and let P, be the corresponding empirical
measure. Define

plti,t;) = po(ti, t;) — Ppolts,) — Ppo(-, ;) + P & Ppy
and the “projection” of ril(y, z, i)

Then

n n

_ . 1 . .. .. .

i=1 j=1

where the double-sum is a P-degenerate U-process since P ® Pp = 0. Note also that
Pn = P® Ppo In the following, convergence of the U-process, the empirical process
(P P)77, and the bias term P ® Ppo are proved consecutively.

Consider the U-process. Convergence will follow from theorem 9 of Nolan and
Pollard (1987). Symmetrize the U-process by defining

b _
Fltity) = 5 (A(ti t5) + At t:)
and put
Su(F) =D (T3 Ty).
i=1 j=1
J#i
Define F = {f (y,z,%) € Mp, 0 < b < 1} Note that f is uniformly bounded

over (y,Zz,%) and b since L, K, and ¢ are bounded. By lemmas 2.13 and 2.14 of
Pakes and Pollard (1989), the assumptions that K, K, L, and Oy L are bounded,
that A; is Lipschitz continuous on Mp, and that the support of X is finite imply
that F is a Euclidean class for a constant envelope. Since L and K are bounded,
supser | f| < C’l and Supfe]_-P’f ‘ < () for some constant Cy. Put v(f) =1 and
W(n,z) =n"%1+z)~! where § > 0. Then W is bounded by 1, decreasing in both
arguments, and

/OIW(n,x)(l +log(1/x)) dz = n~ (1; +log(2 ))
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Rescale by (4, then the conditions of theorem 9 of Nolan and Pollard (1987) are
satisfied, and therefore

sup‘W(n,V(f)l/Q)n_lSn(f)| = sup}n_l_ésn(f)/Q‘ =o(l) as.
fer fer

It follows that

s I & -
sup[n B8, (D] = sup | 3TN ATLT)
Jer wzi)emp | 52 5T

0<b<1 0

= o(n’H‘SB’Q) a.s.

The sum of diagonal terms converges as well, because |p| < b=2C, implies
L1 = 00 = o),

It follows that the U-process is uniformly 0( —L+0p- ) almost surely.
Turn to the empirical process. Note that Py = P ® Pp, and that

(yz:r EMD

n(t) — P® Ppy
= I“(B(E —Z)1(X=7%)L(y,z,%)1(y < y)l(s = s) / }“(B(Z — Zj)Ag(y, Zj, T) dz;

y
— Kj(z = 2)1(% = &) L(y, 2,#)1(y < y)1(s = s)As(y, 2, %)

.. Y .. ..
+ / Kb(f — Zj) / L(’U, 2, j)AQ(’U, Zj, j)Al(dU, 2, ZL‘) de.
0
Convergence will follow from theorem I1.37 of Pollard (1984). Define
Y ..
hl(y)ia zz) = 1<5& = QZ’) / L<U’ Z, x)l(v S Y)Al(dva Zz,x),
0

ho(y,s,%,2;) = L(y, 2,#)1(% = #)1(y < y)1(s = s)As(y, Z;, 7).

Then (P, — ]5)77 = (]5” — P)fin + (Pn — P)fgn, where by change of variables
fin(t) = b(z —z)1(x /K Z;) hl(y,x z+bz2) hi(y, X, z)) dz;,

fon(t) = b(z —-z)1(x /K Z;) hg(y,s X, z+bz]) ho(y, s, X, z)) dz;.
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The subscript n signifies dependence on the bandwidth sequence b — 0 as n — oo.
Using the assumption of a higher-order kernel and boundedness of Okhy and O hs,
consecutive Taylor expansions yield P(b fjn)2 < C3b* for all (y, z,i) € Mp and some

constant C'5. Furthermore, the classes Fj, = {b fin: (y,2,2) e M D} are FEuclidean
for constant envelopes by lemmas 2.13 and 2.14 of Pakes and Pollard (1989) since
K, 0K, L, 8,L, and 9, A, are bounded, A; is Lipschitz continuous on Mp, and the
support of X is finite. It follows by theorem I1.37 of Pollard (1984) that

b~ sup | P P bf ‘ =b 0( —1/2jk logn) = 0(n’1/25k logn) a.s.
f€Fin

Now consider the bias term. Note that
P® Ppg //K (Z — 2, ) /Oy L(v, z, :‘E’)Ag(v,zj, )Al(dv z;,%) dz; dz;
—/K;;(Z—Zi)/ L(v,2,&)A2(U,Z,j)A1(dv,Zi,i) dz;
/K / L(v, z,%) Ay (v, 2, %) Ay (dv, 2, &) dz,

/ L(v, 2, &) Ay (v, 2, 7) Ay (dv, Z, 7).

0

By change of variables and Taylor expansions using the assumption that the kernel
is of higher-order

sup |P® ]5,00} = 0(5%),
(y,Z,8)eMp

since 9k A; and 95 A, are bounded and continuous and K is supported on [—1,1].
This completes the proof of the the first conclusion of the lemma.
Consider now the case where (3 is estimated. Writing out the integral gives

Ay, 2, i) = Z( ZK z— Zp) (X, = 5&)1(%256)—212(12,&&3))

By the mean value theorem,
Ki(z — X{B) = Kj(z — X{B) — 0k3(z —
where

i = (aKb<Z —



34

and 3¢ is between 3, and 3. Redefine T = (Y5, X' Z Xy )" and similarly let
t = (y,s,¥,Z,%_,)'. Substituting into the expression for 72 gives

. oz - vl v I v
T;?(ya Z, CL’) = Tyl;[(y7 <, I) - (B—ln - 5—1>,¥ Z Zpl(T‘za T}) + ﬁ Z Z 7nniju
i=1 j=1 i=1 j=1
where ril(y, 2, #) is defined above, where
pr(ti,ty) = OK;(2 — 7:) K; (2 — 7;)
X 1(%; = 2)1(%; = 2) Ly, 2, 2)1(yi < y)1(si = s)L(y: < y;)Xi
+ KB(Z — Z)@Kb(,? — Zj)
X (% = &)1(X; = @) L(yi, 2, 2)1(y; < y)1(s;i = s)1(yi < y;)X-15
. Y .
— 8Kb(2 — Zj)l(X] = .CE)/ L(’U, 5,55)1(’0 S y]')Al(d’U, 2,5&))—(_1]',
0
and where the r,;;’s consist of all terms involving 7,; or 7,; plus the term

OK;(2— Z)0K;y(2— Z)1(X; = #)1(X; = #)L(Y;, 2, B)1(Y; < y)1(S; = 5)1(Y; < Y)

X (B—ln - B_ ) lz(ﬁ In — B )X
By n-Y 2_convergence of B_1n — —1 and boundedness of 02K ,

53

i=1 j5=1

sup = p ’1574).

(y,2,2)EMp

Convergence of rll(y, z, #) has already been established. Similar arguments can be
used to show that

1 n n

sup | — pi(T;, T))| = 0p(1),

provided n~1+9)=3 is bounded. The second conclusion of the lemma follows. [ |
Define
() = [ leldnid) /“ ol 2 A . 2. 7)
0 AQ( ) 0 AQ(U,Z,QZ‘)2
=—ZK J(Yi, 8, X, 2, 8)

and

- //// Fly,s.%, 2, @)% 105 A4 (dy, ds, 2, d%, dx_,),

where f is defined in equation (35).
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Lemma 3 Suppose assumptions 1, 2, 7, 8 and 9 hold with k > 2. If n~+2p~* js

bounded for some § > 0, n*/*0* — 0, and n=Y/2b2 is bounded as n — oo, then for
each & € X:

i. supze[mm”Gn(z, i) — G(z,%) — BY(z,%) — f’PnQ‘ = op(n_l/Q) + Op(n_15_4).

ii. SUPsciry £ |Gn(Z,3) — G(Z,3)| = Op(n7107%) + O(bk) +o(n"12p"21logn) al-
most surely.

PROOF As a matter of algebra,
1 A n d = o A d _ .
Gn(z,fw—G(z,i):/ M_/ Ai(dv, 2, %)
o Aw(v,2,%)  Jo As(v, 7 i)

= FE,.(2,2%) + rin(2,2) + ron(Z, %),

B (2 CL’) o /,u Aln(dvvz7j) i /,u AQn(U72’ :i‘)/:il(dv727 l’)
S 0 AQ(U,E, ) 0 AQ(%Z )2

= 3" (e - Zul (K= )
=1
y (1(3@ < wISi=s) /“ 1(Y; > v)Ay(dv, Z, 5:))
Ay(Y;, 2, i) 0 Ay(v, 2, 7)? ’
H (Agn(v, Z, &) — Ag(v, zZ, x)) (Aln(dv, Z, %) — Al(dv, zZ, x))
/0 As(v, 7, 7)?2
. i (Agn(0, 2, ) — Ag(v, 2, 8))* Ay (dv, 2, 7)
ran(2,8) = /0 Agn(v,2,7)As(v, 2, i)
1N (Aon(Yi, 2,8) — Ag(Yi, 2,8))
n= Ay (Vi 2, #) Ao (Yi, 2, i)’
x K;(Z — Zin)1(X; = £)1(Y; < p)1(S; = s).

)

rln(Z, CC) = —

~1+26],—4 1/2'62?5

Since n is bounded and n — 0, lemma 2.ii implies

sup  |ria(z, )] = O(n*1+56*2) + 0(n*1/2671+7% log n) + Op(nfl/z)
(,2,8)EMp
+ OP (n_16_4) + O(b2k) a.s.
= 0p (n_1/2) + O, (n_16_4),
Boundedness of n~1t25p—4
implies

means that n=2/2b=3/2log n is bounded, whence lemma 1.v

sup [Ag, — Ay| = Op(n_16_3) + O(bk) + o(n_l/?li_l/2 logn) a.s. (A)
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Therefore, sup \Agn — Ag] < € for n sufficiently large. Moreover, by assumption
Ay > (4, so for n sufficiently large

. sup An Asl? 1
ron (2, 3)| < (| 2_6022| Z‘K

Since n~/2b~2 is bounded, the sum is O,(1) by lemma 1.i. Therefore, since bound-
edness of n~12p~* implies boundedness of n=/2b=%/2logn and since n'/2p?*

another application of (A) yields

— 0,

sup  |roa(2, %) = O, (n72.576) + Op('é%) + Op(nfl'lfl(log n)?)
(m,2,8)EMpD
= 0, (n7H7) + 0, (n).
It follows that for each & € X,

sup |Gn(2, %) — G(z,%) — Ey(2,3)| = op(nl/Q) + O,,(n’%"‘).

z€[mo,m1]
Now define ¢;(y,s, %X,X) = Kg(z—i’ﬁn)f(x, s, X, z, %), where f is defined in equa-
tion (35). Then E,, = P,¢;, and {(y,s,X) — f(y,s,X,2,%) : Z € [mo,m], T € X} isa

Euclidean class because 1/A, and 0 A, are bounded and A; is Lipschitz continuous
on Mp. Lemmas 1.iii and 1.v imply

sup| gy — Pupi — &' PuQ| = 0,(n /%) + 0, (n107?%)
and
sup| Pagy, — 6| = O, (n1572) + O(0F) + o(n~/26"210gn) .,
where P,p; = BY, ¢ = G, and ¢ = I'. The conclusions of the lemma follows. m

PROOF OF THEOREM 2 Let P denote the distribution of (Y, S, X’, Z) and let P,
denote the corresponding empirical measure. By lemma 3.ii GG,, converges uniformly
to G. Assumption 6.2 therefore implies

/ 1(Gu(z5) < @) ~ 1CE#) < )

The integral is also o, (n~/2) if ¢q is replaced by ¢; or the directions of the inequalities

dz = o, (n’l/Q) .

are reversed. Since n~1/2)~4 — 0, this and lemma 3.i imply that

Jo(i) — J(&) = /m (Gu(2,8) — G(2,i))1(co < G(2,%) < ¢1) dZ + 0,(n"?)

0

= Pooy(#) + T() P.Q + 0, (n/?),
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where ¢ and I" are defined in (36) and (37) and
o5(y,8,X,2,1) = /U(y,S,i,z,jﬁ)KB(z —7)dz.

A change of variables and a Taylor series expansion around z = () (using the assump-
tion of a k-order kernel and boundedness of 95 4,) yield

Poy(i) = Po(i) + O(F).
By change of variables

Ob(y’ S’ 5&7 Z? j) - O(Y7 S7 5&7 z? j"’)
= /(a(y, s,%,Z — bz, i) — o(y,s,X,z, x))K(Z) dz.

Since o is bounded and K is integrable, there is a constant Cs such that sup |o; —o| <
Cs. Given & € X, let D denote the set of the discontinuity points of the function
9(z) = 1(mo <z < m)1(co < G(Z,i) < ¢;). Assumption 6 implies that D is finite.
Let Dj be a cover of D consisting of intervals of length 2b centered on each point in
D. Define the indicator function Q;(y,s, %, z, %) = 1(z € D;). Then

P(Qy(i) 0y(%) — o (i)]) < C5PQ4(3) = O(b).

For z not in D; and n so large that b<1 /2, there are no discontinuity points between
7z and Z — bz. Boundedness of 040 therefore implies

P(|1 = @)l (&) — o(i)]) = O(b).

Combining these results gives Ploy (&) — o(#)| = O(b) and P(oy(# ) —o(2))? = 0(b),
since o — o is bounded. It follows by Chebyshev’s inequality that P, oy (i) — Pab(x) =
Op( *1/2b1/2) =o ( *1/2) Combining this with the previous results that Pab(:p)

Po(i) = O(bk’) gives | P,0;(3) — P,o (i) = 0,(n~%/?). It follows that, for each & € X,

Jo(i) — J(i) = Pyo(&) + T() PuQ + 0, (n 2.

Therefore,
Bp = B = (c1 — o) "W'W) "W (AJ, — AJ)
= (Cl — Co)_l(W/W)_lwlvn + Op (n_1/2)’
where V, is the (m — 1)-vector whose (I — 1)th, [ = 2,... ,m, component is

Valior = BuF () — PuF () + (DOa) — D)) PaS2.

The conclusion of the theorem follows. [ ]
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A.3 Proof of Theorem 4

ProOF OF THEOREM 4 Define

¥ A v i N
En(y,z):/ w_/ Agn(v, 2) A1 (dv, 2)
0 0

AQ(U 2) 1212(1),2')2
_1 (Wi yLSi=s) [V LY > v) Ay(d, 2)
N ZKm Zin ( Az(Yi,Z) /0 AQ(U 2)? >

Arguments similar to those given in the proof of lemma 3 show that

sup |I:In(y\2) — I:I(y|2) — En(y, Z)| = 0p("71/2bz71/2)
(y,2)EM

using the assumptions that n=1%2°6_3 is bounded, n=2p; 7% 0, and n'/2bY 2

0 as n — o0o. Define

Iy <y)l(s=s 1y > v) A (dv, =
f(y,S,Z,y): (y_Ay)( )_/ ( ) 1( )
AQ (Y7 Z) 0 ( )
Define ¢y, (y,s,%x) = K.(2 — X'3,) f(y,s, z,y). Then E,, = P,¢,. and it is straight-
forward to show that the corresponding ¢-function is ¢ = 0. Consistency and

asymptotic normality now follows from a result similar to part vi of lemma 1. Put
F = { y,s) — f(y,s,z,y): (y,2) € ./\/l} Then F is a Euclidean class for a constant

envelope by lemmas 2.13 and 2.14 of Pakes and Pollard (1989), since 1/ Ay and 9, A,
are bounded on M and A, is Lipschitz continuous on M. Note that

// f(Y757 <, yj)f(Yv S, 2, yk)A0<dY7 dS, Z)

B /m‘n(yf Yk) Al dv, z) / / (v Al(dv2>z)A1(dvlaz)
A2 (v, 2) 12 ) AQ(U27Z>2A2(U172>

/yj /yk Al(d'UQ, ){h(dvla )
(1}2, )AZ(U17Z)2 R
j R ~ A1<dU2,2)A1(dU172)
+/0 /0 (1(91 > V) As(v1, 2) + 1(v2 > ”1)A2<UQ’Z)) A

AQ(UQ,Z)QAQ(?}l,Z)Q
B /min(yj,yk) Al(dv,z)
0 142(1}7Z>27

and the covariance function given in the theorem follows. [

A.4 Proof of Theorem 6

Lemma 4 below extends lemma 1 to the case of kernel smoothing over both Z and
Y. Like lemma 1 it is stated without proof.
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Given some function f and (y, z) € M, where M is a bounded set, define

K. (b1 (2 —x'B,)) K,(b, ' (y —y))

On(y, 8, %) = b b, (s =5)f(y,2),
oty = R XN N g,

¢ = f(yv Z)dl(yv Z)>
(5 - f(y7 Z) /XlaQAT(ya Z, dxfl>-

Convergence of P, ¢, is established in lemma 4.

Lemma 4 Suppose assumptions 11, 12, 13, and 14 hold, and that f is bounded.
Then

i If n=2b, b2 logn is bounded, then sup P,|¢,| = O, (n~/2b,"5;2) + O(1)
asn — oo.

ii. If n_l/szjlpb;?’/Q logn is bounded, then sup‘Pmbn — Pngon‘ = Op(n_l/Q) +
Op(n~"b,'b;%) as n — oo.

il Ifnfl/zbgjl/QbZ?’/Q log n is bounded as n — oo, then sup‘anSn—Pncpn—QNS’PnQ‘ =
0p(n712) + Oy (n710,102%).

iv. sup‘Pngon — qz5| = o(n*1/2by_1/zbz_l/2 log n) + O(b’gy) + O(b’jz) almost surely as
n — oo.

v. If n=12b,%6;* logn is bounded, then sup|Poé, — ¢| = O,(n b, "b;%) +
o(n*1/2b51/2b21/2 logn) + O(b]gjy) + O(b%) almost surely as n — oo.

Let (y;, zj) € M, Jj=1,2,...,J and let ¢,; and ¢; denote the corresponding ¢,, and
¢. Define

Cir = Uy = )1z = 20) [ (15, 2) a1 (5, 25) /Ky(t)2 dt/Kz(u)Qdu-

vi. If n=2b, "2 logn is bounded, n="/2b; "*6;"/* — 0, and n'/2by *by/* T —
0 and n/2by/*™p? — 0 as n — oo, then /byb. (Pudns — &1, ..o Patbng —
ngJ) —4 N, where N is a multivariate normal random vector with mean 0 and
covariance matrix C' = [Cjy].

PROOF OF THEOREM 6 Let 7y, and Iy, be defined as iy, and A, with Z; = X[p
replacing Z;, = X/3,. Since n=1/2p;3/ logn is bounded as n — oo, lemmas 1.ii, 1.iv
and 1.v imply

sup| Ay — Tlaa| = O (n™%) + 0, (™ '67), )
M



sup!ﬂgn - flg‘ =0(b¥) + 0(n_1/2bz_1/2 logn) as., (B)
M
sup|1212n - 1212‘ =O0(bl) + o(n’l/Qb;l/2 logn) a.s. (C)
M
Similarly, since n=1/2b, */b>**1log n is bounded as n — oo, lemas 4.ii and 4.iv imply
sqp’dln - frln’ =0, (n_l/z) + 0, (n_lbglb;?’) (D)
M
sqp’frln —ay| = O(bl;y) +O(b%) + o(n_l/zby_l/Ql);l/2 logn) a.s. (E)
M

The first step is to prove that conditioning on (3, instead of § does not affect the
asymptotic distribution. Let € > 0 be a small number. By (C) and (B) sup | Ay, —
A2| < € and sup |H2n — A2| < ¢ for all large n. By assumption A, is bounded below on
M. This means that Agn and Hgn are bounded below as well. Moreover, boundedness
of a; and (E) implies boundedness of 7y,,. Therefore, by (A) and (D),

&ln 7%1 &177, - 7?[_111 <A2n - HQn)ﬂ-ln
sup|—=— — —| < sup + sup —
M A2n H2n M 2n M 2nH2n

= 0,(n*) + 0, (n o).

Next step is to show that asymptotically the double-smoothed 7y, dominates the
single-smoothed II,. By (B),

7/%ln 7/i-ln ﬁln (ﬂQn - AQ) k ~1/27—-1/2
Sup|=—— — ——| = sup —— = O(b") + o(n 21 ?1ogn) as.
& e, Ay M Iy, Ag ( ) ( )
It follows that
sup hy — h
= sup T 211 Op (n_lb;b;?’) + O(bljz) + o(n_l/sz_l/2 logn) a.s.
M| Az 2

Given (y,2), define f(y,2) = 1/A5(y,2), u(s,¥,%) = f(y, ) Ken(z = X'B) Kyn(y —
y) and ¢ = a1(y,2)/Aa(y, 2), then Py, = T,(y,2)/As(y,z). Consistency and

asymptotic normality now follows from lemmas 4.v and 4.vi. [



41

References

Aalen, O. O. (1978). Nonparametric inference for a family of counting processes.
Annals of Statistics 6, T01-726.

Ai; C. (1997). A semiparametric maximum likelihood estimator. Econometrica 65(4),
933-963.

Beran, R. (1981). Nonparametric regression with randomly censored survival data.
Technical report, Department of Statistics, University of California, Berkeley.
Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical

Society 34B, 187-220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62, 269-276.

Dabrowska, D. M. (1987). Nonparametric regression with censored survival time data.
Scandinavian Journal of Statistics. Theory and Applications 14(3), 181-197.
Gorgens, T. and J. Horowitz (1999). Semiparametric estimation of a censored regres-
sion model with an unknown transformation of the dependent variable. Journal

of Econometrics 90(2), 155-191.

Han, A. K. (1987). Non-parametric analysis of a generalized regression model. Journal
of Econometrics 35, 303-316.

Hérdle, W. and T. M. Stoker (1989). Investigating smooth multiple regression by the
method of average derivatives. Journal of the American Statistical Association 8/,
986-995.

Hérdle, W. and A. B. Tsybakov (1993). How sensitive are average derivatives? Jour-
nal of Econometrics 58(1-2), 31-48.

Hastie, T. and R. Tibshirani (1986). Generalized additive models. Statistical Sci-
ence 1(3), 297-318. With discussion.

Hastie, T. and R. Tibshirani (1990a). Expoloring the nature of covariate effects in
the proportional hazards model. Biometrics 46, 1005-1016.

Hastie, T. J. and R. J. Tibshirani (1990b). Generalized Additive Models. London:
Chapman and Hall Ltd.

Horowitz, J. L. (1996). Semiparametric estimation of a regression model with an
unknown transformation of the dependent variable. Econometrica 64 (1), 103—
137.

Horowitz, J. L. (1999). Semiparametric estimation of a proportional hazard model
with unobserved heterogeneity. Econometrica 67(5), 1001-1028.

Horowitz, J. L. and W. Hérdle (1996). Direct semiparametric estimation of single-
index models with discrete covariates. Journal of the American Statistical Asso-
ciation 91(436), 1632-1640.

Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estima-
tion of single index models. Journal of Econometrics 58, 71-120.

Kaplan, E. and P. Meier (1958). Nonparametric estimation from incomplete obser-
vations. Journal of the American Statistical Association 53, 457-481.

Klein, R. W. and R. H. Spady (1993, March). An efficient semiparametric estimator
for binary repsonse models. Econometrica 61(2), 387-421.



42

Lancaster, T. (1990). The Econometric Analysis of Transition Data. Cambridge; New
York: Cambridge University Press.

Manski, C. F. (1988). Identification of binary response models. Journal of the Amer-
ican Statistical Association 83, 729-738.

McKeague, I. W. and K. J. Utikal (1990). Inference for a nonlinear counting process
regression model. Annals of Statistics 18(3), 1172-1187.

Miiller, H.-G. and J.-L. Wang (1994). Hazard rate estimation under random censoring
with varying kernels and bandwidths. Biometrics 50(1), 61-76.

Nelson, W. (1972). Theory and applications of hazard plotting for censored failure
data. Technometrics 1/, 945-966.

Nielsen, J. P. and O. B. Linton (1995). Kernel estimation in a nonparametric marker
dependent hazard model. Annals of Statistics 23(5), 1735-1748.

Nolan, D. and D. Pollard (1987). U-processes: Rates of convergence. Annals of Statis-
tics 15(2), 780-799.

Pagan, A. and A. Ullah (1998). Non-parametric econometrics. Manuscript.

Pakes, A. and D. Pollard (1989). Simulation and the asymptotics of optimization
estimators. Econometrica 57, 1027-1057.

Pollard, D. (1984). Convergence of Stochastic Processes. New York: Springer-Verlag.

Powell, J. L., J. H. Stock, and T. M. Stoker (1989). Semiparametric estimation of
index coefficients. Econometrica 57(6), 1403-1430.

Powell, J. L. and T. M. Stoker (1996). Optimal bandwidth choice for density-weighted
averages. Journal of Econometrics 75(2), 291-316.

Ramlau-Hansen, H. (1983). Smoothing counting process intensitites by means of
kernel functions. Annals of Statistics 11(2), 453-466.

Rice, J. and M. Rosenblatt (1976). Estimation of the log survivor function and hazard
function. Sankhya Series A 38, 60-T8.

Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation
estimator. Econometrica 61(1), 123-137.

Watson, G. S. and M. R. Leadbetter (1964a). Hazard analysis 1. Biometrika 51,
175-184.

Watson, G. S. and M. R. Leadbetter (1964b). Hazard analysis II. Sankhya Series
A 26, 110-116.

Yandell, B. S. (1983). Nonparametric inference for rates with censored survival data.
Annals of Statistics 11(4), 1119-1135.



