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Abstract

Traditional microstructural theories of asset pricing emphasize the role of volume as a

trend indicator. With the availability of large transaction data sets, one has started recently

to incorporate more information of the trades, such as the time between trades, to describe

the multivariate dynamics of transactions. Without knowing a priori the relation between

the observed components of a trade { price, duration between trades, and volume { one

may follow the principle of `letting the data speak for themselves'. The goal of this paper is

to evaluate the informational content of both volume and durations to predict transaction

returns using explorative nonparametric methods. The empirical results for transaction data

of IBM stock prices con�rm the role of volume as a trend indicator and suggest that the bid{

ask bounce is smaller in highly active than in less active trading periods. That is, after a sell

(buy) expected returns are decreasing (increasing) with volume and increasing (decreasing)

with durations.

�Sonderforschungsbereich 373, Humboldt{Universit�at zu Berlin, Germany. Mailing address: Institut f�ur Statis-

tik und �Okonometrie, Wirtschaftswissenschaftliche Fakult�at, Humboldt{Universit�at zu Berlin, Spandauer Str. 1,

D-10178 Berlin, Germany; e-mail hafner@wiwi.hu-berlin.de; Financial support by the Deutsche Forschungsge-

meinschaft is gratefully acknowledged. Helpful discussion was provided by the participants at the `Symposium

on Microstructure and High Frequency Data', december 1998 in Paris. The author wants to thank Luc Bauwens

and Pierre Giot for helpful discussions and for generously providing the IBM stock data.



1 Introduction

A standard branch of microstructure theory has been concerned with the informational content

of volume to identify informed traders. Also empirical evidence suggests that the trading volume

contains information that can be exploited for pro�table trading strategies, see e.g. Acar and

Lequeux (1996) and Ghysels, Gouri�eroux and Jasiak (1998). These approaches are very close to

technical trading rules used by market participants, one of which can be summarized as `volume

goes with the trend'.

For transaction data, however, the role of the timing of trades has so far attracted little

attention. Therefore, we would like to have a model framework that simultaneously deals with

volume and durations to predict returns. First approaches in this direction have been provided

(1) by Russell and Engle (1998) in their autoregressive conditional multinomial (ACM) model,

where the parameters of a multinomial logit model follow a vector ARMA process, and (2) by

Rydberg and Shephard (1998), who decompose the discrete price series into activity, direction

and size, predicting each component by autologistic models. These approaches crucially rely on

restrictive assumptions about the dynamic structure of trade variables. However, it is known

that high frequency �nancial data often exhibit complex nonlinear patterns that render the task

of model identi�cation di�cult. Without imposing a potentially restrictive model structure,

one may thus want to follow the principle of `letting the data speak' and use explorative non-

parametric models. The visualization of function estimates then helps to construct parametric

models that can be used, e.g., for prediction purposes.

In Hafner (1998), a related paper dealing with option prices, we found that the information

contained in volume dissipates for longer durations between trades. For option markets, this is

plausible because other sources of information such as the evolution of the underlying become

more important than the marks of the last trade in the option as time elapses. If, on the other

hand, durations are short so that no exogenous new information such as new transactions in

the underlying can be expected for the new trade, volume retains its traditional role of a trend

indicator. That is, when the trade is buy-initiated one expects a positive trend, when it is

sell-initiated one expects a negative trend, conditional on high volume and short durations.

In this paper, we analyze transaction data for the IBM stock, as this is a data set frequently

used in recent papers. In Section 2, we make use of the autoregressive conditional duration

(ACD) model of Engle and Russell (1998) to predict durations. As Dufour and Engle (1999)

emphasize, there is yet no satisfactory economically motivated model for durations, so one

usually assumes that durations are exonenous, using standard time series models to predict

durations. One could extend the approach followed here to approaches considering durations as

endogenous. Indeed, many papers consider durations or the trading intensity, which is closely

related to volatility, as the dependent variable for which microstructural theories are formulated

and tested. Examples are Bauwens and Giot (1999a, 1999b), Engle (1996) and sections 7 and

8 of Engle and Russell (1998). As emphasized above, we take another perspective and consider

the direction of price changes as the variable to be explained. This may have the advantage that

not only the existence of news matters for the price updating behavior of agents, but also its

quality: When traders learn about the existence of good (bad) news from observing the trade
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marks, they will immediately update their beliefs about short-term positive (negative) trends.

On the other hand, whether news is good or bad does not a�ect (or, at least, much less) the

trading intensity or duration process. Thus, observing past price changes as well as trade marks

may give a better understanding of how agents update their beliefs than considering the marks

alone.

In Section 3, we estimate the expectation of returns conditional on current durations and

lagged volume. To estimate the conditional expectation, we use nonparametric kernel methods

and, based on this analysis, parametric threshold models. Our results indicate that unlike for

option transactions volume keeps its informational content for longer durations. This reveals

a substantial di�erence of the dynamics of transaction marks in option markets and in stock

markets.

2 Durations and the ACD model

A well known property of transaction durations is the clustering of high respectively low trans-

action rates and thus positive autocorrelation of durations. See Figure 4 for the empirical

autocorrelation function of IBM stock transaction durations, adjusted for deterministic season-

ality e�ects. To take this duration clustering into account, a popular modelling approach is

based on the autoregressive conditional duration (ACD) model of Engle and Russell (1998),

which we also employ in this paper.

We analyze transaction data for the IBM stock traded at the New York Stock Exchange

during september, october and november 1996, a total of n = 61; 063 observations. The same

data is used and described in more detail by Bauwens and Giot (1999a, 1999b). The data

set consists of the trading time (ti), the price (Si) and the trading size (qi). We de�ne (log)

volume vi = log(Siqi), returns in transaction time, ri = logSi=Si�1 and durations Di = ti �

ti�1. To �nd a suitable model for the durations Di, we �rst of all adjust for deterministic

time-of-day e�ects, as it is well known that activity is larger in the morning and afternoon

than it is over lunch. Thus, we estimate the conditional expectation E[Di j ti�1 = t] = �(t)

via nonparametric regression methods and calculate the seasonally adjusted durations di =

Di=�(ti�1). The estimated function �(t) is displayed in Figure 1. Clearly visible are the larger

durations over lunch-time. Summary statistics for seasonally adjusted durations di, returns ri

and log volume vi are provided in Table 1. The transaction returns have a strong negative �rst

order autocorrelation ({0.164), which may be explained by the usually observed bid-ask bounce

for high frequency �nancial time series.

As is obvious from the ACF in Figure 4, the temporal dependence of durations remains

strong after seasonal adjustments. Therefore, we �t a model for the expectation  i of duration

di conditional on the �ltration Fi�1 that generates the processes qi, Si and di. We assume that

 i only depends on past realizations of the durations such that

 i = ! + �di�1 + � i�1 (1)

with constant parameters ! > 0, � � 0, � � 0. Including lagged volume as explanatory variable

in (1) yielded an insigni�cant coe�cient which justi�es our assumption concerning non-causality
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mean variance skewness kurtosis �1

durations 1.37 2.28 2.90 26.22 0.230

returns 5.6E{06 2.8E-07 {0.19 18.07 {0.164

log volume 11.80 1.85 0.06 2.55 0.171

Table 1: Summary statistics for seasonally adjusted durations, returns, and

log volume. �1 is the �rst order autocorrelation.

Distribution 
 < 1 
 = 1 
 > 1

� = 0 e. d. none l. d.

� > 0 conditional e. d. none l. d.

unconditional e. d. e.d. ?

Table 2: Excess dispersion (e.d.), less dispersion (l.e.) or none for alterna-

tive parameters of the Weibull ACD(1,1) model.

of volume for durations. Denoting �i =  i=�(1+1=
) for a constant 
 > 0 and Gamma function

�, we can write the model for the durations as

di = �i"i (2)

with stochastic i:i:d: errors "i that are Weibull(1; 
) distributed. The case 
 = 1 corresponds

to the exponential distribution, for which we have �i =  i. Models of higher order than the

ACD(1,1) model in (1) may also be considered.

One feature of �nancial duration data is the excess dispersion, that is, a standard deviation

which is larger than the mean. This can be the case for the unconditional and the conditional

distribution. For the Weibull ACD(1,1) model, six cases can be distinguished, which are sum-

marized in Table 2. Note that for the case � > 0 and 
 > 1, it depends on the actual numerical

value of the parameters (also of �) whether or not the unconditional distribution displays excess

dispersion. Recall from Table 1 that the IBM stock durations exhibit some excess dispersion

with a mean duration of 1.37 and a standard deviation of 1.51.

The parameters of the ACD model are estimated by maximum likelihood estimation. The

log likelihood function is

logL(� j d1; : : : dn) =
nX
i=1

log



di
+ 


nX
i=1

log
di

�i
�

nX
i=1

�
di

�i

�

; (3)

which can be maximized numerically with respect to the parameter vector � = (!; �; �; 
)0.

Estimation results for the ACD(1,1) model applied to the IBM stock durations are presented in

Table 3. We note the usual result of high persistence, i.e., � + � is very close to one for both

Exponential and Weibull ACD. All parameter estimates are highly signi�cant. In particular, the

parameter 
 = 1:14 of the Weibull ACD is signi�cantly larger than one. The exponential ACD
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Exponential Weibull

! .0106 (.0014) .0099 (.0013)

� .0644 (.0037) .0640 (.0037)

� .9282 (.0045) .9293 (.0045)


 1.1397 (.0031)

log L {74,987.2 {74,138.0

Table 3: QMLE Estimation results for the ACD(1,1) model with (1) expo-

nential, (2) Weibull conditional density. Heteroskedasticity{consistent stan-

dard errors are given in parentheses. log L denotes the log likelihood value.

is strongly rejected by a likelihood ratio test in favor of the Weibull ACD. Engle and Russell

(1998) �nd 
 < 1 for IBM stock transaction data in november to january 1990/91, which may

indicate a change of duration dynamics over recent years in this particular stock.

A way to characterize the instantaneous probability of an event at a given time t is the

hazard function. Denote by f(t) the (unconditional or conditional) density of durations, and by

F (t) the cumulative distribution function. Then the hazard is de�ned as

�(t) =
f(t)

1� F (t)
; (4)

which is the probability of an event in the next small interval [t; t + �t] conditional on no

event up to time t. For the exponential distribution, the hazard is a constant. For the Weibull

distribution it decreases for 
 < 1 whereas it increases for 
 > 1. Estimates of the unconditional

duration density and hazard are shown in Figure 2 and 3, respectively. A decreasing shape of

the hazard can be caused by duration clustering (`ACD e�ect'), by a Weibull innovation with


 < 1, or both. An increasing shape of the hazard can be caused by a Weibull innovation with


 > 1 that weighs stronger than the duration clustering e�ect. Interestingly, the hazard estimate

shows a non-monotone shape with three modes while the overall shape is increasing.

Extensions of the standard ACD model are possible. For example, Bauwens and Giot

(1999a) model logarithmic expected durations with an ACD-type model. This does not constrain

the parameters to be positive, which allows them to include additional explanatory variables.

Gouri�eroux, Jasiak and LeFol (1997) investigate the time varying shapes of duration densities

and hazard functions over calendar time. Furthermore, in the light of the slow decay of the ACF

in Figure 4 one may consider long memory ACD models.

3 Model identi�cation for returns

In the previous section we have analyzed the conditional distribution of transaction durations

based on observations of the past. In particular, we have used the ACD model to obtain a

simple but powerful way to estimate the conditional expectation, based only on past durations.
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Now, we introduce volume vi and return ri of transaction i to be dealt with. The object is to

describe the distribution of returns conditional on the current durations (which can be predicted

using the results of the previous section) and lagged volume. The joint likelihood of returns and

durations can be written as

f(ri; di j Fi�1) = g(ri j di;Fi�1)h(di j Fi�1) (5)

where h(di j Fi�1) is derived from the ACD model. Now, we are concerned with �nding a model

for g(ri j di;Fi�1), i.e., the distribution of returns conditional on current durations and past

returns and volumes. By assuming weak exogeneity of durations, one can model and estimate

g(ri j di;Fi�1) without e�ciency loss.

3.1 Nonparametric threshold models

Because we have no a priori conjecture of what the model for g(ri j di;Fi�1) in (5) might be,

we may use an explorative nonparametric approach. To this end, we choose one lag of both

volume and returns as explanatory variables. Since now we have three variables on which the

distribution of ri depends, i.e., di, vi�1 and ri�1, a further restriction is necessary to visualize the

results and to facilitate the analysis. Here we can exploit the discrete nature of price changes,

being mostly plus or minus one or two tick sizes (1/8 of a dollar) or zero. As outlined in the

introduction, market participants often consider volume related to some `trend' measure. The

principle trading rule is that volume reinforces the trend. This trend may be positive or negative,

as primarily indicated by the sign of returns. Thus, we consider the restriction to the case of

lagged returns being positive and negative, or more generally being discretized according to a

partition with �nitely many intervals. Moreover, in this framework we are not interested in the

entire distribution of ri but only in its expectation. To summarize, we will try to �nd a model

for mj(di; vi�1) = E[ri j vi�1; di] conditional on ri�1 2 Aj where A1; : : : ; AJ is a partition of the

real line. Such a threshold model may be written as

ri =
JX

j=1

mj(di; vi�1)I(ri�1 2 Aj) + "i (6)

where I() denotes the indicator function. In (6), m1; : : : mJ are unknown smooth functions that

can be estimated using standard nonparametric methods.

Consider the more general case of p regressors, X = (X1; : : : ; Xp)
0. Then, a simple Nadaraya-

Watson estimate of the function mj is

m̂j(x) =
nX
i=2

KH(Xi � x)I(ri�1 2 Aj)riPn
i=2KH(Xi � x)I(ri�1 2 Aj)

(7)

with a IRp
�! IR kernel function K(u), non-singular (p�p) bandwidth matrix H, and KH(u) =

1

jHj
K(H�1

u). As is well known, the Nadaraya-Watson estimator can be considered as a local

constant estimator, i.e., it solves the weighted least squares regression problem

min
�0

nX
i=2

(ri � �0)
2
I(ri�1 2 Aj)KH(Xi � x):

6



More generally, one can �t local polynomials. For example, local linear estimates solve

min
�0;�1

nX
i=2

�
ri � �0 � (Xi � x)0�1

�2
I(ri�1 2 Aj)KH(Xi � x);

where �0 is scalar and �1 a p-dimensional vector. The weighted least squares solution is given

by

�̂ = (�0; �
0

1)
0 = (Z 0

WZ)�1Z 0
Wr (8)

with the regressor matrix

Z =

0
BBBBB@

1 X12 � x1 � � � Xp2 � xp

1 X13 � x1 � � � Xp3 � xp

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 X1n � x1 � � � Xpn � xp

1
CCCCCA ;

the weight matrix W = diag (KH(Xi � x)I(ri�1 2 Aj)), and r = (r2; : : : ; rn)
0. For a survey on

local polynomial estimators, see Fan and Gijbels (1996).

For the partition, we start with three intervals, A1 = (0;1), A2 = (�1; 0) and A3 = [0]

that will give us some indication of short term price movements. The choice of this partition

naturally corresponds to the partition concerning the initiation of a trade: If ri 2 A1, the trade

very likely was buy-initiated, if ri 2 A2, it was very likely sell-initiated, and if ri 2 A3, the

trade took place at the last transaction price. One has to ensure that for each interval there

are enough observations such that the principle of local averaging does not collapse. For our

three cases, there are 8215, 7866 and 44923 observations, respectively, for positive, negative

and zero returns, which is su�cient for the bivariate estimate. Note that due to the discrete

character of returns the probability of a return falling in A3 is not zero. In fact, by far the most

returns, about 73.6%, are zero. Since there are few observations with very large durations, the

function estimates might be deteriorated in those regions because of data sparseness. Therefore,

for the estimation we have eliminated those cases of durations that are more than two standard

deviations larger than the mean.

We use the simplifying assumption of a diagonal bandwidth matrix, H = diag(h1; h2).

Also, we employ the product kernel K(u) =
Qp

i=1K(ui) with univariate kernels K. Then the

Nadaraya-Watson estimates are

m̂1(d; v) =
nX
i=2

Kh1(di � d)Kh2(vi�1 � v)I(ri�1 > 0)riPn
i=2Kh1(di � d)Kh2(vi�1 � v)I(ri�1 > 0)

; (9)

m̂2(d; v) =
nX
i=2

Kh1(di � d)Kh2(vi�1 � v)I(ri�1 < 0)riPn
i=2Kh1(di � d)Kh2(vi�1 � v)I(ri�1 < 0)

; (10)

and

m̂3(d; v) =
nX
i=2

Kh1(di � d)Kh2(vi�1 � v)I(ri�1 = 0)riPn
i=2Kh1(di � d)Kh2(vi�1 � v)I(ri�1 = 0)

; (11)

with Kh(u) = (1=h)K(u=h). The bandwidths h1 and h2 determine the degree of smoothness of

the function estimate. We used standard rule of thumbs to determine the bandwidths to balance

the bias problem of oversmoothing and the variance problem of undersmoothing.
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The estimated functions m̂1, m̂2 and m̂3 are shown in Figure 5, 7 and 9, respectively. To

give an idea of the corresponding densities of the explanatory variables, we also plot the density

estimates in Figure 6, 8 and 10.

First of all, recall from Table 1 that the returns have negative �rst order autocorrelation

({0.164) such that m1 will tend to be negative, whereas m2 will tend to be positive. Consider

�rst the estimate of m2 in Figure 7. The function is increasing in the direction of the durations.

This could be interpreted as a reduced bid{as bounce e�ect for small durations. In other words,

the bid{ask bounce e�ect appears to be smaller in highly active trading periods than in less

active periods. Moreover, we see a decrease of the function in the direction of volume. This may

indicate that the belief in a trend signal coming from an informed trader who has sold the stock

is higher for large volumes. Together, we have two e�ects: the bid-ask bounce and the trend

signal e�ects. The latter is found to be more important than the former in case of high trading

activity and large volumes, whereas the bid-ask bounce dominates for small volumes and low

transaction rates.

The shape of the function in the volume direction appears to be somewhat nonlinear: for

small volumes it remains 
at or even increases, then declines strongly. This may be interpreted

as volume being a trend indicator only for su�ciently large volumes.

This picture is mirrored when we turn to the case of a positive lagged return in Figure 5.

Note that the shape of this function is quite linear. As the negative �rst order autocorrelation

implies, the function should be negative on average, which it is. However, we see that there is

an increase in the direction of the volume, which indicates that for large volumes one may have

a strong belief in a signal by an informed trader who has bought the stock. In the direction

of durations, the function declines due to the increasing bid{ask bounce. Recall that we have

already taken care of outliers such that the function estimates are not shown in the �gures for

extremely large durations.

Finally, for zero returns (Figure 9) the function appears to be 
at without any important

structure. Hence, if the last trade occurred without changing the prevalent price it does not

seem to be possible to exploit the information of volume and duration to predict the direction

of prices. This is because in this case one cannot infer from the trade whether it was buy{ or

sell{initiated.

To summarize the results of this explorative study, we can state that the sign of lagged

returns may indeed indicate a certain signal coming from an informed trader. This signal may

be considered to be stronger if the trade occurred with a large volume. This is consistent with

traditional microstructural theories, see e.g. Glosten and Milgrom (1985) and Easley and O'Hara

(1987). The new aspect of our analysis is the additional information about the timing of the

trade.

3.2 Linear threshold models

At a next step, we may now formulate a parametric model based on the nonparametric estimates.

We have noticed a distinctly di�erent shape of the functions depending on whether lagged returns

are positive, negative or zero. Thus, one may introduce a linear threshold model where the
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model �1 �2 �3 �4 �5 �6

M1 0.033 -1.875 1.977 0.185 0.122 -0.134

(2.42) (-18.82) (21.08) (4.52) (15.31) (-17.05)

M2 0.059 -0.331 0.412 0.026

(4.27) (-11.36) (13.92) (4.09)

M3 0.034 -1.659 1.899 0.218 0.112 -0.130

(2.47) (-16.33) (19.85) (5.23) (13.94) (-16.53)

�7 �8 �9 �10 R
2

Q(10)

M1 -0.015 3.99% 130.42

(-4.26)

M2 -0.099 0.046 -0.010 3.45% 111.92

(-12.33) (5.82) (-3.27)

M3 -0.016 -0.085 0.032 -0.011 4.22% 132.02

(-4.66) (-10.62) (4.01) (-3.78)

Table 4: Estimation results of the threshold model given in (12). t statistics

are given in parentheses. The coe�cient of determination for the regression

is denoted by R2 and the Box Ljung statistic for ten lags by Q(10) with 1%

critical value 18.47.

threshold variable is the lagged return ri�1. As in the previous section, de�ne the partition

A1 = (0;1), A2 = (�1; 0), and A3 = [0]. Then, we introduce the threshold model

ri = �1ri�1 +
3X

j=1

(�j+1 + �j+4vi�1 + �j+7di) I(ri�1 2 Aj) + "i: (12)

Of particular interest are restrictions of the threshold model in (12) that we call `volume model'

or M1, where �8, �9 and �10 are restricted to zero, and `duration model' or M2, where �5,

�6 and �7 are restricted to zero. The unrestricted model (12) is termed M3. The parameter

estimates of models M1, M2 and M3 are presented in Table 4.

Note �rst that all parameter estimates are signi�cant, which is not surprising for more

than 60,000 observations. The negative sign of the parameter �8 in M2/M3 corresponds to the

decreasing shape of m̂2 in Figure 5 in the duration direction, indicating a loss of signalling e�ects

due to longer durations. The positive sign of �9 in M2/M3 indicates the reverse situation, that

is, after a negative return subsequent trades have on average lower returns for short durations

than for long durations.

Concerning the volume parameters in M1/M3, the parameters again take the expected signs:

negative (�6) after a sell and positive (�5) after a buy. Both are even stronger signi�cant than

the duration parameters, and together with the slightly higher R2 of the regression for M1

than for M2 one may conclude that volume has more explanatory power for IBM returns than

durations. This is di�erent from the results for the DAX call option by Hafner (1998) where

durations were found to be more important than volume. Furthermore, recall from Figure 7 that
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the function for a negative lagged return was quite nonlinear in the volume direction. Including

a threshold at medium volume levels, we were able to still increase the R2 slightly.

Finally, note that all parameters related to zero returns (�4, �7 and �10) are much less

signi�cant, which corresponds to the 
at function shown in Figure 9.

The signi�cance of the Box Ljung statistic for the residuals of all models is also due to

the very large number of observations, where typically standard speci�cation tests reject any

parsimonious model.

4 Conclusions and outlook

Using explorative nonparametric methods, we have shown two basic e�ects of IBM stock trans-

action data: the �rst is the apparent belief of market participants in the importance of volume

for revealing informational asymmetry, as standard microstructure theory suggests. Secondly,

we �nd that this information revelation is moderated by a second variable, i.e., the time between

trades (durations). If there is a buy (sell), expected returns tend to decrease (increase) with

durations. The bid-ask bounce is thus found to be smaller for high transaction rates.

Our nonparametric approach has the potential to discover nonlinear structures of the data

and is thus particularly fruitful in the application to �nancial transaction data, where the func-

tional relationships between the involved variables are far from clear. To some extent (i.e., for

the case of a sell) we found evidence for nonlinearities in the data.

Further research may include the information of the spread between bid and ask quotes to

�nd out whether volume is informational only in periods of wide spreads, as the model of Admati

and P
eiderer (1988) suggests. If spreads are small, their model predicts that liquidity traders

rather than informed traders provide large volumes. Our �nding of the strong informational

content of volume might thus be due only to the cases where spreads are wide. Again, this

analysis has to be performed using durations, volume, and spreads simultaneously.

Appendix: Some remarks on asymptotic theory

Although this paper only deals with bivariate regression problems, consider the general case of p

regressors, X1; : : : ; Xp. For the asymptotic analysis of estimates of model (6), one needs that the

number nj of observations falling into the interval Aj converges to in�nity. This is established

by the stationarity of returns and the �xed probability pj of returns falling into interval Aj.

Thus, we have nj = npj(1 + op(1)). For notational simplicity we use a scalar bandwidth h.

Assume that h �! 0 and h
p
n �! 1. De�ne the kernel constants jjKjj22 =

R
K
2(u)du and

�2(K)Ip =
R
uu

0
K(u)du. One can prove along the lines of Ruppert and Wand (1994) for the

regression case and H�ardle, Tsybakov and Yang (1998) for the time series case that the bias of

m̂j(x) for the Nadaraya-Watson estimator (7) is given by

E[m̂j(x)]�mj(x) = h
2
�2(K)

 
1

2
Tr(52

mj(x)) +
5

0
mj(x)5 fj(x)

fj(x)

!
+ op(h

2);
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and for the local linear estimator (8) by

E[m̂j(x)]�mj(x) = h
2
�2(K)

�
1

2
Tr(52

mj(x))

�
+ op(h

2);

where fj denotes the marginal density of X conditional on ri�1 2 Aj , 5 the gradient and 52

the Hessian operators. Furthermore, the variance of both estimators is given by

Var(m̂j(x)) =
1

njh
p
jjKjj

2
2

�
2
j (x)

fj(x)
(1 + op(1));

where �2j (x) = Var(ri j Xi = x; ri�1 2 Aj). Using the results of H�ardle, Tsybakov and Yang

(1998), one can also show asymptotic normality of the estimates.
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Durations cond. on time of day (IBM)
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Figure 1: Expected durations as a function of the time of day
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Figure 2: Density estimate for the seasonally adjusted durations
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Durations hazard function (IBM)
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Figure 3: Hazard function estimate for the seasonally adjusted durations
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Figure 4: The ACF of durations
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positive lagged return
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Figure 5: Estimated return expectation conditional on current duration (right

axis) and lagged volume (left axis) after a buy of the stock

positive lagged return
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Figure 6: Estimated density of current duration (right axis) and lagged vol-

ume (left axis) after a buy of the stock
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negative lagged return
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Figure 7: Estimated return expectation conditional on current duration (right

axis) and lagged volume (left axis) after a sell of the stock

negative lagged return
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Figure 8: Estimated density of current duration (right axis) and lagged vol-

ume (left axis) after a sell of the stock
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zero lagged return

0.5

1.0

1.5

11.5

13.6

15.7
-0.1

0.0

0.1

(0.0,9.4,-0.2)

(2.0,9.4,-0.2)(0.0,17.8,-0.2)

 

(0.0,9.4,0.2)

  

 

Figure 9: Estimated return expectation conditional on current duration (right

axis) and lagged volume (left axis) after a transaction without price change
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Figure 10: Estimated density of current duration (right axis) and lagged

volume (left axis) after a transaction without price change
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