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1. Introduction

1.1. The axiomatic approach to bankruptcy problems

When a firm goes bankrupt, how should its liquidation value be divided among
its creditors? In this paper we deal with such bankruptcy problems, and search
for well-behaved methods, or rules, of associating with each bankruptcy problem
a division of the liquidation value of the firm.

This is a major practical issue and, as such, it has a long history. The best-
known rule is the proportional rule, which recomends awards to be proportional
to the claims. Some other rules were generated trying to acommodate examples
appearing in the literature. This is the case of the Talmud rule that generates the
numbers proposed in the Talmud as solutions to some examples of bankruptcy
problems [see Rabinovitch (1973), O’Neill (1982), Aumann and Maschler (1985)].

Modern economic analysis has addressed this problem from two different per-
spectives. One is the game theoretical, in which bankruptcy problems are for-
mulated either as TU coalitional games, or as bargaining problems, and rules are
derived from solutions to coalitional games and from bargaining solutions, respec-
tively [see O’Neill (1982), Aumann and Maschler (1985), Curiel, Maschler and
Tijs (1988), Dagan and Volij (1993)]. Most of the recent literature follows the
axiomatic framework, in which appealing properties of rules are formulated, rules
are compared on the basis of these properties, and the existence of rules satisfy-
ing various combinations of these properties together is investigated [see O’Neill

(1982), Young (1987), Chun (1988a), Dagan (1996), Herrero, Maschler and Villar



(1998)]. The reader is referred to Thomson (1995) for a survey of this literature.
Here we follow this approach.

Alternative rules typically represent different ways of applying a fairness cri-
terion to the resolution of the bankruptcy problem. Which one should we choose?
It seems that one would need a rule to select rules (and immediately comes the
problem of which rule to select rules to choose). One way out of this dilemma is to
identify the structural properties that each of these rules satisfy, so that choosing
a rule means choosing a set of these properties. This venue becomes more fruitful
the closer we get to the following recommendations:

(1) Each property is intuitive and represents a single and clear ethical principle.

(2) We can identify each rule as the only one satisfying a distintinctive set of
properties (that is, a collecion of these properties characterizes the rule); moreover
all these properties are logically independent.

(3) This set of distinctive properties is small whereas alternative rules share
most of the properties (in order to clearly identify their ethical differences).

Structural properties express invariance of the solutions with respect to changes
in the parameters, and are usually motivated by particular concerns. They are
intented to ensure that the solution has some desirable features or to prevent some
inconveniences. Hence it is not surprising that a particular rule can be charac-
terized by different sets of independent axioms. Each characterization provides
an insight on the type of problems for which a rule is satisfactory. The reader is
referred to Thomson (1998) for a discussion of the axiomatic method.

1.2. Scope and outline of the paper

This paper concentrates on a comparative analysis of three basic rules to solve
bankruptcy problems from an axiomatic viewpoint. These rules are:

(i) The proportional rule, that divides the estate proportionally to agents’
claims.

(ii) The constrained equal-awards rule, that divides equally the estate among
the agents under the condition that nobody gets more than her claim.

(iii) The constrained equal-losses rule, that divides equally the diference be-
tween the aggregate claims and the budget, provided no agent ends up with a
negative award.

The proportional rule satisfies a number of appealing properties, and when
compared with other rules, it has much to recommend itself. The idea of equality
underlies another well-known rule: the constrained equal-awards rule. It makes



awards as equal as possible to all creditors, subject to the condition that no cred-
itor receives more than her claim. A dual formulation of equality, focusing on the
losses creditors incur, as opposed to what they receive, underlies the constrained
equal-losses rule. It proposes losses as equal as possible for all creditors, subject
to the condition that no creditor ends up with a negative award.

Suppose that, when solving a problem, we start by temporarily awarding every
agent his claim. Since it is not feasible, now we apply a particular rule to allocate
losses. By this procedure we obtain a new rule, the dual rule of the initially used.
When a rule coincides with its dual, it is called self-dual. The proportional rule is
self-dual, and the constrained equal-losses and the constrained equal awards rules
are dual from each other. This duality underlies the properties they fulfil, and
help to better understand their different behavior.

The comparative analysis of the three aforementioned rules aims at clarifying
the class of real life problems for which each of these solutions is better. With this
purpose in mind and following the recommendations given above, we concentrate
on those characterizations that permit an easy comparison of these three rules.
In particular, we focus on a family of results that characterize each of these rules
by three independent axioms, two of which are common to all of them.!

The choice of these three solutions is by no means arbitrary. First because
they are the most common methods of solving practical problems. Second for
their long tradition in history. And last but not least, because they are almost
the only sensible ones within the family of solutions that treat equally equal
claims. As Moulin (1997, p. 3) puts it: “One unambiguous conclusion emerges
from the axiomatic analysis of rationing methods: ... [these three rules| stand out
by virtue of their multifarious axiomatic properties”.

As the Three Musketeers were four so are our three rules. The Talmud rule
here will play the role of D’Artagnan. This is an appealing allocation rule that
amounts to solve bankruptcy problems by combining the constrained equal awards
rule and the constrained equal losses rule.

We start by formally introducing the family of bankruptcy problems and the
three basic rules. Then we present several appealling properties for bankruptcy
rules. We offer a joint characterization of the three bankruptcy rules in terms of
some of those properties, as well as independent characterizations.

Previous properties help us to analyze also the contested garment rule, and its
consistent extension, the Talmud rule (the rule playing here the role of D’Artag-

!The discusion that follows is largely based on the author former works of Herrero (1998),
Herrero, Maschler & Villar (1998) and Herrero & Villar (1998a,b).



nan). Variants and extensions of the aforementioned rules are also analyzed.

The paper ends by providing noncooperative support of the constrained equal-
awards rule and of the constrained equal-losses rule. Proofs are relegated to an
Appendix.

2. The Model

Let N be a set of agents, with |N| = n. A bankruptcy problem for N is a pair
(E, c), where E € R, represents the net worth of a firm, and ¢ € RY is a vector
of claims: c¢; represents the claim of creditor i € N. Moreover, > . ¢ > E.
We denote by BY the family of all such problems.

The model describes the situation faced by a bankruptcy court. An alternative
interpretation of the model is the division of an estate ¥ among a group of heirs
when the estate is insufficient to cover all the bequeathed amounts, ¢;, © € N. The
same model can also be interpreted as a formalization of a class of tax assessment
problems: there, the cost E of a project has to be divided among a group of
taxpayers, where ¢; stands for agent i’s income.

A rule for B” is a mapping F' that associates with every (F,c) € BY a unique
point F(E,c) € RY such that: (i) 0 < F(E,c) < ¢, and (ii) Y_,.y Fi(E,c) = E.
The point F(FE,c) is to be interpreted as a desirable way of dividing E among
the creditors in N. Requirement (i) is that each creditor receive an award that is
non-negative and bounded above by his claim. Requirement (ii) is that the entire
net worth of the firm be allocated. It is implicitly assumed that F'is homogeneous
of degree one in (E, ¢), meaning that E and c¢ are measured in the same units.

A more general model refers to the case when we face a variable population.
Let N stand for a (infnite) potential set of agents, and let F be the family of
all finite subsets of N. For any N € I, we denote by n the cardinal of N. Now a
bankruptcy problem is a triple (N, E, ¢), where N € N stands for the particular
set of agents involved, ' € R, is the net worth of the firm, and ¢ € Rﬂf is the
vector of claims, with Y.\ ¢; > E. We shall denote by B = UycpB” the family
of all such bankruptcy problems with variable population. A rule is a mapping
F that associates with every (N, E, c) € B a unique point F(N, E, c) € RY, such
that: (i) 0 < F(N,E,c) <cand (ii) >,y F5(N,E,c) = E.

Both in the fixed population and in the variable population framework, given
a rule F, we can consider another rule associated to it, by means of a duality
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procedure. This duality procedure can be easily explained in the following way:
suppose that, when solving a problem, we start by temporarily awarding every
agent his claim. Since it is not feasible, now we apply rule F' to the problem of
allocating losses. By this procedure we obtain a new rule, the dual rule of the
initially used. Formally,

Dual rule of F, F* (Aumann and Maschler, 1985): For all N € F and all
(E,c) e BN, F*(E,c)=c— F(> ,.yc — E,¢).

The rules F' and F™* are related in a simple way: ™ divides what is available
in the same way as F' divides what is missing. Note that for any problem (E,¢) €
BY ,we have that >, v, — E € Ry and Y,y > (O ,cy¢ — E). Hence, the
problem (3, .y ¢ — E,¢) is also a problem in BY. Moreover, 0 < F(>", ¢ —
E.c)<cand ) , yE(> ci—FE,c)=> ¢ — FE, sothat 0 < F*(E,c) < ¢ and
Yoien Fi(E,c) = E, that is, F* is well defined. A rule is self-dual whenever it
coincides with its dual. Formally,

Self-duality (Aumann and Maschler, 1985): F' is called self-dual if F* = F.

Note that duality is an idempotent operation, that is, (F*)* = F. The notion
of duality is naturally extended to the properties a solution satisfies. Formally,

Dual properties: Given two properties P, P*, we say that P* is the dual
property of P* if for very rule F' that satisfies P, its dual rule F™* satisfies P*.
Similarly, a property P is self-dual if P* = P.

3. The three musketeers

Next we introduce three well-known rules. The proportional rule is the most
widely used rule. It makes awards proportional to claims.? Formally:

Proportional rule, P: For all N € F, all (E,c) € BY, and alli € N, P,(E,c) =
Aci, where A > 0 solves > ..y A ¢ = E.

The constrained equal-awards rule makes awards as equal as possible, sub-
ject to the condition that no agent receives more than his claim. As it is made
explicit in Aumann and Maschler (1985), “this rule has been adopted as law by

2Hence, provided that >; ¢ # 0, it equalizes the ratios between claims and awards.
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most major codifiers, including Maimonides (in his Laws for Lending and Bor-
rowing)”. From a geometrical viewpoint this way of solving the problem amounts
to selecting that point in the feasible set which is closest to the origin. Formally,

Constrained equal-awards rule, CEA:For all N € FF, all (E,c) € BY, and all
i € N, CEA;(E,c) = min{c;, \}, where A solves )., min{c;,\} = E.

The constrained equal-losses rule makes awards such that losses are as
close to equal as possible, subject to the condition that no creditor ends up with a
negative award. According to Aumann and Maschler (1985), this rule also appears
in Maimonides, in dealing with auctions, and looking at the losses the seller may
experience when bidders renege (in his Laws of Appraisal). From a geometric
viewpoint this way of solving the problem amounts to selecting that point in the
feasible set which is closest to the vector of claims. Formally,

Constrained equal-losses rule, CEL: For all N € F, all (E,c) € BY, and all
i € N, CEL;(E,c) = max{0, c; — A},where A solves ) ,_, max{0,c; — A} = E.The

constrained equal-awards rule corresponds to the uniform rule in the context of
distribution problems with single-peaked preferences, when the task is smaller
than the supply of effort. In the context of taxation this rule is known as the “head
tax”. The principle underlying the constrained equal-losses rule, the equal-loss
principle, has been applied to other distribution problems, such as cost-sharing,
taxation or axiomatic bargaining [see Young (1987), (1988), Chun (1988b), Her-
rero and Marco (1993)]. In the context of taxation it is known as the “leveling

tax”.

e Claim 1. It is easy to see that CEL = CEA* whereas P* = P, that is, the
constrained equal-awards rule and the constrained equal-losses rule are dual
from each other, whereas the proportional rule is self-dual.

4. Common Properties

Let us now consider some properties that represent value judgements that a solu-
tion might be asked to satisfy. Each property is usually motivated by a particular
concern and thus directed to prevent this inconvenience to occur.



4.1. Two basic properties: equal treatment and consistency.

The first property is a basic equity requirement: agents with identical claims
should be treated identically. Hence, we exclude differentiating between agents
on the basis of their names, gender, religion, political ideas, etc. Formally:

Equal treatment of equals: For all N € F, all (E,c) € BY, and all i,j € N, if
¢ = ¢y, then E(b) = .F](b)

Equal treatment of equals is an instance of impartiality. It establishes that all
agents with the same claims will receive the same amount. A stronger require-
ment is that of anonymity (given two sets N, N’ € F, with |N| = |N’|, for all
(N,E,c),(N',E,d) € B, and for all one-to-one mapping II : N — N’ such that
CIH(@‘) = ¢;, then Fyy;y(N', E,c) = F;(N, E, c) for all i € N); a weaker version of the
impartiality principle is that of symmetry (for all N € F and for all (E,c) € BY
such that for all 4,5 € N, ¢; = ¢;, then F;(E,c) = Fj(E,c), for alli,j € N).

The second property refers to the case of a variable population. Consistency
is a well-known and powerful property that links the solution of a problem for
a given society N with the solutions of the problems corresponding to its sub-
societies. To formally define this property, let S be a proper subset of N and
suppose that, after solving a problem (N, E, ¢) by means of the rule F, the mem-
bers of group S reconsider the allocation of what they got, >, ¢ F;(IV, E, c). Let
(S, ics Fi(IN, E, ), cs] be the associated reduced problem, where cg = (¢;)ics-
The rule F' is consistent if applied to any of its reduced problems it gives the
incumbent agents the same shares as they got in the original problem. Formally:

Consistency: Forall N € F, all S C N, all (N, E,c) € B, and all i € S, we have:
Fi(N7 E, C) - Fl[Sa ZieS Fl(N’ E, C)? CS]'

Consistency is a procedural requirement with two relevant implications:

(i) Once an allocation has been agreed upon, no group of agents is willing to
re-aply the rule in the reduced problem that appears when the other agents leave
bringing with them their alloted shares. Hence, what is good for the large group
is also good for the small ones.

(ii) If the agreement on how to distribute an estate between two agents can
be consistenly extended to any number of them, then that extension is unique.?
Hence, what is good for the smallest group is good for larger ones.

31t may happen that no consistent extension of a particular solution exists [see Dagan, Ser-
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The first implication provides us with a stability feature: consistency prevents
subgroups of agents to renegociate once there is a solution proposed for the society.
The second one helps in assesing the value judgements of alternative solutions, as
what is “fair” is easier to check and to understand in the two-person case.

4.2. Composition and path-independence

To motivate the next two properties, suppose that a tentative distribution is made
by first forecasting the value of the estate. Assume that, once the tentative division
is done, the actual value of the estate is greater than initially thought. Then, two
options are open: either the tentative division is cancelled altogether and the
actual problem is solved, or the rule is applied to the problem of dividing the
incremental value of the estate, after adjusting the claims down by the amounts
already assigned. Composition requires the rule to be invariant with respect to
the chosen option. Alternatively, assume that, once the tentative division is done,
it turns out that the actual value of the estate falls short of what was assumed.
Path-independence requires the solution of the actual problem to agree with
the solution of the problem in which the initial claims are substituted by the
(unfeasible) allocation initially proposed. Formally:

Composition (Young, 1988): For all N € F, all b = (F,c¢) € BY, and all
E,,Ey € R, such that By + Ey = E, if by = (Ey, ¢) and by = [Ey, ¢ — F(by)], then
F(b) = F(by) + F(by).

This property says that the problem (E, ¢) can also be solved as the sum of two
partial problems. The first one corresponds to a problem with the initial claims
c and a fraction F; of the estate; the second one is that problem made out of the
outstanding claims ¢’ = ¢— F(Ey, ¢) and the reminder estate, £ — ). Fi(E1, c).
When a solution satisfies composition, solving a problem in stages does not change
agents’ final awards.

rano and Volij (1997)]. The uniqueness in the procedure of consistenly extending bankruptcy
problems was first noticed by Aumann and Maschler, for the consistent extension of the contested
garment rule.

The requirement of agreement on the shares from small groups to large groups is usually
refered to as “converse consistency”. In general, consistency and its converse are independent
properties, but in the case of bankruptcy problems, if a rule satisfies consistency, then it also
satisfies converse consistency. See Chun (1998).



Consider now the case in which, after solving a problem, it turns out that the
actual worth of the firm falls short of what was expected. Consider a group of
creditors with claims ¢, and a worth firm’s forecast E. If we solve the problem
(E,c), the vector of awards is z. Assume now that the net worth turns out to be
smaller than expected, E < E. Path-independence requires that the solution
of the problem (F,c) be the same as that of the problem (FE, z), namely, if we
adjust claims down to z, the final awards do not change. Formally:

Path Independence (Moulin, 1987): For all N € T, all (E,c) € BY, and all
E' > E, we have F(E,c) = F(E,F(E',c))

e Claim 2. If a rule satisfies either composition or path-independence it is
monotonic with respect to the estate, and also it is continuous with respect
to the estate.

e Claim 3. The properties of equal treatment of equals and consistency are
self-dual whereas composition and path-independence are dual properties.

e Claim 4. The three rules, P, CEA, and C'EL satisfy equal treatment of
equals, consistency, composition, and path-independence.

5. Separating Properties, or How Important Claims are.

Suppose now that we face a bankruptcy problem in which agents’ claims are very
assymetric. How should we ask a solution to treat this situation? To make the
point clearer think of a two-person problem in which one agent has a relatively
small claim, ¢; < %E, say, whereas the other one has a claim larger than the
estate, e.g. co > F+¢;. One can approach this question from two opposite points
of view:

(i) The large claim ¢, is meaningless as it asks for more than what it is available,
so it has to be scaled down to reality in one way or another. Or, put in a different
way, the agent with a realistic claim is going to have a relatively higher satisfaction.

(ii) One should give priority to agent two in the distribution because, even
if we give everything to her, she will have a loss larger than that of agent one.
Or, stated differently, the agent 1 cannot expect to get something until agent 2’s



net claim has been scaled down to a magnitud “comparable” with that agent 1’s
claim.

These alternative notions of claims enforceability express clear cut values on
how allocation rules should perform in extreme situations.* They will help us
choosing among different rules, depending upon the problem at hand. We for-
malize these ideas by using four different properties: sustainability, preemi-
nence, independence of claims truncation, and composition from mini-
mal rights. These properties happen to be dual by pairs.

5.1. Sustainability and preeminence

Let (E,c) € BN and i € N. Now, consider the problem (E,c' (b)), where, for all
j € N, c;'-(b) = min{¢;, ¢;}. That is, we truncate all claims by agent ¢'s claim.
Agent i’s claim is sustainable in (E,c) if >,y c;'- < E. Thus, an agent’s claim
is sustainable in a problem if, by truncating the claims of all agents by c¢;, the
problem becomes feasible. The following property states that sustainable claims

should be fully honored.

Sustainability (Herrero and Villar, 1998b): For all N € F, all (E,c) € BY, and
all i € N, if ¢; is sustainable in (F, ¢), then F;(F,c) = ¢;.

Sustainability says that when the resources to be divided are large enough,
only individuals with the highest claims are to be rationed. This amounts to
saying that agents with smaller claims are given priority in the distribution. It is
worth mentioning that this principle is applied by Law in some real-life bankruptcy
problems (particularly in the case of banks or other financial intermediaries, where
the debts of clients with small savings are honored first).

Let us now introduce the notion of claims domination, in order to define the
alternative property. Let (E,c) € BY and let j € N. We say that creditor j’s
claim is dominated in (E, ¢) if there is some ¢ € N such that ¢; — £ > ¢;. An
agent’s claim ¢; is dominated in a problem (E,c) if there is another claim ¢; so
large that even if we give the whole budget to her, i’s loss is still greater than
j’s demand. The next property states that agents whose claims are dominated
should not be allocated anything. Formally:

4John Stuart Mill (1859) argued that the strength of our moral values is to be judged in
extreme situations.
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Preeminence (Herrero and Villar, 1998b) : For all N € F, all (E,c) € BY, and
all j € N, if j’s claim is dominated in (E, ¢), then F;(E, c) = 0.

Preeminence says that those agents with dominated claims do not get any-
thing. To understand better the extent of this requirement, take the extreme case
in which there is an agent, say agent 1, whose claim dominates every other agent
(namely, ¢; — E > ¢;, for all j > 1). If a solution F’ satisfies preeminence it follows
that F1(E,c) = E. Note that the number ¢; — E measures the greatest minimal
loss agent 1 can experience. Namely, the rationing suffered by that agent with
the highest claim in the most favourable case (that in which the whole estate were
allotted to her). In such a case ¢; measures the rationing experienced by the jth
agent, as she is allotted zero. Preeminence says that when this minimal loss of
individual 1 is greater than or equal to the claim of every other agent, it seems
fair to allocate the estate only to her (note that any other assignment will increase
the rationing suffered by agent 1, which is always greater than that experienced
by any other agent).

e Claim 5. Sustainability and preeminence are dual properties. C'EA satis-
fies sustainability and fails to satisfy preeminence. C'E'L, on the contrary,
satisfies preeminence and fails to satisfy sustainability. P fails to satisfy
both properties.

5.2. Independence of claims truncation and composition from minimal
rights.

Consider again a problem in which some claims are larger than the estate, ¢; > E,
and how a rule should treat these demands. Here again there are two opposite
views that yield two dual properties. These two properties appear in the Talmud,
providing with a natural way of solving two-person problems.’

The first one states that a rule should not consider any claim that is greater
than the estate: replacing ¢; by E if ¢; > F should not affect the recommendation.
Formally,

Independence of claims truncation (Dagan, 1996): For all N € F and all
(E,c) e BY, F(E,c) = F(E,c"), where ¢! = min{F, ¢;}.

’The contested garment rule (see Section 6) is presented as the most sensible way of solving
two-person bankruptcy problems, by applying these two principles.
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This property establishes that if an individual claim exceeds the total to be
allocated, the excess claim should be considered irrelevant. The rationale behind
is that “one cannot claim more than there is; thus the excess of a claim above the
estate is irrelevant. A rule is independent of claims truncation if it allocates the
estate taking into account only the relevant claims.” [Cf. Dagan (1996, p.53)].

In order to present the second property let us start by introducing the notion
of minimal rights. For a given problem (E,c) € B define the ith agent’s minimal
right as:

mi(E, ¢) = max{0, E — ch}
J#i
The number m;(FE, ¢) represents the amount of the budget which is left to agent
¢ when all other agents’ claims are honored, provided this amount is nonnegative;
and is taken to be zero otherwise. Let m(FE,c) denote the vector in RY whose
components are the minimal rights, m;(F,c), i € N.

The next property says that a rule should honor agents” minimal rights before
any further step is taken. Hence it asks the rule to allocate first the amounts
corresponding to these minimal rights and then solving the remaining problem.
Formally,

Composition from minimal rights: For all N € F and all (E,c) € BY,
F(E,c)=m(E,c)+ F[E =5 ,.ymi(E,c),c—m(E,c)].

Composition from minimal rights is a particular form of composition that says
the following: the solution of any problem (E, ¢) € BY coincides with the outcome
of a process in which minimal rights m(FE, ¢) are allocated first, and the rule is
applied to the problem consisting of the remaining estate £ —,_\ m;(F,c) and
the outstanding claims c—m/(E, c).

e Claim 6. Independence of claims truncation and composition from minimal
rights are dual properties [see Herrero (1998)]. C'E A satisfies independence
of claims truncation and fails to satisfy composition from minimal rights.
CFEL satisfies composition from minimal rights and fails to satisfy indepen-
dence of claims truncation. P fails to satisfy both.

e Claim 7. There is no relationship in between the former properties, namely,
in between independence of claims truncation and sustainability, on the one
hand, and in between composition from minimal rights and preeminence, on
the other hand.
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6. The Three Musketteers in Focus.

This section is devoted to the characterization of the three rules in terms of the
properties presented in former sections. Two types of results will be presented.
The first one is a joint characterization of the three rules that both emphasizes
their common features and gives support to their choice as the leading candidates
to the resolution of bankruptcy problems. Then we shall present some individual
characterizations of these rules underlining the duality relations between them.
A relevant feature of these characterizations is that they allow us to compare the
three rules in terms of a single differential property. This facilitates the selection
among these rules depending on the nature of the bankruptcy problem considered.

6.1. A joint characterization

As it was mentioned in Claim 4, it can be easily verified that the proportional rule,
the constrained equal-awards rule, and the constrained equal-losses rule satisfy
the properties of equal treatment of equals, consistency, composition and path-
independence. The following result tells us that these rules are actually the only
ones satisfying all these requirements.

Theorem 6.1. (Moulin, 1997, Corol. to Th.2). There are three and only three
rules on B satisfying simoultaneously equal treatment of equals, composition,
path-independence, and consistency: The proportional rule, the constrained equal-
awards rule, and the constrained equal-losses rule.

This impressive result provides additional support to the choice of the three
bankruptcy rules discussed so far. One way of checking the strengh of this theorem
is by asking ourselves what property to drop in order to buy other solutions.
On the one hand, equal treatment of equals seems difficult to object, unless we
consider a wider family of problems where agents have other relevant differences,
to be included in the information that describes the problem. Composition, path-
independence and consistency can be regarded as procedural requirements. The
first two ensure coherence with respect to subdivisions of the estate; the third
one ensures coherence with respect to all reduced problems, when some of the
agents leave, taking with them their alloted shares. If either composition or
path-independence fails, then the outcome of the resolution becomes dependent
on the agenda; namely, it varies according to the way in which the problem
is subdivided into partial problems. The lack of consistency implies that the
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resolution is sensitive to the way in which the division of the problem in population
subgroups is organized.

6.2. Independent Characterizations

Let us consider now the characterization of each of these rules. The following
results are obtained:

Theorem 6.2. (Herrero and Villar, 1998b) The constrained equal-awards rule is
the only rule in B satisfying equal treatment of equals, path-independence, and
sustainability.

Theorem 6.3. (Herrero and Villar, 1998b) The constrained equal-losses rule is
the only rule in B satisfying equal treatment of equals, composition, and preemi-
nence.

Theorem 6.4. (Dagan, 1996) The constrained equal-awards rule is the only rule
in B satisfying equal treatment of equals, composition, and independence of claims
truncation.

Theorem 6.5. (Herrero, 1998b) The constrained equal-losses rule is the only rule
in B satisfying equal treatment of equals, path independence, and composition
from minimal rights.

e Claim 8. Theorems 2 and 3 are dual results. Theorems 4 and 5 also are

dual results.

In order to present a characterization of the proportional solution, consider
now the following property:

Continuity: For all N € F, all (E,c) € BY, and all (E,,¢,) € BY such that
lim, ., B, = E, and lim, . ¢, = ¢, then lim, .o, F(E,,¢;) = F(E,c).

The following characterization, involving self-duality, is obtained:

Theorem 6.6. (Young, 1988) The proportional rule is the only rule in B satis-
fying continuity, self-duality and composition.
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e Claim 9. Continuity is redundant in previous result. Consequently, Young’s
theorem can be refined by dropping continuity.

By using the duality relation, the following result is also obtained:

Theorem 6.7. The proportional rule is the only rule in B satisfying self-duality
and path-independence.

Remark 1. Note that even though the three rules satisfy consistency, it is not
required in the characterizations presented here. It follows from the other require-
ments.

These results illuminate on the kind of problems for which each solution is
better. The constrained equal-losses rule is a sensible rationing scheme for those
problems in which claims represent real entities of an absolute nature (e.g. un-
alienable rights or vital needs, to take two extreme cases). The constrained equal
awards rule instead, seems more appropriate for those problems in which indi-
viduals are the primary concern, whereas their claims only represent maximal
aspirations (inheritance, say). The proportional rule is a natural distribution rule
when we think of bankruptcy as a subfamily of distribution problems in which £
can exceed of fall short of C, as self-dual rules allocate awards and losses in the
same manner.

7. And D’Artagnan

The contested garment rule is another old bankruptcy rule. It appears int the
Talmud as a way of solving two-person bankruptcy problems. The idea behind
this rule is to concede first to each agent her minimal right and then to distribute
equally the remaining estate. Formally,

Contested garment rule, G: For all N € F, with |[N| = 2, all (E,c) € BY, and
alli € N, Gi(E,c) =m;(E,c) + 1 |E — > jen mi(E,c)

The contested garment rule satisfies some interesting properties: it is sym-
metric, continuous, monotone with respect to the estate, self-dual, and satisfies
simultaneously independence of claims truncation and composition from minimal
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rights. It fails to satisfy composition, path-independence, preeminence and sus-
tainability:.
The following characterization result is obtained:

Theorem 7.1. The contested garment rule is the only two person rule satisfying
self-duality and composition from minimal rights.

Thus, the contested garment rule appears as a way of reaching an agreement
in between the principles of composition from minimal rights and independence
of claims truncation. It also can be viewed as a compromise in between the C EA
and the CEL rules, as we can write

G(E,c) = CEA(E,%C) 0<EL %Zl Ci
e+ CBL(E - 33 00) 326 < E<Y0

Hence, the contested garment rule behaves as the constrained equal awards rule
for values of the estate not exceeding the minimum claim of the agents, and it
behaves as the constrained equal-losses rule for values of the estate above the
maximum claim.

Aumann and Maschler (1985) introduced the Talmud rule as the consistent
extension of the contested garment rule.

Talmud rule, T (Aumann and Maschler, 1985): For all N € F, all (E,c) € BY,
. 4 [ min{3¢;, A} ifE<id.cnc

and alli € N, T;(E,c) = { max{%cz-,cz- ) B> %Zz’eNci

where A and g are chosen so that ),y Ti(E,c) = E.

Apart from its justification as the consistent extension of the constested gar-
ment rule, the rationale of the Talmud rule is based in the psychological principle
of “more than half is like the whole, whereas less than a half is like nothing”.
Thus, it seems natural to look at the size of the awards when they are below half
of the claim, and to look at the size of the losses above half of the claim. This,
together with a principle of equal treatment, in which all agents are at the same
side of the half-way psychological watershed amounts to construct the Talmud
rule.

As a consequence, we have the following result:

Theorem 7.2. The Talmud rule is the only rule in B satisfying consistency, self-
duality and composition from minimal rights.
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Because of self-duality, and the dual relationship between composition from
minimal rights and independence of claims truncation, the following alternative
characterization of the Talmud solution is obtained:

Theorem 7.3. The Talmud rule is the only rule in B satisfying consistency, self-
duality and independence of claims truncation.

8. Variants

The principles of independence of claims truncation and composition from minimal
rights permit to obtain some additional rules, when combined with the solutions
already discussed.

By applying independence of claims truncation we may consider solving bank-
ruptcy problems in two steps: First, we substitute the original claims by the
truncated claims, and then we apply the corresponding solution to the truncated
problem. In this way, the following variants appear:

Truncated Proportional rule, TP: For all N € F and all (E,c) € BY,
TP(E,c) = P(E,ch)

Truncated Constrained Equal-Losses rule, TCEL:For all N € F and all
(E,c) e BN, TCEL(E,c) = CEL(E,c").

Similarly, if we insist on composition from minimal rights to be satisfied, we
may also consider a second variant of previous solutions by solving the problem
into two steps, but now, starting by giving each agent first her minimal right. In
this way, the adjusted variants of previous solutions appear. Formally,

Adjusted Proportional rule, AP: Forall N € Fand all (E,c) € BY, AP(E,c) =
m(E,c)+ P [E — > ienmi(E,c),c —m(E, c)]

Adjusted Constrained Equal Awards rule, ACEA: For all N € F and all
(E,c) € BN, ACEA(E,c) =m(E,c)+ CEA[E = Y..ymi(E,c),c —m(E,c)] .

These solutions satisfy some interesting properties: by construction, T'P and
TCFEL satisty independence of claims truncation. Furthermore, TC'EL also sat-
isfies composition from minimal rights. AP and ACFE A satisfy composition from
minimal rights. ACFEA also satisfies independence of claims truncation. Addi-
tionally, all four solutions satisfy equal treatment of equals, estate monotonicity,
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and continuity with respect to the estate. AP and TP are dual solutions, and
ACFEA and TCFEL are also dual solutions.

e Claim 10. For the two-person case, TCEL and ACFEA coincide with the
contested garment solution.

e Claim 11. TCFEL and ACFE A fail to satisfy consistency

e Claim 12. AP and TP fail to satisfy consistency. Furthermore, there is
no consistent extension of the two-person version of AP and T'P.

The interest of these extensions, thus, is seriously affected by the lack of con-
sistency.

9. Noncooperative support of rules

In previous Sections, we defended different bankruptcy rules from an axiomatic
perspective. If agents agree on a particular set of properties, they also agree
in choosing a particular rule to solve their problem. The planner’s job consists
of convincing the agents on which procedure is better, taking into account the
characteristics of the particular problem at hand.

In this Section, we consider a different approach. For each problem, we shall
isolate a multi-valued solution concept, the set of fair allocations. Given a problem
(E,c), F(E,c) contains all distributions of E such that no agent gets more than
her claim, and agents with higher claims receive higher awards and suffer higher
losses.

To isolate a single outcome in F(F, ¢), we consider a noncooperative approach.
Different agents may have different opinions on how the liquidation value of the
firm should be distributed, and then, we allow agents to propose different shares,
within the set of fair allocations. This can be understood as that agents choose
rules in a certain family, and apply the chosen rule to the problem at hand.

Two natural procedures to solve the differences are analyzed. The diminishing
claims procedure, proposed by Chun (1989) for surplus sharing problems, and the
unanimous concessions procedure (Herrero (1998c¢)).

In the diminishing claims procedure, if at the first step agents disagree on
the proposed shares, the initial claims are truncated by the maximal amount
proposed to each agent, and the new problem is then presented to the agents.
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They continue proposing shares, up to the moment they agree, or otherwise, the
limit of the procedure is proposed as the solution of the conflict.

In the unanimous concessions procedure, if at the first step agents disagree on
the proposed shares, the minimal amounts proposed to each agent are assigned
to them. Then, the agents face the residual problem, made out of the remaining
value and where the claims are adjusted down by the amounts just given. They
continue proposing shares for the residual problem, up to the moment they agree,
or otherwise, the limit of the procedure is proposed as the solution of the conflict.

Each of previous procedure induces a game, where agents choose strategically
fair allocations. Our main results are the following: In the game induced by the
diminishing claims procedure, in any Nash equilibrium of the game, the agents
receive the share recommended by the constrained equal-awards rule. In the game
induced by the unanimous concessions procedure, in any Nash equilibrium of the
game, the agents receive the share recommended by the constrained equal-losses
rule.

9.1. Fair allocations

Let N be a set of agents, and (E, c) € BY jand let x € RY such that > z; = F an
allocation of E. x is fair if (i) for all i € N, 0 < z; < ¢;, and (ii) for all 4,5 € N,
if C; Z Cj then ZT; Z T and G —Cj Z Ti — Tj.

In a fair allocation, we allocate a feasible amount of money, with the condition
that no agent receives more than her claim, and no agent is alloted a negative
award. Furthermore, we respect the order of the claims: agents with higher claims
receive higher awards and face higher losses.

Given a problem (E,c) € BY, let F(E, ¢) denote the set of fair allocations.

e Claim 13. For all (F,c) € BY, the set F(E,c) has a particular structure:
it is a convex polihedral with at most | N| vertices.

Recall that a rule is a mapping r : B — R that associates with every
(E,c) € B a unique feasible allocation r(E,c), to be interpreted as a desirable
way of solving the problem. We shall say that a rule r is fair if for all (F,c) € B,
r(E,c) is fair.

e Claim 14. CEA, CEL and P are fair rules. Furthermore, for all (£, ¢) € B,
CEA(E,c) and CEL(E, c) are vertices of F(E,c).

19



e Claim 15. CEA(E,c) is the best preferred element in F(E, ¢) for the agent
with the smallest claim, whereas CEL(FE, ¢) is the best preferred element in
F(E, c) for the agent with the highest claim. The best preferred element in
F(E,c) for any other agent always corresponds to some vertix of F(F, c).

9.2. Procedures to solve discrepancies

Different agents may have different ideas on the way the available amount of
money in a problem should be allocated. Thus, when facing a problem, they
may propose different allocations, and possibly, they do not find a unanimous
compromise. In that case, some natural procedures come to mind in order to solve
the discrepancies. In these procedures, given a problem, each agent proposes a
division of the estate, and the procedure selects a particular division of the estate.
Thus, once a procedure is chosen, it induces a game: agents may choose “rules”
strategically to obtain a division of the estate as favorable to them as possible.

Next, we present two natural procedures: the diminishing claims procedure
and the unanimous concessions procedure:

Diminishing claims procedure (dc) (Chun, 1989): Let (¢, E) € B be given.
At the first stage, each agent chooses a rule f* € F. Let f = (f*) be the profile
of rules reported. The division proposed by the diminishing claims procedure,
dclf, (c, E)] is obtained as follows:

Step 1. Let ¢! = c. For all i € N, calculate f'(c',E) € FE(c',E). If all
coincide, then, dc[f, (¢, E)] = fi(c!, E). Otherwise, go to the next step.

Step 2. Let ¢¢ = maxjey f/(c!, E). For all i € N, calculate fi(c% E) €
FE(c? E). If all coincide, then dc[f,(c, E)] = fi(c*, E). Otherwise, go to the
next step.

Step k+1. Let ¢! = max,cy f/(c¥, E). For all i € N, calculate fi(c+!, E) €
FE(c*Y E). If all coincide, then dc[f, (¢, E)] = fi(c*™!, E). Otherwise, go to the
next step.

If previous process does not terminate in a finite number of steps, then

Limit case. Compute lim, .., f(c', ). If it converges to an allocation z such

that > z; < E, the allocation = = dc[f, (¢, F')]. Otherwise, dc[f, (c, )] = 0.
Unanimous concessions procedure (u) (Herrero, 1998): Let (¢, F) € B be

given. At the first stage, each agent chooses a rule f* € F. Let f = (f*) be the
profile of rules reported. u[f, (¢, E')] is obtained as follows:
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Step 1. Let ¢! = c¢. For all ¢ € N, calculate f*(c!, E). If all them coincide,
then, u[f, (c, E)] = f*(c', E). Otherwise, go to the next step.

Step 2. Let m! = min f/(c', E), & = ¢! —m?, and E* = E — Y m!. For all
i € N, calculate fi(c?, E?). If all them coincide, then u[f, (¢, E)] = m! + fi(c?, E?).
Otherwise, go to the next step.

Step k+1. Let m® = min f7(c*, E¥), 1 = ¢F —mF, and EF' = EF -3 mFL.
For all i € N, calculate fi(cF*!, E¥+1). If all them coincide, then u[f, (¢, E)] =
m+ -+ mPF + fi(cFH EF). Otherwise, go to the next step.

If previous process does not terminate in a finite number of steps, then

Limit case. Compute limy o(m! + -+ + mF + ...). If it converges to an
allocation z such that Y x; < FE, the allocation x = ulf, (¢, E)]. Otherwise,
ulf, (e, E)] = 0.

In the diminishing claims procedure, once agents choose their preferred rules,
we sequentially reduce agents’ claims by substituting them by the highest amount
assigned to every agents by the chosen rules. If the process ends in a feasible
allocation in a finite number of steps, this allocation is chosen as the solution of
the conflict. If not, but this process has a feasible limit, then this limit is the
solution of the problem. Otherwise, nobody gets anything.

In the unanimous concessions procedure, once agents choose they preferred
rules, we sequentially allocate parts of the estate to the different agents by assign-
ing each of them the minimum amount assigned to him. If the process ends in
a finite number of steps, this allocation is chosen as the solution of the conflict.
If not, but this process has a feasible limit, then this limit is the solution of the
problem. Otherwise, nobody gets anything.

Let us now analyze the behavior of the previous procedures when agents act
strategically. Each procedure induces a game, where the set of players is N, and
the strategies for all players are rules in F. Let I'% be the game induced by the
diminishing claims procedure and let I'* be the game induced by the unanimous
concessions procedure.

Now, we obtain the following results:

Theorem 9.1. (Chun, 1989) In the game I'%, the constrained equal-awards rule
is a dominant strategy for the agent with the smallest claim. In any Nash equilib-
rium of I'%, the outcome corresponds to the recommendation of the constrained
equal-awards rule.
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Theorem 9.2. (Herrero, 1998) In the game I'*, the constrained equal-loss rule is
a dominant strategy for the agent with the highest claim. In any Nash equilibrium
of T'*, the outcome corresponds to the recommendation of the constrained equal-
losses rule.

10. Final Remarks

10.1. Additional comments and open problems

1. Thinking of the psychological principle behind the Talmud rule “more than
half is like the whole, whereas less than a half is like nothing”, and in the case
we are mainly worried about losses, it may be sensible to take the oppossite view,
namely, to look at the size of the losses from half of the claim, and to look at the
size of the awards above half of the claim. This, together with a principle of equal
treatment, in which all agents are at the same side of the half-way psychological
watershed amounts to construct a different rule, which may be interpreted as the
marror image of the Talmud rule. This rule can be defined in the following way:

| CEL(E, %C) 0<EL %ZZ ci
MT(E, c) = { ¢+ CEAE -3 c,3¢) 30,6 <E<Y ¢
This rule satisfies equal treatment of equals, consistency, self-duality, and
weaker versions of both preeminence and sustainability. A combination of this
rule and the Talmud rule, was introduced by Chun and Thomson (1998), in the
following way:

1
ot ={ SR !
2

sc+CEA(E — 3%, ¢, 3¢)

2. The diminishing claims procedure and the unanimous concessions procedure
provide non-cooperative support to the constrained equal awards and the con-
strained equal-losses rules, respectively. They can also be interpreted as natural
non-cooperative ways of making selections of the fair and efficient multivalued
solution.

As was previously mentioned, the allocation recommended by the constrained
equal-awards rule is the best preferred by the agent with the smallest claim in
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the set of fair and efficient allocations. Similarly, the recommendation of the
constrained equal-losses rule is the best preferred by the agents with the highest
claim. For each agent i, the best preferred option of agent 7 corresponds to one of
the vertices of the set of fair and efficient allocations. In this allocation, awards
of agents with claims higer than i’s are as equal as possible, and losses of agents
with claims below i's are as equal as possible. In the same way as the constrained
equal-awards and the constrained equal-losses can be interpreted as dictatorial
selections of the fair and efficient solution, the rule given to agent in position
k its preferred share, could be interpreted as a positional dictatorial selection of
the fair and efficient solution. Properties and characterizations of those rules are
open problems, as well as the possibility of designing procedures supporting them
from a noncooperative point of view.

Once we look at our main results, other question comes to mind. In a so-
ciety with more than two agents, which of the two previous procedures would
receive more support? The answer is clearly related with the share of the median
claimant in the recommendations made by the constrained equal awards and the
constrained equal-losses, respectively. In the 3-person case, for example, the di-
minishing claims procedure would be preferred by the median claimant either if
the estate is very small or very close to the sum of the claims, whereas the dimin-
1shing claims procedure is more likely to be preferred by the median claimant for
intermediate values of the estate.

3. An interesting problem is that of manipulating the outcome of a particular
rule by merging or splitting agents, namely when agents pretend to be different,
by putting together their claims or else an agent appearing as several agents by
splitting her claim into two pieces. The proportional rule can be characterized by
Non advantageous Merging and Non Advantageous Splitting, simultaneously [see
de Frutos, 1994). The constrained equal-awards rule satisfies non advantageous
merging and it fails to satisfy non advantageous splitting, whereas for the con-
strained equal losses rule the opposite is true. These two properties are dual to
each other. The question of finding further characterization results by using this
properties is an openproblem.

4. We chose the axiomatic approach as a way of selecting clear-cut procedures
to solve these type of situations. There are several reasons why we addressed the
problem this way.

In the game-theoretic approach the traditional way of associating a TU coop-
erative game to a bankruptcy problem is by defining the characteristic function
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in the following way: For all (E,c) € B,
Vg, (T) = max{0, £ — Z ¢}

iEN-T
Previous characteristic function defines a TU-game, and then cooperative so-
lution concepts are applied in order to solve the bankruptcy problem (F, c).
Note that if we consider for all i € N, ¢/’ = min{¢;, E'}, it follows that v(g, =
v(g,r)- As a consequence, the game theoretic approach imposes the condition of
independence of claims truncation. This is not satisfactory in general, since in
some cases, as we explained above, claims must be considered in full.

10.2. Related literature

An excellent survey of the literature on bankruptcy problems, solution concepts,
applications and properties is Thomson (1995). A new version of this paper is
Thomson (1998).

Two papers deserve to be mentioned in dealing with the introduction of the ax-
iomatic method in analyzing bankruptcy problems: O’Neill (1982) can be quoted
as the first systematic analysis. Aumann and Maschler (1985) initiated the in-
creasing literature on the subject and for the first time thought of considering
a variable number of agents and clarified the consistency principle. They also
introduced the idea of duality, that we exploit here substantially.

The approach in Section 9 is closely related with that adopted by van Damme
(1986) in bargaining. The diminishing claims procedure can be looked at as a
modification of van Damme’s suitable for the type of problems at hand.

Marco, Peris and Subiza (1996) present a modification of van Damme’s proce-
dure. The unanimous concessions procedure can be looked at as a modification of
Marco et al’s suitable for bankruptcy problems. Criticisms and modifications of
Van Damme and Marco Peris and Subiza are in Naeve-Steinweg (1997). A major
difference between them, however is that in our case, the procedures can be used
for any number of agents, while the procedures for bargaining problems are only
suitable for the 2-person case.

Non-cooperative foundations of bankruptcy rules also appear in O’Neill (1982),
and Dagan, Serrano and Volij (1997).

11. Appendix

Proof of Claim 7.
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The Talmud rule satisfies independence of claims truncation and composition
from minimal rigths, and it does not fulfil the other two properties. Consider
now the following two rules: F' assigns identical quantities to all agents with the
minimum claim, up to the moment in which this claim is fully honored; then, any
remaining amount is equally shared among the agents with the second minimal
claim, up to when their claims are honored, etc. G starts by assigning any amount
to the agents with the highest claim, up to when this claim is fully honored;
then, any additional amount goes to the agents with the second highest claim,
up to when this claim is fully honored, etc. F' and G are dual rules, F' satisfies
sustainability, and does not satisfy independence of claims truncation, and G
satisfies preeminence and does not satisfy composition from minimal rights. B

Proof of Theorem 3:

Given b = (E,c) € B, let §'(c) = maxjen¢j, Ni(c) = {i e N| ¢ =6"(c)},
and nq(c) = |Ny(c)|. Consider now the following lemma
Lemma. Let F be a rule satisfying equal treatment of equals, composition, and

preeminence and let b = (E,c) € B be such that for all j € N\Ny(c) &' (c) >
¢j + —4=. Then, for all i € N\Ni(c), F;(b) = 0.

Proof: 1. Let 6*(c) = max;en\n, () ¢;- Obviously, if for all j € N\N;(c), §'(c) >
¢j + st then §'(c) > 6%(c) + nﬁc)

Now, let ¢! = ¢, By = E, and by = (Ey,c'). Also, let Ey = %El and
by = (Fy,ct). Since 6'(c') > 6*(c') + —L£i~, by preeminence and equal treatment

ni(ct)?
of equals, for all i € Ni(c'), we have F;(by) = ﬁEQ.

Let By = Fy — By, ¢ = ¢! — F(by), and by = (B, ¢2). By composition, F(b;) =
F(by) + F(by).

2. Note that Ny(c®) = Ny(c') and §*(c?) = &*(ct) —
i By — 7 Ba = 8%(cY) + i Ba.

Let E3 = @Eg and b3 = (FE3,c?). By preminence and equal treatment of
equals, for all i € Ni(c?), we have Fj(b3) = —— Es.

- Talel)" 2 -
Let B3 = Ey—Es, & = ¢ — F(bs), and by = (E3, ®). By composition, F(by) =
F(bs) + F(bs).

k. Suppose that Ek = (Ek, ¢x) has been deﬁned Note that Nl(c’“) = Ny(cF 1)

and §'(c%) = 64(F ) — —= By, > 6% (cN)+—rEp 1 — = 8%t +—= .

ni(cl)

nl(lcl)El > 52(01) +

ni (01 ni (cl) nl(cl)
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Let By = (
of equals, for all i € Ni(c*), we have Fj(by,1) = mEkH-

Let By = By — By, ck+l = c* — F(bgy1), and by = (Eppq, ). By
composition, F(by) = F(bgy1) + F(bgs1).

Observe that Fy,; = (My_l E,. Consequently, limy_,oo(Eo+- - -+ Ef) =

ni(cl)
E. Therefore, by composition, and since, for all i € Ni(c'), F; is continuous with
respect to F,

Fi(b) = 1imk—>oo[F'(b2) ot Fi(be)] =
2 k—1
ny(ct)— ny(ct)—1 . ny(ct)—1 o
= ]_lm]g_>oo |:1 + n1 (Cl) + < nl(cl) ) + + ( nl(cl) ) :| — E2
_E
ni(c) °

Ek and by = (Eyy1,"). By preeminence and equal treatment

Proof of Theorem 3: The constrained equal-losses rule satisfies all the properties.
Let us prove the converse implication

Let 6'(c) = maxjencj, Ni(c) = {i 6 N |c¢ =6}, and ni(c) = |Ni(c)]-
Similarly, let §*(c) = maX]eN\N1 cj, Na(c) = {i € N | ¢; = 6%*(c)}, and ny(c) =
| N2(c)|, and so forth.

(i) Let 0 < E < ny(c)[6"(c) — 6°(c)]. Then, for all j € N\N,(c), we have
6t (c) — #(C) > ¢;. By Lemma 1, for all ¢ € Ny(c), we have Fj(E,c) = #(c) :
Therefore, F(b) = CEL(b).

(ii) Let n1(c)[6'(c) —6*(c)] < E < n1(c)8*(c) —na(c)8(c) — [n1(c) +na(c)]8(c).

Let By = ny(c)[6%(c) — 8%(c)], by = (Ey,¢), and by = [c — F(b1), E — Ey]. By
composition, F(b) = F(by) + F(bs).

By (i), F(b1) = CEL(b), namely, for all © € Ni(c), Fi(b) = nilc), and
otherwise F;(b;) = 0. Consequently, for all i € Ny(c), ¢; — F;(by) = (51(0) — El) —
6%(c), and otherwise, ¢; — Fi(b)) = ¢;.

Let ¢ = ¢ — F(b)). That is, for all i € Ny(c), 6'() = §'(c) — Fi(by), for all
j € Ny(c), 6*(c) = 6*(c) — (bl) etc. By construction, 6'(¢) = 6*(c) > 6*(c) >

2> 8"(d).
Moreover, for all j € N\[N(c') U Ny(c)],

EF—F
ni(c) + no(c)

Again, by (i), for all j € N\[Ny(¢') U Nyo(c)], we have Fj(by) = 0, and for

all i € Ni(c') U No(¢), we have Fj(by) = ﬁ namely, for all i € Ny(¢),

Fj(by) < 8'(c) —
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F;(b) = nﬁlc) + nl(f)jl o for all i € Ny(d), Fi(b) = ﬁ, and for all other
i € N, F;(b) = 0. Consequently, F'(b) = CEL(b).
We repeat the previous procedure until all possible values of the estate smaller

than or equal to ), ¢; are covered. [J

Proof of Theorem 5:

The CEL rule satisfies all the properties. Conversely, let F' be a rule that
satisfies all the properties. Let us show that F' = CEL.

Let (¢, E) € C. Let C(c) = Y, ¢, 6(¢) = min; ¢;, and D(c) = C(c) — 6(c) =
maxien{D_jen iy ¢} Also, let mi(c, E) = max{0, £ — >, ¢;}

Case 1. C(c) — 6(c) < E.

By composition from minimal rights, F(c,E) = m(c, E) + Flc — m(c, E), E —
> mi(e, ).

Note that for all i € N, m;(c, E) = E—C(c)+¢; and ¢; —m;(¢c, E) = C(c)— E.
Thus, by equal treatment of equals, for all k € N, we have Fylc —m(c,E),E —
> imi(c, B)] = 2=2[C(c) — E]. Thus, for all i € N, Fi(¢,E) = ¢; + E— C(c) +
211C(c) — E] = ¢; — L9E = CEL(c, E).

Case 2. C(c) —né(c) < E < C(c) — 6(c).

Without loss of generality, assume that ¢; < ¢y < -+ < ¢,. Thus, 6(c) = ¢,
and D(c) = cy+ -+ + cp.

Step 1. Note that (¢, D(c)) € C and by construction, it is covered by Case 1.
Thus, for all i € N, F(c, D(c)) = CEL;(¢c, D(c)) = ¢; — ﬁ — !

By path independence F(c,E) = F(c', E).

Now, note that ¢} < ¢} <--- < cl. Thus, §(c') = ¢f = =1§(c), and D(c!) =
C(ch) — (5(61) = C(c) — 8(c) — "nlé(c).

Now, two possibilities are open: either D(c') < FE, or D(c') > E.

If D(c') < E,then (c!, E) is covered by Case 1. Thus, F(c', E) = CEL;(c!, E).
Since CEL satisfies path independence, CEL(c',E) = CEL(c, E), and thus,
F(c,E)=CEL(c, E).

If D(c') > E, go to step 2.

Step k. Note that (¢*=!, D(c*7!)) € C and by construction, it is covered
by Case 1. Thus, for all i € N, Fy(c*', D(c*7!)) = CEL/(*, D(F1)) =

P I ot R

i =

ci—w[;—kn—l—i-(”—l)z—i----—i-(n 1)*~ 1] = cF.
c

n n

By path independence, F(c* !, E) = F(c*, E).

Note that c’f < cg <...<c¢
Thus, §(c*) = & = (22)* 6(c) and D(cF) = C(c* n-l

—5(ck) = C(e)=6(c) [1 +

\/\_/

27

:( D24



Now, two possibilities are open: either D(c*) < E, or D(c*) > E.

If D(c*) < E, then (¢*, E) is covered by Case 1. Thus, F(c*, E) = CEL;(c*, E).
Since CEL satisfies path independence, F(c, E) = CEL(c, E).

If D(cF) > E, go to step k+1...

We claim that for some k € N, D(c*) < E. Suppose not. Then, for all k£ € N,
D(c*) > E. Thus, limy_.., D(cF) > E. That is,

E < C(0) = 6(c)limpoo |1+ 251+ (222)" 4+ 4 (221)] = C(0) = no(e),
which contradicts the fact that (¢, E) is covered by Case 2. Thus, F(c¢, E) =
CEL(c, E).

Case 3. E = C(c) —né(c).

Let {Ex} be a sequence such that Ey > Ey,1, and {Ex} — E. Thus, the
sequence of problems {(c, E*¥)} converges to (c, E). All problems (c, E¥) in the
sequence are covered by Case 2. Thus, for all k € N, F(c, E*) = CEL(c, E¥). By
path independence, F' is continuous with respect to the estate. Thus, F(c, E) =
limy_ F(c, E¥) = CEL(c, E).

Case 4. E < (C(c)—nd(c).

Let Ni(c) ={i € N | ¢; = 6(c)}, and let n; = |Ni(c)|. By path independence,
F(c,E) = F(F(c,C(c)—né(c)), E). For all i € Ny(c), Fi(¢,C(c)—nd(c)) =0, and
for any other i € N\Ni(c), Fi(c,C(c) —nb(c)) = ¢; — 6(c). Let d = F(c,C(c) —
nd(c)). Then, F(c,E) = F(d,E). Let 62(d) = min{d; | d; > 0}. We consider
several subcases:

4.a. C(d) — b65(d) < E < C(c) —né(c) = C(d).

For alli € N\Ny(c), m;(d, E) = d;+E—C(d), and thus, E—=) ..\ m;(d, E) =
(n—mn1 —1)[C(d) — E]. By equal treatment of equals, for all i € N\ Ny, F;(d, E) =
d; — C(d) + E + =1=[C(d) — E| = CEL,(d, E).

4.b. C(d) — (n —nq1)b2(d) < E < C(d) — 62(d).

Let Dy(d) = C(d) — 62(d), and consider the problem (d, Ds(d)). Note that
F(d, Dy(d)) = CEL(d, Dy(d)) = d*. By path independence, F(d,E) = F(d',E).
Now, two options are open: either C(d') — §5(d') < E, or the opposite. Then, we
may repeat the procedure of Case 2, by only considering the agents in N\ V.

4.c. E = C(d)—(n—nq)b62(d). Repeat the procedure in Case 3 only considering
the agents in N\ V.

4.d. From then on, repeat the procedure, considering at any step only the
agents in N\N; U --- U Ny, until all possible values of E are covered. [J

Proof of Claim 9:
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Obviously, P satisfies both properties. Let F' be a rule that satisfies self-duality
and composition. Then, it also satisfies path-independence.

Let (E,c) € BY, and let C = >, y ¢;. By self-duality, F(5C,c) = 3c. By
path-independence, F(iC, c) = F(iC’,%c) = ic. By self-duality, F(%C’, c) = %c.
Similarly, we obtain that for all m,n € N, with m < n, F(2C,c) = Zc. Finally,
and since composition implies continuity with respect to the estate, for all 0 < A <

1, F(AC,c) = Ac. R

Proof of Theorem 8:
First, consider the following lemma:

Lemma 11.1. The contested garment rule is the only two-person rule satistying
symmetry, estate monotonicity, independence of claims truncation and composi-
tion from minimal rights.

Proof :

Let N € F be such that N = {i,5}, and consider a problem (FE,c) € B".
If ¢; = ¢j, by symmetry, F(E,c) = G(E,c). Let us consider the case ¢; # c;.
Without loss of generality, assume that ¢; < ¢;.

(1) 0 < E < ¢;. By independence of claims truncation and symmetry, F;(E,c) =
F;(E,c) = £. Consequently, F(E,c) = CEA(E,c) = G(E,c).

(2) ¢; < E < C = ¢; + ¢j. By composition from minimal rigths,

F(E,c) = m(E,¢c)+F

E - ka(c, E),c—m(E,c)

(E—c¢;,E—¢)+F[C—E,(C—E,C—E).

By symmetry,
1 1
FIC-E/(C—-E,C—-E)= (E(C—E),§(C’—E)) :
and consequently,

F(E,¢c)=(E—cy, E—c)+ (%(C’ - F), %(C — E)) =CEL(E,c) =G(E,c).
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(3) ¢; < E < ¢;. Note that Fi(c1,c) = Fi(ca,c) = %cz-. By estate monotonicity,
for all E' such that ¢; < E < ¢;, it happens that F;(E,c) = %cz-. Consequently,
Fj(c,E) = E — ¢;, and thus, F(E,c) = (3¢, E — 3¢;) = G(E,c). B

Proof of Theorem 8:

The contested garment rule satisfies both properties. Let F' be a solution
satisfying self-duality and composition from minimal rights. By self-duality, it
also satisfies independence of claims truncation. Let us see that also symmetry
and estate monotonicity are fulfilled.

Suppose that F' is not symmetric. Then, there is a set N = {i,j}, and a
symmetric problem (F,c¢) € BN, with ¢; = ¢;, such that F;(E,c) # F;(E,c).

Suppose that F < %C’. = ¢;. By independence of claims truncation, F(E,c) =
F(E,c") = F|E,(E,E)] = %(E, E), by self-duality, against the hypothesis of
E(E7C) 7é Fj(Eac)'

If £ > %C’, by self-duality, also there will be a violation of symmetry for
E =(C-FE)< %C’, and we just proved that it cannot be the case. Consequently,
F' is symmetric.

Let us now prove that F satisfies estate monotonicity. If 0 < £ < min{c¢;, ¢;},
by independence of claims truncation and symmetry, F(E,c) = %(E , E). By self-
duality, if max{c;,¢;} < E < ¢; +¢;, F(E,c) = CEL(E,c). Consider then the
possibility of having some vector of claims, ¢ = (¢;, ¢;), with ¢; < ¢;, and a estate
E, such that ¢, < E < ¢;, and F;(E,c) # %cz-. Furthermore, by self-duality,
E # jlci +¢jl.

Suppose that E < %[cz +¢;]. By independence of claims truncation, F(E,c) =
F(E,c"), where ¢ = (c;, E). But then, max{c],c]} = E, and consequently,
Fy(E, ") = 3c;, against the hypothesis. By self-duality, F;(F,c) = 3¢;, for $[c; +
¢;] < E < c¢j. Thus, F satisfies estate monotonicity.

Consequently, by Lemma 1, we get the desired result.

Properties in Theorem 9 are independent:

In order to prove that independence, we provide with examples of solutions
fulfilling all but one properties at any time. We mention the property that is
violated:

Consistency: The truncated and adjusted proportional solution
Self-duality: The constrained equal-loss solution

Composition from minimal rights: The proportional solution. B
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Proof of Claim 10:
It follows from the fact that they satisfy simultaneoulsly composition from
minimal rights and independence of claims truncation, and Lemma 1.

Proof of Claim 11:

It is enough to see that they do not coincide with the Talmud solution. It can
be done by way of example. Consider a three agents problem, with claims ¢ =
(100, 200, 300), and let the estate be E = 300. Then, ACEA(E,c) = CEA(E,c) =
(100,100, 100), TCEL(E,c) = CEL(E,c) = (0,100, 200), and finally, T'(F, c) =
(50,100, 150).

Since the only consistent extension of the contested garment solution is the
Talmud solution, then TC'EL and ACEA are not consistent.ll

Proof of Claim 12:

Let us see it by way of example. Let ¢ = (100, 200, 300), and E = 400. Then,
AP(FE,c) = (60,120,220). Consider now the group S = {1,3}, and the reduced
problem for this group. Their claims are cg = (100, 300), and what they jointly
receive is B/ = 280. Now, AP(F’,cs) = (0,180) + P [100, (100, 120)]. Clearly,
the first agent is going to receive less than 50, whereas initially he received 60.
Consequently, AP is not consistent.

m'The failure of consistency for T'P can be obtained via the duality relation:
if TP were consistent, then AP = (T'P)*, also would be consistent. But we just
proved that it is not. Consequently, also T'P fails to be consistent.ll

Proof of Theorem 12:
First, consider the following lemma:

Lemma 11.2. Let (¢, E) € B be given. If for alli € N, f* € F, and for some
j € N fJ = cel, then u[f, (¢, E)] = cel(c, E).

Proof :
Without loss of generality, assume that ¢; > co > -+ > ¢,. Let Ny ={i € N
| celi(c, E) = O}, ny = |N1|, N2 = N\Nl, and N9 = |N2| Let CQ = ZNQ C;
Thus, for all i € Ny, cel;(c, E) = 0 and for all i € N cel;(c, E) = ¢; — <=E.
At the first stage, agent j proposes cel. Agent i € N\{j} proposes f* € F.
Step 1.- Compute cel(c, E), and for all i € N\{1}, compute fi(c, E). If all
them coincide, the chosen allocation is cel(c, F'), and we are done.,Otherwise, go

to step 2.
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Step 2.- For all i € Ny, m} = 0. Thus, for all i € Ny, ¢? = ¢;. Now, by fairness,
foralli € N, c; — fi(¢, E) > co — fo(¢, E) > -+ > ¢, — [ (¢, E)

Since, at cel(c, F) individual losses from the respective claims are as equal as
possible, for all £ € N\{1}and all F' € F, celi(c, F) < fi(c, E). In particular, for
all i, k € N\{1}, celg(c, E) < fi(c, E).Thus, for all k € N\{1}, m] = cely(c, F)
and m% > £

Thus, we have the vector m’ , where for all kK € Ny, mj, = 0, for all k € No\{1},
m}c—ck—@m ,andfork;—l L < mi < celi(c, E) —01—02 = A. Let
E'=E-Y,ymi=A—mjand ' =c—m'

For all i € N, compute, f"(cl, E'). If all them coincide, and since f7 = cel,
the selected allocation is * = m! + cel(c', E'). Note that, for all j € No\{1},
¢ =cj— m; CQME Furthermore, by fazrness ct > ... >cl. Now, note that by
fairness, ci — cely(c', E') > -+ > ¢l —cel,(c!, EY). Consequently, since ¢l —m} >
cy, for all k € N\{1}, celk(cl, E') = 0. Consequently, m + cel(c', E') = cel(c, F),
and we are done. Otherwise, go to step 3.

Step t. For all t > 1, and for all i € N\{1}, we have that m! = 0. Thus, at any
step, for all i € N\{1}, cel;(¢!, E*) = 0. Furthermore, by fairness, for all i € N,
fi(c, EY) > %t Thus, in case the process terminates after a finite number of steps,
we have that the final allocation is © = m' +m?+- - - +m! +cel(c!, E') = cel(c, E),
and we are done.

Limit case.- If previous process does not terminate in a finite number of steps,
compute lim; .o (m! + -+ +m!).

Note that, for all i € N\{1}, for all t € N, (mj + - -- +m}) = m}; = cel;(c, E).
Thus, we only need to consider convergence for agent 1.

First, note that for all t € N, m] + - -- + m! < A. Furthermore, mj >
and m3 > A;m%. Consequently, mi +m? > m] + A%“ >4 4pnly

In general, m} +--- +m} > % [1 + +"T_1 + (”7_1)2 + - ("T_l)tfl} .

Thus, lim;_e(mi+---+m}) > A. Tt then follows that lim; oo (mi+- - -+m}) =
A, and therefore, lim;_o.(m! + -+ +m') = cel(c, E). O

>

3 =
:I:>

Proof of Theorem 12:

Let ¢ € N be such that ¢; = maxy ¢;. First, note that for all (¢, £) € B, and
for all x € FP(c, E), cel;(c, E) > x;. Furthermore, for all profile of reported rules
f either dcl[f, (¢, E)] € FP(c, E), or dc[f, (c, E)] is inefficient. If dc[f, (¢, F)] €
FP(c, E), then cel;(c, E) > dcglf, (c, E)]. If dc[f, (¢, E)] is inefficient, there are
two posibilities, either dc|f, (¢, E)] = 0, or dc[f, (¢, E)] = limy .o f(c, E), and
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since for all k € N and all t € N, f*(, E) € FP(c!,E), then for all k €
N, fF(' E) < celi(c, E). Thus, if ¢; = maxy ¢j, then u;[f, (¢, E)] < celi(c, E).
Furthermore, by Lemma 2, if f* = cel, then for any preferences chosen by the
other agents, ulf,(c, E)] = cel(c, E). Therefore, cel is a dominant strategy for
agent 1.

Additionally, once the agent with the maximum claim chooses cel, the outcome
of the procedure is determined. []
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