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Abstract

In the context of testing the specification of a nonlinear parametric regression function,
we study the power of specification tests using the minimax approach. We determine the
maximum rate at which a set of smooth local alternatives can approach the parametric
model while ensuring consistency of a test uniformly against any alternative in this set.
We show that a smooth nonparametric testing procedure has optimal minimax asymptotic
properties for regular alternatives. As a by-product, we obtain the rate of the smoothing
parameter that ensures optimality of the test. By contrast, many non-smooth tests, such as

Bierens’ (1982) integrated conditional moment test, have suboptimal minimax properties.
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1 Introduction

Specification analysis is a central topic in econometrics. In recent years, a substantial amount of
work has focused on the search of specification tests that are consistent against a large spectrum
of nonparametric alternatives. Bierens (1982) inaugurates this line of research by proposing an in-
tegrated conditional moment (ICM) test for checking the specification of a parametric regression
model. His method relies on the empirical process of the residuals from the parametric model and
has been further developped by Andrews (1997), Bierens (1990), Bierens and Ploberger (1997),
Delgado (1993) and Stute (1997) among others. A competing approach compares parametric
and smooth nonparametric regression estimators, see Fan and Li (1996a), Hardle and Mammen
(1993), Hong and White (1995), Li and Wang (1998) and Zheng (1996) to mention just a few.
Thus there now exists a large range of consistent specification tests for regression models, see
Hart (1997) for an overview.

A focus of the literature concerns the power performances of the procedures derived from
either approach. This has been mainly investigated by studying the tests’ behavior under par-
ticular local alternatives, either theoretically or by means of Monte-Carlo experiments, see Hart

(1997). A familiar approach consists in considering alternatives of the form
E(Y]X) = (X, 00) + pud(X), (1.1)

where p(X,0p) is a member of the parametric model, §(-) is a specified function and p,, goes to
zero as n tends to infinity. Non-smooth tests, as the ICM test, generally have nontrivial power
against local alternatives of the form (1.1) when p, o n~'/2. This is not true for smooth non-
parametric tests. However, it is possible to construct sequences of smooth alternatives different
from (1.1), whose distance from the parametric model decreases more slowly than n~1/2 and
against which smooth tests are consistent, but against which the ICM test, among others, has
trivial power, see e.g. Fan and Li (1996b). As we will show, no test can be uniformly consistent
over a reasonable smoothness class of alternatives whose distance from the null hypothesis tends
1/2

to zero as n~'/%. Thus, there is a sense in which the set of alternatives (1.1) is too restrictive.

The main goal of this paper is to investigate the power properties of specification tests



against local alternatives that belong to a specified smoothness class of functions. We adopt
a minimax approach to determine the minimax critical rate of a test, that is, the maximum
rate at which the alternatives can approach the null hypothesis and for which we can ensure
a minimum predetermined power uniformly against the considered set of local alternatives.
We prove that a large class of non-smooth tests, such as the ICM test, have high minimax
critical rates. By contrast, a smooth test is shown to be rate-optimal, that is, it attains the
lowest possible minimax critical rate for a specification test. As a by-product, we obtain the
rate of the smoothing parameter that ensures rate-optimality of the test. By giving theoretical
foundations for an optimal choice of the smoothing parameter, our analysis constitutes a first
step towards a better understanding of its effects and the construction of practical procedures
for its determination.

Horowitz and Spokoiny (1999) have recently proposed an adaptive test based on kernel
estimation that automatically determine the smoothing parameter. They show that their test
is rate-optimal, taking as given the minimax testing rate. By contrast, we focus here on the
minimax rates for specification testing. Our results demonstrate for the first time the optimal
minimax testing rates for the multiple regression model with heteroscedastic errors.

Our paper is organized as follows. In Section 2, we describe our framework and assump-
tions. In Section 3, we establish minimax rates for specification testing in regression models and
we provide a testing procedure that is rate-optimal for regular alternatives. We then discuss
implications of our results and we relate them to previous ones on minimax hypothesis testing.
We also study the minimax properties of a class of non-smooth tests. Proofs of the main results

are relegated to Section 4. Three appendices gather some auxiliary results.

2 Framework and assumptions

Let (X,Y) be a random variable in IRP x IR. We consider a parametric family M of regression

functions M = {u(.,0); # € ©},0 C IR’ The null hypothesis of interest is

Hy : m(.)=EY|X=]eM.



Alternative hypotheses are characterized through the distance p of the regression function to
the parametric model M and are denoted H;(p). Consider a test ¢, depending on the sample
size n with values in {0,1}, where ¢, = 1 corresponds to the rejection of Hj, and whose level
is a(t,) = supy, Py (t, = 1). In the minimax approach, the properties of the test are further
characterized by its maximum type-II error over the considered alternatives, that is

B(tn, p) = sup Pp(t, =0).
Hi(p)

In asymptotic settings, the approach should be adapted to deal with sequences of nested alter-
natives that get closer to the null as the sample size increases, that is, with p,, — 0. Because we
are evaluating the power properties of ¢, through 3(¢,, pn), we should focus on alternatives that
maximizes the type-II error over Hi(py,). The specific alternatives that determine the minimax
properties of a test are then among the “least favorable alternatives” and should lie at a distance
pn from the parametric specification. Evaluating the power performances of a test in this way
comes to a prudent strategy where the practitioner wants to guard against the worst possible
alternatives. This is of interest when the econometrician has not enough information about the
possible misspecifications to consider specific alternatives such as (1.1).

Our subsequent analysis focuses on the rate of decay to zero of p, and the corresponding
properties of a test. For any consistent a-level test, there should exist a critical rate such that
the test can discriminate local alternatives from the null hypothesis in the minimax sense if and
only if p, does not go to zero faster than this critical rate. This rate can in turn be optimized
among all tests of given level and the resulting rate will be called the minimax rate of the
testing problem. In Section 3, we derive a testing procedure as well as its critical rate. We then
show that this test is rate-optimal, i.e. that it detects any alternative in H;(p,) where py, is the
minimax testing rate.

In the absence of other constraint, any a-level test of Hy against Hj(p) poorly behaves in the
minimax sense, even when p is constant. Indeed, in the minimax approach, tests are evaluated
uniformly over Hj(p), which can contain very irregular functions that are not distinguishable
from noise. However, an econometrician who sets up a parametric regression model and wants to

test its specification has usually in mind alternatives that are regular anyway. Hence, as done in



another context by Ingster (1993), we impose some regularity constraints on the nonparametric

function of interest. For s € [0, 1), let Cp(L, s) be the set of measurable functions m(-) such that
im(z) —m(y)| < Lllz —y[|* Vz,y.

For s > 1, let [s] be the greatest integer less than or equal to s, and let Cp(L,s) be the set
of functions m(-) differentiable up to order [s], whose all derivatives of order [s] belongs to
Cyp(L,[s] — s).! We then consider the set of alternative hypotheses

Hl(p) : alél(glE(/j,(X, 0) - m(X))2 > :02 ’ m() € Cp(LaS) ’

defined through the Lo-norm.
Our approach will involve the notion of “pseudo-true value” for the parameter 6, see White
(1982) and Gourieroux, Monfort and Trognon (1984). We now describe some assumptions related

to this pseudo-true value and the way it can be estimated.

Assumption M1 For each m(-) in Cp(L,s), there exists a unique 6* = 6}, such that

B(u(X,0%) = m(X))* = inf F(u(X,0) - m(X))* .

For any sequence {my(.),n = 1,...} such that 3 0 in the interior of © with limy,_, o E(m,(X)—
w(X,0)? =0, O, converges to 0.

Assumption M2 i. For each 0 € ©, p(-,0) € Cy(Lam,s), Ly < L, and FEp'(X,0) < cc.

ii. For each x in [0,1]P, p(z,.) is twice continuously differentiable with respect to 0, with
first and second order derivatives pg(-,-) and pgg(+,-) uniformly bounded in x € [0,1]P and
0 € o.

(X, 0) Iu(X, 0)
00 90T

11i. The matriz IE { is invertible for oll 6 € O.

ouf.,0
iw. The set of gradient functions {%, 0 e @} is compact in Cy, the set of continuous

functions from [0, 1] to IR? equipped with the uniform norm.

!The Lipschitz condition could be replaced by an Holder-type condition.



Assumption M3 /n(0, — 60%,) = Op,, (1) uniformly with respect to m(-) € Cy(L,s), i.e.

Vnp>0,3v>0:limsup sup P, (\/HH@L—O:;H >1/) <n.
n—+00 m(-)eCyp(L,s)

When the parametric model is correctly specified, Assumption M1 is an identification condition
because 0, is then the true value of the parameter. Under misspecification, M1 defines the
pseudo-true value of @ as the limit of the nonlinear least-squares estimator. Regularity conditions
on the parametric model M are provided in Assumption M2. Similar assumptions are used by
White (1982) to establish the \/n-consistency of the nonlinear least-squares estimator of 67,.2
Assumption M2-i basically says that alternatives of interest belong to a larger smoothness class

than the null parametric model.? In particular, they include alternatives of the type
1(,0) +6(), 0 €0, with §(.) € Cp(L — L, s) and [EG*(X) > p* .

By Assumption M3, we allow for estimators different from nonlinear least-squares. These estima-
tors have to be uniformly consistent with respect to the functions considered in the alternatives.
Such a result is not usually shown in the literature. However, uniformity is essential for de-
veloping our minimax approach. Birgé and Massart (1993) have shown that Assumption M3
usually holds for nonlinear least-squares estimators. Consider for instance the simple univariate
regression model where y(X,0) = 0X with 6 in [,0]. The pseudo-true value is then defined
as 0%, = IE[Xm(X)] /IE(X?). Assumptions M1 and M2 both reduce to standard assumptions.

Moreover, the OLS estimator is such that

n -1 n
O — 0" = l(l/n) ZX?] (1/n) Y (m(X;) — 0" X; + ) X; .

i=1 i=1
Hence, Assumption M3 holds for 0, when EX* and IEY* are finite, as the empirical mean of
the numerator is centered, with a variance of order O(1/n) uniformly in m(-).

As noted by Stone (1982), the minimax estimation rate of a nonparametric regression not

only depends on its smoothness, but also upon the behavior of the density f(.) of X. Hall and alii

2The main difference stands in the compactness of the set of first derivatives.
3This assumption does not prevent M to be a subset of a smoothness class with index saq > s.



(1997) show that optimal local polynomial estimates are unable to achieve the usual minimax
rate when the density decreases too rapidly to zero at the boundaries of its support. Similar
phenomena can appear in our testing framework. For instance, if the density of the regressors has
unbounded support, it can be possible to find some sequences of functions m(-) in Hy(p), with
fixed p, against which any test has trivial power, see Appendix C for an illustration. Therefore,

to avoid technicalities, we limit ourselves to explanatory variables X with bounded support.*

Assumption D The density f(.) of X has support [0,1]P, with 0 < f < f(z) < F < 400 for

any z in [0,1P, and is continuous on [0, 1]P.

3 Minimax rates for specification testing

3.1 Lower bounds for minimax testing rates

N

The following theorem states that if p, = o(py), where p, = n” P if 5 > p/4 and p, = n~
if s < p/4, any o-level test t, of Hy against alternatives of type Hi(py) is comparable, in the
minimax sense, to the test which chooses among the two hypothesis randomly with IP(¢, = 0) =
1 — . This is an impossibility result, which gives p,, as a lower bound for the minimax testing
rate. It formalizes the idea that alternatives of the type (1.1) can be too restrictive to study the

local behavior of specification tests.

Assumption I {(X;,Y;),i =1,...,n} is an i.i.d. sample on (X,Y) from IRP x IR, IEY* < co.
Fore=Y —m(Y|X), Ene? > 0 and [E,, [¢*|X = z] < 0o, Yz € [0,1].

Theorem 1 Let p, = niﬁ if s > p/4 and p, = n1 if s < p/4. Under Assumptions D, I,
M1-M3, if each ¢; is N(0,1) conditionally upon X;, for any test t,, of asymptotic level c,

Bltn,pn) > 1 —a+o(l) whenever p, = o(pn).

*As pointed out by Bierens and Ploberger (1997), we can without loss of generality replace X by ¢ (X), where

¢ (-) is bounded one-to-one smooth mapping.



The assumption of standard normal residuals, which is central to derive Theorem 1, can be
relaxed as soon as regular distributions are considered. A common condition is to assume that
the translation model associated with the residuals ¢;’s is locally asymptotically normal (LAN),

that is, the density f.(-) of these variables fulfils

> {log fe <6i + %) — log fg(ei)] =uS, —u’I/2 +op(1),

i=1
where I > 0 is a constant, and S,, converge in distribution to N(0, ), see Ibragimov and
Has’minskii (1981) for details. Under such a condition, Theorem 1 carries over at the price of
some technicalities. Note that the LAN condition allows for the presence of heteroscedasticity.
However, the minimax rate can change if the LAN condition does not hold. For instance, the
lower bound of the minimax testing rate is likely to be improved if the residuals’ distribution
is not regular. Nevertheless, when the distribution of the residuals is unknwon, as is the case in

the next section, it is clear that the lower bound of Theorem 1 is still valid.

3.2 Minimax testing rates and a rate-optimal test for regular alternatives

To determine minimax testing rates, we now build a specific specification test. A popular method
in econometrics follows the Lagrange multiplier approach, see Godfrey (1988). This comes to
estimate the model under the null hypothesis in the first place and to use this estimate as a basis
for a test statistic in a second step. Here we first estimate # and use the estimated parametric
residuals U; = Y; — (X, §n) to test Hy. To this purpose, we introduce a simple approximating

family of functions, on which the parametric residuals will be projected. Let us define
P
I, = [ [kjh, (kj + 1)h) ,
7j=1

where the multivariate index k = (kl,...,kp)T € L C IV satisfies 0 < k; < K —1 for j =

0,...,p, K = K, being an integer number and h = 1/K the associated binwidth. The bins I}’s
n

define a partition of [0, 1]?, up to a negligible set. Let Ny = Z II(X; € I)) be the number of
i=1



observations of the exogenous variables in bin Ij. Consider

~ 1 H[Nk > 1] > 1y
T, = 3 >, Uy
VR2RPPZ R Ne e e
and
(N, > 1) PP
vn=0/K" > —— > U}
kek k {Xi, X YT i)

The test is defined as ¢, = 1T (v; lfn > za), where v, is the positive square-root of v2 and z, is
the quantile of order (1 — «) of the standard normal distribution.

Our test statistic is a simple histogram version of the kernel-based test of Zheng (1996). It
can also be viewed as a modification of the familiar Pearson Chi-square statistic for goodness-
of-fit for densities. Equivalently, it can be derived from Neyman (1937), since the considered
indicator functions is an orthogonal system (with respect to any distribution for the X;’s).
An advantage of this approach is to treat design density and conditional heteroskedasticity as

nuisance parameters and then to avoid strong regularity assumptions on these functions.
Theorem 2 Under Assumptions D, I and MI1-MS3,

i. a(ty) = supy, P, (v;lTn > Za) — a, whenever K — 00 and 570575 lgng — 00 ;

ii. Assume s > p/4, let p, = nHE and K = [,5,;1/5/)\], A > 0. Then, for any prescribed
bound 3 in (0,1 — «) for the type-II error, there exists a constant k > 0 such that

/B(Znaﬁ[’n) = sup [Py (vﬁlfn < Za) <B+ 0(1) .
Hl("aﬁn)

As a consequence of Theorem 2, the test £, is an asymptotic a-level test of Hy, and has as-
ymptotically a nontrivial minimax power against Hi(kpy), for regular alternatives and x large
enough. This shows that our test can asymptotically distinguish any local alternative in this
set, since B can be taken as small as desired. The quantity p, is thus an upper bound for the

critical rate of our test.’> Given Theorems 1 and 2, we obtain first that the lower bound p, on

This does not mean that our test has trivial power against any alternative in H; (p,) with p, = o(p,), though

it has trivial power against alternatives (1.1) with p, oc n="/2.



the minimax testing rate can be attained even when the residuals’ distribution is unknown, and

second that the test we have proposed is rate-optimal for regular alternatives.

2s
Corollary 3 Under Assumptions D, I and M1-M3 and if s > p/4, pp, =n" »+% is the minimaz

testing rate and t, is rate-optimal when K is chosen as in Theorem 2-ii.

Our results give theoretical grounds for the choice of the binwidth in a specification testing
framework. The testing optimal binwidth, ensuring that the test will be rate-optimal in the case

of regular alternatives, i.e. for s > p/4, is
~ __2
h xn p+is,

For the same p and s, the optimal binwidth rate for testing the specification of a nonlinear para-
metric regression model is smaller than the optimal binwidth rate for minimax nonparametric
estimation of the regression in the Lo-norm, which is n~1/(?*25) Basically, choosing an optimal
testing binwidth leads to balance a variance and a squared bias term, similar to the ones found
in semiparametric estimation of IEm?(X). This implies some undersmoothing relative to opti-
mal estimation of the regression function itself, as is the case in other semiparametric estimation
problems, see e.g. Hardle and Tsybakov (1993), Powell and Stoker (1996). However, determining
the optimal smoothing parameter for semiparametric estimation or testing are different problems

in general.’

3.3 The case of irregular alternatives

The minimax testing rate generally depends on the relative standing of the smoothness indice s
and the dimensionality of the model p. For irregular alternatives, i.e. s < p/4, the lower bound
of Theorem 1 equals n~/4, and depends neither on the smoothness index nor on the dimension

of the model. This rate corresponds to a baseline minimax testing rate when the residuals’

%In the white-noise model and alternatives defined through L, norms, Lepski, Nemirovski and Spokoiny (1996)
have shown that the minimax testing rate and the minimax estimation rate for the L, norm coincide when q is

even only.



unconditional variance o2 is known. Because the statistic
n A
1/n)Y U} —0o? (3.2)
i=1

estimates E[Y — u(X,09)]* — 02 = E[u(X, 6*) — m(X)]? with rate of convergence equal to v/n,
a test that relies on this statistic detects any alternative in H(p,) with p, = n~ /%,

When o2 is unknown and the regression function is regular enough, o2 can be efficiently
estimated with a y/n-rate of convergence for regular alternatives, see e.g. Lavergne and Vuong
(1996) and Newey (1994). The modified test statistic (3.2) where o2 is replaced by its efficient
estimator then has a y/m-degenerate behavior and our test statistic takes advantage of this
degeneracy.” Unfortunately, this is not possible for irregular alternatives. Indeed, the average
number of observations X,’s in each bin is of magnitude O(nh?) = O(n4s—P)/(4s4p)) gince
the density is bounded away from 0 and infinity. Thus, for s < p/4, the average number of
observations in each bin would go to 0 and this leads to a test statistic equal to zero with
probability converging to 1.8 Hence minimax rates for specification testing in regression models
remain to be determined for irregular alternatives. It is likely that we would confront a problem
where it is difficult to distinguish between signal and noise, so that the minimax testing rate

depends on s. A related result in a different context can be found in Baraud, Huet and Laurent

(1999).

3.4 Relations to other minimax testing rates

The main contribution of our work concerns the minimax rates for specification testing in re-
gression models with multivariate random explanatory variables. It is interesting to compare
our findings with those obtained in the continuous-time gaussian white noise model

Y, (z) = m(z)dz + %dW(z) ,zel0,1],

"In the case of testing for a pure noise model, the specification test recently proposed by Dette and Munk

(1998) is also based on (3.2), with o replaced by a inefficient difference-based estimator.
8Under the assumption that m(-) is bounded, our test can be applied when s = p/4 and it is rate-optimal, see

Guerre and Lavergne (1999).
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where W (.) is a standard Brownian motion and the observations are {Y,,(z),z € [0,1]}. Ingster
(1993) has shown that the minimax testing rate of the null hypothesis m(-) = 0 is n THE
Moreover, Brown and Low (1996) have established some equivalence results for statistical in-
ference between this model and the univariate regression model with homoscedastic Gaussian
errors. This suggests that previous results on testing the white noise model may be extended
to regression models. But this is not generally the case. First, such asymptotic equivalence has
its limits, as pointed out by Efromovich and Samarov (1996). To sum up, the available results
imply that equivalence holds for s > 1/2, that nonequivalence holds s < 1/4 and s = 1/2, see
Brown and Low (1998), while the other cases are undetermined. Second, at our knowledge, no
work deals with extension of these results to multivariate settings. Third, the white noise model

is not appropriate to deal with an unknown residual variance, because o

is not a nuisance pa-
rameter in this model.” These are the reasons why we do not use previous results on the white
noise model. Nevertheless, our work sheds some light on this issue. By explicitely dealing with
the multivariate case, our results show that there is no equivalence between the (multivariate)

white-noise model and the regression model with homoscedastic Gaussian errors when s < p/4.

3.5 Minimax critical rates of non-smooth tests

For smooth enough alternatives, i.e. when s > p/4, the minimax testing rate equals n~ 7% and

—-1/2

approaches n from above when s grows to infinity. This means that in the minimax sense,

4

it is impossible to detect alternatives that converges to the null at the “parametric rate” 1/y/n,
even if the considered regression functions are infinitely differentiable.'® This is the sense in
which local alternatives of the type (1.1) are too restrictive. The minimax approach provides an
alternative way of evaluating power properties of specification tests, and it seems interesting to
study the minimax properties of non-smooth tests.

A well-known specification test in econometrics is the ICM test proposed by Bierens (1982)

9Two different values of o2 in the white noise model define measures that have disjoint supports.
9For estimation of a perfectly smooth signal in the white noise model, the minimax rate is 1/n/logn, see e.g.
Guerre and Tsybakov (1998).
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and further developped by Bierens and Ploberger (1997). The ICM test statistic is
In = [ () dv(é),

where v(-) is a measure on a compact set E, z(¢) = (1/v/n) S0, Uyw(X;, €) with real-valued

w(X;, €). Stinchcombe and White (1998) propose the more general statistic

1/q
} N

g = | [ 12017 )
Let fnyq be the test tAn,q = (I, g > tuay), with lim, a(fnyq) = qa.

Theorem 4 Let w(-,-) be bounded and such that w(-,§) € Cp(c0),VE € E. Under Assumptions
I, D, M1-M3, if each ¢; is N'(0,1) conditionally upon X; and f(-) € Cp(c0), then V1 < ¢ < oo,

Btng,pn) = sup P (Ing < uay) =1—a+o(1), whenever p, =0(n"%), Va > 0.
Hi(pn)

The assumptions on w(-,-) are justified by usual choices, such as exp(X'¢) by Bierens (1990)
or (1+exp(—X'¢)) ! by White (1989). Furthermore, Stinchcombe and White (1998) show that
considering w(X,¢) = G(X'¢) with an analytic G(-) ensures desirable properties for the asso-
ciated tests. Our result shows that such non-smooth tests are not rate-optimal in the minimax
sense. It then follows that these tests cannot be asymptotically admissible against any alterna-
tive. This contrasts to the result obtained by Bierens and Ploberger (1997), who show that the
ICM test is asymptotically admissible against specific alternatives of type (1.1). Moreover, the
minimax properties of non-smooth tests are unsatisfactory, as their asymptotic minimax power
is trivial against any sequence of alternatives Hi(p,) with p, going to zero as a power of n.'! We
conjecture that similar results can be derived for other classes of tests, because empirical process
based tests are basically identical to nonparametric smooth tests, with the major difference that

the smoothing parameter is held fixed, see e.g. Eubank and Hart (1993) or Fan and Li (1996b).

"'Without the assumption of an analytic f(-), our proof shows that a lower bound for the critical rate of such

tests is n~ P25 , which is greater than the minimax testing rate.
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3.6 Directions for future research

It is likely that our results extend to the problem of testing econometric model defined by multi-
ple moment conditions, as considered by Delgado, Dominguez and Lavergne (1998). Our testing
methodology can also be easily adapted to deal with specific alternatives that are of interest
for practitionners. Indeed, one could add some parametric components to the approximating
family used to build our test statistic, such as polynomial ones. This would improve the power
properties of the test against such specific local alternatives, without affecting its general mini-
max properties. A central direction for our future work is to develop data-driven techniques for
choosing the smoothing parameter. Useful suggestions can be found in Hart’s (1997) monograph
and the references therein. This issue is addressed by Spokoiny (1996) for the white noise model
and Horowitz and Spokoiny (1999) in the fixed-design regression model.

4 Proofs

4.1 Proof of Theorem 1

Some small alternatives

Let ¢ be any infinitely differentiable function from [0,{]? to IR such that

/( w—Oand/ z)dr < 00 .

Assume that [ is large enough so that ¢ is in Cp(L — L, ). Let hy, = (Apy)/®, X > 0 and define
P
Iy = [ [1kjhan, 1k + 1)ha)
j=1
for k € Kp(l), i.e. k € IN? with 0 < kj < 1/(hy,l) — 1. Then I; C [0,1]P. Without loss of generality, we
assume that K, (1) = 1/(h,l) is an integer. Let

1 x — lkhy,
o) = e (TG0 ) ke K).

The functions g (+)’s are orthogonal. Let (B, k € K) be any sequence with |By| = 1 Vk, and

Ma() = 1, 00) +0a() , 3a() = Aoah®? S Bror(), (4.1)
ke, (1)

13



where 6y is any inner point of ©.
Lemma 1 Under Assumptions D, M1, M2, m,(.) is in H1(p,) for X and n large enough.

Proof: i) m,(-) € Cp(L,s): For any g € IV with Y7, 8; = [s],

[s] [s] [s] o, [slp,,
61 n () _ 61 n(y) - A\pn Z B, 0 : ek (2) _ 0 : er (y)
Oyt ...0yp"  Oyy...0yp" kern (1) Ox{'...0xp" Oy ...0yp"
Aon | 0¥lp (z olsl _
b | 0700 _OT0W | < (1~ Ly e —yll
hs, Oz{'...0xp"  Oy)' ...0yp"

because ¢y (-) is identically zero for all but one k € K\, (1) and () € Cp(L — Ly, s).
ii) my(-) is distant from the null model: Let 6, = 6}, . Then

B2 [, (X) - p(X,0,)F > B?82(X) — B [u(X, 00) - u(X,6,)

(1 [ #26ora) 0. b0l (42)

Y%

by Assumptions D and M2, which gives that the gradient du(z,6)/06 is bounded. Now,

[ 8@ = o REKRD = (o1 (4.3)

As 0, converges to 6, it is then an inner point of ©. Therefore M1 yields, applying M2 and the Lebesgue

dominated convergence theorem, that

ou(X,0,
EHEO) 1 0~ ma(X)] =0
00,
This leads to
3 X, 9n a X7 en
E% [1(X,05) — u(X, 00)] = E‘Sn(X)% :

A simple Taylor expansion, which holds by M2, yields

_ (291X, ) Ou(X, 0) - (X, 6r)
O, — 0y = (lE 5 S o)) I (X) T
so that
(X, 0,
16 — 6llo = O (| 5, () 21E ) || ) (4.4)
0 |,

14



ou(.,0)
06
M2 and the Azrela-Ascoli theorem, see Rudin (1991), and as ¢(-) has integral zero, we get

Because M2 implies that the functions fl);0€ @} are equicontinuous, by Assumptions D and

(X, 0n)
IE(Sn(X)T
= Apal? Z Bk/ <8'u(lkh”6+9h"u’0")f(lkhn + hau) — Wﬂlkhno o(u)du
kEK A (1)

Apnh? KE(D)o(1) = ApplPo(1) .
Combining this equality with (4.2)—(4.4) yields, for A and n large enough,

-E”2WMCX)—MC¥ﬁnH2kad‘p(P”HVQ—OU))sz-D

Main proof

We shall establish that for any test ¢,

sup Pp(th,=1)+ sup Pp(t, =0) > 140(1). (4.5)
m(.)EHo(M) m()EH1(M,pn)

Step 1: Choice of a Bayesian a priori measure. Let 6y be any inner point of © and denote Il the associate
Dirac mass. Consider i.i.d.s Rademacher By’s independent of the observations, i.e. IP(By = 1) = IP(By, =
—1) = 1/2, and define II,, as the a priori distribution defined on H; (M, p,) by (4.1). Lemma 1 shows
that the support of Iy, is a subset of Hi(p,) and II,, = Iy + IIy, is an a priori Bayesian measure over
Ho U Hy(py). This gives the lower bound

sup P (t, =1)+ sup Py (tn, = 0) > /lpm(tn = 1)dlly(m) +/1Pm(tn = 0)dll,(m) . (4.6)
m(.)EHo m(.)EH1(pn)

The r.h.s. of (4.6) is the Bayes error of the test ¢, which is greater than the error of the optimal Bayesian
test based on the likelihood ratio Z, that we now introduce. Denote by ) and X" the set of observations
on Y and X respectively and let p,, (), X) be the density corresponding to the regression function m(.).

Define the a priori densities associated with the two hypotheses as

mmﬂz/mwwmmm>mdpmxﬂz/mwxmmm»

Let E\ be the expectation under p,. The likelihood ratio of the optimal Bayesian test is

" PV, X) po(VIX)

15



The optimal Bayesian test rejects Hy if Z,, > 1 and its Bayesian error, see Lehman (1986), is
1 1
1-— 3 / oV, X) — D1, (Y, X)| dYdX = 1- §IEE0 [|Zn — 1||X] ,
Then (4.6) implies that

1
sup Pp(t,=1)+  sup le(n_0)>l1m1nflE{1——E0 [1Zn —1||X} o(1),
m(.)€Ho m()EH: (pn) noo

and (4.5) holds if we can show that the limit in the r.h.s. is 1. We first note that 1 — %EO [1Zn — 1]|X]
is positive as a conditional Bayes testing error. Then the Fatou lemma implies that it is enough to
show that Eq [|Z, —1]|X] & 0, which is implied by Eq [(Zn —1)? |X] 0. But B, [(Zn —1)? |X] -
Eo (Z2|X) — 1 as Eo(Z,|X) = 1. Hence, Inequality (4.5) holds if

Eo (7221x) 1. (4.7)

Step 2: Study of the likelihood ratio Z,. On the one hand, the variables €;0 = Y; — u(X;,60),i=1,...,n,

are standard normal variables under p, and

po(V|X) = (2w "/Qexp[ Z%/Q] -

On the other hand, given the definition of IIy,,

(27T)n/2/{exp [_%Z Y mn i )
exp <—— Zle/Q 262 )+ Zﬁi05n(Xi)> } dll,(m)

n/2
= p,(V|X) {exp (—— > o(X) + Zéiotsn(Xi)) } dIlyn(m) .

The definition of the alternatives (4.1) gives

ieioan(x = Apnh?/? Z ZBkslggak i) and Xn:(s;i(x = Npihth > ngk
i=1

kek(l i=1 keIC(l) i=1

P1,(V|X)

since Bf =1 and ¢y (.)pw (.) = 0 for k # k'. This yields

2 2 n
Zo = exp (—% 3 Zso%(Xi))

kek(l) i=1

1 n n
X H 3 lexp (x\pnhf/2 Z&'o@k@Q)) + exp <—>\Pnhﬁ/2 ZEiOW(Xi))] .

keK(l) i=1 i=1

16



Therefore,

Zp = exp (—Vpihﬁ > zn)pi(Xi))

kek (1) i=1

1 n n
X H 1 lexp <2Apnhﬁ/2 Zeiosﬂk(Xi)) + 2+ exp (—2)\pnhf/2 Zsiggak(Xi)>

kE}C(Z) i=1 i=1

Conditionally on X', the variables ). ;001 (X;), k € K(I), k € K,,(I), are independent centered Gaussian
with conditional variance given by >°. 7 (X;). Using Eexp N'(0,0?) = exp(0?/2), we get

Eo(Z;1X) = ][ ew (—X"pihﬁ > Z@i(&-)) X %{exp <2A2pihZZwi(Xi)> +1}
i=1

keK(l) kek(l) i=1
= ][ cosh (A%ihﬁZgai(X») ,
kEK(l) i=1

where cosh(z) is the hyperbolic cosine function. As cosh(z) < exp(z?) by a series expansion, this yields

n 2
1< Eo (Z;]X) < exp [ > (A%ihﬁ Z«pi(&))
i=1

kek(l)

and (4.7) holds if

2
P
> (pihz > wi(&»)) = 0. (4.8)
keK (1) i
Consider the expectation of this positive random variable. We have

E[ )3 (pihﬁzwi(&))] = AR Y {nEpl(X)] +n(n = DEG(X))}

kek(l) keK(l)

Now the standard change of variables © = lh,k + h,u and Assumption D yields

E[pp(X)] = /h52p@4 [(z/hy) — k] f(z) dz < Fh;”/¢4(U) du = O(h,”)
and

BIACO] = [ 776 [(a/h) = 1] f(@) do < F [ 6*(u) du = O(0)

As h, = O(1/K, (1) = O(p¥/®),

E

2
3 <pih22¢i<xi>> ] = [nph + 02 k] O(1) = [nol, + 2T/ 0(1).

k

We then consider the two following cases:

17



i. 8§ > p/4 Pn = O(ﬁn) — np% =0 (n(p*43)/(p+45)) — 0(1) a/nd n2p2p+4s)/s — 0(1)
ii. s < p/4:p,=o0(py) =o0(n"Y*) = npt = o(1) and n2pPTi/s — (nts=P)/45) = o(1).

Equation (4.8) follows and then (4.7). Step 1 shows that (4.5) holds and Theorem 1 is proved. O

4.2 Proof of Theorem 2

For random variables Z and Z', define IE*(Z) = IE,,(Z|X € I},), Var*(Z) = Var, (Z|X € I.),

H[Ng > 1]

Z, 7", =
(2,7, = =

1
! —
> | .Zizj, Vk e K, and (Z,Z’):4ﬁKp/2§ (2,7",.
{Xi,X; Ye i#j keK

Let ProjcZ = Z (z € I)JE*Z be the projection of Z onto the space of linear indicators #(z € I),

k
k € K. Key properties of this mapping are

E[ProjZ) =Y P(X € ;) E*Z=EZ, E[ProjiZ] < EZ*,
k

as Projy is a projection mapping. We let U* =Y — u(X,60%), e =Y —m(X), §(X) = m(X) — p(X, 0%),
e(X) = p(X, 9An) — w(X,0%) and Sk = (N, k € K)T. For simplicity, we assume that K = ﬁ;l/s/)\ is

integer. Finally, C;, ¢ = 1,..., denote positive constants that may vary from line to line.

Preliminary results

2
Proposition 5 Let v*(K) = (1/K?) Y, o H(Ny, > 1)N]’§,—:1 (EkU*2) . Under Assumptions I, D and

M1-M3, v*(K) is bounded from above and in probability from below uniformly in m(-) € Cp(L,s), and

vn =V (K) =op (1) whenever goieges — 0.

Proof of Proposition 5: By Assumption D, fh? < IP(X € I;) < Fh?. Now, on the one hand,

v (K)

IN

(1/E7) Y (IE]’“U*2)2 < (1/f) Y PIX € I,] (EkU*2)2 = (1/f) [E [Proj2U*?]
kex

ke
(1/£)E [U*] < (8/f) [EnY* + E,u*(X,0},)] < oo .

IN

On the other hand, by Lemma 4, with probability going to one uniformly in k& € K,

v (K)

v

(/260 Y (BU)" 2 (1/28) 2 PIX € 1] (B0
keK

ke
(1/2F) By, [ProjU*2] > (1/2F) I}, [U™?] > (1/2F) I}, [€2] > 0.

v

18



Let v3? = (1/KP) Y, cxc (U*2,U*?), [Ni. Then

< /xn - M2 (2,07, - w0, (49
ke

2 *2
|’Un — U,

But (U2, U%), —(U*2,U?), = 4U*2,U*e(X)),+2(U*2,€*(X)), +4(U*e(X), U e(X)) +4(U*e(X), e2(X)),
+(e?(X),e*(X)),. By Assumptions M1-M3 , |e(X;)| = O, (1/y/n) uniformly in m(-) and i. Hence the

dominant term in (4.9) is

(N, > 1 (N, > 1
arin) Y T2 Dy ey, = o, (pv/xn) S TEEZ D e o,
keK k kex k
But, by Assumptions I and M1,
(N, > 1
B | 1/57) Y0 T2 02, 0 s
keK k
(N, > 1) (N — 1
= (]_/KP)Z ( k > )( k )EkU*QEk|U*|
Ny
kex
< (1/f) Y P[X € ) B*UE*|U*| = (1/f) By, [ProjiU**Proj|U*|]
ke

< (DB U] EY? [U*?] < o

This shows that v3 —v;? = Op (1/y/n). Now v}> — v?(K) is centered conditionally upon Sk and, by

Lemma 4,
E,, [(v;f —v*(K))? |S,<} = Vary, [v> - v*(K)|Sk] = (1/K°7) Y % > VartUPu;?
kek k i#j
_ 2
< (K™Y AN > 1)N’;V3 ! (IE’“U*“)
k

ke

2
< OIP(nhi”)_2 g (IP(X € Ik)EkU*4) < OﬂD(nh”)”lEilU*“ 500
kek

Let T, = Tp(6%), A = (§(X),e(X)), B = (¢,e(X)) and R = (e(X), e(X)). Then

A~

T,=T,—2(A+B)+R. (4.10)

Proposition 6 Under Assumptions D, I, M1—M3, R and B are both Opm(hp/z) uniformly for m(-) in
Cy(L,s), and A=0Op,, (VnhPIEY252 (X)) uniformly for m(-) in Cp(L, s).
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Proof of Proposition 6: To simplify notations, we consider the case where d = 1. By Assumptions

M1-M3, |e(X;)| = Opp (1/y/n) uniformly in m(-) and i. Thus

IRl =0p (nK??)™' 3" Ny =0p (h*/?),
keK

uniformly for m(-) in Cp(L, s). Under Assumptions M1 and M2, a standard Taylor expansion yields

e(Xi) = (B = 07) (X)) + 1180 — 0" s (X (4.11)

where p1(X;) = pe(X;,6*) depends only on X; and p2(X;) depends on X; and §n . Therefore B =
~ 1 ~
(9n - a*) By + ||Bn — 6%||2Bs, where By = (&, u1 (X)) and Bs = (¢, us(X)). Now E(B;) = 0 and

1 I[N, > 1
BB) = 5 Y {—[ LY Zmm 09)}
kek k {Xi,X;, X Y€y i5,i#5'
_o() I[N, > 1] (N, = 1)2] )
= m g’:CIE[ N, = O(nh?),

using M2-i. Similarly,

o(1) $ I[Ny > 1] 3 .
E"|ei
V2K?/? her AL (X:i,X; YEIL i#]

O(l) _ _ n p/2
NTE %E[H[Nk > 1] (N, — 1)] = O(nh?/?).

As\/n (§n - 9*) = Op, (1) uniformly in m(-), we obtain B = Op_ (h?/?) uniformly in m(-).
~ ' .
From (4.11), A = (en - a*) Ay + |8 — 6|17 As, where A; = (5(X), (X)) and Ay = (5(X), ua(X)).

Now,

IE|Bs|

IN

ou ’ p/2 p/2\ /2 52
NTE %:CJE(M ~ D[N, > 1] EYS(X)| < O(nh?’?)E|5(X)| < O(nh?/?)BY28%(X).

Similarly, E|As| = O(nh?/2)IE/?62(X). Since /n (@L —0*) = Op,, (1) uniformly in m(-), we obtain
A=0p, (vVnhPIE'/?52(X)) uniformly in m(-). O

Proposition 7 shows that projections on the set of indicator functions #(z € I;), k € K, can be used to

E|A ] <

approximate accurately enough the magnitude of the Ly-norm of m(-).
Proposition 7 Under Assumption D,
E'/? [Projzm(X)] > Cy (IEI/QmQ(X) - hs) :

for any m(-) € Cp(L,s) and h small enough, where C1 > 0 depends only upon L, s and f(-).
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A detailed proof is given in Appendix B, because it is new for multivariate random designs. It proceeds

by proper modifications of the arguments used in Ingster (1993, pp. 253 sqq.) -

The following Proposition 8 gives some bounds for the unconditional mean and variance of T,.

Proposition 8 Let Assumptions D and I hold, and K be as in Theorem 2. Then, for anym(-) € Hp,(kpn)

with & > A° and n large enough,

2
En.T, > Conh?/? (E1/252(X) - hs) for some C > 0,
Var,,(T,) < IEnv*(K)+ Csnh?IE, 6*(X) + CynlE2, 62(X) for some C5,Cy >0 .

Proof of Proposition 8: Let wy = (U*,U*),.. By Lemmas 2 and 3,

I o ~ . 2
BTy = s 3 By = WO 3" B[N — 1) I(Ny, > 1)] (JE 6(X))
ke ke
nh?/? .2 Cr ouj2 (/252 5\
> T E [Pro26(X)] > N (JE 52(X) — h ) :

for n large enough, using Proposition 7 and EY/26%(X) — h* > 0 as m(-) € Hy (kp,) with & > A*.

Because the wy’s are uncorrelated given Sk by Lemma 2,

1
2KP

Vary, (Tp) = 57 > By [I(Ni > 1) Vary, (wi]Sx)] +

ke

1
ﬁ\/arm

> (N > 1) By, (wi |S,C)] . (4.12)
kel

Using Lemmas 2 and 3, Assumption I and IP(X € Ij) > fh? uniformly in k, we get

1
2KP

IN

3" BNy > 1)Vary, (@ |Sic)] Env*(K) + 207 Y ENy (1;5;’65()())2 [IE’“52 + IE’“(SQ(X)]
ke ke
< Env*(K) + Csnh? E [Projié(X)] + CenE” [Projc6®(X)] ,

ﬂl(pVar (Z II(Nk > I)Em [wk |S}C]>

kex
1 4
< 5 ) (JE'“(S(X)) Var (Ny, — 1) I(N > 1))
+ 2}1@ 3 (1;5’%5()())2 (zi_n;'“’m(x))2 Cov (N — 1) (N > 1), (Np — 1) (N > 1))

k#k!
CnIE? [Projid(X)] + Csnh? B [Proj-6(X)] ,

IN
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where we use the properties of Proj,. Combining inequalities, as nh? — oo, we obtain

Var (T,) < IE,v*(K)+ Csnh?’E [Proji-0(X)] + CenlE® [Projc6(X)]
+ CrnIE* [Proji-6(X)] + Csnh? E* [Proji-6(X)]
< Envi(K)+ CsnhPES(X) + CynlE? 6*(X) .O

Main proof

Part 4. From (4.10), Proposition 6 and as A = 0 under Hy, it suffices to show that Tn/vniﬂ\f(o, 1).
Assume that some ordering (denoted by <) is given for the set K of indexes k. Let Ji,...,J, be any

(random) rearrangement of the indices 7 = 1,...,n, such that X, € Iy iff ZN;; < J; < ZN;; . Let
<k <k

For = < Sk, Yy, : ZN[ <Ji < ZNe . Under Hy, {Tn,k =3 <k wkr/\/QKP,}'mk} is a zero-mean
<k <k B
martingale array. It is then sufficient to show that

v? Y By [wi/(2KP)| Fupa] 5 1 (4.13)
ke
o3 B [w,%/(QK”)II(‘wk/\/QKP‘ > nvn) |}'n,k_1} 2y 0, Wp>0 (4.14)

keK

from Corollary 3.1 in Hall and Heyde (1980), see also the remarks following it. Now

1 1 UNE —1) 4o
2KP Z By [wil Fas1] = 2KP Z By [wi]Sk] = 2KP Z Ny, E'U™ = o*(K)
ke keK keK

from Lemma 2, so that (4.13) follows from Proposition 5. Now (4.14) is implied by

—4
v 4K2p§€ﬂ50 Wil Fk—1] = 0.

By Assumption I, straightforward computations lead to

ZJEO (Wl Frp 1] < — Z(E’” 4) = 0(1).
ex

LGIC

By Proposition 5, (4.14) follows. a
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Part #. As v2 is bounded in probability from below uniformly in m(-) from Proposition 5, (4.10) and

Proposition 6 yields
P,, (uglfn < za) <P, (Tn <z + 2M\/nhPE1/262(X)) +o(1),
for any M > 0 and some z;, > 0, where the o(1) is uniform in m(-). But

2
P,, (Tn < 2+ 2MVnhv B2 (X)) = P, [— (Ty, — EpT,) > BTy — 2, — 2MVnhv B'/26*(X)
Var,, Ty,

<
> 2
[IEan — 2! — 2M/nhPE?52(X)

it BT, — 2., — 2M+/nhP EY/26%(X) > 0. It is then sufficient to show that & can be chosen so that

E,T, — 2" — 2MVnh?E/*§*(X) > 0,

Vi ;< 8, (4.15)
[zEmT;; — 2 — 2M/nh? B/ 262(X)]

uniformly for m(.) in H,,(kpy)- Proposition 8 gives that for any m(.) in H,,(kp,) and n large enough

_ pIEL/2 52 572 '
FE,T, — 2z, —2MvnhrIE'/=6*(X) o 1_/\_ _ o o 1~ ’
nhp/2? [E§2 K K2\P/2 N
and this lower bound is increasing in k and positive for x large enough. Proposition 8 also yields

Var,, T, < Ev? (K) 4 CanhP IS (X) 4+ CynlE* 6% (X)

(nh?/2ES2(X))> ~ 2w E252(X)

v (K) Cs Cy
KANP k2np2  nhr’

and this upper bound is bounded for n large enough because of Proposition 5, and decreasing in k. Hence

(4.15) can be made smaller than 8 uniformly for m(.) in H,,(kp,) by taking x large enough. O

4.3 Proof of Theorem 4

Without loss of generality, we consider the case of testing for a pure noise model, that is M = {0}. Then

=1

2(8) = 20(8) + 21(6) = (1/v/n) Y eiw(X5, &) + (1/vn) Y m(Xi)w(Xi,€) .
i=1
Consider the a priori I1y,, defined in Theorem 1’s proof, i.e. the measure defined by the random functions

mn () = 0n() = Apnhfz/z Z Brr (),
k
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where By, ..., Bk, are independent Rademacher variables and h,, = )\p}/ *, and further assume that (-

has r-first zero moments. We have
2 >‘2P?Lhﬁ <
Bn,, 2} (§) = =2 30 Y Elw(X;, w(X;, )er(Xi)pr(X;)]
i,j=1keK
uniformly in £. Now
B[ (X000 <P swp w(n,) [ P@)ds
z€[0,1]P,£€E
and

Elw(X, €)pi(X)] = h/? / Wtk + hu, €) f (U + hu)p(u) du = O(R™7/?) .

Hence, we have uniformly in &
En,, 2 (§) = Np20(1) + X pnh> +70(1) .

Because r can be chosen as large as desired, [, , 27 () = o(1) whenever p, = O(n=%), for any a > 0.
Under the same assumptions, Frm,, |21 (§)|? = o(1) for any 1 < ¢ < 2 from Hoélder inequality, and
Fr,, |71 (£) ]9 = o(1) for any 2 < ¢ < oo from the Khinchin-Kahane inequality, see e.g. de la Pefa and
Giné (1999). Hence,

En,, / 2110 (€) dw(€) = o(1)

Thus,
sup Pm (In,q S ua,q) Z /Pm (In,q S ua,q) dHln(m)
Hl(pn)
1/q
> [rn ([ [ (@ ane)] SU> M1 (m) + o(1)
> Py(Ing <uqgq)+to(l)=1—a+o(1).0

Appendix A: Auxiliary results

Lemma 2 Let wy = (U*,U*),. Under Assumptions I, for any k € KC such that Nj > 1,

EplwolSx] = (Np —1) (175’“5()())2 :
Vary, [wr|Sk] = Q(N]I;fik_l) (EkU,Q)? N 4(Ny, — JI%EN/; -2) (Eké(X))2 E U
2(Ny — 1)(2Ny, — 3) 4
ATk N k (Eka(X)) .
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Moreover, the wy’s are uncorrelated given Sk .

Proof of Lemma 2: Conditionally upon Sk, the X;’s are independent and identically distributed within
each cell. The expression of the conditional expectation then follows from E*U* = IE*§(X). The other

claims are easily checked. O

Lemma 3 Under Assumptions D and I, if nh? — oo, then for n large enough,

E[(N, — V)I(N, >1)] > 2P(X € L) Vkek,
Var[(Ny — 1) (N > 1)] < 2nIP(X € Iy) Vk ek,
Cov [(Ny — 1) (N > 1), (N — 1) (N > 1)] < 2nlP(X € ,)IP(X € I)) Vk#k €K.

Proof of Lemma 3: Note that (N, — 1) I[(Ny, > 1) = N, — 1+ 1I(N;, = 0). As II[(N}, = 1) is a Bernoulli

random variable, then by Assumptions D and I, for n large enough,

E[(N, - )Ny >1)] = nlP(X€l)—14+(1—P(X € I,))" > —IP(X € I),

Var (N — 1) (N > 1)] < nlP(X € I})[1 — IP(X € I})] + 1/4 — 2IE(N;,) IP(N}, = 0) < 2nIP(X € I}) .

|3

The covariance equals
Cov(Ny, Nir) 4+ Cov (U[(Ny = 0), I( Ny = 0)) + Cov (Ng, (N = 0)) + Cov (N, (N = 0)) .
The first item is —IE(Ng)IE(Ny/) and the second item is
(1I-PXely) —-PXelpy)"-(1-PX el))"(1-P(X e€I))" .
They are both negative. Moreover,

COV(Nk, H(Nkr = 0)) = n(l - .ZP(X € Ikr))n_l P(X € Ik)P(X S Ikr) < nP(X S Ik)P(X € Ikr) O

Lemma 4 Under Assumption I, if ﬁw — 00,

Ny
EN,

)/ (min I(Ny > 1) = 1) -1 and max
keX kek

—1‘ =op(1).
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t2

Proof of Lemma 4: As N;, is a binomial random variable, the Bernstein inequality yields
tIEN},
> -
- 2(1+1t/3)

N, N, — [EN,,
P —1|>t| =P
[JENk ‘_] H Vvn Vn

for any ¢ > 0, see Shorack and Wellner (1986, p. 440). This yields

} < 2exp [— ENk} ,

P{mml[(]\fk>1—0] > PN, =0] < ZP[ ‘ ]<2erxp{——f—} 0,

ke keK

as [ENk > fn/KP under Assumption D, and

Ny, N;, — IENy, tIEN;, 2 n
P 11>t < P > < 2KP ———f—| >0
(%’é EN; ‘— >_K§< = /m | S P T e/3) K )
foranyt>0,if#gm,—>oo. a

Appendix B: Proof of Proposition 7

Step 1. Let s' = [s 4+ 1], assume that K = K, is larger than s', and define
k(0)=0, s(1)=5", ..., k([K/s']—1)=([K/s'] —1)s", s([K/s]) =
where [.] is the integer part. This gives, with ¢ = ¢, = [K/s'],
s <k(r+1)—k(r)<2s,r=0,...,0—1. (B.1)
Let Q be the set of vectors whose generic element is ¢ with p components in {«(0),...,k(£ — 1)}, i.e.

q:(n(rlﬁq),...,n(rp,q))T,rj7q:0,...,€—1,j:1,...,p

Consider the following subsets of [0, 1]?, which define a partition up a to negligible set:

Ag(h) = Ay = [][k(rj )b w(rjg + DR) g € Q. (B.2)

j=1
Let P, 4(.) be the Taylor expansion of order [s] of m(-) around gh. Because m(.) is in Cp(L,s) and by
definition of A, we get by (B.1) that |m(z) — P, 4(z)| < Cs,ph® for any z in A, for some constant Cs .
If P, (.) is such that Pp,(.) = Pp4(.) on A,, we have

Im—Pnll3 <E|Y C: B I(X €A,)| =C; b
qeQ
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Assume that we have been able to establish that, for some constant Cj ¢,
||Pr0jKPm||2 Z Cs,f||Pm||2 - (B3)

Because Proji is contractant, this would give the desired result, as

\Y

[IProjxml|2 IProjx Prnll2 — [[Projic(m — Pa)ll2 2 [[Proji Prllz = [lm — Pall2

Y%

Co s l(Prn = m) + mllz — Cs 1 h* > Cy gllmll2 — (L + Cs,4)Cs, L h*
Inequality (B.3) will follow by summation over ¢ € Q of inequalities of the type

E [(Projc P(X))® (X € Aq)] > 02 B [P*(X) (X € A,)] , (B.4)
for any polynomial functions P(.) of degree [s].
Step 2. Let us now give a matrix expression of (B.4). For any 8 = (84,...,8p) € IN’ with Z?Zl B < sl

let (%) = -

a= (0,3, Z§:1 B < [s]) (with a suitable ordering for the index 8 in IN?) such that

Plz) = Z 0 <:n —hqh>(6) .

B,y B;<[s]

1 :L“f 7. Every polynomial functions of degree [s] is completely determined by the coefficients

This gives, for z in A,

: 1 X —gh\?
Proj P(z) = Z Z ag X ¢ Ik)E - I(X € Iy)
BeCha Y™ B;<[s]

Let vy = Card {I; C Ay}, vo = Card{zgzl B < [s]} and By(h) be the v1 x v» matrix with typical
element indexed by k& and 3

P(XGIk)E[< h ) H(XEI’“)]’I’“CAW;@S[S]-

Let II,(h) = Diag(IP(X € Ij), I, C A,). Because the density f(-) is bounded from below and the II,(h)’s

are diagonal, we have (for the standard ordering for positive symmetric matrices)
II,(h) >> fA*Id .
Hence the L.h.s. of (B.4) writes

E [(Proj,CP(X))Q (X € Ay)| =a" B, (W), (h)By(h)a > fh*a’ B, (h)By(h)a .

27



Let D,(h) be the square v, matrix with typical element, indexed by § and ',

(B+8") P
X —
( qh) (X € A,)

C 2B <l B <l

Jj=1

1
P(X € Ay)

h

Since the density f(.) is bounded from above, we have for the r.h.s. of (B.4)
E[P*(X)I(X € Ay)] < P(X € Ay)a" Dy(h)a < F(2s'h)Pa” Dy(h)a ,
using (B.1). Therefore, (B.4) holds as soon as, for any a, ¢, and h small enough,
a'Dy(h)a < Cy ¢ aTB;—(h)Bq(h)a . (B.5)
Step 3. We can limit ourselves to establish (B.5) for vectors a with norm 1 by homogeneity. This step
works by showing that the matrices D4(h) and B,(h) converge (uniformly with respect to ¢) to some

matrices D, and By, B, being of full rank for any g. Moreover the number of matrices B, and D, ¢ € Q,

will be finite. If the B,’s are of full rank, a possible choice of Cs ; in (B.5) is
Cs.; = maxsup{a' Dya : aTB;—Bqa <1}+1.
q€eQ

Let us now determine the limits B,. The entries of B,(h) are

1 X —qh\ @
]P(XeIk)zE[( - ) (X € Iy)

1
N k- ) #(kh + hu) d
f[o,l]p f(kh + hu) du /[071]1,( q +u)"” f(kh + hu) du

_ m /{071]17(16 — g+ u) D (F(kh) + o(1)) du — e W) du
uniformly in k, g, since f(.) is bounded away from 0 and uniformly continuous on [0, 1]? by Assumption D.
We now check that the number of limits By, ¢ in Q is finite. The definitions (4.3) and (B.2) require that
I = kh+h[0,1)? C A, = q+h[0, 1)P, which implies that k = (ky,...,k,) " and ¢ = (k(r1,4),..-,6(rpg)) "
are such that x(r;,) < k;j < k(rjq + 1), independently of h . Therefore,

0<kj—k(rjq) <tk(rj,+1)—r(rj,) <2s,j=1,...,p. (B.6)

As Z§:1 B; < [s], the number of B,, ¢ in Q, is bounded by (2s')*]" independently of K. It can be
similarly shown that the D, (h)’s converge, uniformly in ¢, to some matrices D, with entries
w8 qu,

/Hle[o,n<rj.q+1>—»a<m,q>>
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which are also in finite number by (B.1) and (B.6).
To finish the proof, we need to check that all the B,’s are of full rank. To this purpose assume that there
exists ¢ in Q and a = (ag , 2?21 B; < [s]) with Bya =0, i.e. for all k such that I C A,

Z ag/ k—q+uwPdu = / Z asgu® du=0.
[0,1]7 k

— 0,1
8,50, i<l S ANt

This implies that P(z) = 5 agz!®) of degree [s] is such that,
/ Pudu=0,0<m<s,j=1,...,p, (B.7)
m+[0,1]P

with m = (my,...m,) " satisfying the conditions in (B.1) and (B.6). We now use an induction argument.
Let P(p) be the proposition: if P(z) of degree [s], = in [0, 1], is such that (B.7) holds, then P(.) = 0.
Note that P(1) holds, because (B.7) and the mean value theorem gives that P(z(7)) = 0 for some ()
in|m,7+1[, #=0,...,s". Then the univariate polynomial function P(.) of degree [s] should have at least
[s] + 1 distinct roots, which is possible only if P(.) = 0. We now show that P(p—1) implies P(p). Assume
that P(x) of degree [s] with @ = (z1,...,2,)" in [0, 1]? is such that (B.7) holds. Define

= (22,...,2,)" €[0,1P7", P,_, (1) = P(z1,2_1) = P(z) .

Then (B.7) yields for any m; in IN with 0 < m < ¢,

m1+1
/ (/ P(ul,u1)du1>du1:0,0§7rj<s',j:2,...,p.
u,1€71',1+[0,1]P_1 m

As a consequence, P(p — 1) gives for any x_1 in [0,1]P 71,

m1+1 m1+1
/ P(uy,z_1)du; = / P, _(u)du; =0,0<m <s'.

1 1

Then P(1) shows that P,_,(.) =0 for any x_; in [0, 1]P~!, which implies P(p). m]

Appendix C

Proposition 9 Assume p = 1 and M = {0}. Let the c.d.f. of the design be 1 —x~7, x > 1, v > 0. If
2s > v, there exists a sequence {my(.)}n>1 of functions in C1 (L, s) with EY*m2(X) > p, such that, for

any a-level test t,,, liminf,, o Py, (t, =1) > 1—a.
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Proof: Assume s is integer. Consider the I'(s + 2) distribution c.d.f
I(x > v
@2 0)/ "t exp(—t)dt,
0

1@ =

which admits s bounded continuous derivatives over IR. Let m,, (z) = C(z—zy)*I(z—=,), where z,, = n>/7

and C is a constant. Note that m, (z) vanishes if z < z,,. The binomial formula for derivatives yields

s 2
() (o _ k) (o (s) ok
m, (z) = CkaI (x xn)i(sk)!(k!y (z —zp)" .
Since the functions (z — z,)*I1®) (z — z,), k = 0,...,s, are bounded, m(.) is in C;(L,s) for C' small
enough. Moreover,
+oo
BEm?(X) = 027/ I*(x — ) (x — )27 Vx|

and Em?2(X) = +oo if 2s — v > 0, because m2(x)x~"~! is equivalent to z2*=7~! when z grows. If

sup X; < z,,, we have m,,(X;) =0,i=1,...,n, so that Y; = oe;, i = 1,...,n. Hence,

P, (n=0, sup X; <zp)=Po(r, =0, sup X; <z,).
1<i<n 1<i<n

This leads to

P, (thn=1) > Ppn, (mm=1, sup X;<xz,)=Py(r,=1, sup X; <)
1<i<n 1<i<n
> Po(rn=1)—Py(sup X;>a,)>1—-a—-nP(X >z,)=1-—a—-nn"2.0
1<i<n
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