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Abstract

In the context of testing the speci�cation of a nonlinear parametric regression function,

we study the power of speci�cation tests using the minimax approach. We determine the

maximum rate at which a set of smooth local alternatives can approach the parametric

model while ensuring consistency of a test uniformly against any alternative in this set.

We show that a smooth nonparametric testing procedure has optimal minimax asymptotic

properties for regular alternatives. As a by-product, we obtain the rate of the smoothing

parameter that ensures optimality of the test. By contrast, many non-smooth tests, such as

Bierens' (1982) integrated conditional moment test, have suboptimal minimax properties.
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1 Introduction

Speci�cation analysis is a central topic in econometrics. In recent years, a substantial amount of

work has focused on the search of speci�cation tests that are consistent against a large spectrum

of nonparametric alternatives. Bierens (1982) inaugurates this line of research by proposing an in-

tegrated conditional moment (ICM) test for checking the speci�cation of a parametric regression

model. His method relies on the empirical process of the residuals from the parametric model and

has been further developped by Andrews (1997), Bierens (1990), Bierens and Ploberger (1997),

Delgado (1993) and Stute (1997) among others. A competing approach compares parametric

and smooth nonparametric regression estimators, see Fan and Li (1996a), H�ardle and Mammen

(1993), Hong and White (1995), Li and Wang (1998) and Zheng (1996) to mention just a few.

Thus there now exists a large range of consistent speci�cation tests for regression models, see

Hart (1997) for an overview.

A focus of the literature concerns the power performances of the procedures derived from

either approach. This has been mainly investigated by studying the tests' behavior under par-

ticular local alternatives, either theoretically or by means of Monte-Carlo experiments, see Hart

(1997). A familiar approach consists in considering alternatives of the form

E (Y jX) = �(X; �0) + �nÆ(X); (1.1)

where �(X; �0) is a member of the parametric model, Æ(�) is a speci�ed function and �n goes to

zero as n tends to in�nity. Non-smooth tests, as the ICM test, generally have nontrivial power

against local alternatives of the form (1.1) when �n / n�1=2. This is not true for smooth non-

parametric tests. However, it is possible to construct sequences of smooth alternatives di�erent

from (1.1), whose distance from the parametric model decreases more slowly than n�1=2 and

against which smooth tests are consistent, but against which the ICM test, among others, has

trivial power, see e.g. Fan and Li (1996b). As we will show, no test can be uniformly consistent

over a reasonable smoothness class of alternatives whose distance from the null hypothesis tends

to zero as n�1=2. Thus, there is a sense in which the set of alternatives (1.1) is too restrictive.

The main goal of this paper is to investigate the power properties of speci�cation tests
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against local alternatives that belong to a speci�ed smoothness class of functions. We adopt

a minimax approach to determine the minimax critical rate of a test, that is, the maximum

rate at which the alternatives can approach the null hypothesis and for which we can ensure

a minimum predetermined power uniformly against the considered set of local alternatives.

We prove that a large class of non-smooth tests, such as the ICM test, have high minimax

critical rates. By contrast, a smooth test is shown to be rate-optimal, that is, it attains the

lowest possible minimax critical rate for a speci�cation test. As a by-product, we obtain the

rate of the smoothing parameter that ensures rate-optimality of the test. By giving theoretical

foundations for an optimal choice of the smoothing parameter, our analysis constitutes a �rst

step towards a better understanding of its e�ects and the construction of practical procedures

for its determination.

Horowitz and Spokoiny (1999) have recently proposed an adaptive test based on kernel

estimation that automatically determine the smoothing parameter. They show that their test

is rate-optimal, taking as given the minimax testing rate. By contrast, we focus here on the

minimax rates for speci�cation testing. Our results demonstrate for the �rst time the optimal

minimax testing rates for the multiple regression model with heteroscedastic errors.

Our paper is organized as follows. In Section 2, we describe our framework and assump-

tions. In Section 3, we establish minimax rates for speci�cation testing in regression models and

we provide a testing procedure that is rate-optimal for regular alternatives. We then discuss

implications of our results and we relate them to previous ones on minimax hypothesis testing.

We also study the minimax properties of a class of non-smooth tests. Proofs of the main results

are relegated to Section 4. Three appendices gather some auxiliary results.

2 Framework and assumptions

Let (X;Y ) be a random variable in IRp � IR. We consider a parametric family M of regression

functions M = f�(:; �) ; � 2 �g ;� � IRd. The null hypothesis of interest is

H0 : m(:) � IE[Y jX = :] 2M :
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Alternative hypotheses are characterized through the distance � of the regression function to

the parametric model M and are denoted H1(�). Consider a test tn depending on the sample

size n with values in f0; 1g, where tn = 1 corresponds to the rejection of H0, and whose level

is �(tn) = supH0
IP0 (tn = 1). In the minimax approach, the properties of the test are further

characterized by its maximum type-II error over the considered alternatives, that is

�(tn; �) = sup
H1(�)

IPm(tn = 0):

In asymptotic settings, the approach should be adapted to deal with sequences of nested alter-

natives that get closer to the null as the sample size increases, that is, with �n ! 0. Because we

are evaluating the power properties of tn through �(tn; �n), we should focus on alternatives that

maximizes the type-II error over H1(�n). The speci�c alternatives that determine the minimax

properties of a test are then among the \least favorable alternatives" and should lie at a distance

�n from the parametric speci�cation. Evaluating the power performances of a test in this way

comes to a prudent strategy where the practitioner wants to guard against the worst possible

alternatives. This is of interest when the econometrician has not enough information about the

possible misspeci�cations to consider speci�c alternatives such as (1.1).

Our subsequent analysis focuses on the rate of decay to zero of �n and the corresponding

properties of a test. For any consistent �-level test, there should exist a critical rate such that

the test can discriminate local alternatives from the null hypothesis in the minimax sense if and

only if �n does not go to zero faster than this critical rate. This rate can in turn be optimized

among all tests of given level and the resulting rate will be called the minimax rate of the

testing problem. In Section 3, we derive a testing procedure as well as its critical rate. We then

show that this test is rate-optimal, i.e. that it detects any alternative in H1(~�n) where ~�n is the

minimax testing rate.

In the absence of other constraint, any �-level test of H0 against H1(�) poorly behaves in the

minimax sense, even when � is constant. Indeed, in the minimax approach, tests are evaluated

uniformly over H1(�), which can contain very irregular functions that are not distinguishable

from noise. However, an econometrician who sets up a parametric regression model and wants to

test its speci�cation has usually in mind alternatives that are regular anyway. Hence, as done in
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another context by Ingster (1993), we impose some regularity constraints on the nonparametric

function of interest. For s 2 [0; 1), let Cp(L; s) be the set of measurable functions m(�) such that

jm(x)�m(y)j � Lkx� yks 8x; y :

For s � 1, let [s] be the greatest integer less than or equal to s, and let Cp(L; s) be the set

of functions m(�) di�erentiable up to order [s], whose all derivatives of order [s] belongs to

Cp(L; [s]� s).1 We then consider the set of alternative hypotheses

H1(�) : inf
�2�

IE (�(X; �)�m(X))2 � �2 ; m(:) 2 Cp(L; s) ;

de�ned through the L2-norm.

Our approach will involve the notion of \pseudo-true value" for the parameter �, see White

(1982) and Gourieroux, Monfort and Trognon (1984). We now describe some assumptions related

to this pseudo-true value and the way it can be estimated.

Assumption M1 For each m(�) in Cp(L; s), there exists a unique �� = ��m such that

IE (�(X; ��)�m(X))2 = inf
�2�

IE (�(X; �)�m(X))2 :

For any sequence fmn(:); n = 1; : : :g such that 9 � in the interior of � with limn!+1 IE(mn(X)�
�(X; �))2 = 0, ��mn

converges to �.

Assumption M2 i. For each � 2 �, �(�; �) 2 Cp(LM; s), LM � L, and IE�4(X; �) <1.

ii. For each x in [0; 1]p, �(x; :) is twice continuously di�erentiable with respect to �, with

�rst and second order derivatives ��(�; �) and ���(�; �) uniformly bounded in x 2 [0; 1]p and

� 2 �.

iii. The matrix IE

�
@�(X; �)

@�

@�(X; �)

@�>

�
is invertible for all � 2 �.

iv. The set of gradient functions

�
@�(:; �)

@�
; � 2 �

�
is compact in C0, the set of continuous

functions from [0; 1]p to IRd equipped with the uniform norm.

1The Lipschitz condition could be replaced by an H�older-type condition.
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Assumption M3
p
n(b�n � ��m) = OIPm(1) uniformly with respect to m(�) 2 Cp(L; s), i.e.

8� > 0;9� > 0 : lim sup
n!+1

sup
m(�)2Cp(L;s)

IPm

�p
nkb�n � ��mk > �

�
� � :

When the parametric model is correctly speci�ed, Assumption M1 is an identi�cation condition

because ��m is then the true value of the parameter. Under misspeci�cation, M1 de�nes the

pseudo-true value of � as the limit of the nonlinear least-squares estimator. Regularity conditions

on the parametric model M are provided in Assumption M2. Similar assumptions are used by

White (1982) to establish the
p
n-consistency of the nonlinear least-squares estimator of ��m.

2

Assumption M2-i basically says that alternatives of interest belong to a larger smoothness class

than the null parametric model.3 In particular, they include alternatives of the type

�(:; �) + Æ(:) ; � 2 � ; with Æ(:) 2 Cp(L� LM; s) and IEÆ2(X) � �2 :

By Assumption M3, we allow for estimators di�erent from nonlinear least-squares. These estima-

tors have to be uniformly consistent with respect to the functions considered in the alternatives.

Such a result is not usually shown in the literature. However, uniformity is essential for de-

veloping our minimax approach. Birg�e and Massart (1993) have shown that Assumption M3

usually holds for nonlinear least-squares estimators. Consider for instance the simple univariate

regression model where �(X; �) = �X with � in [�; �]. The pseudo-true value is then de�ned

as ��m = IE [Xm(X)] =IE(X2). Assumptions M1 and M2 both reduce to standard assumptions.

Moreover, the OLS estimator is such that

b�n � �� =

"
(1=n)

nX
i=1

X2
i

#
�1

(1=n)
nX
i=1

(m(Xi)� ��Xi + "i)Xi :

Hence, Assumption M3 holds for b�n when IEX4 and IEY 4 are �nite, as the empirical mean of

the numerator is centered, with a variance of order O(1=n) uniformly in m(�).
As noted by Stone (1982), the minimax estimation rate of a nonparametric regression not

only depends on its smoothness, but also upon the behavior of the density f(:) of X. Hall and alii

2The main di�erence stands in the compactness of the set of �rst derivatives.
3This assumption does not preventM to be a subset of a smoothness class with index sM > s.
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(1997) show that optimal local polynomial estimates are unable to achieve the usual minimax

rate when the density decreases too rapidly to zero at the boundaries of its support. Similar

phenomena can appear in our testing framework. For instance, if the density of the regressors has

unbounded support, it can be possible to �nd some sequences of functions m(�) in H1(�), with

�xed �, against which any test has trivial power, see Appendix C for an illustration. Therefore,

to avoid technicalities, we limit ourselves to explanatory variables X with bounded support.4

Assumption D The density f(:) of X has support [0; 1]p, with 0 < f � f(x) � F < +1 for

any x in [0; 1]p, and is continuous on [0; 1]p.

3 Minimax rates for speci�cation testing

3.1 Lower bounds for minimax testing rates

The following theorem states that if �n = o(~�n), where ~�n = n
�

2s

p+4s if s � p=4 and ~�n = n�
1

4

if s < p=4, any �-level test tn of H0 against alternatives of type H1(�n) is comparable, in the

minimax sense, to the test which chooses among the two hypothesis randomly with IP(tn = 0) =

1� �. This is an impossibility result, which gives ~�n as a lower bound for the minimax testing

rate. It formalizes the idea that alternatives of the type (1.1) can be too restrictive to study the

local behavior of speci�cation tests.

Assumption I f(Xi; Yi); i = 1; : : : ; ng is an i.i.d. sample on (X;Y ) from IRp � IR, IEY 4 <1.

For " = Y �m(Y jX), IEm"
2 > 0 and IEm

�
"4jX = x

�
<1; 8x 2 [0; 1]p.

Theorem 1 Let ~�n = n
�

2s

p+4s if s � p=4 and ~�n = n�
1

4 if s < p=4. Under Assumptions D, I,

M1{M3, if each "i is N (0; 1) conditionally upon Xi, for any test tn of asymptotic level �,

�(tn; �n) � 1� �+ o(1) whenever �n = o(~�n):

4As pointed out by Bierens and Ploberger (1997), we can without loss of generality replace X by � (X), where

� (�) is bounded one-to-one smooth mapping.
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The assumption of standard normal residuals, which is central to derive Theorem 1, can be

relaxed as soon as regular distributions are considered. A common condition is to assume that

the translation model associated with the residuals "i's is locally asymptotically normal (LAN),

that is, the density f"(�) of these variables ful�ls
nX
i=1

�
log f"

�
"i +

up
n

�
� log f"("i)

�
= uSn � u2I=2 + oIP(1) ;

where I > 0 is a constant, and Sn converge in distribution to N (0; I), see Ibragimov and

Has'minskii (1981) for details. Under such a condition, Theorem 1 carries over at the price of

some technicalities. Note that the LAN condition allows for the presence of heteroscedasticity.

However, the minimax rate can change if the LAN condition does not hold. For instance, the

lower bound of the minimax testing rate is likely to be improved if the residuals' distribution

is not regular. Nevertheless, when the distribution of the residuals is unknwon, as is the case in

the next section, it is clear that the lower bound of Theorem 1 is still valid.

3.2 Minimax testing rates and a rate-optimal test for regular alternatives

To determine minimax testing rates, we now build a speci�c speci�cation test. A popular method

in econometrics follows the Lagrange multiplier approach, see Godfrey (1988). This comes to

estimate the model under the null hypothesis in the �rst place and to use this estimate as a basis

for a test statistic in a second step. Here we �rst estimate � and use the estimated parametric

residuals bUi = Yi � �(Xi; b�n) to test H0. To this purpose, we introduce a simple approximating

family of functions, on which the parametric residuals will be projected. Let us de�ne

Ik =

pY
j=1

[kjh; (kj + 1)h) ;

where the multivariate index k = (k1; : : : ; kp)
> 2 K � INp satis�es 0 � kj � K � 1 for j =

0; : : : ; p, K = Kn being an integer number and h = 1=K the associated binwidth. The bins Ik's

de�ne a partition of [0; 1]p, up to a negligible set. Let Nk =
nX
i=1

1I(Xi 2 Ik) be the number of
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observations of the exogenous variables in bin Ik. Consider

bTn = 1p
2Kp=2

X
k2K

1I [Nk > 1]

Nk

X
fXi;Xjg2Ik;i6=j

bUi bUj
and

v2n = (1=Kp)
X
k2K

1I(Nk > 1)

N2
k

X
fXi;Xjg2Ik;i 6=j

bU2
i
bU2
j :

The test is de�ned as ~tn = 1I
�
v�1n

bTn > z�

�
, where vn is the positive square-root of v2n and z� is

the quantile of order (1� �) of the standard normal distribution.

Our test statistic is a simple histogram version of the kernel-based test of Zheng (1996). It

can also be viewed as a modi�cation of the familiar Pearson Chi-square statistic for goodness-

of-�t for densities. Equivalently, it can be derived from Neyman (1937), since the considered

indicator functions is an orthogonal system (with respect to any distribution for the Xi's).

An advantage of this approach is to treat design density and conditional heteroskedasticity as

nuisance parameters and then to avoid strong regularity assumptions on these functions.

Theorem 2 Under Assumptions D, I and M1{M3,

i. �(~tn) = supH0
IPm

�
v�1n

bTn > z�

�
! �, whenever K !1 and n

Kp logKp !1 ;

ii. Assume s > p=4, let ~�n = n
�

2s

p+4s and K = [~�
�1=s
n =�], � > 0. Then, for any prescribed

bound � in (0; 1 � �) for the type-II error, there exists a constant � > 0 such that

�(~tn; �~�n) = sup
H1(�~�n)

IPm

�
v�1n

bTn � z�

�
� � + o(1) :

As a consequence of Theorem 2, the test ~tn is an asymptotic �-level test of H0, and has as-

ymptotically a nontrivial minimax power against H1(�~�n), for regular alternatives and � large

enough. This shows that our test can asymptotically distinguish any local alternative in this

set, since � can be taken as small as desired. The quantity ~�n is thus an upper bound for the

critical rate of our test.5 Given Theorems 1 and 2, we obtain �rst that the lower bound ~�n on

5This does not mean that our test has trivial power against any alternative in H1 (�n) with �n = o(~�n), though

it has trivial power against alternatives (1.1) with �n / n
�1=2.
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the minimax testing rate can be attained even when the residuals' distribution is unknown, and

second that the test we have proposed is rate-optimal for regular alternatives.

Corollary 3 Under Assumptions D, I and M1{M3 and if s > p=4, ~�n = n
�

2s

p+4s is the minimax

testing rate and ~tn is rate-optimal when K is chosen as in Theorem 2-ii.

Our results give theoretical grounds for the choice of the binwidth in a speci�cation testing

framework. The testing optimal binwidth, ensuring that the test will be rate-optimal in the case

of regular alternatives, i.e. for s > p=4, is

~h / n
�

2

p+4s :

For the same p and s, the optimal binwidth rate for testing the speci�cation of a nonlinear para-

metric regression model is smaller than the optimal binwidth rate for minimax nonparametric

estimation of the regression in the L2-norm, which is n�1=(p+2s). Basically, choosing an optimal

testing binwidth leads to balance a variance and a squared bias term, similar to the ones found

in semiparametric estimation of IEm2(X). This implies some undersmoothing relative to opti-

mal estimation of the regression function itself, as is the case in other semiparametric estimation

problems, see e.g. H�ardle and Tsybakov (1993), Powell and Stoker (1996). However, determining

the optimal smoothing parameter for semiparametric estimation or testing are di�erent problems

in general.6

3.3 The case of irregular alternatives

The minimax testing rate generally depends on the relative standing of the smoothness indice s

and the dimensionality of the model p. For irregular alternatives, i.e. s � p=4, the lower bound

of Theorem 1 equals n�1=4, and depends neither on the smoothness index nor on the dimension

of the model. This rate corresponds to a baseline minimax testing rate when the residuals'

6In the white-noise model and alternatives de�ned through Lq norms, Lepski, Nemirovski and Spokoiny (1996)

have shown that the minimax testing rate and the minimax estimation rate for the Lq norm coincide when q is

even only.
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unconditional variance �2 is known. Because the statistic

(1=n)
nX
i=1

bU2
i � �2 (3.2)

estimates E [Y � �(X; ��)]2� �2 = E [�(X; ��)�m(X)]2 with rate of convergence equal to
p
n,

a test that relies on this statistic detects any alternative in H1(�n) with �n = n�1=4.

When �2 is unknown and the regression function is regular enough, �2 can be eÆciently

estimated with a
p
n-rate of convergence for regular alternatives, see e.g. Lavergne and Vuong

(1996) and Newey (1994). The modi�ed test statistic (3.2) where �2 is replaced by its eÆcient

estimator then has a
p
n-degenerate behavior and our test statistic takes advantage of this

degeneracy.7 Unfortunately, this is not possible for irregular alternatives. Indeed, the average

number of observations Xi's in each bin is of magnitude O(nhp) = O(n(4s�p)=(4s+p)), since

the density is bounded away from 0 and in�nity. Thus, for s < p=4, the average number of

observations in each bin would go to 0 and this leads to a test statistic equal to zero with

probability converging to 1.8 Hence minimax rates for speci�cation testing in regression models

remain to be determined for irregular alternatives. It is likely that we would confront a problem

where it is diÆcult to distinguish between signal and noise, so that the minimax testing rate

depends on s. A related result in a di�erent context can be found in Baraud, Huet and Laurent

(1999).

3.4 Relations to other minimax testing rates

The main contribution of our work concerns the minimax rates for speci�cation testing in re-

gression models with multivariate random explanatory variables. It is interesting to compare

our �ndings with those obtained in the continuous-time gaussian white noise model

dYn(x) = m(x)dx+
�p
n
dW (x) ; x 2 [0; 1] ;

7In the case of testing for a pure noise model, the speci�cation test recently proposed by Dette and Munk

(1998) is also based on (3.2), with �2 replaced by a ineÆcient di�erence-based estimator.
8Under the assumption that m(�) is bounded, our test can be applied when s = p=4 and it is rate-optimal, see

Guerre and Lavergne (1999).
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where W (:) is a standard Brownian motion and the observations are fYn(x); x 2 [0; 1]g. Ingster
(1993) has shown that the minimax testing rate of the null hypothesis m(�) � 0 is n�

2s

1+4s .

Moreover, Brown and Low (1996) have established some equivalence results for statistical in-

ference between this model and the univariate regression model with homoscedastic Gaussian

errors. This suggests that previous results on testing the white noise model may be extended

to regression models. But this is not generally the case. First, such asymptotic equivalence has

its limits, as pointed out by Efromovich and Samarov (1996). To sum up, the available results

imply that equivalence holds for s > 1=2, that nonequivalence holds s < 1=4 and s = 1=2, see

Brown and Low (1998), while the other cases are undetermined. Second, at our knowledge, no

work deals with extension of these results to multivariate settings. Third, the white noise model

is not appropriate to deal with an unknown residual variance, because �2 is not a nuisance pa-

rameter in this model.9 These are the reasons why we do not use previous results on the white

noise model. Nevertheless, our work sheds some light on this issue. By explicitely dealing with

the multivariate case, our results show that there is no equivalence between the (multivariate)

white-noise model and the regression model with homoscedastic Gaussian errors when s < p=4.

3.5 Minimax critical rates of non-smooth tests

For smooth enough alternatives, i.e. when s > p=4, the minimax testing rate equals n
�

s

p+4s and

approaches n�1=2 from above when s grows to in�nity. This means that in the minimax sense,

it is impossible to detect alternatives that converges to the null at the \parametric rate" 1=
p
n,

even if the considered regression functions are in�nitely di�erentiable.10 This is the sense in

which local alternatives of the type (1.1) are too restrictive. The minimax approach provides an

alternative way of evaluating power properties of speci�cation tests, and it seems interesting to

study the minimax properties of non-smooth tests.

A well-known speci�cation test in econometrics is the ICM test proposed by Bierens (1982)

9Two di�erent values of �2 in the white noise model de�ne measures that have disjoint supports.
10For estimation of a perfectly smooth signal in the white noise model, the minimax rate is

p
n= log n, see e.g.

Guerre and Tsybakov (1998).
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and further developped by Bierens and Ploberger (1997). The ICM test statistic is

In =

Z
z2(�) d�(�);

where �(�) is a measure on a compact set �, z(�) = (1=
p
n)
P

n

i=1
bUiw(Xi; �) with real-valued

w(Xi; �). Stinchcombe and White (1998) propose the more general statistic

In;q =

�Z
jz(�)jq d�(�)

�1=q
; q � 1 :

Let btn;q be the test btn;q = 1I (In;q > u�;q) ; with limn!1 �(btn;q) = �.

Theorem 4 Let w(�; �) be bounded and such that w(�; �) 2 Cp(1);8� 2 �. Under Assumptions

I, D, M1{M3, if each "i is N (0; 1) conditionally upon Xi and f(�) 2 Cp(1), then 8 1 � q <1,

�(btn;q; �n) = sup
H1(�n)

IPm (In;q � u�;q) = 1� �+ o(1); whenever �n = 0(n�a); 8a > 0:

The assumptions on w(�; �) are justi�ed by usual choices, such as exp(X 0�) by Bierens (1990)

or (1+ exp(�X 0�))�1 by White (1989). Furthermore, Stinchcombe and White (1998) show that

considering w(X; �) = G(X 0�) with an analytic G(�) ensures desirable properties for the asso-

ciated tests. Our result shows that such non-smooth tests are not rate-optimal in the minimax

sense. It then follows that these tests cannot be asymptotically admissible against any alterna-

tive. This contrasts to the result obtained by Bierens and Ploberger (1997), who show that the

ICM test is asymptotically admissible against speci�c alternatives of type (1.1). Moreover, the

minimax properties of non-smooth tests are unsatisfactory, as their asymptotic minimax power

is trivial against any sequence of alternatives H1(�n) with �n going to zero as a power of n.
11 We

conjecture that similar results can be derived for other classes of tests, because empirical process

based tests are basically identical to nonparametric smooth tests, with the major di�erence that

the smoothing parameter is held �xed, see e.g. Eubank and Hart (1993) or Fan and Li (1996b).

11Without the assumption of an analytic f(�), our proof shows that a lower bound for the critical rate of such

tests is n
�

s

p+2s , which is greater than the minimax testing rate.
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3.6 Directions for future research

It is likely that our results extend to the problem of testing econometric model de�ned by multi-

ple moment conditions, as considered by Delgado, Dominguez and Lavergne (1998). Our testing

methodology can also be easily adapted to deal with speci�c alternatives that are of interest

for practitionners. Indeed, one could add some parametric components to the approximating

family used to build our test statistic, such as polynomial ones. This would improve the power

properties of the test against such speci�c local alternatives, without a�ecting its general mini-

max properties. A central direction for our future work is to develop data-driven techniques for

choosing the smoothing parameter. Useful suggestions can be found in Hart's (1997) monograph

and the references therein. This issue is addressed by Spokoiny (1996) for the white noise model

and Horowitz and Spokoiny (1999) in the �xed-design regression model.

4 Proofs

4.1 Proof of Theorem 1

Some small alternatives

Let ' be any in�nitely di�erentiable function from [0; l]p to IR such thatZ
'(x)dx = 0 and

Z
'
4(x)dx <1 :

Assume that l is large enough so that ' is in Cp(L� LM; s). Let hn = (��n)
1=s, � > 0 and de�ne

Ikl =

pY
j=1

[lkjhn; l(kj + 1)hn) ;

for k 2 Kn(l), i.e. k 2 INp with 0 � kj � 1=(hnl) � 1. Then Ikl � [0; 1]p. Without loss of generality, we

assume that Kn(l) = 1=(hnl) is an integer. Let

'k(x) =
1

h
p=2
n

'

�
x� lkhn

hn

�
; k 2 Kn(l) :

The functions 'k(�)'s are orthogonal. Let (Bk; k 2 K) be any sequence with jBkj = 1 8k, and

mn(:) = �(:; �0) + Æn(:) ; Æn(:) = ��nh
p=2
n

X
k2Kn(l)

Bk'k(:) ; (4.1)

13



where �0 is any inner point of �.

Lemma 1 Under Assumptions D, M1, M2, mn(:) is in H1(�n) for � and n large enough.

Proof: i) mn(�) 2 Cp(L; s): For any � 2 INp with
Pp

j=1 �j = [s],����� @
[s]
Æn(x)

@y
�1

1 : : : @y
�p
p

� @
[s]
Æn(y)

@y
�1

1 : : : @y
�p
p

����� = ��n

������
X

k2Kn(l)

Bk

@
[s]
'k (x)

@x
�1

1 : : : @x
�p
p

� @
[s]
'k (y)

@y
�1

1 : : : @y
�p
p

������
=

��n

hs
n

����� @
[s]
' (x)

@x
�1

1 : : : @x
�p
p

� @
[s]
' (y)

@y
�1

1 : : : @y
�p
p

����� � (L� LM) kx� yk[s]�s ;

because 'k(�) is identically zero for all but one k 2 Kn(l) and '(�) 2 Cp(L� LM; s).

ii) mn(�) is distant from the null model: Let �n � �
�
mn

. Then

IE1=2 [mn(X)� �(X; �n)]
2 � IE1=2

Æ
2
n
(X)� IE1=2 [�(X; �0)� �(X; �n)]

2

�
�
f

Z
Æ
2
n(x)dx

�1=2

�O (k�n � �0k2) ; (4.2)

by Assumptions D and M2, which gives that the gradient @�(x; �)=@� is bounded. Now,Z
Æ
2
n(x)dx = (��n)

2
h
p

nK
p

n(l) = (��n)
2
l
�p

: (4.3)

As �n converges to �0, it is then an inner point of �. Therefore M1 yields, applying M2 and the Lebesgue

dominated convergence theorem, that

IE
@�(X; �n)

@�n
[�(X; �n)�mn(X)] = 0 :

This leads to

IE
@�(X; �n)

@�
[�(X; �n)� �(X; �0)] = IEÆn(X)

@�(X; �n)

@�
:

A simple Taylor expansion, which holds by M2, yields

�n � �0 =

�
IE
@�(X; �0)

@�

@�(X; �0)

@�>
+ o(1)

��1
IEÆn(X)

@�(X; �n)

@�
;

so that

k�n � �k2 = O

�



IEÆn(X)
@�(X; �n)

@�






2

�
: (4.4)
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Because M2 implies that the functions

�
@�(:; �)

@�
f(:) ; � 2 �

�
are equicontinuous, by Assumptions D and

M2 and the Azrela-Ascoli theorem, see Rudin (1991), and as '(�) has integral zero, we get

IEÆn(X)
@�(X; �n)

@�

= ��nh
p

n

X
k2Kn(l)

Bk

Z �
@�(lkhn + hnu; �n)

@�
f(lkhn + hnu)�

@�(lkhn; �n)

@�
f(lkhn)

�
'(u)du

= ��nh
p

nK
p

n(l)o(1) = ��nl
�p
o(1) :

Combining this equality with (4.2){(4.4) yields, for � and n large enough,

IE1=2 [mn(X)� �(X; �n)]
2 � ��nl

�p
�
f1=2lp=2 � o(1)

�
� �n :2

Main proof

We shall establish that for any test tn

sup
m(:)2H0(M)

IPm(tn = 1) + sup
m(:)2H1(M;�n)

IPm(tn = 0) � 1 + o(1) : (4.5)

Step 1: Choice of a Bayesian a priori measure. Let �0 be any inner point of � and denote �0 the associate

Dirac mass. Consider i.i.d.s Rademacher Bk's independent of the observations, i.e. IP(Bk = 1) = IP(Bk =

�1) = 1=2, and de�ne �1n as the a priori distribution de�ned on H1(M; �n) by (4.1). Lemma 1 shows

that the support of �1n is a subset of H1(�n) and �n = �0 +�1n is an a priori Bayesian measure over

H0 [H1(�n). This gives the lower bound

sup
m(:)2H0

IPm(tn = 1)+ sup
m(:)2H1(�n)

IPm(tn = 0) �
Z

IPm(tn = 1)d�0(m) +

Z
IPm(tn = 0)d�1n(m) : (4.6)

The r.h.s. of (4.6) is the Bayes error of the test tn which is greater than the error of the optimal Bayesian

test based on the likelihood ratio Zn that we now introduce. Denote by Y and X the set of observations

on Y and X respectively and let pm(Y ;X ) be the density corresponding to the regression function m(:).

De�ne the a priori densities associated with the two hypotheses as

p0(Y ;X ) =
Z

pm(Y ;X ) d�0(m) and p1n(Y ;X ) =
Z

pm(Y ;X ) d�1n(m) :

Let E0 be the expectation under p0. The likelihood ratio of the optimal Bayesian test is

Zn =
p1n(Y ;X )
p0(Y ;X )

=
p1n(YjX )
p0(YjX )

:
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The optimal Bayesian test rejects H0 if Zn � 1 and its Bayesian error, see Lehman (1986), is

1� 1

2

Z
jp0(Y ;X )� p1n(Y ;X )j dY dX = 1� 1

2
IEE0

�
jZn � 1j

��X � ;
Then (4.6) implies that

sup
m(:)2H0

IPm(tn = 1) + sup
m(:)2H1(�n)

IPm(tn = 0) � lim inf
n!+1

IE

�
1� 1

2
E0

�
jZn � 1j

��X ��+ o(1) ;

and (4.5) holds if we can show that the limit in the r.h.s. is 1. We �rst note that 1� 1

2
E0

�
jZn � 1j

��X �
is positive as a conditional Bayes testing error. Then the Fatou lemma implies that it is enough to

show that E0

�
jZn � 1j

��X � IP! 0, which is implied by E0

h
(Zn � 1)

2
��X i IP! 0. But E0

h
(Zn � 1)

2
��X i =

E0

�
Z
2
njX

�
� 1 as E0(ZnjX ) = 1. Hence, Inequality (4.5) holds if

E0

�
Z
2
njX

� IP! 1 : (4.7)

Step 2: Study of the likelihood ratio Zn. On the one hand, the variables "i0 = Yi ��(Xi; �0), i = 1; : : : ; n,

are standard normal variables under p0 and

p0(YjX ) = (2�)�n=2 exp

"
�

nX
i=1

"
2
i0=2

#
:

On the other hand, given the de�nition of �1n,

p1n(YjX ) = (2�)�n=2
Z (

exp

"
�1

2

nX
i=1

(Yi �mn(Xi))
2

#)
d�1n(m)

= (2�)�n=2
Z (

exp

 
�1

2

nX
i=1

"
2
i0=2�

1

2

nX
i=1

Æ
2
n(Xi) +

nX
i=1

"i0Æn(Xi)

!)
d�1n(m)

= p0(YjX )
Z (

exp

 
�1

2

nX
i=1

Æ
2
n(Xi) +

nX
i=1

"i0Æn(Xi)

!)
d�1n(m) :

The de�nition of the alternatives (4.1) gives

nX
i=1

"i0Æn(Xi) = ��nh
p=2
n

X
k2K(l)

nX
i=1

Bk"i0'k(Xi) and

nX
i=1

Æ
2
n
(Xi) = �

2
�
2
n
h
p

n

X
k2K(l)

nX
i=1

'
2
k
(Xi) ;

since B2
k
= 1 and 'k(:)'k0 (:) = 0 for k 6= k

0. This yields

Zn = exp

0@��
2
�
2
n
h
p
n

2

X
k2K(l)

nX
i=1

'
2
k
(Xi)

1A
�

Y
k2K(l)

1

2

"
exp

 
��nh

p=2
n

nX
i=1

"i0'k(Xi)

!
+ exp

 
���nhp=2n

nX
i=1

"i0'k(Xi)

!#
:

16



Therefore,

Z
2
n = exp

0@��2�2nhpn X
k2K(l)

nX
i=1

'
2
k(Xi)

1A
�

Y
k2K(l)

1

4

"
exp

 
2��nh

p=2
n

nX
i=1

"i0'k(Xi)

!
+ 2 + exp

 
�2��nhp=2n

nX
i=1

"i0'k(Xi)

!#
:

Conditionally on X , the variables
P

i
"i0'k(Xi); k 2 K(l), k 2 Kn(l), are independent centered Gaussian

with conditional variance given by
P

i
'
2
k
(Xi). Using IE expN (0; �2) = exp(�2=2), we get

E0

�
Z
2
n
jX
�

=
Y

k2K(l)

exp

0@��2�2
n
h
p

n

X
k2K(l)

nX
i=1

'
2
k
(Xi)

1A� 1

2

(
exp

 
2�2�2

n
h
p

n

nX
i=1

'
2
k
(Xi)

!
+ 1

)

=
Y

k2K(l)

cosh

 
�
2
�
2
nh

p

n

nX
i=1

'
2
k(Xi)

!
;

where cosh(x) is the hyperbolic cosine function. As cosh(x) � exp(x2) by a series expansion, this yields

1 � E0

�
Z
2
njX

�
� exp

24 X
k2K(l)

 
�
2
�
2
nh

p

n

nX
i=1

'
2
k(Xi)

!2
35

and (4.7) holds if X
k2K(l)

 
�
2
nh

p

n

X
i

'
2
k(Xi)

!2

IP! 0: (4.8)

Consider the expectation of this positive random variable. We have

IE

24 X
k2K(l)

 
�
2
n
h
p

n

nX
i=1

'
2
k
(Xi)

!2
35 = �

4
n
h
2p
n

X
k2K(l)

�
nIE['4

k
(X)] + n(n� 1)IE2['2

k
(X)]

	
:

Now the standard change of variables x = lhnk + hnu and Assumption D yields

IE
�
'
4
k
(X)

�
=

Z
h
�2p
n

'
4 [(x=hn)� lk] f(x) dx � Fh�p

n

Z
'
4(u) du = O(h�p

n
)

and

IE
�
'
2
k(X)

�
=

Z
h
�p
n '

2 [(x=hn)� lk] f(x) dx � F

Z
'
2(u) du = O(1):

As hn = O(1=Kn(l)) = O(�
1=s
n ),

IE

24X
k

 
�
2
n
h
p

n

X
i

'
2
k
(Xi)

!2
35 =

�
n�

4
n
+ n

2
�
4
n
h
p

n

�
O(1) =

h
n�

4
n
+ n

2
�
(p+4s)=s
n

i
O(1):

We then consider the two following cases:
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i. s > p=4: �n = o (~�n) =) n�
4
n = o

�
n
(p�4s)=(p+4s)

�
= o(1) and n

2
�
(p+4s)=s
n = o(1).

ii. s � p=4: �n = o (~�n) = o
�
n
�1=4

�
=) n�

4
n = o(1) and n

2
�
(p+4s)=s
n = o

�
n
(4s�p)=4s

�
= o(1).

Equation (4.8) follows and then (4.7). Step 1 shows that (4.5) holds and Theorem 1 is proved. 2

4.2 Proof of Theorem 2

For random variables Z and Z
0, de�ne IEk(Z) � IEm(ZjX 2 Ik), Var

k(Z) � Varm (ZjX 2 Ik),

hZ;Z 0i
k
� 1I [Nk > 1]

Nk

X
fXi;Xjg2Ik;i 6=j

ZiZ
0
j ; 8k 2 K; and hZ;Z 0i � 1p

2Kp=2

X
k2K

hZ;Z 0i
k
:

Let ProjKZ �
X
k

1I(x 2 Ik)IE
k
Z be the projection of Z onto the space of linear indicators 1I(x 2 Ik),

k 2 K. Key properties of this mapping are

IE [ProjKZ] =
X
k

IP (X 2 Ik) IE
k
Z = IEZ ; IE

�
Proj2KZ

�
� IEZ2

;

as ProjK is a projection mapping. We let U� = Y � �(X; ��), " = Y �m(X), Æ(X) = m(X)� �(X; ��),

e(X) = �(X; b�n) � �(X; ��) and SK = (Nk; k 2 K)>. For simplicity, we assume that K = ~�
�1=s
n =� is

integer. Finally, Ci, i = 1; : : :, denote positive constants that may vary from line to line.

Preliminary results

Proposition 5 Let v2(K) = (1=Kp)
P

k2K 1I(Nk > 1)Nk�1
Nk

�
IEkU�2

�2
. Under Assumptions I, D and

M1{M3, v2(K) is bounded from above and in probability from below uniformly in m(�) 2 Cp(L; s), and

v
2
n
� v

2(K) = oIPm

(1) whenever n

Kp logKp !1.

Proof of Proposition 5: By Assumption D, fhp � IP(X 2 Ik) � Fhp. Now, on the one hand,

v
2(K) � (1=Kp)

X
k2K

�
IEk

U
�2
�2
� (1=f)

X
k2K

IP[X 2 Ik]
�
IEk

U
�2
�2

= (1=f)IE
�
Proj2KU

�2
�

� (1=f)IE
�
U
�4
�
� (8=f)

�
IEmY

4 + IEm�
4(X; ��

m
)
�
<1 :

On the other hand, by Lemma 4, with probability going to one uniformly in k 2 K,

v
2(K) � (1=2Kp)

X
k2K

�
IEk

U
�2
�2
� (1=2F)

X
k2K

IP[X 2 Ik]
�
IEkU�2

�2
� (1=2F)IEm

�
Proj2KU

�2
�
� (1=2F)IE2

m

�
U
�2
�
� (1=2F)IE2

m

�
"
�2
�
> 0 :
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Let v�2n = (1=Kp)
P

k2K hU�2; U�2ik=Nk. Then

��v2n � v
�2
n

�� � (1=Kp)
X
k2K

1I(Nk > 1)

Nk

���hbU2
; bU2i

k
� hU�2; U�2i

k

��� : (4.9)

But hbU2
; bU2i

k
�hU�2; U�2i

k
= 4hU�2; U�e(X)i

k
+2hU�2; e2(X)i

k
+4hU�e(X); U�e(X)i

k
+4hU�e(X); e2(X)i

k

+he2(X); e2(X)i
k
. By Assumptions M1{M3 , je(Xi)j = OIPm

(1=
p
n) uniformly in m(�) and i. Hence the

dominant term in (4.9) is

(4=Kp)
X
k2K

1I(Nk > 1)

Nk

jhU�2; U�ei
k
j = OIPm

(1=
p
n)(1=Kp)

X
k2K

1I(Nk > 1)

Nk

hU�2; jU�ji
k
:

But, by Assumptions I and M1,

IEm

"
(1=Kp)

X
k2K

1I(Nk > 1)

Nk

hU�2; jU�ji
k
jSK

#

= (1=Kp)
X
k2K

1I(Nk > 1)(Nk � 1)

Nk

IEk
U
�2IEkjU�j

� (1=f)
X
k2K

IP [X 2 Ik ] IE
k
U
�2IEkjU�j = (1=f)IEm

�
Proj2KU

�2ProjKjU�j
�

� (1=f)IE1=2
m

�
U
�4
�
IE1=2
m

�
U
�2
�
<1

This shows that v2
n
� v

�2
n

= OIPm

(1=
p
n). Now v

�2
n
� v

2(K) is centered conditionally upon SK and, by

Lemma 4,

IEm

h�
v
�2
n
� v

2(K)
�2 jSKi = Varm

�
v
�2
n
� v

2(K)jSK
�
= (1=K2p)

X
k2K

1I(Nk > 1)

N4
k

X
i6=j

VarkU�2
i
U
�2
j

� (1=K2p)
X
k2K

1I(Nk > 1)
Nk � 1

N3
k

�
IEk

U
�4
�2

� OIP(nh
p)�2

X
k2K

�
IP(X 2 Ik)IE

k
U
�4
�2
� OIP(nh

p)�2IE2
m
U
�4 ! 0 :2

Let Tn � Tn(�
�), A = hÆ(X); e(X)i, B = h"; e(X)i and R = he(X); e(X)i. Then

bTn = Tn � 2 (A+B) +R : (4.10)

Proposition 6 Under Assumptions D, I, M1|M3, R and B are both OIPm
(hp=2) uniformly for m(�) in

Cp(L; s), and A = OIPm
(
p
nhpIE1=2

Æ
2(X)) uniformly for m(�) in Cp(L; s).
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Proof of Proposition 6: To simplify notations, we consider the case where d = 1. By Assumptions

M1{M3 , je(Xi)j = OIPm

(1=
p
n) uniformly in m(�) and i. Thus

jRj = OIPm

(nKp=2)�1
X
k2K

Nk = OIPm

(hp=2);

uniformly for m(�) in Cp(L; s). Under Assumptions M1 and M2, a standard Taylor expansion yields

e(Xi) =
�b�n � �

�
�0
�1(Xi) + kb�n � �

�k2�2(Xi) ; (4.11)

where �1(Xi) = ��(Xi; �
�) depends only on Xi and �2(Xi) depends on Xi and b�n . Therefore B =�b�n � �

�
�0
B1 + kb�n � �

�k2B2; where B1 = h"; �1(X)i and B2 = h"; �2(X)i. Now IE(B1) = 0 and

IE(B2
1) =

1

2Kp

X
k2K

IE

241I [Nk > 1]

N2
k

X
fXi;Xj ;X

0

j
g2Ik;i 6=j;i6=j0

"
2
i
�1(Xj)�1(Xj0 )

35
=

O(1)

2Kp

X
k2K

IE

�
1I [Nk > 1] (Nk � 1)2

Nk

�
= O(nhp);

using M2{i. Similarly,

IEjB2j � O(1)p
2Kp=2

X
k2K

1I [Nk > 1]

Nk

X
fXi;Xjg2Ik;i6=j

IEkj"ij

=
O(1)p
2Kp=2

X
k2K

IE [1I [Nk > 1] (Nk � 1)] = O(nhp=2):

As
p
n

�b�n � �
�
�
= OIPm

(1) uniformly in m(�), we obtain B = OIPm
(hp=2) uniformly in m(�).

From (4.11), A =
�b�n � �

�
�0
A1 + kb�n � �

�k2A2; where A1 = hÆ(X); �1(X)i and A2 = hÆ(X); �2(X)i.
Now,

IEjA1j �
O(1)p
2Kp=2

X
k2K

IE(Nk � 1)1I [Nk > 1] IEkjÆ(X)j � O(nhp=2)IEjÆ(X)j � O(nhp=2)IE1=2
Æ
2(X):

Similarly, IEjA2j = O(nhp=2)IE1=2
Æ
2(X). Since

p
n

�b�n � �
�
�
= OIPm

(1) uniformly in m(�), we obtain

A = OIPm
(
p
nhpIE1=2

Æ
2(X)) uniformly in m(�). 2

Proposition 7 shows that projections on the set of indicator functions 1I(x 2 Ik), k 2 K, can be used to

approximate accurately enough the magnitude of the L2-norm of m(�).

Proposition 7 Under Assumption D,

IE1=2
�
Proj2Km(X)

�
� C1

�
IE1=2

m
2(X)� h

s

�
;

for any m(�) 2 Cp(L; s) and h small enough, where C1 > 0 depends only upon L, s and f(�).
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A detailed proof is given in Appendix B, because it is new for multivariate random designs. It proceeds

by proper modi�cations of the arguments used in Ingster (1993, pp. 253 sqq.) .

The following Proposition 8 gives some bounds for the unconditional mean and variance of Tn.

Proposition 8 Let Assumptions D and I hold, and K be as in Theorem 2. Then, for any m(�) 2 Hm(�~�n)

with � > �
s and n large enough,

IEmTn � C2nh
p=2
�
IE1=2

Æ
2(X)� h

s

�2
for some C2 > 0 ;

Varm(Tn) � IEmv
2(K) + C3nh

pIEm Æ
2(X) + C4nIE

2
m Æ

2(X) for some C3; C4 > 0 :

Proof of Proposition 8: Let wk = hU�; U�i
k
. By Lemmas 2 and 3,

IEmTn =
1p

2Kp=2

X
k2K

IEm!k =
1p

2Kp=2

X
k2K

IE [(Nk � 1)1I(Nk > 1)]
�
IEk

Æ(X)
�2

� nh
p=2

2
p
2
IE
�
Proj2KÆ(X)

�
� C1

2
p
2
nh

p=2
�
IE1=2

Æ
2(X)� h

s

�2
;

for n large enough, using Proposition 7 and IE1=2
Æ
2(X)� h

s
> 0 as m(�) 2 H1(�~�n) with � > �

s.

Because the !k's are uncorrelated given SK by Lemma 2,

Varm(Tn) =
1

2Kp

X
k2K

IEm [1I(Nk > 1)Varm(!kjSK)] +
1

2Kp
Varm

"X
k2K

1I(Nk > 1)IEm (!k jSK )
#
: (4.12)

Using Lemmas 2 and 3, Assumption I and IP(X 2 Ik) � fhp uniformly in k, we get

1

2Kp

X
k2K

IE [1I(Nk > 1)Varm(!kjSK)] � IEmv
2(K) + 2hp

X
k2K

IENk

�
IEk

Æ(X)
�2 h

IEk
"
2 + IEk

Æ
2(X)

i
� IEmv

2(K) + C5nh
pIE
�
Proj2KÆ(X)

�
+ C6nIE

2
�
ProjKÆ

2(X)
�
;

1

2Kp
Var

 X
k2K

1I(Nk > 1)IEm [!k jSK ]
!

� 1

2Kp

X
k

�
IEk

Æ(X)
�4

Var ((Nk � 1)1I(Nk > 1))

+
1

2Kp

X
k 6=k0

�
IEkÆ(X)

�2 �
IEk

0

m(X)
�2

Cov ((Nk � 1)1I(Nk > 1); (Nk0 � 1)1I(Nk0 > 1))

� C7nIE
2
�
Proj2KÆ(X)

�
+ C8nh

pIE2
�
Proj2KÆ(X)

�
;
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where we use the properties of ProjK. Combining inequalities, as nh
p !1, we obtain

Var (Tn) � IEmv
2(K) + C5nh

pIE
�
Proj2KÆ(X)

�
+ C6nIE

2
�
ProjKÆ

2(X)
�

+ C7nIE
2
�
Proj2KÆ(X)

�
+ C8nh

pIE2
�
Proj2KÆ(X)

�
� IEmv

2(K) + C3nh
pIE Æ2(X) + C4nIE

2
Æ
2(X) :2

Main proof

Part i. From (4.10), Proposition 6 and as A = 0 under H0, it suÆces to show that Tn=vn
d�!N(0; 1).

Assume that some ordering (denoted by �) is given for the set K of indexes k. Let J1; : : : ; Jn be any

(random) rearrangement of the indices i = 1; : : : ; n, such that XJi 2 Ik i�
X
`<k

N` < Ji �
X
`�k

N` : Let

Fn;k =

8<:SK; YJi :X
`<k

N` < Ji �
X
`�k

N`

9=;. Under H0,
n
Tn;k =

P
k0�k !k0=

p
2Kp;Fn;k

o
is a zero-mean

martingale array. It is then suÆcient to show that

v
�2
n

X
k2K

IE0

�
!
2
k=(2K

p)jFn;k�1
� p�! 1; (4.13)

v
�2
n

X
k2K

IE0

h
!
2
k=(2K

p)1I
����!k=p2Kp

��� > �vn

�
jFn;k�1

i
p�! 0; 8� > 0 (4.14)

from Corollary 3.1 in Hall and Heyde (1980), see also the remarks following it. Now

1

2Kp

X
k2K

IE0

�
!
2
kjFn;k�1

�
=

1

2Kp

X
k2K

IE0

�
!
2
kjSK

�
=

1

2Kp

X
k2K

2(Nk � 1)

Nk

IEkU�2 = v
2(K)

from Lemma 2, so that (4.13) follows from Proposition 5. Now (4.14) is implied by

v
�4
n

1

4K2p

X
k2K

IE0

�
!
4
k
jFn;k�1

� p�! 0:

By Assumption I, straightforward computations lead to

1

Kp

X
k2K

IE0

�
!
4
k
jFn;k�1

�
� 4

Kp

X
k2K

�
IEk

"
4
�2

= O(1):

By Proposition 5, (4.14) follows. 2

22



Part ii. As v2n is bounded in probability from below uniformly in m(�) from Proposition 5, (4.10) and

Proposition 6 yields

IPm

�
v
�1
n
bTn � z�

�
� IPm

�
Tn � z

0
�
+ 2M

p
nhpIE1=2

Æ
2(X)

�
+ o(1);

for any M > 0 and some z0� > 0, where the o(1) is uniform in m(�). But

IPm

�
Tn � z

0
� + 2M

p
nhpIE1=2

Æ
2(X)

�
= IPm

h
� (Tn � IEmTn) � IEmTn � z

0
� � 2M

p
nhpIE1=2

Æ
2(X)

i2
� VarmTnh

IEmTn � z0� � 2M
p
nhpIE1=2

Æ2(X)
i2 ;

if IEmTn � z
0
�
� 2M

p
nhpIE1=2

Æ
2(X) > 0. It is then suÆcient to show that � can be chosen so that

IEmTn � z
0
�
� 2M

p
nhpIE1=2

Æ
2(X) > 0 ;

VarmT
�
nh

IEmT
�
n � z0� � 2M

p
nhpIE1=2

Æ2(X)
i2 � � ; (4.15)

uniformly for m(:) in Hm(�~�n). Proposition 8 gives that for any m(:) in Hm(�~�n) and n large enough

IEmTn � z
0
�
� 2M

p
nhpIE1=2

Æ
2(X)

nhp=2IEÆ2
� C2

�
1� �

s

�

�2
� z

0
�

�2�p=2
� 2M

1

�
p
n~�n

;

and this lower bound is increasing in � and positive for � large enough. Proposition 8 also yields

VarmTn�
nhp=2IEÆ2(X)

�2 � IEv2(K) + C3nh
pIEÆ2(X) + C4nIE

2
Æ
2(X)

n2hpIE2
Æ2(X)

� IEv2(K)

�4�p
+

C3

�2n~�2
n

+
C4

nhp
;

and this upper bound is bounded for n large enough because of Proposition 5, and decreasing in �. Hence

(4.15) can be made smaller than � uniformly for m(:) in Hm(�~�n) by taking � large enough. 2

4.3 Proof of Theorem 4

Without loss of generality, we consider the case of testing for a pure noise model, that isM = f0g. Then

z(�) = z0(�) + z1(�) = (1=
p
n)

nX
i=1

"iw(Xi; �) + (1=
p
n)

nX
i=1

m(Xi)w(Xi; �) :

Consider the a priori �1n de�ned in Theorem 1's proof, i.e. the measure de�ned by the random functions

mn(�) = Æn(�) = ��nh
p=2
n

X
k

Bk'k(�);
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where B1; : : : ; BKn
are independent Rademacher variables and hn = ��

1=s
n , and further assume that '(�)

has r-�rst zero moments. We have

IE�1nz
2
1 (�) =

�
2
�
2
n
h
p
n

n

nX
i;j=1

X
k2K

IE [w(Xi; �)w(Xj ; �)'k(Xi)'k(Xj)]

uniformly in �. Now

IE
�
w
2(Xi; �)'

2
k
(Xi)

�
� F sup

x2[0;1]p;�2�

w(x; �)

Z
'
2(x) dx

and

IE [w(Xi; �)'k(Xi)] = h
p=2

Z
w(lk + hu; �)f(lk + hu)'(u) du = O(hr+p=2) :

Hence, we have uniformly in �

IE�1nz
2
1 (�) = �

2
�
2
n
O(1) + �

2
�
2
n
nh

2r+p
O(1) :

Because r can be chosen as large as desired, IE�1nz
2
1 (�) = o(1) whenever �n = O(n�a), for any a > 0.

Under the same assumptions, IE�1n jz1 (�) jq = o(1) for any 1 � q < 2 from H�older inequality, and

IE�1n jz1 (�) jq = o(1) for any 2 < q < 1 from the Khinchin-Kahane inequality, see e.g. de la Pe~na and

Gin�e (1999). Hence,

IE�1n

Z
jz1jq (�) d�(�) = o(1) :

Thus,

sup
H1(�n)

IPm (In;q � u�;q) �
Z

IPm (In;q � u�;q) d�1n(m)

�
Z

IPm

 �Z
jz0(�)jq d�(�)

�1=q
� u�;q

!
d�1n(m) + o(1)

� IP0 (In;q � u�;q) + o(1) = 1� �+ o(1) :2

Appendix A: Auxiliary results

Lemma 2 Let !k = hU�; U�i
k
. Under Assumptions I, for any k 2 K such that Nk > 1,

IEm[!kjSK] = (Nk � 1)
�
IEkÆ(X)

�2
;

Varm[!kjSK] =
2(Nk � 1)

Nk

�
IEk

U
�2
�2

+
4(Nk � 1)(Nk � 2)

Nk

�
IEk

Æ(X)
�2

IEk
U
�2

� 2(Nk � 1)(2Nk � 3)

Nk

�
IEk

Æ(X)
�4

:
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Moreover, the !k's are uncorrelated given SK.

Proof of Lemma 2: Conditionally upon SK, the Xi's are independent and identically distributed within

each cell. The expression of the conditional expectation then follows from IEk
U
� = IEk

Æ(X). The other

claims are easily checked. 2

Lemma 3 Under Assumptions D and I, if nhp !1, then for n large enough,

IE[(Nk � 1)1I(Nk > 1)] � n

2
IP(X 2 Ik) 8k 2 K ;

Var [(Nk � 1) 1I(Nk > 1)] � 2nIP(X 2 Ik) 8k 2 K ;

Cov [(Nk � 1) 1I(Nk > 1); (Nk0 � 1) 1I(Nk0 > 1)] � 2nIP(X 2 Ik)IP(X 2 Ik0 ) 8k 6= k
0 2 K :

Proof of Lemma 3: Note that (Nk � 1)1I(Nk > 1) = Nk � 1+ 1I(Nk = 0). As 1I(Nk = 1) is a Bernoulli

random variable, then by Assumptions D and I, for n large enough,

IE[(Nk � 1)1I(Nk > 1)] = nIP(X 2 Ik)� 1 + (1� IP(X 2 Ik))
n � n

2
IP(X 2 Ik) ;

Var [(Nk � 1) 1I(Nk > 1)] � nIP(X 2 Ik) [1� IP(X 2 Ik)] + 1=4� 2IE(Nk) IP(Nk = 0) � 2nIP(X 2 Ik) :

The covariance equals

Cov(Nk; Nk0) + Cov (1I(Nk = 0); 1I(Nk0 = 0)) + Cov (Nk; 1I(Nk0 = 0)) + Cov (Nk0 ; 1I(Nk = 0)) :

The �rst item is �IE(Nk)IE(Nk0) and the second item is

(1� IP(X 2 Ik)� IP(X 2 Ik0 ))
n � (1� IP(X 2 Ik))

n
(1� IP(X 2 Ik0 ))

n
:

They are both negative. Moreover,

Cov (Nk; 1I(Nk0 = 0)) = n (1� IP(X 2 Ik0 ))
n�1

IP(X 2 Ik)IP(X 2 Ik0 ) � nIP(X 2 Ik)IP(X 2 Ik0 ) :2

Lemma 4 Under Assumption I, if n

Kp logKp !1,

IP

�
min
k2K

1I(Nk > 1) = 1

�
! 1 and max

k2K

���� Nk

IENk

� 1

���� = oIP(1) :
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Proof of Lemma 4: As Nk is a binomial random variable, the Bernstein inequality yields

IP

����� Nk

IENk

� 1

���� � t

�
= IP

�����Nk � IENkp
n

���� � tIENkp
n

�
� 2 exp

�
� t

2

2 (1 + t=3)
IENk

�
;

for any t > 0, see Shorack and Wellner (1986, p. 440). This yields

IP

�
min
k2K

1I(Nk > 1) = 0

�
�
X
k2K

IP [Nk = 0] �
X
k2K

IP

����� Nk

IENk

� 1

���� � 1

�
� 2Kp exp

�
�3

8
f
n

Kp

�
! 0 ;

as IENkK � fn=Kp under Assumption D, and

IP

�
max
K2K

���� Nk

IENk

� 1

���� � t

�
�
X
K2K

IP

�����Nk � IENkp
n

���� � tIENkp
n

�
� 2Kp exp

�
� t

2

2 (1 + t=3)
f
n

Kp

�
! 0 ;

for any t > 0, if n

Kp logKp !1. 2

Appendix B: Proof of Proposition 7

Step 1. Let s0 = [s+ 1], assume that K = Kn is larger than s
0, and de�ne

�(0) = 0 ; �(1) = s
0
; : : : ; �([K=s

0]� 1) = ([K=s
0]� 1)s0 ; �([K=s

0]) = K ;

where [:] is the integer part. This gives, with ` = `n = [K=s
0],

s
0 � �(r + 1)� �(r) � 2s0 ; r = 0; : : : ; `� 1 : (B.1)

Let Q be the set of vectors whose generic element is q with p components in f�(0); : : : ; �(`� 1)g, i.e.

q = (�(r1;q); : : : ; �(rp;q))
>
; rj;q = 0; : : : ; `� 1 ; j = 1; : : : ; p :

Consider the following subsets of [0; 1]p, which de�ne a partition up a to negligible set:

�q(h) = �q =

pY
j=1

[�(rj;q)h; �(rj;q + 1)h) ; q 2 Q : (B.2)

Let Pm;q(:) be the Taylor expansion of order [s] of m(�) around qh. Because m(:) is in Cp(L; s) and by

de�nition of �q , we get by (B.1) that jm(x)�Pm;q(x)j � Cs;Lh
s for any x in �q for some constant Cs;L.

If Pm(:) is such that Pm(:) = Pm;q(:) on �q , we have

km� Pmk22 � IE

24X
q2Q

C
2
s;Lh

2s1I(X 2 �q)

35 = C
2
s;Lh

2s
:
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Assume that we have been able to establish that, for some constant Cs;f ,

kProjKPmk2 � Cs;fkPmk2 : (B.3)

Because ProjK is contractant, this would give the desired result, as

kProjKmk2 � kProjKPmk2 � kProjK(m� Pm)k2 � kProjKPmk2 � km� Pmk2

� Cs;fk(Pm �m) +mk2 � Cs;Lh
s � Cs;fkmk2 � (1 + Cs;f )Cs;Lh

s
:

Inequality (B.3) will follow by summation over q 2 Q of inequalities of the type

IE
h
(ProjKP (X))

2
1I(X 2 �q)

i
� C

2
s;f

IE
�
P
2(X)1I(X 2 �q)

�
; (B.4)

for any polynomial functions P (:) of degree [s].

Step 2. Let us now give a matrix expression of (B.4). For any � = (�1; : : : ; �p) 2 INp with
P

p

j=1 �j � [s],

let x(�) =
Qp

j=1 x
�j

j
. Every polynomial functions of degree [s] is completely determined by the coeÆcients

a =
�
a� ;
P

p

j=1 �j � [s]
�
(with a suitable ordering for the index � in INp) such that

P (x) =
X

�;

P
�j�[s]

a�

�
x� qh

h

�(�)

:

This gives, for x in �q ,

ProjKP (x) =
X

Ik��q

X
�;

P
�j�[s]

a�
1

IP(X 2 Ik)
IE

"�
X � qh

h

�(�)

1I(X 2 Ik)

#
1I(x 2 Ik) :

Let �1 = Card fIk � �qg, �2 = Card
nP

p

j=1 �j � [s]
o
and Bq(h) be the �1 � �2 matrix with typical

element indexed by k and �

1

IP(X 2 Ik)
IE

"�
X � qh

h

�(�)

1I(X 2 Ik)

#
; Ik � �q ;

pX
j=1

�j � [s] :

Let �q(h) = Diag(IP(X 2 Ik) ; Ik � �q). Because the density f(�) is bounded from below and the �q(h)'s

are diagonal, we have (for the standard ordering for positive symmetric matrices)

�q(h) >> fh
pId :

Hence the l.h.s. of (B.4) writes

IE
h
(ProjKP (X))

2
1I(X 2 �q)

i
= a

>
B
>
q
(h)�q(h)Bq(h)a � fh

p
a
>
B
>
q
(h)Bq(h)a :
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Let Dq(h) be the square �2 matrix with typical element, indexed by � and �
0,

1

IP(X 2 �q)
IE

"�
X � qh

h

�(�+�0)

1I(X 2 �q)

#
;

pX
j=1

�j � [s] ;

pX
j=1

�
0
j
� [s] :

Since the density f(:) is bounded from above, we have for the r.h.s. of (B.4)

IE
�
P
2(X)1I(X 2 �q)

�
� IP(X 2 �q)a

>
Dq(h)a � F (2s0h)pa>Dq(h)a ;

using (B.1). Therefore, (B.4) holds as soon as, for any a, q, and h small enough,

a
>
Dq(h)a � Cs;f a

>
B
>
q (h)Bq(h)a : (B.5)

Step 3. We can limit ourselves to establish (B.5) for vectors a with norm 1 by homogeneity. This step

works by showing that the matrices Dq(h) and Bq(h) converge (uniformly with respect to q) to some

matrices Dq and Bq, Bq being of full rank for any q. Moreover the number of matrices Bq and Dq, q 2 Q,
will be �nite. If the Bq 's are of full rank, a possible choice of Cs;f in (B.5) is

Cs;f = max
q2Q

supfa>Dqa : a>B>q Bqa � 1g+ 1 :

Let us now determine the limits Bq . The entries of Bq(h) are

1

IP(X 2 Ik)
IE

"�
X � qh

h

�(�)

1I(X 2 Ik)

#

=
1R

[0;1]p
f(kh+ hu) du

Z
[0;1]p

(k � q + u)(�)f(kh+ hu) du

=
1

f(kh) + o(1)

Z
[0;1]p

(k � q + u)(�)(f(kh) + o(1)) du!
Z
[0;1]p

(k � q + u)(�)du ;

uniformly in k, q, since f(:) is bounded away from 0 and uniformly continuous on [0; 1]p by Assumption D.

We now check that the number of limits Bq, q in Q is �nite. The de�nitions (4.3) and (B.2) require that

Ik = kh+h[0; 1)p � �q = q+h[0; 1)p, which implies that k = (k1; : : : ; kp)
> and q = (�(r1;q); : : : ; �(rp;q))

>

are such that �(rj;q) � kj < �(rj;q + 1), independently of h . Therefore,

0 � kj � �(rj;q) < �(rj;q + 1)� �(rj;q) � 2s0 ; j = 1; : : : ; p : (B.6)

As
Pp

j=1 �j � [s], the number of Bq , q in Q, is bounded by (2s0)[s]
p

independently of K. It can be

similarly shown that the Dq(h)'s converge, uniformly in q, to some matrices Dq with entriesZQ
p

j=1
[0;�(rj;q+1)��(rj;q))

u
(�+�0)

du ;
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which are also in �nite number by (B.1) and (B.6).

To �nish the proof, we need to check that all the Bq's are of full rank. To this purpose assume that there

exists q in Q and a = (a� ;
P

p

j=1 �j � [s]) with Bqa = 0, i.e. for all k such that Ik � �q ,X
�;

P
p

j=1
�j�[s]

a�

Z
[0;1]p

(k � q + u)(�) du =

Z
k�q+[0;1]p

X
�;

P
p

j=1
�j�[s]

a�u
(�)

du = 0 :

This implies that P (x) =
P

�
a�x

(�) of degree [s] is such that,Z
�+[0;1]p

P (u)du = 0 ; 0 � �j < s
0
; j = 1; : : : ; p ; (B.7)

with � = (�1; : : : �p)
> satisfying the conditions in (B.1) and (B.6). We now use an induction argument.

Let P(p) be the proposition: if P (x) of degree [s], x in [0; 1]p, is such that (B.7) holds, then P (:) = 0.

Note that P(1) holds, because (B.7) and the mean value theorem gives that P (x(�)) = 0 for some x(�)

in ]�; �+1[, � = 0; : : : ; s0. Then the univariate polynomial function P (:) of degree [s] should have at least

[s]+1 distinct roots, which is possible only if P (:) � 0. We now show that P(p�1) implies P(p). Assume
that P (x) of degree [s] with x = (x1; : : : ; xp)

> in [0; 1]p is such that (B.7) holds. De�ne

x�1 = (x2; : : : ; xp)
> 2 [0; 1]p�1 ; Px�1(x1) = P (x1; x�1) = P (x) :

Then (B.7) yields for any �1 in IN with 0 � �1 < s
0,Z

u�12��1+[0;1]p�1

�Z
�1+1

�1

P (u1; u�1)du1

�
du�1 = 0 ; 0 � �j < s

0
; j = 2; : : : ; p :

As a consequence, P(p� 1) gives for any x�1 in [0; 1]p�1,Z
�1+1

�1

P (u1; x�1)du1 =

Z
�1+1

�1

Px�1(u1)du1 = 0 ; 0 � �1 < s
0
:

Then P(1) shows that Px�1(:) � 0 for any x�1 in [0; 1]p�1, which implies P(p). 2

Appendix C

Proposition 9 Assume p = 1 and M = f0g. Let the c.d.f. of the design be 1 � x
�
, x � 1, 
 > 0. If

2s > 
, there exists a sequence fmn(:)gn�1 of functions in C1(L; s) with IE1=2
m

2
n
(X) � �, such that, for

any �-level test tn, lim infn!+1 IPmn
(tn = 1) � 1� �.
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Proof: Assume s is integer. Consider the �(s+ 2) distribution c.d.f

I(x) =
1I(x � 0)

(s+ 1)!

Z
x

0

t
s+1 exp(�t) dt ;

which admits s bounded continuous derivatives over IR. Letmn(x) = C(x�xn)sI(x�xn), where xn = n
2=


and C is a constant. Note that mn(x) vanishes if x � xn. The binomial formula for derivatives yields

m
(s)
n (x) = C

sX
k=0

I
(k)(x � xn)

(s!)2

(sk)!(k!)2
(x� xn)

k
:

Since the functions (x � xn)
k
I
(k)(x � xn), k = 0; : : : ; s, are bounded, m(:) is in C1(L; s) for C small

enough. Moreover,

IEm2
n
(X) = C

2



Z +1

xn

I
2(x� xn)(x� xn)

2s
x
�
�1

dx ;

and IEm2
n(X) = +1 if 2s � 
 � 0, because m

2
n(x)x

�
�1 is equivalent to x
2s�
�1 when x grows. If

supXi � xn, we have mn(Xi) = 0, i = 1; : : : ; n, so that Yi = �"i, i = 1; : : : ; n. Hence,

IPmn
(�n = 0 ; sup

1�i�n
Xi � xn) = IP0(�n = 0 ; sup

1�i�n
Xi � xn) :

This leads to

IPmn
(�n = 1) � IPmn

(�n = 1 ; sup
1�i�n

Xi � xn) = IP0(�n = 1 ; sup
1�i�n

Xi � xn)

� IP0(�n = 1)� IP0( sup
1�i�n

Xi > xn) � 1� �� nIP(X > xn) = 1� �� nn
�2

:2
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