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Abstract

This paper proposes an LM test for the unit root hypothesis using
panel data. The LM statistic based on the pooled likelihood function is
obtained by standardizing the average of the LM statistic for individual
time series. Under the null hypothesis, the statistic follows the standard
normal distribution in the limit as N; T ! 1 as long as N=T approaches
any …nite number, regardless of whether structural breaks are present.
According to the Monte Carlo simulation results, the LM test is robust to
the presence of structural breaks, and is more powerful than the popular
test proposed by Im, Pesaran and Shin (1997) in the benchmark case where
no structural breaks are involved.
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1. Introduction

Recent development of panel data-based unit root tests has attracted much at-
tention in applied work. In particular, the tests proposed by Levin and Lin (1993)
and Im, Pesaran and Shin (1997, IPS hereafter) have been widely applied. The
statistics of both tests follow the standard normal distribution under the null
hypothesis that all time series contain a unit root. However, the IPS test, which
is obtained by standardizing the average of the augmented Dickey-Fuller (ADF)
t-statistics, appears more promising. It requires a weaker condition that N=T
approaches any …nite number as N and T ! 1; while the Levin and Lin test
requires a stronger restriction that N=T goes to zero. IPS provide simulation
evidence that their test performs better as compared to the Levin and Lin test.

In this paper we develop a new panel unit root test based on the Lagrangian
multiplier (LM) principle. The panel LM test based on the pooled likelihood
function is given as the sum of the N individual LM statistics for each time
series. Since the sum of individual statistics approaches a normal random variable
as N increases, we can construct a convenient standard normal test through
appropriate standardization. In the basic case where the errors in individual
time series are serially uncorrelated, the panel LM statistic follows a standard
normal distribution under the null hypothesis as N ! 1 (for …xed T ), as long
as the second moment of the individual LM statistic exists. When the errors are
serially correlated, we conjecture, based on the results in IPS and our simulation
results, that the limiting distribution of the panel LM statistic is also standard
normal unless N=T diverges as N; T ! 1.

Although the procedure of the panel LM test resembles that of IPS, it has
an important advantage in dealing with structural breaks. Perron (1989) showed
that the augmented Dickey-Fuller (ADF) unit root tests su¤er from loss of power
when the existing structural break is ignored. Because the IPS statistic is ob-
tained as a linear combination of the ADF statistics of the individual time series,
we would expect a similar pattern of power loss in the IPS test when the existing
break in each time series is ignored. Naturally, one may suggest to modify the
IPS test by including a dummy variable in each ADF regression to control for
the e¤ect of the structural break. This approach, however, relays to another dif-
…cult problem. As is well known, the limiting distribution of the ADF t-statistic
depends on the location of the break when it allows for a structural break. Thus,
the IPS procedure of standardizing the average of the ADF statistics requires the
expected values and variances of the ADF t-statistics for all di¤erent locations of
the break points in the sample.

The situation is very di¤erent when it comes to the LM approach. Schmidt
and Phillips (1992) derived the LM test for the unit root hypothesis in a single
time series. In a sequel, Amsler and Lee (1995) showed that the dependence
of the LM statistic on the nuisance parameter indicating the position of the
break disappears as T ! 1. This asymptotic invariance property of the LM
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test for single time series turns out to carry over to the panel unit root test.
When structural breaks are present, we suggest to follow the same standardization
procedure using the same expected values and variances used in the basic case
where no structural breaks are involved. Then there arises a subtle problem.
The invariance of the individual LM statistic to the location of the break point
is an asymptotic result. The dependence of the test statistic on the break point
vanishes only at the order of T¡1=2, and this discrepancy of order T¡1=2 for each
time series accumulates as N increases at the rate of

p
N: Yet, we show that the

dependence of the expected values of the individual LM statistic on the location
of the break point vanishes at the rate of T¡1. This result permits us to claim that
the panel LM test remains valid as long as N=T does not diverge as N; T ! 1
and the second moment of the individual LM statistic exists for all T ¸ T0; for
some …nite T0.

The LM test is ‡exible. It can be applied when a structural break occurs
at di¤erent time period in each time series as well as when the structural break
occurs in only some of the time series.

The …nite sample performance of the LM test is examined via Monte Carlo
simulation. The N=T asymptotic result is generally supported in our simulation.
All empirical sizes of the LM tests that properly control for the structural breaks
are reasonably close to the nominal size in all N; T cases we examined. In addi-
tion, the LM test is more powerful than the IPS test in the basic case when no
structural breaks occur.

The paper is organized as follows. In the next section we present the model
and derive the panel LM statistic when the time series contain no structural
breaks. In Section 3 we extend the test to the case when a structural break is
present in each time series. In Section 4 we report simulation results. Section 5
concludes.

2. LM Test with No Structural Break

Suppose we have data yit; t = 1; 2; :::; T ; i = 1; 2; :::; N; generated as:

yit = xit + zit; xit = Áixi;t¡1 + "it; zit = °1i + °2it: (2.1)

We are interested in testing the null hypothesis of unit roots Ái = 1 for all i. To
do so, we express yit as:

¢yit = ¯iyi;t¡1 ¡ ¯i°1i + [1¡ ¯i (t¡ 1)] °2i + "it; t = 1; 2; :::; T ; i = 1; 2; :::; N;
(2.2)

where ¯i = ¡ (1¡ Ái) : We then have the null hypothesis:

H0 : ¯i = 0 for all i; (2.3)

3



against the alternatives:

H1 : ¯i < 0; i = 1; 2; : : : ; N1, ¯i = 0; i = N1 + 1; N1 + 2; : : : ; N: (2.4)

Therefore, all or some of the time series are stationary under the alternative
hypothesis.

This section is divided into two subsections. First, we study the simple case
when the errors, "it; are uncorrelated. In the second subsection we deal with the
serially correlated errors.

2.1. Serially Uncorrelated Errors

First we derive the LM statistic in the basic case when the errors, "it; in (2.2) are
serially uncorrelated. We assume:

Assumption 2.1. "it; i = 1; :::; N; t = 1; :::; T , are independent normal variables
with mean zero and variance ¾2i .

We then have the following pooled log-likelihood function:

lnL =
NX

i=1

µ
¡T
2
ln 2¼¾2i ¡ 1

2¾2i
SSEi

¶
; (2.5)

where

SSEi =
TX

t=1

f¢yit ¡ ¯iyi;t¡1 + ¯i°1i ¡ [1¡ ¯i (t¡ 1)] °2ig2 : (2.6)

If we let LMiT be the LM statistic for the i-th time series, then it is straightfor-
ward to see that the LM statistic based on the pooled likelihood function (2.5)
becomes

LMNT =
NX

i=1

LMiT : (2.7)

Let

Ŝi;t¡1 = yi;t¡1 ¡ ~°2i(t¡ 1); (2.8)

where ~°2i =
1
T

PT
t=1¢yit = (yiT ¡ yi0) =T is the restricted maximum likelihood

estimator of °2i obtained from the restricted regression:

¢yit = °2i + "it: (2.9)
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Schmidt and Phillips (1992) proposed an LM statistic obtained as the t-statistic
testing ¯i = 0 in the regression

¢yit = intercept+ ¯iŜi;t¡1 + error; (2.10)

which could be expressed as

LMiT =

p
T ¡ 2

³
Ŝ0i;¡1M(iT )¢Yi

´

r³
Ŝ0¡1M(iT )Ŝ¡1

´³
¢Y 0iM(iT ;Ŝ¡1)¢Yi

´ ; (2.11)

where ¢Yi = (¢yi1;¢yi2; :::;¢yiT )
0 ; Ŝi;¡1 =

³
Ŝi0; Ŝi1; Ŝi2; :::; Ŝi;T¡1

´0
; M(¢) de-

notes the projection onto the null space of (¢) ; and iT is the T £ 1 vector of
ones.

The distribution of LMNT in (2.7) depends on N and T; but not on any
other nuisance parameters under the null hypothesis. Therefore, LMNT itself
may be used in practice as a test statistic. However, as N increases, as long as
the second moment of LMiT exists, the distribution of LMNT will approach a
normal distribution. We denote the average of the individual LM statistic LMiT

in (2.11) as

LMNT =
1

N

NX

i=1

LMiT ; (2.12)

and the expected value and variance of LMiT de…ned in (2.11) under the null
hypothesis as E (LT ) and V (LT ) : More formally,

De…nition 1. E (LT ) and V (LT ) are the mean and variance of the LM statistic
obtained as the t-statistic for testing ¯ = 0 in the regression (2.10), where yt
follows a simple random walk:

¢yt = "t; with "t » iidN
¡
0; ¾2

¢
for t = 1; 2; :::; T; and y0 = 0: (2.13)

Then, under Assumption 2.1, and under the null hypothesis,

¡LM =

p
N

£
LMNT ¡E (LT )

¤
p
V (LT )

) N(0; 1) (2.14)

as N grows (for …nite T ), as long as E (LT ) and V (LT ) exist.

Remark 1. We could not prove the existence of E (LT ) and V (LT ) for some
…nite T , and the statement (2.14) remains to be a conjecture. A similar di¢-
culty was addressed in IPS. This technical di¢culty disappears if we stick to the
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LM principle. Schmidt and Phillips (1992) suggested to estimate ¾2i based on
the unrestricted SSEi in (2.6). However, following the LM principle, we may
estimate ¾2i based on the restricted SSEi or from the restricted regression (2.9),
namely: ~¾2i = T

¡1 PT
t=1 (¢yit ¡ ~°2i)

2 : Then we have another type of LM statis-

tic: LM ¤
iT =

p
T

³
Ŝi;¡1M(iT )¢Yi

´
=

r³
Ŝ0¡1M(iT )Ŝ¡1

´ ¡
¢Y 0iM(iT )¢Yi

¢
: Note that

the square of LM ¤
iT is the familiar TR2 statistic in the regression (2.10). Since

LM ¤
iT cannot exceed

p
T; it has all the …nite moments for …nite T . Therefore,

if we replace LMiT with LM ¤
iT ; the result in (2.14) is no longer a conjecture.

We continue to use LMiT as a building block for a panel LM test, because the
di¤erence between using LMiT and LM¤

iT is negligible in practice; it is easily seen
that LMiT = LM ¤

iT +Op (T
¡1) :

Remark 2. As was noted in Schmidt and Phillips (1992), the statistic LMiT

is invariant numerically to the values of °1i and °2i under the null hypothesis.
Therefore we do not lose generality by setting °1i = °2i = 0 in the data generation
process of (2.13).

2.2. Serially Correlated Errors

In this subsection, we assume that the errors, "it; in (2.2) follow an autoregressive
process.1

Assumption 2.2. "it =
Ppi

j=1 ½ij"it¡j + eit; i = 1; :::; N; t = 1; :::; T; where eit
are independent normal variables with mean zero and variance ¾2i , and all the
roots of ½i (z) = 1¡ Ppi

j=1 ½ijz
j lie outside the unit circle.

We follow Ahn (1993) and Amsler and Lee (1995) who suggested an ADF
type correction for serially correlated errors in (2.2). The LM statistic for the
i-th time series is obtained as a t-statistic for ¯i = 0 in the augmented regression:

¢yit = intercept+ ¯iŜi;t¡1 +
piX

j=1

½ij¢yi;t¡j + error; (2.15)

where pi denotes the order of augmentation for the i-th times series, and Ŝi;t¡1
is de…ned in (2.8).2 See Remark 3 below for more details of the construction of

1We do not pursue the asymptotics of the LM test when the errors are serially correlated
in this paper. IPS presented the asymptotic result that the IPS test is valid in the presence
of AR(p) errors as long as N=T converges to any …nite number as N;T ! 1: We conjecture
that the LM test would be valid under the same conditions for AR(p) errors. As we discuss
in Section 4, no asymptotic result for panel unit root tests is available when the errors follow
moving average processes.

2Amsler and Lee (1995) suggested to augment ¢Ŝi;t¡j rather than ¢yi;t¡j . But, in the case
where no structural breaks are involved, they produce numerically identical statistics.
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Ŝi;t¡1 in practice. Let the resulting t-statistic be LMiT (pi) and the average

LMNT (p) =
1

N

NX

i=1

LMiT (pi) : (2.16)

We follow the standardization procedure proposed by IPS. To do so, we de…ne
the expected value and variance of LMiT (pi) ; when ¯i = 0 and ½ij = 0; for
j = 1; :::; pi:

De…nition 2. E [LT (pi)] and V [LT (pi)] are the mean and variance of the LM
statistic obtained as the t-statistic for testing ¯i = 0 in the regression (2.15),
where yit follows a simple random walk process:

¢yit = "it; with "it » iidN
¡
0; ¾2i

¢
; for t = 1; 2; :::; T; and yi0 = 0: (2.17)

Then, the standardization of LMNT (p) using E [LT (pi)] and V [LT (pi)] yields:

¡LM (p) =

p
N

n
LMNT (p)¡ 1

N

PN
i=1E [LT (pi)]

o

q
1
N

PN
i=1 V [LT (pi)]

: (2.18)

The statistic LMiT (pi) is invariant numerically to the values of °1i and °2i under
the null hypothesis, so that we do not lose generality by setting °1i = °2i = 0 in
the data generation process in (2.17). (See Remark 2.) However, LMiT (pi) does
depend on the values of ½ij for …nite T; even though this dependence disappears
as T grows. Therefore, E [LT (pi)] and V [LT (pi)] are not the exact expected
value and variance of LMiT (pi). This prompts a complicated issue that under
which condition the test based on ¡LM (p) is valid. We avoid this issue in this
paper. But, in light of the simulation results reported in Section 4 and the results
in IPS, it seems to follow that

¡LM (p) ) N(0; 1); (2.19)

unless N=T diverges as both N and T ! 1:
The expected values and variances, E [LT (p)] and V [LT (p)] ; for various cases

of T and p are computed via stochastic simulation based on 500,000 replications,
and are provided in Table 1. (See Remark 3 for more details.) Note that ¡LM in
(2.14) is a special case of ¡LM (p) when pi = 0; for all i:

Remark 3. Notes on the use of Table 1:
(1) The value of T in Table 1 denotes the regression dimension. For example,
suppose that someone has 25 observations for the i-th time series and wants to
allow pi = 2: Then, the regression dimension is 22 so that the appropriate ex-
pected value and variance corresponding to T = 22 and p = 2 are ¡1:880 and
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0:413; respectively.
(2) In computation of E [LT (p)] and V [LT (p)] (with T+p+1 data points avail-
able), we constructed the series Ŝt¡1 as Ŝt¡1 = yt¡1 ¡ (yT+p+1 ¡ y1) =(T + p): We
recommend to construct the series Ŝi;t¡1 in the same way.
(3) When T ¸ 50; the expected value and variance are reported for every …ve
T . The following is an example explaining how to interpolate: Suppose one has
63 observations for each time series and wants to allow p = 4: The regression
dimension is 58. From Table 1, the expected value for T = 55; p = 4 is ¡1:894,
and ¡0:192 for T = 60; p = 4. The interpolated expected value is obtained as:¡
2
5

¢
(¡1; 894) +

¡
3
5

¢
(¡1:902) = ¡1:899.

3. Panel LM Test with Break

In this section we derive an LM test for unit root hypothesis in panel data where
a structural break is present in each individual time series. We have two sub-
sections. The errors are serially uncorrelated in the …rst subsection. Serially
correlated errors are introduced in the second subsection.

3.1. Serially Uncorrelated Errors

Suppose structural shift occurs at time period TB;i in i-th time series. Therefore,
the data are generated as:

yit = xit + zit; xit = Áixi;t¡1 + "it; zit = °1i + °2it+ ±iDit; (3.1)

for t = 0; 1; 2; :::; T ; i = 1; 2; :::; N; where

Dit =

½
0 t < TB;i
1 t ¸ TB;i + 1;

(3.2)

which has an alternative representation:

¢yit = ¯iyi;t¡1 ¡ ¯i°1i + [1¡ ¯i (t¡ 1)] °2i + (¢Dit ¡ ¯iDit) ±i + "it; (3.3)

for t = 1; 2; :::; T ; i = 1; 2; :::; N; where ¢Dit = Dit ¡Di;t¡1; i.e.,

¢Dit =

½
1 t = TB;i + 1
0 otherwise.

(3.4)

From (3.3), under Assumption 2.1, we obtain the pooled likelihood function (2.5)
with

SSEi =
TX

t=1

f¢yit ¡ ¯iyi;t¡1 + ¯i°1i ¡ [1¡ ¯i (t¡ 1)] °2i ¡ (¢Dit ¡ ¯iDit) ±ig2 :

(3.5)
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As Amsler and Lee (1995) suggested, the LM statistic for the i-th time series
can be obtained as a t-statistic for testing ¯i = 0 in the regression:

¢yit = °2i + ±i¢Dit + ¯ ~Si;t¡1 + error; (3.6)

where

~Si;t¡1 = yi;t¡1 ¡ ~°2i(t¡ 1)¡ ~±iDi;t¡1; (3.7)

and ~°2i and ~±i are the OLS estimators of °2i and ±i in the restricted regression:

¢yit = °2i + ±i¢Dit + "it: (3.8)

Therefore, letting ~Si;¡1 =
³
~Si0; ~Si1; :::; ~Si;T¡1

´0
and¢Di = (¢Di1;¢Di2; :::; DiT )

0 ;

we have the LM statistic for the i-th time series:

LMB
iT =

p
T ¡ 3

³
~S0i;¡1M(iT ;¢Di)¢Yi

´

r³
~S0i;¡1M(iT ;¢Di)

~Si;¡1
´³
¢Y 0iM(iT ;¢Di;~Si;¡1)¢Yi

´ : (3.9)

The panel LM statistic based on the pooled likelihood function is given by the
sum of LMB

iT so that LMB
NT =

PN
i=1 LM

B
iT : Let

LM
B

NT =
1

N

NX

i=1

LMB
iT : (3.10)

As Amsler and Lee (1995) showed, the distribution of LMB
iT does not depend on

the location of the break point

¸i =
TB;i
T

(3.11)

in the limit, i.e., LMB
iT¡LMiT = op (1) : In …nite sample, however, the distribution

of LMB
iT does depend on ¸i. If we have the exact expected value and the exact

variance of LMB
iT under the null hypothesis, which we denote as E

£
LBT (¸i)

¤
and

V
£
LBT (¸i)

¤
; then it follows that

¡B¤LM =

p
N

n
LM b ¡ 1

N

PN
i=1E

£
LBT (¸i)

¤o

q
1
N

PN
i=1 V [L

B
T (¸i)]

) N (0; 1) ; (3.12)

under the null hypothesis, as N ! 1; as long as V
£
LBT (¸i)

¤
exists for all i.

However, the statistic ¡B¤LM ; as it stands, is not very practical since it requires
E

£
LBT (¸i)

¤
and V

£
LBT (¸i)

¤
for all ¸i in the sample.
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Since LMB
iT ¡ LMiT = op (1) ; we consider a practical statistic using E (LT )

and V (LT ) de…ned in De…nition 1 in place of E
£
LBT (¸i)

¤
and V

£
LBT (¸i)

¤
in

(3.12) to have

¡BLM =

p
N

h
LM

B

NT ¡ E (LT )
i

p
V (LT )

: (3.13)

The issue now is under which condition we have

¡BLM ) N (0; 1) : (3.14)

The result in (3.14) holds if

¡BLM ¡ ¡B¤LM = op (1) : (3.15)

We focus on the condition that guarantees (3.15). In doing so, we assume:

Assumption 3.1. The variance of LT de…ned in De…nition 1 and the variance
of LBT (¸) used in (3.12), for all values of ¸; are …nite for all T ¸ T0 for some …nite
T0. (See Remark 4 below.)

Note that

¡BLM ¡ ¡B¤LM =
p
N

h
LM

B

NT ¡ E (LT )
i

p
V (LT )

¡
p
N

n
LM

B

NT ¡ 1
N

PN
i=1E

£
LBT (¸i)

¤o

q
1
N

PN
i=1 V [L

B
T (¸i)]

=
p
N

(
LM

B

NT ¡ 1

N

NX

i=1

E
£
LBT (¸i)

¤
) q

1
N

PN
i=1 V [L

B
T (¸i)]¡

p
V (LT )q

1
N

PN
i=1 V [L

B
T (¸i)]

p
V (LBT )

(3.16)

+
N¡1=2 PN

i=1E
£
LBT (¸i)¡ LT

¤
p
V (LT )

:

It is shown in Appendix that

LBT (¸)¡ LT = Op
¡
T¡1=2

¢
; for all ¸: (3.17)

Assumption 3.1 ensures that V
£
LBT (¸)

¤
¡V [LT ] = O

¡
T¡1=2

¢
for all ¸; from which

we deduce
q

1
N

PN
i=1 V [L

B
T (¸i)]¡V (LT ) = O

¡
T¡1=2

¢
: It is obvious from a simple

view that the …rst term of the last equation of (3.16) is op (1). Now we need to …nd
the conditions under which the last term of (3.16) is negligible asymptotically, or
N¡1=2 PN

i=1E
£
LBT (¸i) ¡ LT

¤
= op (1) : We show in the appendix that

E
£
LBT (¸)¡ LT

¤
= O

¡
T¡1

¢
; for all ¸: (3.18)

Therefore, N¡1=2 PN
i=1E

£
LBT (¸i)¡ LT

¤
= O

³p
N
T

´
; which is o (1) as long as

p
N
T

! 0: Since
p
N
T
=

q
N
T
T¡1=2; it follows that N¡1=2 PN

i=1E
£
LBT (¸i)¡ LT

¤
=

op (1) unless N=T diverges at the rate of
p
T or faster as N;T ! 1.
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Remark 4. The uniform integrability of LT and LBT (¸) is something to be ver-
i…ed rather than assumed. The di¢culty disappears if ¾2i is estimated based on
the restricted MLE. Then the uniform integrability condition is obviously met
since both LT and LBT (¸) are bounded by

p
T : (See Remark 1.) Following our

simulation results, the second moment of LBT (¸) exists for T as small as 7.

Remark 5. Because the claim in (3.18) is at the center of the proof, we conduct
a simulation to see how TE

£
LBT (¸)¡ LT

¤
changes as T grows. In the following

Table the expected value and standard deviation of T
£
LBT (¸)¡ LT

¤
are com-

puted based on 50,000 replications with ¸ = 0:5:

T 100 1,000 10,000 100,000
TE

£
LBT (¸)¡ LT

¤
-0.012 0.287 -0.254 -0.331

T
p
V [LBT (¸)¡ LT ] 10.118 30.910 97.795 307.480

As is seen, TE
£
LBT (¸)¡ LT

¤
‡uctuates within a very narrow interval, while the

standard deviation of T
£
LBT (¸)¡ LT

¤
shows an apparent tendency of creeping

up at the rate of
p
T ; which supports the claims in (3.17) and (3.18).

3.2. Serially Correlated Errors

When the errors "it in (3.3) are serially correlated, their e¤ect can be corrected
by augmenting ¢~Si;t¡j; as suggested in Amsler and Lee (1995). Therefore, the
LM statistic for the i-th time series is obtained as a t-statistic for ¯i = 0 in the
augmented regression:

¢yit = intercept+ ±i¢Dit + ¯i ~Si;t¡1 +
piX

j=1

½ij¢~Si;t¡j + error; (3.19)

where ~Si;t¡1 is de…ned in (3.7). We de…ne LMB
iT (pi) as the t-statistic for ¯i = 0

in regression (3.19), and its average

LM
B

NT (p) =
1

N

NX

i=1

LMB
iT (pi) : (3.20)

We then follow the standardization procedure described in Section 2.2 to derive

¡BLM (p) =

p
N

n
LM

B

NT (p)¡ 1
N

PN
i=1E [LT (pi)]

o

q
1
N

PN
i=1 V [LT (pi)]

; (3.21)

where E [LT (pi)] and V [LT (pi)] are de…ned in De…nition 2 of Section 2.2.
In view of the simulation results reported in Section 4 and the results in IPS,

we conjecture that

¡LM (p) ) N(0; 1); (3.22)

unless N=T diverges as N; T ! 1:
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4. Simulation Results

In this section we investigate the small sample properties of the LM test for unit
root using panel data. We also compare the performance of the LM test with the
IPS test when no structural breaks are present.

Three experiments are conducted. In the …rst experiment, we simulate the
basic case where the data contain no structural breaks and the errors are serially
independent. The …rst experiment is designed to compare the generic power of
LM vis-a-vis IPS. In the second experiment we include structural breaks in the
data generation process while the errors are serially independent. We investigate
the consequence of ignoring existing breaks as well as the performance of the
LM test that controls for structural breaks. Special attention is paid to how
the asymptotic result of N=T derived in Section 3.1 works in …nite samples. The
third experiment investigates the case where the errors are serially correlated and
a structural break is present in each time series. We consider only the LM test
that controls for structural breaks.

In the …rst two experiments where no serial correlations are involved, we re-
port the results for 16 combinations of N; T = 10; 25; 50; 100: But, in the third
experiment, where the data contain structural breaks and the errors are serially
correlated, we drop T = 10 because the degrees of freedom problem becomes
serious. Therefore, we are left with only 12 combinations of N = 10; 25; 50; 100
and T = 25; 50; 100: In each case the results are based on 2,000 replications. In
each replication we generate N independent time series of T+1 data points using
pseudo-iid N(0,1) random numbers from the Gauss RNDNS procedure. There-
fore, the regression dimension is T ¡p. The …rst 50 observations are discarded to
avoid a possible initial value e¤ect. All tests are conducted using the 5% nominal
size.

4.1. Experiment 1: No Breaks, No Serial Correlations

In the …rst experiment, each time series contains no structural break, and the
errors are serially uncorrelated. N independent time series are generated as:

yit = Áiyi;t¡1 + "it; t = 0; 1; ::::T ; i = 1; 2; :::; N; (4.1)

with "it » iid N(0; 1):We set Ái = 1 for the examination of the empirical size and
Ái = 0:9 for the power computation for all i. We compare the performance of the
LM test based on the statistic ¡LM given in (2.14) and the IPS test obtained by
standardizing the average of the t-statistics from the DF regressions that include
an intercept and linear trend (see IPS, 1997, equations 2.2 and 4.2). The results
are reported in Table 2.

Since both the LM and IPS statistics follow the standard normal distribution
as N increases (with …xed T ) under the null hypothesis, we expect the empirical
size reasonably close to the 5% nominal size in both tests for relatively large N .
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As expected, all reported sizes are reasonably close to 5%, even for the case with
N = 10.

Comparing the power of the tests, the LM test turns out more powerful than
the IPS test. For example, when N = 100; T = 25; the power of LM is 0:518;
while the power of IPS is 0:415: The corresponding sizes are 0.060 and 0.063.
When N = 25; T = 50; the power of LM is 0:802 and the power of IPS is 0:622,
while the corresponding sizes are 0:058 and 0:059; respectively.

It is observed that the power increases more rapidly with T than with N for
both tests. A similar pattern was reported by IPS in their paper. For instance,
when T = 10 the power is close to the size even with N = 100 in both tests.

4.2. Experiment 2: Structural Breaks, No Serial Correlations

In the second experiment we investigate the e¤ect of structural breaks. A struc-
tural break occurs at TB;i for the i-th time series with the magnitude of shift ±i.
The data generation process follows:

yit = xit + zit; xit = Áixi;t¡1 + "it; zit = ±iDit: (4.2)

We consider two cases. In the …rst case, all the structural breaks occur at the
middle of the series so that ¸i = TBi=T = 0:5 for all i: The structural breaks
occur earlier in the second case at ¸i = 0:3 for all i. Dit = 0 for t < T

2
and 1

otherwise for the …rst case, and Dit = 0 for t < T
3

and 1 otherwise for the second
case. In both cases, ¾i = 1 and ±i = ±i=¾i = 5 for all i:

We experiment with three tests: the LM test based on the statistic ¡LM
de…ned in (2.14); the IPS test based on the statistic described in the previous
subsection; and the LM test based on the statistic ¡BLM de…ned in (3.13), which
we will refer to respectively as LM_N, IPS_N and LM_B to signify that LM_N
and IPS_N ignore the existing breaks, but LM_B controls for the breaks. The
results are reported in Table 3.

First, we examine the size and power property of LM_N and IPS_N. Amsler
and Lee (1995, Theorem 2) showed that both the LM and DF tests are valid in
single time series even for the case when existing breaks are ignored in the testing
procedure. But, with T …nite, ignoring structural breaks could make the actual
size very di¤erent from the asymptotic size. It all depends on the values of ¸; ±
and T .

An obvious pattern from Table 3 is that the situation is worse in panel, and
gets worse as N increases. For example, in the …rst panel (¸ = 0:5) ; when T = 25
and N = 10, 25, 50, 100; the respective empirical sizes of IPS_N are 0:017; 0:016,
0:007; 0:005, and the corresponding …gures of LM_N are 0:025, 0:022, 0:009,
0:004: Although the empirical sizes get closer to the nominal size as T increases,
a similar pattern of size distortion is observed even with T = 100: The sizes
of IPS_N and LM_N are even worse in the second panel (¸ = 0:3) : Obviously
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the small size distortions in individual time series accumulate in the panel as N
increases.

A more serious problem of ignoring structural breaks is loss of power, as
reported in Perron (1989) and Amsler and Lee (1995) for single time series. Our
simulation results indicate that a similar pattern carries over to the panel unit
root test. For example, in the …rst panel, when T = 25; N = 100; the powers
of IPS_N and LM_N are reported as 0:048 (size = 0:005 for the same T and
N) and 0:050 (size = 0:004), respectively, while the power of LM_B for the
same N and T is 0:473 (size = 0:058). However, the power of IPS_N and
LM_N improves dramatically as T increases. For example in the …rst panel,
when T = 100; N = 10; the power of LM_N is 0.863 (size = 0:065).

It seems apparent that the low power of IPS_N and LM_N is largely a
re‡ection of the downward size distortion. But, the power of LM_N is still lower
than that of LM_B even after controlling for the size. When T = 100; N = 10
in the …rst panel, the power of LM_B is 0.985 (size = 0:064), while the power of
LM_N is 0.863 (size = 0:065).

On the other hand, the power of LM_B remains quite close to the corre-
sponding …gures reported in Table 1. For example, when T = N = 25, the power
of LM_B is 0:201 in the …rst panel (size = 0:054 for the same T and N), and
0.204 in the second panel (size = 0:056): The corresponding …gure in Table 1 is
0.207 (size = 0:054): This result bears a quite important message to practitioners:
There is almost no power loss when someone mistakenly adopt LM_B (instead
of LM_N or IPS_N) when there, in fact, are no structural breaks in the time
series. Also, the power of LM_B in both panels remains more or less the same
for corresponding N and T cases, which supports that the power of LM_B is not
a¤ected by the value of ¸.3

Another interesting …gures are the sizes of LM_B for di¤erent combinations
of the N=T ratios, since the asymptotic validity of LM_B requires that N=T
should not diverge as N; T ! 1: This asymptotic result seems well re‡ected
into …nite sample. In the …rst panel, for instance we obtained the size of LM_B;
0:083; 0:060; 0:062; 0:068, for T = 10 and N = 10; 25; 50; 100; respectively. The
size of all other cases remains quite stable for di¤erent N=T ratios. The N=T
ratio does not seem restrictive for applying LM_B to most practical situations.

3When the DF regression includes a dummy variable to control for the structural break,
the asymptotic distribution of the resuting DF statistic depends on ¸. Therefore the IPS test
requires the expected values and variances of the ADF t-statisitcs for every di¤erent value of ¸
in the sample. This is quite an onerous job and was excluded from our simulation. However, we
simulated the IPS-type statistic constructed from the DF regression including a break dummy
variable, but using incorrectly the expected values and variances reported in IPS. The size is
reported as 1.0 for all the sample cases studied in our simulation.
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4.3. Experiment 3: Structural Breaks, Serial Correlations

In the third experiment we allow for serial correlations as well as a structural
break in each time series. Two types of serial correlations are considered:

AR (1) : "it = 0:3"i;t¡1 + eit; (4.3)

MA(1) : "it = eit ¡ 0:3ei;t¡1; (4.4)

where eit » iidN (0; 1) : We maintain the same structural break pattern used in
the second experiment in (4.2) with ¸i = 0:5 and ±i = 5 for all i. We simulate
only the LM test based on the statistic ¡BLM (p) in (3.21), where the number of
augmented terms is …xed at pi = 0; 1; 2; 3; 4; for all i in the regression (3.19).4

When the necessary values of the expected value and variance for standardization
are not provided in Table 1, they are interpolated. See Remark 3. The results
are reported in Table 4.

Since N=T asymptotics is potentially an important issue and we are hoping
that the test remains valid unless N=T diverges when the errors are serially
correlated, special attention is paid to the movement of empirical sizes as N=T
grows for di¤erent value of p.

The results for the AR (1) error are reported in the …rst panel. When p = 0
is selected, all the reported sizes are zero. The e¤ect of selecting too small p
accumulates as N grows. A similar pattern was reported for the IPS test in their
paper. However, when the true model p = 1 is selected, the empirical sizes of all
N;T cases are reasonably close to the nominal 5%. For example, when T = 25
and N = 10; 25; 50; 100; the empirical sizes are reported as 0.059, 0.064, 0.061,
0.058, respectively, which seems to support our conjecture that the test would
remain valid in this case unless N=T diverges as both N and T ! 1. Similar
results are obtained for the cases p = 2; 3 or 4. Any systematic pattern of size
distortion for di¤erent combinations of N=T is not observed.

The power of the test declines as larger p is selected, and the loss of power
is steeper when T is relatively small. For example, when T = 25 and N = 100;
the power of the test shrinks as; 0:357; 0:283; 0:207; 0:165 for p = 1; 2; 3; 4: But,
when T = 50 and N = 10; the power of the test is 0.343, 0.299, 0.253, 0.208 for
the same p.

The results for the MA(1) errors are reported in the second panel. There
is no true modelling in this case. All we can hope for is that the selected p is

4IPS (1997, footnote 6) observed a very serious size distortion when the lag orders are
selected by Akaike or Schwarz criterion. They conjectured that the information criteria, as is
well known, tend to choose too few lags when T is small, and this e¤ect accumulates in panel
unit root test. A similar pattern is expected in the LM test. The data dependent method of
selecting the lag order is an important issue, and it remains interesting to see the performance
of the panel unit root test when the order of lags are chosen, for example, by the sequential
method advocated by Ng and Perron (1995). But, in this paper we restrict ourselves to the
study of …xed p for all i, leaving the data dependent selection of p to future research. By …xing
p across individuals we could examine the e¤ect of having too many or too few lagged terms.
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large enough to ensure that the left over errors in the regression (3.19) are nearly
uncorrelated so that the actual size of the test is reasonably close to the nominal
size, and at the same time not too big so that the adverse e¤ect on the power
remains minimal. It is well known that the optimal p that serves this purpose
depends on T as well as on the moving average parameter value. There is no
asymptotic result available for the validity of any panel unit root tests when
the errors follow moving average. Although the lack of theoretical underpinning
makes it di¢cult to make a persuasive conjecture, it would be reasonable to
expect that bigger p is needed when T is larger. Also there would be no reason
to believe that the optimal p is associated with the size of N . Therefore, the
problem again is which N=T condition will leave the test valid, given that the
optimal p as a function of T is chosen. Although we do not have asymptotic
results, we examine the e¤ect of N on the size given that the some large enough
p is selected for each time series.

Importance of the size of T in determination of the optimal p is clearly seen
in the table. Using p = 1 always leads to a size distortion. When T = 25; using
p = 2 yields the size reasonably close to the nominal 5%. But, when T = 50; p
needs to be 3 or larger. The empirical size is tolerably close to the nominal size
in all of the sample cases when p = 3 or 4 is selected. A systematic e¤ect of N
on the size is rather obvious when too small p is selected. But, the e¤ect quickly
becomes negligible when p is selected properly. For instance, when T = 50 and
p = 2; the size rises 0.081, 0.098, 0.110, 0.138 as N increases 10, 25, 50, 100. For
the same N; T case but with p = 3; the size is stable at 0.052, 0.055, 0.049, 0.050.

The power of the test decreases when the chosen p is larger than necessary.
For example, when T = 25 and N = 50; the power drops from 0:160 to 0:066 as p
changes from 2 to 3. When T = 50 and N = 10, the power decreases from 0:356
to 0:233 as p changes from 3 to 4.

5. Concluding Remarks

In this paper we developed a new unit root test using panel data based on the
LM principle. The proposed test not only is robust to the presence of structural
breaks, but is more powerful than the popular IPS test in the basic case where
no structural breaks are involved. The former property in particular bears very
important implication for empirical work since no other test has been developed
yet which can handle the presence of structural shifts in a practical way. Further,
as we reported in Section 4.2, since the LM test loses little power by controlling
for spurious structural breaks when they do not exist, it would be a reasonable
strategy to control for breaks even when they are only at a suspicious level.

We have focused on the case of one structural break in each time series in this
paper, but extension to the case with multiple breaks should be straightforward.
When there are more than one break in each time series, we have multiple dummy
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variables in the data generation process (3.1), so that in (3.6)- (3.8). We cannot
see any reason why the asymptotic results presented in this paper should not
extend to the case of multiple breaks. But, it requires a more involved algebra,
and is relegated to future research.
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A. Appendix

In this appendix we show that

LBT (¸)¡ LT = O
¡
T¡1=2

¢
; (A.1)

E
£
LBT (¸)¡ LT

¤
= O

¡
T¡1

¢
; (A.2)

which we claimed in (3.17) and (3.18). We assume uniform integrability of LBT (¸)
and LT : (See Remarks 1 and 3 in the text.) We drop subscript i for simplicity.
The following lemmas will be used in the proof.

Lemma 1. Consider a regression:

yt = xt¯ + ±Dt + error; t = 1; 2; :::; T; (A.3)

where

Dt =

½
1 for t = ¿ ;
0 otherwise,

and xt is 1£k vector. Let (Y;X;D) be the T£(k+2) data matrix and (Y¤; X¤) be
(T ¡ 1)£ (k+1) matrix obtained after eliminating the ¿ -th observations (y¿ ; x¿ )
from (Y;X) : Then,

X 0M(D)X = X 0
¤X¤; X

0M(D)Y = X
0
¤Y¤:

where M(¢) is the projection onto the null space of (¢) : The …rst ¿ ¡ 1 and the
last T ¡ ¿ OLS residuals from the regression (A.3) is identical to the residuals
obtained from regression of Y¤ on X¤; and the ¿ -th residual is zero.¥

Lemma 2. Let "t » iidN(0; ¾2); for t = 1; 2; :::; T; and " = ("1; "2; :::; "T )0: Then
r
T

"0"
=
1

¾
+Op

¡
T¡1=2

¢
: (A.4)

Proof: The result follows from a Nagar-type expansion:
q

T
"0" =

q
T

E("0")+["0"¡E("0")] :

Since "0"¡E ("0") = Op
¡
T 1=2

¢
, dividing both the numerator and the denominator

by
p
T yields the result.¥

From Lemma 1, ~°2 (suppressing subscripts i) in regression (3:8) is the average
of ¢yt after eliminating ¢yTB+1; and ~± = ¢yTB+1 ¡ ~°2; namely:

~°2 =

PT
t=1¢yt ¡¢yTB+1

T ¡ 1 =
yT ¡ y0
T ¡ 1 ¡ ¢yTB+1

T ¡ 1
=

yT ¡ y0
T

+
yT ¡ y0
T (T ¡ 1) ¡ ¢yTB+1

T ¡ 1 ; (A.5)

~± = ¢yTB+1 ¡ yT ¡ y0 ¡¢yTB+1
T ¡ 1 =

T¢yTB+1 ¡ (yT ¡ y0)
T ¡ 1 : (A.6)
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Therefore, if we let

qt¡1 =

8
<
:

h
yT¡y0
T (T¡1) ¡ ¢yTB+1

T¡1

i
(t¡ 1) for t � TB ;h

yT¡y0
T (T¡1) ¡ ¢yTB+1

T¡1

i
(t¡ 1) + T¢yTB+1¡(yT¡y0)

T¡1 for t ¸ TB + 1;
(A.7)

we have

~St¡1 = Ŝt¡1 ¡ qt¡1: (A.8)

Since LBT (¸) is invariant numerically to di¤erent values of °1; °2 and ± under
the null hypothesis, we assume, without loss of generality, °1 = °2 = ± = 0:
Therefore, in the following, yt follows a simple random walk with 0 initial value,
and is denoted as

St =
tX

j=1

"t; (A.9)

where "t » iidN (0; ¾2) : We then have, under the null hypothesis,

Ŝt¡1 = St¡1 ¡ ST
T
(t¡ 1) ; (A.10)

¢yt = "t; (A.11)

and

qt¡1 =

8
<
:

h
ST

T (T¡1) ¡ "TB+1
T¡1

i
(t¡ 1) for t � TB;h

ST
T (T¡1) ¡ "TB+1

T¡1

i
(t¡ 1) + T "TB+1¡ST

T¡1 for t ¸ TB + 1:
(A.12)

From (2.11) and (3.9), it is seen that

LT =

p
T

³
Ŝ0¡1M(iT )"

´

r³
Ŝ0¡1M(iT )Ŝ¡1

´³
"0M(iT ;Ŝ¡1)"

´ +Op
¡
T¡1

¢

=

p
T

³
Ŝ0¡1M(iT )"

´

r³
Ŝ0¡1M(iT )Ŝ¡1

´
("0")

+Op
¡
T¡1

¢
; (A.13)

and

LBT (¸) =

p
T

³
~S0¡1M(iT ;¢D)"

´

r³
~S0¡1M(iT ;¢D)

~S¡1
´³

"0M(iT ;¢D;;~S¡1)"
´ +Op

¡
T¡1

¢

=

p
T

³
~S0¡1M(iT ;¢D)"

´

r³
~S0¡1M(iT ;¢D)

~S¡1
´
("0")

+Op
¡
T¡1

¢
: (A.14)
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De…ne

aT = Ŝ
0
¡1M(iT )Ŝ¡1 ¡ ~S0¡1M(iT ;¢D)

~S¡1; bT = Ŝ
0
¡1M(iT )" ¡ ~S0¡1M(iT ;¢D)";

(A.15)

and

AT =
aT

Ŝ0¡1M(iT )Ŝ¡1
; BT =

bTr³
Ŝ0¡1M(iT )Ŝ¡1

´
("0")

: (A.16)

Dividing both the numerator and the denominator of LBT (¸) by

r³
Ŝ0¡1M(iT )Ŝ¡1

´
("0");

we have

LBT (¸) =

0
@

p
T

³
Ŝ0¡1M(iT )

"
´

r³
Ŝ0¡1M(iT )

Ŝ¡1
´
("0")

¡
p
TBT

1
A

p
(1¡ AT )

+Op
¡
T¡1

¢
(A.17)

= LT

sµ
1 +AT +

A2T
1¡ AT

¶
¡

p
TBT

sµ
1 +

AT
1¡ AT

¶
+Op

¡
T¡1

¢
:

After some algebra (available from the authors upon request), we obtain

aT = 2"TB+1

(
¡ 1
T

TX

t=1

(t¡ 1)St¡1 +
µ
1

2
+ ¸

¶ TX

t=1

St¡1 +

µ
1

3
+
1

2
¸2

¶
TST

)
+Op (T ) ;

(A.18)

and

bT = "TB+1

"
1

2T

TX

t=1

t"t +
1

T

TX

t=1

St¡1

#
+Op (1) ; (A.19)

where St¡1 is the partial sum process de…ned in (A.9), and ¸ = TB
T
: It now is

obvious that aT = Op
¡
T 3=2

¢
; bT = Op

¡
T 1=2

¢
; and

AT = Op(T
¡1=2) and

p
TBT = Op(T

¡1=2): (A.20)

Therefore, it is seen from (A.17) that

LBT (¸)¡ LT =
1

2
LTAT ¡

p
TBT +Op

¡
T¡1

¢
; (A.21)

which is Op(T¡1=2).
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Now we prove the claim in (A.2). From Assumption 3.1 of the uniform inte-
grability of LBT (¸) and LT we have

E
£
LBT (¸)¡ LT

¤
=
1

2
E (LTAT )¡

p
TE (BT ) +O

¡
T¡1

¢
: (A.22)

The result follows if we show E (LTAT ) = O (T¡1) and E (CT ) = O
¡
T¡3=2

¢
:

Combining (A.16) and (A.18) and applying Lemma 2, we have:

LTAT = (A.23)

2"TB+1Ŝ
0
¡1M(iT )"

h
¡ 1
T

PT
t=1 (t¡ 1)St¡1 +

¡
1
2
+ ¸

¢PT
t=1 St¡1 +

¡
1
3
+ 1

2
¸2

¢
TST

i

¾
³
Ŝ0¡1M(iT )Ŝ¡1

´3=2 +Op
¡
T¡1

¢
:

It is straightforward to see that

Ŝ0¡1M(iT )Ŝ¡1 = (A.24)
TX

t=1

S2t¡1 ¡ 2ST
T

TX

t=1

(t¡ 1)St¡1 +
T

12
S2T ¡ 1

T

Ã
TX

t=1

St¡1

!2

+ ST
X

St¡1 +Op (T )

Let Ŝ0¡1M(iT )Ŝ¡1 = V1T + V2T ; where V1T is the sum of all the terms that in-
clude "TB+1, and V2T is the sum of the rest of the terms. Thus, no "TB+1 is
associated with V2T . Then, it is straightforward to see that V1T = Op

¡
T 3=2

¢
and

V2T = Op (T 2) : For example, the term associated with "TB+1 in the leading term,PT
t=1 S

2
t¡1; is the squared terms of order T plus the sum of the mean zero cross

product terms, the order of which is Op
¡
T 3=2

¢
: The order of the other terms asso-

ciated with "TB+1 is similarly obtained. From the normality, "TB+1 is independent
of V2T :

We de…ne the numerator of (A.23) to be 2"TB+1UT ; and divide both the nu-
merator and the denominator of (A.23) by (V2T )

3=2 to have

LTAT =
2"TB+1UT= (V2T )

3=2

¾ (1 + V1T=V2T )
3=2

=
2"TB+1UT

(V2T )
3=2

+Op
¡
T¡1

¢
: (A.25)

Now let UT = U1T +U2T ; where U1T is the sum of the terms associated with "TB+1
and U2T is the sum of the rest. Therefore, we have;

E (LTAT ) = 2E
"TB+1U1T

(V2T )
3=2

+ 2E
"TB+1U2T

(V2T )
3=2

+O
¡
T¡1

¢
: (A.26)

From the normality assumption, U2T= (V2T )
3=2 is independent of "TB+1 so that

the second term of the right hand side vanishes. Also, it is straightforward to
show that U1T = Op (T 2) :We therefore have "TB+1U1T = (V2T )

3=2 = Op (T¡1) ; and

E
h
"TB+1U1T = (V2T )

3=2
i
= O (T¡1) :
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E (BT ) = O
¡
T¡3=2

¢
is proved similarly. From (A.16) and (A.19), we have:

BT =
"TB+1

³
1
2T

PT
t=1 t"t +

1
T

PT
t=1 St¡1

´

r³
Ŝ0¡1M(iT )Ŝ¡1

´
("0")

+Op
¡
T¡3=2

¢

=
"TB+1

³
1
2

PT
t=1 t"t +

PT
t=1 St¡1

´

¾
q
T 3Ŝ0¡1M(iT )Ŝ¡1

+Op
¡
T¡3=2

¢
(A.27)

=
"TB+1

³
1
2

PT
t=1 t"t +

PT
t=1 St¡1

´

p
T 3V2T

+Op
¡
T¡3=2

¢
: (A.28)

The second equality follows from Lemma 2, and the third equality is obtained by
dividing the numerator and the denominator by

p
T 3V2T : Let

WT =W1T +W2T =
1

2

TX

t=1

t"t +
TX

t=1

St¡1; (A.29)

where W1T is the sum of the terms associated with "TB+1 and W2T is the sum
of the rest of the terms. From the independence of "TB+1 and W2T=

p
T 3V2T ; we

have

E (BT ) = E
"TB+1 (W1T +W2T )p

T 3V2T
+O

¡
T¡3=2

¢
= E

"TB+1W1Tp
T 3V2T

+O
¡
T¡3=2

¢
:

(A.30)

But, "TB+1W1T = Op (T ) ; and "TB+1W1T =
p
T 3V2T = Op

¡
T¡3=2

¢
; so that we have

E (BT ) = O
¡
T¡3=2

¢
; which completes the proof.
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Addendum to:
“LM Unit Root Test with Panel Data; A Test Robust to Structural Changes”

by Kyung So Im and Junsoo Lee

In this note we show the algebra for deriving aT and bT in (A.18) and (A.19)
of the Appendix. Note that

Ŝ0¡1M(iT )Ŝ¡1 =
TX

t=1

Ŝ2t¡1 ¡ 1

T

Ã
TX

t=1

Ŝt¡1

!2

: (1)

We also have from Lemma 1

~S0¡1M(iT ;¢D)
~S¡1 =

TX

t=1

~S2t¡1 ¡ ~S2TB ¡ 1

T ¡ 1

Ã
TX

t=1

~St¡1 ¡ ~STB

!2

=
TX

t=1

Ŝ2t¡1 ¡ 2
TX

t=1

Ŝt¡1qt¡1 +
TX

t=1

q2t¡1 (2)

¡ 1

T ¡ 1

8
<
:

Ã
TX
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Ŝt¡1

!2

¡ 2
TX

t=1

Ŝt¡1

TX

t=1

qt¡1 +

Ã
TX

t=1

qt¡1

!2

+2
³
ŜTB ¡ qTB

´ TX

t=1

³
Ŝt¡1 ¡ qt¡1

´
+ T

³
ŜTB ¡ qTB

´2
)
:

Plugging the results of (1) and (2) into aT in (A.15) of the Appendix yields:

aT = Ŝ0¡1M(iT )Ŝ¡1 ¡ ~S0¡1M(iT ;¢D)
~S¡1

= 2
TX

t=1

Ŝt¡1qt¡1 ¡
TX

t=1
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1
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Ã
TX
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8
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+ 2
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´ TX
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³
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´
9
=
;

¡ T

T ¡ 1
³
ŜTB ¡ qTB

´2
:

It is straightforward to see that
PT

t=1 q
2
t¡1 = Op (T ) ;

1
T (T¡1)

³PT
t=1 Ŝt¡1

´2
=

Op (T ) ;
1

T¡1

³PT
t=1 qt¡1

´2
= Op (T ) ;

1
T¡1

³
ŜTB ¡ qTB

´PT
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³
Ŝt¡1 ¡ qt¡1

´
= Op (T ) ;

[1]



and T
T¡1

³
ŜTB ¡ qTB

´2
= Op (T ) : Therefore, we have

aT = 2

Ã
TX

t=1

Ŝt¡1qt¡1 ¡ 1

T

TX

t=1

Ŝt¡1

TX

t=1

qt¡1

!
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(
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T
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µ
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2
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µ
1

3
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2
¸2

¶
TST

)
+Op (T ) ;

which is what we have in (A.18) in the Appendix. Following a visual inspection,
the order of aT is Op

¡
T 3=2

¢
; so that AT = Op

¡
T¡1=2

¢
:

Now we derive the expression in (A.19). Note that
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and

Ŝ0¡1M(iT )" =
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t=1

Ŝt¡1"t ¡
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Ŝt¡1
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"t:

Therefore,
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Examining each term, we have 1
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Combining these results, we obtain

bT =
1

2T
"TB+1

TX

t=1

(t¡ 1) "t ¡ "TB+1
TX

t=TB+1

"t +
1

T
"TB+1

TX

t=1

St¡1 ¡ STB"TB+1 +Op (1)

= "TB+1

"
1

2T

TX

t=1

t"t +
1

T

TX

t=1

St¡1

#
+Op (1) ;

which is the expression in (A.19) of the Appendix. It is obvious that bT =
Op

¡
T 1=2

¢
: Hence,

p
TCT = Op

¡
T¡1=2

¢
:

[3]
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Table 1
Mean and Variance of LLT(p)

 T p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8
 Mean   Var.  Mean   Var.  Mean   Var.  Mean   Var.  Mean   Var.  Mean  Var.  Mean   Var.  Mean   Var.  Mean   Var.

10 -2.012 0.518 -1.997 0.662 -1.761 0.708 -1.751 1.082
11 -2.009 0.493 -1.994 0.604 -1.781 0.623 -1.765 0.887 -1.590 1.070
12 -2.003 0.476 -1.991 0.561 -1.795 0.572 -1.776 0.763 -1.611 0.885 -1.604 1.218
13 -2.002 0.464 -1.990 0.535 -1.810 0.537 -1.790 0.686 -1.635 0.779 -1.620 1.018 -1.489 1.188
14 -1.999 0.451 -1.990 0.511 -1.823 0.509 -1.803 0.629 -1.655 0.702 -1.638 0.898 -1.511 1.016 -1.503 1.317
15 -1.998 0.441 -1.988 0.490 -1.833 0.490 -1.814 0.591 -1.675 0.648 -1.657 0.806 -1.534 0.901 -1.521 1.123 -1.412 1.292

16 -1.995 0.435 -1.987 0.480 -1.842 0.470 -1.825 0.557 -1.693 0.605 -1.676 0.737 -1.559 0.821 -1.545 0.998 -1.439 1.116
17 -1.994 0.428 -1.985 0.464 -1.851 0.457 -1.834 0.533 -1.709 0.572 -1.689 0.684 -1.577 0.755 -1.559 0.904 -1.458 0.996
18 -1.992 0.420 -1.985 0.455 -1.858 0.444 -1.843 0.512 -1.725 0.543 -1.705 0.642 -1.598 0.704 -1.580 0.833 -1.481 0.909
19 -1.992 0.417 -1.984 0.446 -1.865 0.438 -1.851 0.498 -1.738 0.521 -1.720 0.607 -1.617 0.664 -1.599 0.779 -1.503 0.844
20 -1.990 0.411 -1.982 0.437 -1.870 0.427 -1.858 0.481 -1.750 0.502 -1.733 0.580 -1.633 0.629 -1.615 0.731 -1.524 0.793

21 -1.988 0.407 -1.983 0.429 -1.875 0.418 -1.864 0.468 -1.760 0.487 -1.745 0.558 -1.649 0.598 -1.632 0.691 -1.543 0.747
22 -1.987 0.402 -1.982 0.424 -1.880 0.413 -1.869 0.456 -1.773 0.473 -1.757 0.536 -1.666 0.574 -1.650 0.657 -1.563 0.706
23 -1.988 0.399 -1.982 0.418 -1.884 0.408 -1.875 0.449 -1.781 0.461 -1.766 0.520 -1.678 0.552 -1.661 0.626 -1.579 0.675
24 -1.987 0.397 -1.982 0.416 -1.889 0.403 -1.879 0.441 -1.789 0.453 -1.775 0.505 -1.690 0.534 -1.675 0.601 -1.595 0.645
25 -1.985 0.393 -1.980 0.410 -1.892 0.399 -1.883 0.434 -1.798 0.445 -1.785 0.494 -1.702 0.520 -1.687 0.581 -1.609 0.620

26 -1.985 0.391 -1.980 0.406 -1.895 0.395 -1.887 0.426 -1.803 0.433 -1.791 0.478 -1.712 0.504 -1.697 0.561 -1.621 0.597
27 -1.985 0.389 -1.980 0.402 -1.898 0.391 -1.890 0.421 -1.810 0.430 -1.799 0.470 -1.722 0.489 -1.709 0.542 -1.636 0.576
28 -1.984 0.386 -1.980 0.399 -1.901 0.387 -1.894 0.415 -1.818 0.420 -1.806 0.458 -1.732 0.479 -1.718 0.528 -1.646 0.557
29 -1.983 0.384 -1.977 0.396 -1.902 0.386 -1.894 0.410 -1.820 0.415 -1.809 0.450 -1.738 0.469 -1.726 0.515 -1.657 0.544
30 -1.983 0.381 -1.978 0.393 -1.906 0.384 -1.900 0.408 -1.828 0.411 -1.818 0.443 -1.748 0.460 -1.735 0.502 -1.667 0.528

31 -1.982 0.381 -1.978 0.391 -1.908 0.382 -1.902 0.403 -1.834 0.407 -1.824 0.437 -1.758 0.453 -1.746 0.494 -1.681 0.516
32 -1.982 0.379 -1.979 0.390 -1.911 0.379 -1.905 0.400 -1.838 0.402 -1.829 0.430 -1.764 0.443 -1.753 0.481 -1.689 0.504
33 -1.981 0.376 -1.977 0.387 -1.912 0.377 -1.906 0.396 -1.841 0.398 -1.833 0.426 -1.770 0.440 -1.759 0.474 -1.697 0.494
34 -1.980 0.375 -1.977 0.386 -1.913 0.375 -1.909 0.395 -1.845 0.394 -1.836 0.419 -1.776 0.432 -1.766 0.464 -1.706 0.485
35 -1.981 0.374 -1.978 0.383 -1.916 0.373 -1.911 0.392 -1.849 0.392 -1.841 0.417 -1.782 0.427 -1.771 0.459 -1.712 0.475
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Table 1 Continued

T p=0 p=1 p=2 p=3 p=4 p=5 p=6 p=7 p=8
 Mean   Var.  Mean   Var.  Mean   Var.  Mean   Var.  Mean   Var.  Mean  Var.  Mean   Var.  Mean   Var.  Mean   Var.

36 -1.980 0.373 -1.977 0.381 -1.918 0.373 -1.913 0.389 -1.853 0.391 -1.845 0.414 -1.787 0.421 -1.777 0.452 -1.719 0.469
37 -1.979 0.371 -1.977 0.381 -1.919 0.372 -1.914 0.388 -1.856 0.387 -1.849 0.409 -1.793 0.420 -1.783 0.447 -1.728 0.463
38 -1.980 0.371 -1.977 0.379 -1.919 0.369 -1.915 0.383 -1.858 0.384 -1.852 0.405 -1.797 0.412 -1.788 0.439 -1.734 0.454
39 -1.979 0.370 -1.977 0.377 -1.922 0.368 -1.918 0.382 -1.863 0.382 -1.856 0.403 -1.803 0.408 -1.795 0.434 -1.742 0.447
40 -1.978 0.368 -1.974 0.375 -1.921 0.367 -1.917 0.381 -1.864 0.380 -1.858 0.399 -1.806 0.405 -1.798 0.429 -1.747 0.441

41 -1.979 0.367 -1.976 0.375 -1.924 0.365 -1.920 0.378 -1.868 0.377 -1.862 0.395 -1.810 0.401 -1.802 0.425 -1.752 0.436
42 -1.979 0.367 -1.977 0.374 -1.926 0.364 -1.921 0.376 -1.871 0.376 -1.865 0.392 -1.815 0.398 -1.807 0.419 -1.758 0.430
43 -1.979 0.366 -1.977 0.373 -1.927 0.364 -1.924 0.377 -1.874 0.375 -1.868 0.391 -1.820 0.396 -1.812 0.417 -1.764 0.428
44 -1.978 0.364 -1.975 0.371 -1.927 0.362 -1.923 0.374 -1.875 0.371 -1.870 0.388 -1.822 0.392 -1.815 0.412 -1.768 0.422
45 -1.977 0.363 -1.975 0.370 -1.928 0.361 -1.924 0.372 -1.877 0.370 -1.872 0.386 -1.825 0.390 -1.818 0.408 -1.772 0.418

46 -1.978 0.364 -1.975 0.369 -1.928 0.360 -1.925 0.371 -1.879 0.369 -1.874 0.384 -1.828 0.388 -1.821 0.407 -1.776 0.415
47 -1.977 0.362 -1.974 0.368 -1.928 0.359 -1.925 0.370 -1.880 0.368 -1.875 0.381 -1.831 0.384 -1.824 0.403 -1.780 0.411
48 -1.977 0.362 -1.974 0.367 -1.930 0.360 -1.927 0.369 -1.882 0.365 -1.878 0.380 -1.835 0.382 -1.830 0.399 -1.787 0.407
49 -1.978 0.361 -1.976 0.368 -1.933 0.360 -1.929 0.369 -1.886 0.366 -1.881 0.379 -1.838 0.381 -1.832 0.398 -1.789 0.405
50 -1.976 0.360 -1.974 0.365 -1.932 0.357 -1.930 0.366 -1.888 0.363 -1.884 0.377 -1.841 0.379 -1.835 0.394 -1.794 0.402

55 -1.976 0.358 -1.974 0.363 -1.936 0.355 -1.933 0.363 -1.894 0.360 -1.891 0.371 -1.854 0.371 -1.850 0.385 -1.812 0.390
60 -1.975 0.355 -1.974 0.359 -1.939 0.353 -1.937 0.360 -1.902 0.357 -1.899 0.366 -1.864 0.365 -1.859 0.377 -1.824 0.379
65 -1.975 0.352 -1.973 0.356 -1.941 0.351 -1.939 0.356 -1.907 0.351 -1.904 0.360 -1.872 0.359 -1.868 0.370 -1.835 0.372
70 -1.974 0.351 -1.972 0.355 -1.943 0.349 -1.941 0.353 -1.912 0.349 -1.909 0.357 -1.880 0.357 -1.876 0.366 -1.846 0.367
75 -1.974 0.350 -1.973 0.353 -1.945 0.347 -1.943 0.351 -1.914 0.347 -1.913 0.354 -1.885 0.353 -1.882 0.361 -1.854 0.361

80 -1.973 0.348 -1.971 0.351 -1.945 0.347 -1.944 0.350 -1.918 0.347 -1.916 0.352 -1.890 0.350 -1.887 0.358 -1.861 0.358
85 -1.973 0.347 -1.972 0.349 -1.947 0.344 -1.946 0.347 -1.921 0.343 -1.920 0.349 -1.895 0.347 -1.892 0.354 -1.869 0.355
90 -1.973 0.348 -1.971 0.349 -1.949 0.344 -1.948 0.348 -1.925 0.345 -1.923 0.349 -1.900 0.348 -1.898 0.352 -1.875 0.352
95 -1.973 0.346 -1.971 0.347 -1.949 0.342 -1.948 0.345 -1.926 0.342 -1.925 0.346 -1.904 0.345 -1.902 0.350 -1.880 0.349
100 -1.973 0.346 -1.972 0.347 -1.951 0.343 -1.950 0.346 -1.929 0.343 -1.928 0.347 -1.908 0.346 -1.905 0.350 -1.885 0.350
200 -1.970 0.337 -1.969 0.337 -1.960 0.336 -1.959 0.337 -1.949 0.334 -1.949 0.335 -1.938 0.333 -1.938 0.336 -1.927 0.334

See Definition 2 and Remark 3 in the text.
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Table 2
Size and Power of Panel Unit Root Tests

(Experiment 1: No Structural Breaks, No Serial Correlation)

T = 10 T = 25 T = 50 T = 100
Size Power Size Power Size Power Size Power

N=10 LM 0.065 0.086 0.068 0.149 0.068 0.484 0.051 0.990
IPS 0.063 0.062 0.062 0.124 0.059 0.357 0.050 0.961

N=25 LM 0.064 0.080 0.054 0.207 0.058 0.802 0.060 1.000
IPS 0.051 0.066 0.051 0.162 0.059 0.622 0.055 1.000

N=50 LM 0.050 0.072 0.056 0.325 0.053 0.974 0.058 1.000
IPS 0.046 0.071 0.051 0.261 0.047 0.899 0.057 1.000

N=100 LM 0.051 0.083 0.060 0.518 0.052 1.000 0.042 1.000
IPS 0.051 0.072 0.063 0.415 0.054 0.997 0.049 1.000
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Table 3
Size and Power of Panel Unit Root Tests

(Experiment 2: Structural Breaks, No Serial Correlation)

T = 10 T = 25 T = 50 T = 100
Size Power Size Power Size Power Size Power

λ  = 0.5

N=10 LM_N 0.008 0.008 0.033 0.055 0.049 0.226 0.065 0.863
IPS_N 0.001 0.002 0.017 0.038 0.033 0.144 0.047 0.745
LM_B 0.083 0.094 0.074 0.160 0.072 0.460 0.064 0.985

N=25 LM_N 0.001 0.002 0.021 0.051 0.042 0.379 0.067 0.997
IPS_N 0.001 0.001 0.016 0.040 0.033 0.272 0.044 0.989
LM_B 0.060 0.074 0.054 0.201 0.067 0.775 0.075 1.000

N=50 LM_N 0.001 0.001 0.013 0.050 0.036 0.622 0.043 1.000
IPS_N 0.000 0.000 0.007 0.043 0.023 0.486 0.030 1.000
LM_B 0.062 0.086 0.064 0.297 0.060 0.968 0.059 1.000

N=100 LM_N 0.000 0.000 0.006 0.050 0.028 0.870 0.043 1.000
IPS_N 0.000 0.000 0.005 0.048 0.017 0.763 0.036 1.000
LM_B 0.068 0.106 0.058 0.473 0.059 1.000 0.050 1.000

λ  = 0.3

N=10 LM_N 0.006 0.007 0.029 0.046 0.057 0.199 0.056 0.851
IPS_N 0.000 0.000 0.006 0.007 0.025 0.046 0.035 0.534
LM_B 0.070 0.081 0.070 0.144 0.068 0.452 0.061 0.986

N=25 LM_N 0.001 0.000 0.019 0.048 0.046 0.353 0.046 0.998
IPS_N 0.000 0.000 0.002 0.003 0.009 0.058 0.016 0.877
LM_B 0.068 0.085 0.056 0.204 0.060 0.781 0.072 1.000

N=50 LM_N 0.000 0.000 0.009 0.032 0.033 0.536 0.048 1.000
IPS_N 0.000 0.000 0.000 0.000 0.003 0.077 0.017 0.995
LM_B 0.061 0.087 0.056 0.291 0.056 0.961 0.060 1.000

N=100 LM_N 0.000 0.000 0.004 0.028 0.024 0.810 0.040 1.000
IPS_N 0.000 0.000 0.000 0.000 0.000 0.085 0.007 1.000
LM_B 0.070 0.104 0.051 0.459 0.054 1.000 0.050 1.000

See Section 4.2 for the definition of LM_N, IPS_N and LM_B.
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Table 4
Size and Power of Panel LM Unit Root Tests

 (Experiment 3: Structural Breaks, Serial Correlation)

p = 0 p = 1 p = 2 p = 3 p = 4
  T  N Size Power Size Power Size Power Size Power Size Power

AR(1) Error: ρ = 0.3

 25 10 0.000 0.000 0.059 0.111 0.061 0.105 0.064 0.098 0.070 0.088
 25 0.000 0.000 0.064 0.163 0.086 0.160 0.075 0.135 0.070 0.110

50 0.000 0.000 0.061 0.229 0.075 0.180 0.061 0.144 0.075 0.130
100 0.000 0.000 0.058 0.357 0.077 0.283 0.072 0.207 0.073 0.165

 50 10 0.000 0.000 0.061 0.343 0.067 0.299 0.065 0.253 0.059 0.208
25 0.000 0.000 0.065 0.632 0.079 0.540 0.073 0.462 0.073 0.361
50 0.000 0.000 0.063 0.883 0.068 0.810 0.069 0.703 0.069 0.584

100 0.000 0.000 0.066 0.993 0.073 0.972 0.070 0.916 0.059 0.823

100 10 0.000 0.024 0.066 0.954 0.076 0.913 0.066 0.859 0.067 0.808
25 0.000 0.027 0.060 1.000 0.061 1.000 0.061 0.998 0.059 0.991
50 0.000 0.032 0.044 1.000 0.050 1.000 0.047 1.000 0.056 1.000

100 0.000 0.044 0.063 1.000 0.070 1.000 0.069 1.000 0.076 1.000

MA(1) Error: θ = -0.3

 25 10 0.880 0.961 0.165 0.267 0.063 0.106 0.043 0.073 0.042 0.052
25 1.000 1.000 0.237 0.441 0.059 0.132 0.040 0.063 0.030 0.051
50 1.000 1.000 0.334 0.656 0.052 0.160 0.024 0.066 0.021 0.053

100 1.000 1.000 0.540 0.890 0.058 0.237 0.021 0.078 0.019 0.053

 50 10 0.974 1.000 0.232 0.705 0.081 0.356 0.052 0.233 0.044 0.186
25 1.000 1.000 0.410 0.965 0.098 0.658 0.055 0.431 0.042 0.330
50 1.000 1.000 0.620 1.000 0.110 0.884 0.049 0.677 0.042 0.493

100 1.000 1.000 0.859 1.000 0.138 0.994 0.050 0.898 0.029 0.732

100 10 0.992 1.000 0.304 1.000 0.096 0.967 0.065 0.890 0.054 0.810
25 1.000 1.000 0.542 1.000 0.137 1.000 0.074 0.999 0.061 0.992
50 1.000 1.000 0.774 1.000 0.162 1.000 0.066 1.000 0.051 1.000

100 1.000 1.000 0.956 1.000 0.211 1.000 0.054 1.000 0.035 1.000

All the tests are conducted based on the statistic )( pB
LMΓ  defined in (3.14) of the text. See Section

4.3.


