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Abstract

Much recent work has focused on the estimation of regression functions in samples

which are truncated or censored. Much of this work has focused on the estimation of

a parametric regression function with an error distribution of unknown form. While

these method relax a strong parametric assumption about which we seldom have a

priori information, they still impose a strong parametric assumption on the regression

equation (which is presumably the focus of the analysis). Here we take the other

approach. An estimator is proposed for the problem of non-parametric regression when

the sample is truncated above or below some known threshold of the dependent variable.

We specify the error distribution up to a vector of parameters � while estimating the

regression function without assuming a parametric form. A simple \back�t" estimator

based on an initial kernel smooth is proposed. We establish consistency results for

this estimator when the error distribution is known up to a �nite parameter vector and

satis�es some regularity conditions. A small monte-carlo study is performed to ascertain

the �nite sample properties of the estimator. The estimator is found to perform well in

our experiment: achieving reasonable average absolute errors relative to the maximum

likelihood estimator| especially when truncation is severe.



1 Introduction

Consider the following equation:

y = g(x) + � (1.1)

where y is a quantity of interest, x a vector of regressor variables, g a continuous function

and � is a random draw from distribution F�� , where F�� is a member of a parametric family

indexed by � 2 � � R
p. Moreover, � is independent of x and both �� and g are unknown. It

is well known that, given some regularity conditions and a random sample from the process

(1.1), g can be consistently estimated by kernel regression, splines, sieves or a variety of

other non-parametric methods.

Here we consider estimation of g when data are observed from (1.1) only when y 2 [�;1)

where � is a known threshold. In this case, we will say the data are truncated below �.

Alternatively we can examine the case where the data are truncated above some known

threshold � if we observe the pair (y;x) only when y 2 (�1; �]. A common feature of

biometric and econometric data is that they are recorded from truncated samples and not

random samples. Examples include survival times for subjects after the onset of disease,

sales when we wish to estimate demand for all (potential) consumers and labor supply for

an entire work-eligible population from data on those already working.

Since F� belongs to a parametric family, an estimator for g and � in (1.1) may be

called semi-parametric. While there is a signi�cant literature on semi-parametric esti-

mation in censored and/or truncated regression problems, all of it has focused on the

related problem of estimation of a parametric regression function in the presence of an

unknown error distribution. For examples of this approach in biometric literature see
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Buckley and James (1982),Tsui et al. (1988), while for econometrics see Powell (1984,1986),

Duncan (1986), Fernandez (1986), Horowitz (1986), Ruud (1986), Newey(1986,1991), Cosslett (1991),

Ahn and J.L.Powell (1993), Lee (1994a,b) for linear regression and Gallant and Nychka (1987),

Ichimura (1993) for nonlinear regression. While these method relax a strong parametric as-

sumption about which we seldom have a priori information, they still impose a strong

parametric assumption on the regression equation (which is the focus of the analysis). Ad-

ditionally, since the expectation of the error term in the truncated sample is a smooth,

bounded and monotonically increasing function, the bias induced by misspeci�cation of the

error distribution will be equivalent to di�erences among functions in a restricted class. On

the other hand, estimating a highly nonlinear regression function within a linear class will

usually engender quite a large bias.

Here we take the other approach. We specify the error distribution up to a vector of

parameters � while estimating g without assuming a parametric form. The estimator is

very simple: requiring a initial kernel smooth followed by calculation of the unique root

to a simple �xed point problem. No simulation or grid search is required. In the next

section, we describe the estimator and establish uniform consistency of the kernel estimator

for a monotonic transformation of the population regression function. The third section

establishes a consistency result for the back�t estimator. The fourth section gives the

results of a small monte carlo study while section �ve concludes.
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2 A Simple Estimator

Consider the truncated regression problem where we observe pairs (yi;xi) 2 R� Rk from

iid draws of the process (1.1) only if yi exceeds a known threshold � which we set to zero

without loss of generality. We will consider the case of truncation from below in this paper,

but the case for truncation from above is essentially the same. Note that the truncated

pairs (yi;xi) are also iid, though in contrast to (1.1), the distribution of �i = yi � g(xi)

conditional on xi are not identically distributed. Henceforth we direct our analysis to this

truncated sample.

It is well known that methods which are strongly consistent under random sampling

become biased in a truncated sample (see Goldberger (1981) and Greene (1997) for the

case of OLS). We may view this bias as due to the omitted variable E(�j� > �g(x)) since

the mean of y conditional on x and a positive observation is:

E(yjx; y > 0) = g(x) + E(�j� > �g(x)) (2.1)

where,

E(�j� > �g(x)) =
R
1

�g(x) uf��(u)du

1� F��(�g(x))
(2.2)

We will denote the conditional mean of y given x and inclusion into the truncated sample

as:

r(x) = m(g(x); ��) = E(yjx; y > 0) = g(x) + E(�j� > �g(x)) (2.3)

where r(x) gives the conditional mean of y as a function of x while m(g(x); �) denotes

the mean conditional on the value g(x) and �. Since g is continuous and F� is absolutely
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Figure 1: Relationship Between r(x), m(x) and g(x)
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continuous, r will be a continuous function of x and hence measurable. Additionally if (2.2)

is di�erentiable in g(x) with derivative exceeding -1, m(:; �) will be a continuous, positive,

monotonically increasing function of g(x) and hence invertible. Our strategy to estimate

g is to simply estimate r consistently and then to invert m to \back�t" g. Assume the

following:

A1: g : Rk ! R is a continuous function, and Ey1(y > 0) < 1 where 1(:) is

the indicator function.

A2: x 2 Rk is a random vector, independent of � with an absolutely continuous

distribution function and continuous density h.
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A3: � is a random variable with an absolutely continuous distribution F �

� and

an everywhere positive density f�� . In order to identify a level for g, we assume

E� = 0.

Let

r̂n(x) =

Pn
i=1K(x�xi� )yiPn
i=1K(x�xi

�
)

be the Nadaraya-Watson kernel estimator of r(x) based on kernel K and window width �n

which satis�es the following properties:

A4:

� K is a density on Rk with an absolutely integrable characteristic function.

� �n ! 0 as n!1, and
p
n�kn !1.

Theorem 1 below establishes that while kernel regression of y on x in the truncated

sample is biased for g, it is uniformly consistent for the monotonic transform of g: r.

Theroem 1 Given A1-A4, then for every � 2 (0; supx2Rkh(x)],

supfx2Rk:h(x)>�gjr̂n(x)� r(x)j !p 0

The proof is standard and given in the appendix. Bounds for the rates of convergence can

be found in Bierens (1983).

Given our estimate of r, we may recover an estimate for the population regression

function g by inverting the de�nition (2.3) with respect to a consistent estimate of ��. In

order to insure this, we must guarantee that m(g(x); �) is monotonically increasing for all

values of �.
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In order to identify g from r, we add the following conditions:

A5:

� i. �� 2 � where � is a compact subset of Rp and

� ii. If � 6= �� then
f�(y � g(x))

1� F�(�g(x))
6= f��(y � g(x))

1� F��(�g(x))
:

� iii.
f�(y � g(x))

1� F�(�g(x))
is continuous at each � 2 � with probability one.

� iv. There is open set U 2 R such that r(x) 2 U with probability one and

supu2U
f�(u)

[1� F�(u)]2

Z
1

u

(�� u)f�(�)d� < 1 8� 2 �

� v. E[sup�2� jlog[
f�(y � g(x))

1� F�(�g(x))
]j] <1

Assumption A5i is made to insure uniform convergence in � of the sample likelihood.

When log(f�) is a concave density we may relax this requirement to � a convex set. As-

sumption A5ii. is an identi�cation condition, while A5iii. is a continuity condition. A5iv.

is necessary and su�cient for strict monotinicity ofm for any � 2 �, andA5v. is a standard

moment restriction. Note that if �� were known, E(�j� > u) would be a known function and

we could trivially de�ne ĝn(x) as the inverse of r̂n(x) = m(ĝn(x); �
�) by �nding the root

u = ĝn(x) of:

r̂n(x) = u+ E(�j� > �u) = 0

and we would have uniform consistency of ĝn from uniform consistency of r̂n given Lipschitz

continuity of the inverse. On the other hand, if g were known �� could be estimated

e�ciently from the residuals �i = yi � g(x) by maximum likelihood.

Given our initial kernel smooth of r(x), � de�nes ĝn, and any estimate of ĝn will generate

an estimate of �� through the estimated residuals �̂i = yi � ĝn(xi). We will employ an EM-

6



type algorithm to alternate between estimation of �� given ĝn and updating ĝn through

inversion of (2.3) given �. We compute our estimator ĝn by the following algorithm, which

we initialize with r̂n, E� refers to expectation with respect to F� .

Algorithm for the Back�t Estimator

� Step 1: An estimate ĝ0 of g is used to form residuals �̂i = yi � ĝ0(xi); i = 1 : : : ; n.

� Step 2: The estimate �̂ML is formed by maximum likelihood based on the residuals �̂i,

� Step 3: We �nd ĝ1 as the root of g(x)� r̂n(x)� E�̂ML

(�j� > �g(x)) = 0

� Step 4: Go to step 1 and repeat until ĝ1 = ĝ0.

Upon convergence, the algorithm �nds a solution �̂n to:

r̂n = m�1

�̂n
(r̂n)� E�̂n (�j� > �m�1

�̂n
(r̂n)) (2.4)

and we estimate ĝn = m�1
�̂n
(r̂n).

3 Consistency

The �rst main result establishes that the truth satis�es (2.4) asymptotically.

Theroem 2 Given A1-A5, �̂ML(�
�; r)!p �

�.

proof: At the truth �� and r, �̂ML is the maximum likelihood estimator based on

the censored sample �i = yi � g(xi) = yi �m�1
�� (r(xi)); i = 1 : : : ; n Continuity of f� and g

implies continuity and hence measureablility and separability of Q(y;x; �) = log[ f�(y�g(x))
1�F�(�g(x))

]
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for each � 2 �. Furthermore since Q(y;x; �) is dominated by A5v. and continuous with

probability one by A5iii., we have by lemma 1 of Tauchen (1985):

1

n

nX
i=1

Q(yi;xi; �)! EfQ(y;x; �)g

almost surely, uniformly in �. Moreover EfQ(y;x; �)g is continuous in �. The identi-

�cation and dominance conditions A5ii. and A5v. ensure EfQ(y;x; �)g is uniquely

maximized at �� by the information inequality. The result follows by theorem 2.1 of

Newey and McFadden (1994). 2

Combined with theorem 1, this result suggests that an estimate based on r̂n might be

consistent as well if there are no other solutions to (2.4). The uniform convergence of r̂n

to r will be su�cient as long as some Lipschitz conditions hold. If there is a sequence of

solutions which converges to a limit, theorem 3 establishes that the limit is consistent for

��. Before stating the result we add another identi�cation condition:

A6: For all � 2 �,

1

n

nX
i=1

[Ai(�) +Bi(�)]

has a probability limit of full rank, where

aj;k = f�1� (�̂i)f
@2f(�̂i)

@�k�j

�@m�1
� (r̂n(xi))

@�j
+
@f�(�̂i)

@�j

�@2m�1
� (r̂n(xi))

@k@j
g

+
@f�(�̂i)

@�j

�@m�1
� (r̂n(xi))

@�j
f�(�̂i)

�2f@f�(�̂i)
@�j

�@m�1
� (r̂n(xi))

@�j
g
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and,

bj;k = f�(�m�1
� (r̂n(xi)))[1� F�(�m�1

� (r̂n(xi)))]
�1@

2m�1
� (r̂n(xi))

@�k@�j

+
@f�

@�k

�@m�1
� (r̂n(xi))

@�k

�@m�1
� (r̂n(xi))

@�j
[1� f�(�m�1

� (r̂n(xi)))]
�1

+ f�(�m�1
� (r̂n(xi)))

2�@m�1
� (r̂n(xi))

@�j

�@m�1
� (r̂n(xi))

@�k
[1� F�(�m�1

� (r̂n(xi)))]
�2

are elements from the jth row and ith column from the pxp matrices Ai(�) and

Bi(�) respectively.

While rather complicated, A6 is veri�able given some parametric family f� as total di�er-

entiation of (2.3) with respect to � reveals:

@m�1(r(x); ~�)

@�
=

�@E�(�j�>�u)
@�

ju=m�1[r(x);~�]

1 +
@E� (�j�>�u)

@u ju=m�1[r(x);~�]

Hence given an initial smooth r̂n, a parametric family for the error term and �, simulation

and the law of large numbers could serve to check A6. Given this additional condition and

some Lipschitz restrictions, we can establish �� as the only limit to the back�t estimator.

Theroem 3 Given A1 - A6, f�(u);
@f�(u)
@� ; m�1

� (u);
@m�1

�
(u)

@� all Lipschitz in u for u 2 U in

some neighborhood of ��, and sequence of solutions f�̂ng converging to �0:

�0 = �� and,

ĝn(x)!p g(x)

proof:

The estimator ĝn uniquely solves for all x in the support of the empirical distribution:

ĝn(xi) = r̂n(xi)� E
�̂n
(�j� > �ĝn(xi)) = m�1

�̂n
(r̂n(xi)) for i = 1; : : : ; n
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where �̂n is the maximum likelihood estimator based on �̂i = yi� ĝn(xi) = yi�m�1

�̂n
(r̂n(xi)).

A Taylor's expansion of the score equations around �� gives:

Sn(�̂n) = 0 = Sn(�
�) +rSn(��)[�̂n � ��]

where �� = �n�
� + (1� �n)�̂ for some �n 2 [0; 1], and

Sn(�) =
1

n

nX
i=1

f@f�(�̂i)
@�

@m�1
� (r̂n(x))

@�
f�(�̂i)

�1 + f�(�m�1
� (r̂n(x)))

@m�1
� (r̂n(x))

@�
[1� F�(�m�1

� (r̂n(x)))]
�1g

rSn(�) =
1

n

nX
i=1

Ai(�) + Bi(�)

Lipschitz where Ai and Bi are as given in A6. By theorem 1, r̂n !p r uniformly for all

x : h(x) > �g; for any � 2 (0; supx2Rkh(x)]. By the Lipschitz conditions, we may replace

r̂n by r in the equation for Sn(�) above, since the two expressions di�er by an average of

terms which can be made arbitrarily small. Furthermore Sn(�
�)!p 0, since this is now the

weighted score evaluated at the truth as n!1. Hence �̂n !p �
� so long as the probability

limit of rSn(��) is full rank which is given by A6. Hence �̂ !p �
�, and ĝ(x)!p g(x) by the

Mann-Wald Theorem.

2

While we are unable to entirely rule out spurious solutions to (2.4), theorem 3 guarantees

that any convergent sequence of solutions is the correct one. Moreover theorem 3 may be

relaxed of the conditions if we replace r̂n with r.
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4 Finite Sample Performance

In order to judge the �nite sample performance of our estimator, a monte carlo simulation

was performed. The simulation was based on the following equation:

y = g(x) + � = � + �sin(x) + � (4.1)

with threshold � = 0 where x is uniformly distributed on the unit interval and � is a

standard normal deviate. The parameter values were set to � = 1 and  = 2� while �

was varied to achieve di�erent expected levels of truncation (10%, 25% and 50%). Five

hundred replications were performed at samples sizes of 100, 250, 500, 1000 and 5000.

Bandwidths were set to 0.15, 0.10, 0.08, 0.08 and 0.06 for sample sizes 100, 250, 500, 1000

and 5000 respectively (bandwidths were increased slightly for the 50% truncation level).

Each bandwidth was chosen subjectively by the author from examination of kernel smoothes

for the �rst monte carlo sample at the various bandwidths. Plots of four kernel smoothes

of the �rst sample of size 100 at 25% truncation are shown in �gure 4. The Epanechnikov

kernel, K(u) = 3
4(1� u2)I(juj � 1) was employed.

Equation (4.1) obviously satis�es A1-A3 while the Epanechnikov kernel satis�es A4.

As � = � 2 (0;1) in the present setting, assumptions A5i and A5v require � be bounded

from above and away from zero. A5iv corresponds to @
@u
[� �(u=�)

�(u=�) ] > �1 where � and �

denote the standard normal density and distribution respectively.

As a basis for comparison, we calculated three estimates for g: Our back�t estimator, our

back�t estimator with known variance, and the maximum likelihood estimator initialized

at the true parameter values. The back�t estimate with known variance will capture the

rate bound achievable from kernel regression, while our MLE gives a sense for the overall
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Figure 2: Four Bandwidths for the First sample
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relative e�ciency of our estimator. Since our function is C1 the initial kernel smooth is

bounded below, but may obtain, a
p
n rate of convergence (Stone (1982)).

Figure 4 graphs the three estimators along with the true regression function for the �rst

monte carlo sample at n = 250 and a 25% truncation rate. Iterations of the algorithm result

in a \bending" of the curve towards the origin as the bias term is updated as the algorithm

�nds a convergent value of �. The MLE estimate and the back�t with true � = �� are also

displayed for comparison. A feature of the back�t estimator which becomes apparent is

its tendency to exaggerate variations in r̂n which suggests optimal rates for window widths

may be slower than under conventional kernel regression.
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Figure 3: Examples of the Three Estimators
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In order to capture a global measure of convergence, the average absolute errors where

computed and the results are given in the table 1 below.

Table 1: Monte Carlo Results

Average Absolute Error

Back�t Back�t with known � MLE

Expected % Truncated 10% 25% 50% 10% 25% 50% 10% 25% 50%

n=100 0.230 0.309a 0.574a 0.223 0.298 0.544a 0.180 0.263 0.560b

n=250 0.162 0.228 0.411a 0.158 0.219 0.358a 0.116 0.162 0.362

n=500 0.123 0.178 0.339a 0.124 0.169 0.299a 0.079 0.117 0.242

n=1000 0.095 0.130 0.247 0.093 0.121 0.209 0.056 0.086 0.184

n=5000 0.051 0.068 0.146 0.049 0.064 0.126 0.026 0.038 0.097

aSome estimates failed due to underow.
bTwo samples failed to converge.

Initially, we notice average errors vary (as expected) positively with the level of trunca-

tion and negatively with sample size for all three estimators. While increasing the truncation

rate for a �xed sample e�ectively reduces the sample size, higher truncation rates have the

e�ect of unbalancing the distribution of x| �ltering very little data when g is high and

�ltering heavily when g is low. For example, a sample of 250 with 10% truncation is very

close to a sample of 500 with 50% truncation in terms of expected sample size, but for all

three estimators the latter sample has errors approximately twice the size as the former.

From examination of table 1, we see that the back�t estimator produces errors which are

comparable to the MLE, but increasing in relative terms as the sample increases: from 2.5%

larger for sample size 100 and 50% truncation up to 96% larger for a sample size of 5000

14



and 10% truncation. Moreover, the back�t estimator performs relatively better to MLE

as conditions deteriorate. The back�t estimator gains ground in terms of relative average

error as the sample decreases, and it performs better as truncation becomes more severe.

An interesting question is to examine the e�ects of estimating � to error rates. The back-

�t estimator converges to the rate of the kernel estimator with known variance, indicating

that estimation of � has no e�ect on the precision of the back�t estimator asymptotically

(although there is still a sizable di�erence at the highest truncation rate). Since the rate

of the �rst stage kernel smooth is never faster than
p
n, we expect the limiting factor in

precision to be the initial estimate of r.

While the algorithm to calculate the solution to the �xed point problem in (2.3) generally

converged in a �nite number of steps, calculation of the estimator failed in some samples

due to computer underow when the initial kernel smooth was near the boundary and �̂2

is relatively small. This occurred in our experiment because inverting r(x) necessitates

inverting �(u=�)
�(u=�) near zero. Although this is not a problem asymptotically (see A5iv), it

can be in �nite samples. Here, this was only a problem for small samples with high levels of

truncation. Failures accounted for 31.4% of the samples of size 100 and 50% truncation. they

accounted for 11%, 1.6% and 0.8% for the 250(50%), 500(50%) and 100(25%) sample size-

truncation cohorts respectively. Over-smoothing should help to alleviate this in applications.

5 Conclusion and Extensions

In this paper, we have developed a non-parametric estimator for the regression function in a

truncated a sample when the error distribution is known up to a parameter vector. We have
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established consistency results for the back�t estimator and found that it performs well in

�nite samples, even (and especially in terms of relative e�ciency) in the presence of severe

truncation. Our back�t estimator is easy to implement, relatively inexpensive with respect

to computer resources and achieves reasonable average absolute errors in our monte carlo

experiments without any optimization of window width. Higher relative e�ciency should

be achievable through cross-validation or some other optimizing procedure.

This work is a �rst step towards exploring a useful model for inference in truncated

samples. While con�dence bands may be easily calculated with a parametric bootstrap,

asymptotic results for the back�t estimator would be of interest. In addition, the issues

of bandwidth selection and optimal rates of convergence for the back�t estimator have not

been touched upon. While the results developed here used a kernel smooth as the initial

estimate for the truncated regression function any consistent non-parametric method robust

to heteroskedasticity will do. For example, a series estimator would allow the addition of

linear control variables within a restricted generalized additive model in applications where

the dimensionality of x is high.

Appendix

Before moving to prove theorem 1, we establish two helpful lemmas. De�ne

an(x; �) =
1

n

nX
i=1

yiK(
x� xi

�
)

as the numerator of our kernel estimator r̂n .
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Lemma 1 Given A1,A3,A4,

Esupx2Rk jan(x; �)� Ean(x; �)j= O(n�1=2)

proof:

Since K has an absolutely integrable characteristic function �(t) =
R
Rk

exp(it0x)K(x)dx

we may invert it and substitute,

an(x; �) =
1

n
(
1

2�
)k

nX
i=1

yi

Z
exp(�it0[x� xi

�
])�(t)dt

and,

an(x; �)�Ean(x; �) = �k(
1

2�
)kf
Z

1

n

nX
i=1

yiexp(x� xi)�(�t)dt� E

Z
1

n

nX
i=1

yiexp(x� xi)�(�t)dtg

and with a change of variable,

Esupx2Rk jan(x; �)� Ean (x; �)j

� �k(
1

2�
)k
Z
Rk

Ej 1
n

nX
i=1

[yiexp(it
0xi)�Eyiexp(it

0xi)]jj�(�t)jdt

= �k(
1

2�
)k
Z
Rk

wn(t)j�(�t)jdt;

By Liapounov's inequality,

wn(t) � var(
1

n

X
yicos(t

0xi)) + var(
1

n

X
yicos(t

0xi))

and independence with bounded second moments for yiI(yi > 0) gives the result.

2

17



Lemma 2 Let f be a bounded, uniformly continuous real function on Rk. For every density

K, on Rk we have,

lim�!0supx2Rk j
Z

��kf(z)K(
x� z

�
)dz � f(x)j = 0

The proof of lemma 2 is standard and left to the reader.

A.1 Proof of Theorem 1

proof: the supremum is measurable by A3 (for measureability of r) and the fact that

the set fx 2 Rk : h(x) > �g is compact combined with Lemma 1 of Jennrich (1969). Let

f(x) = g(x)h(x). Since f is bounded and uniformly continuous, by A4 and lemma 2:

limn!1supx2Rk jE
1

n

X
��kyiK(

x� xi

�
)� r(x)h(x)j = 0

combining this with lemma 1, we have:

limn!1Esupx2Rkj
1

n

X
��kyiK(

x� xi

�
)� r(x)h(x)j = 0 (A.1)

and replacing yi by 1,

limn!1Esupx2Rkj
1

n
��kyiK(

x� xi

�
)� h(x)j = 0 (A.2)

(A.1) and (A.2) combined with Chebeshev's inequality gives the result.

2
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