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Abstract
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to the creation of a larger internal capital market, thereby making integrated firms
less dependent on the provision of follow-up financing by outside investors. But
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repay their debt. By making this threat less effective, integration may aggravate
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1 Introduction

Why do some firms merge while others don’t? This question, which is closely linked
to the question of the boundaries of the firm, has inspired numerous theories and argu-
ments, most of which are based on standard neoclassical concepts like market power and
technological efficiency. More recently, however, the focus has shifted toward a contrac-
tual view of the firm, the idea being that integration may reduce problems arising from
contractual incompleteness. Building on seminal work by Coase (1937) and Williamson
(1975, 1985), Grossman and Hart (1986) and Hart and Moore (1990) (henceforth GHM)
argue that hold-up problems in a vertical relationship may be alleviated if the firms
in question merge. While integration improves the incentives of the controlling firm to
make relationship-specific investments, it dulls the incentives of the subordinate firm(s).
Integration is optimal if the overall effect is positive.

Along with GHM, this paper provides a theory of integration based on contractual
incompleteness. Unlike their model, however, our model is not primarily about vertical
integration, nor does it center upon the problem of providing agents with incentives to
make relationship-specific investments. Instead, it is based on the inability of parties to
write financial contracts ensuring that all positive NPV projects are undertaken. In our
model, integration comes with both benefits and costs. On the one hand, integration
entails liquidity spillovers from high- to low-return projects, thereby providing integrated
firms with better access to external finance than non-integrated firms. The dark side
of integration is that, by pooling internal cash flows, integration at least partly shields
firms from the disciplinary pressure of the capital market.

In a two-period model, Bolton and Scharfstein (1990) show that in a world where
financial contracting is incomplete, the threat not to provide follow-up financing may be
the only means that investors have to induce borrowers to repay their debt. While this
mitigates the underinvestment problem, it does not solve it completely. In particular,
low-return firms are liquidated after the first period even though liquidation is strictly
inefficient. Since the investor cannot break even in the second period, he only provides
follow-up financing if this allows him to extract a greater repayment in the first period
over and above what he can obtain by means of a contract. As for low-return firms, the
firm’s entire cash flow is verifiable. Consequently, the continuation probability, i.e. the
probability of obtaining second-period financing, is zero. At the same time, the high-
return firm’s limited liability constraint is slack, implying that the high-return firm has
excess first-period liquidity. To skim off the excess liquidity, the investor would have to
raise the firm’s continuation probability. But this is impossible as the high-return firm
already obtains second-period financing with probability one.

If there are two firms, merging the firms (i.e. projects) may alleviate the underin-
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vestment problem even if the firms are ex ante identical. With a certain probability, one
of the two projects has a high return while the other has a low return. In this case, if
the firms have merged, the investor can skim off some of the high-return project’s excess
liquidity in exchange for raising the low-return project’s continuation probability, thus
increasing efficiency. As a result, the merged firm’s continuation probability exceeds the
average continuation probability that obtains if the two firms remain separate. Inciden-
tally, the outcome cannot be replicated by a contract where, if there is both a low- and a
high-return firm, the high-return firm supplies the low-return firm with excess liquidity.
The reason is that, since profits are nonverifiable, the high-return firm has an incentive
to conceal its type and save on the transfer payment.

Similar to the property rights literature, in our model integration involves a change
in the authority structure. If the two firms remain separate, the manager of the low-
return firm cannot order the manager of the high-return firm to provide the low-return
firm with excess liquidity. Also, as was argued above, a contract stipulating such a
transfer is impossible due to the non-verifiability of the firms’ cash flows. However, if
the firms integrate, one of the two managers (or a third party frequently referred to
as ‘headquarters’ in the internal capital markets literature) has the authority to shift
funds from one project to another, thus allowing the merged firm to borrow against the
projects’ combined cash flows. Incidentally, in our model integration involves no change
in the underlying information structure as both managers already fully observe each
others’ cash flows prior to the merger.

There is also a dark side to integration. As integration leads to a pooling of cash
flows, the merged firm may be able to finance second-period production with internal
funds in cases where the two stand-alone firms had to resort to the capital market.
Hence, integration may weaken the investor’s termination threat. If this negative effect
dominates the spillover effect, integration may no longer be optimal. As is shown, this
is the case if the probability that projects have a high return is sufficiently high.

The model also addresses the issue of whether firms should optimally merge with
firms whose projects are positively or negatively correlated with their own projects. If
the two projects are strongly positively correlated, the probability of having both a high-
and a low-return project is low. Accordingly, liquidity spillovers are unlikely to occur,
and the expected efficiency gain from integration is negligible. Conversely, if the two
projects are strongly negatively correlated, the probability of having both a high- and a
low-return project is high, and the expected gain from integration is large. Hence, our
model offers a rationale for corporate diversification based on the notion that diversified
firms have better access to external finance; an explanation that differs from the existing

tax and agency cost explanations (e.g. Lewellen 1971; Amihud and Lev 1981; Jensen



1986; Majd and Myers 1987; Stulz 1990).

In addition to GHM, our paper is related to recent work by Fluck and Lynch (1999).
Fluck and Lynch study mergers between firms that are financially constrained and firms
that are not financially constrained. For the merger to create synergies, it is crucial that
one of the firms is sufficiently profitable to be financed as a stand-alone. By contrast, in
our model the question of whether integration is optimal does not hinge on there being an
asymmetry between the firms. If both firms are financially constrained, integration may
be optimal as it provides the fims with access to external finance. On the other hand,
integration may also be optimal if none of the firms is currently financially constrained
as it increases the likelihood that external financing will be provided in the future.
Moreover, Fluck and Lynch assume exogenous coordination costs to ensure that non-
integration (or divesting) becomes optimal for certain parameter values. By contrast, in
our model the costs and benefits of integration are both endogenous.

Our paper also contributes to the growing literature on internal capital markets.
Internal capital markets serve to reallocate funds between projects, e.g. to spend the
cash flow generated in one division on investment in another division (Williamson 1975;
Gertner, Stein, and Scharfstein 1994; Stein 1997). What this suggests is “an interde-
pendence among otherwise completely unrelated investment projects that just happen
to be located under the roof of the same company” (Stein 1997, p.112). Similarly, in
our model the question of whether a particular project obtains follow-up financing may
depend on the performance of the second project. Several recent articles provide evi-
dence in favor of this investment-interdependence hypothesis. For instance, Shin and
Stulz (1998) document that the investments of small divisions in diversified firms are
strongly related to the cash flows of other divisions. Likewise, Lamont (1997) finds that
the investments of non-oil divisions in the U.S. oil industry are linked to the cash flows
generated in the firms’ core business.

Technically, our paper is related to Mehta (1993) who studies optimal contracting in
a principal-agent framework with limited liability and multiple projects. Mehta shows
that, as the number of projects goes to infinity, the efficiency loss due to limited liability
goes to zero. Similarly, in our model combining individual projects relaxes the firms’
limited liability constraints, thus increasing efficiency. Unlike our model, however, Mehta
considers a complete contracting framework where output is verifiable.

Finally, our paper is related to, but differs in its focus from, the literature on group
lending (Banerjee, Besley, and Guinnane 1994; Besley and Coate 1995; Armendériz de
Aghion 1999). The essential feature of group lending is joint liability, i.e. if any one
member of the group does not repay his loan, the entire group is treated as being in

default. As in our model, this creates an interdependence among borrowers. Unlike our



model, however, the group lending literature is primarily concerned with the strategic
interaction between borrowers, e.g. free riding, mutual monitoring, or punishment of
deviating group members by other group members.

The rest of the paper is organized as follows. Section 2 presents the model. Section
3 contains our main result: if project bundling does not affect the firms’ need to return
to the capital market for follow-up financing, integration is always optimal. On the
other hand, if project bundling reduces the firm’s need to return to the capital market,
integration is only optimal if the ex ante probability of a high return is sufficiently
low. Section 4 shows that this result continues to hold if the firm and the investor can
renegotiate both on and off the equilibrium path. Finally, Section 5 considers arbitrary
correlations. As is shown, the efficiency gain from integration is inversely related to the

projects’ correlation coefficient. Section 6 concludes.

2 The Model

The model is based on Bolton and Scharfstein (1990). Suppose there are two periods and
two firms with no cash or assets. The firms face identical investment opportunities. At
the beginning of the first period, each firm can invest F' > 0 and earn an end-of-period
return 7m; < F' with probability § > 0 and 7, > F' with probability 1 — 6, where 7}, > ;.
Since 7 := 0m; + (1 — ) m, > F), the investment is strictly profitable. The second period
is a replica of the first period. For the moment, we assume that projects are uncorrelated
both across periods and across firms. In Section 5, we then allow for the case where in
any given period the two projects may be correlated with each other.

As a benchmark, consider first the case where the two firms remain separate (‘non-
integration). At date 0, a monopolistic investor can make a take-it-or-leave-it offer to
each of the firms which the firms accept if the contract provides nonnegative expected
value.! The contracting environment is as follows. All relevant variables are observable,
but only payments to and from the firms are publicly verifiable. In particular, this
implies that neither actual profits nor the firms’ investment decisions are verifiable.
However, since the project yields at least 7, the investor, after paying F, can always
enforce repayment of m; as this amount is in the firms’ tills regardless of whether they
have invested or not. Finally, any profit not paid out at date 1 must remain in the firms
and cannot be consumed until date 2.

Suppose for a moment that there is only one period. At date 1, each firm optimally

!See Bolton and Scharfstein (1990). Both in the original model by Bolton and Scharfstein and the
two-firm variant considered here, the qualitative results remain the same if the take-it-or-leave-it offer
is made by the firm(s).



reports that profits are low, implying that the investor gets back only m; < F. Antici-
pating this, the investor provides no financing. If, however, there are two periods and
the investor is needed in the second period, he can threaten to cut off funding at date
1, thus extracting more than 7; in the first period. Formally, the assumption that the

investor is needed in the second period amounts to assuming that
(Al) T, —m < F.

Incidentally, since m; < F|, the investor’s threat to cut off funding is credible.

The investor’s contract-design problem can be analyzed as a direct revelation game
where the investor pays each firm F' dollars at date 0 and the firms each make a report
s € S:={l,h} at date 1.2 If a firm announces $, it indicates that its first-period profits
are r (§), where r (I) := m and r (h) := m,. Based on this report, the firm then pays
R' () dollars at date 1 and R? () dollars at date 2, and the investor pays the firm F
dollars with probability (($) at date 1 to finance second-period production. Note that
allowing for a second report at date 2 is pointless as each firm would always report
the type corresponding to the lowest possible second-period payment R?. Hence, the
investor’s problem is to find values (3 (s), R!(s), and R?(s) that maximize expected
profits subject to the first- and second-period limited liability constraints R' (s) < r (s)
and R%(s) < r(s) — R'(s) + m, where s is a firm’s true type, as well as the usual
truthtelling and individual rationality constraints. Formally, the investor solves

1 2
A [R' () +p(1) (R*(1) - F)]

+(1—0) [R" (h) + B(h) (R (h) - F)]

s.t.
F(5) = RY(s) + () [T — B (5)] 1)
> r(s)— R'(8)+B(3) [T — R*(3)] foralls, s €8,
R (s) <7 (s), (2)
and
R*(s) <r(s)—R'(s)+m forall s € S. (3)

The individual rationality constraints have been omitted as they are implied by the
limited liability constraints (2)-(3).3

2In principle, a firm’s report could condition both on its own type and the other firm’s type. As is
shown at the end of this section, however, extending the message space does not change results.

3Truthtelling can alternatively be ensured by setting R! (8) > r (s), which makes it physically im-
possible for type s to mimick type 5. In the case of upwards incentive compatibility, the solution by
Bolton and Scharfstein (1990) satisfies both this condition and (1).
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As reports depend only on the firms’ own types, the optimal contract under non-
integration is the same as in Bolton and Scharfstein (1990). Accordingly, the optimal
contractis 3 (1) = 0,8 (h) =1, R* (I) = R? (h) = m, and R! (h) = 7. Note that, although
the optimal contract is not unique, any solution must have G () = 0, §(h) = 1, and

R! (I) = m. Inserting the optimal contract in the investor’s objective function yields
—F+m+(1-0)(7—F), (4)

which implies that the investor invests at date 0 if and only if

T — T

<7 — .
F<7 59 (5)

The above solution involves two types of inefficiencies. First, if 7 — (7 —m) /(2 —0) <
F < 7, the investor does not invest although the project has a strictly positive expected
value. Second, if the investor invests, the ex ante expected welfare loss from inefficient
liquidation at date 1 is 6 (7 — F'). Note, however, that although liquidation is strictly
inefficient, there will be no renegotiation on the equilibrium path because the maximum
amount that the investor can assure in the second period is m < F.*

It remains to show that the investor cannot improve upon the above solution by
introducing reports that condition both on a firm’s own type and the other firm’s type.
As is well known, if projects are correlated and sufficiently large penalties are possible,
reports that condition on the entire state of nature typically yield the first-best (Crémer
and McLean 1985, 1988; Johnson, Pratt, and Zeckhauser 1990). In the present case,
the firms can fully observe each others’ cash flows, implying that the first-best can even
be reached if the projects are uncorrelated. However, due to the non-verifiability of
first-period wealth, the investor cannot impose penalties over and above what the firms
voluntarily announce in their reports, viz. R' (3). Given this restriction, it is immediate

that allowing for an extended message space yields no improvement.

3 Liquidity Spillovers and Capital Market Discipline

3.1 Integration

Consider now the case where the two firms have merged (‘integration’). At date 1, the
merged firm can be either of type (I,1), (I,h), or (h,h). The corresponding first-period
cash flows are r (I,1) := 2m with probability 6%, r(I,h) := m + m, with probability
20(1—0), and r(h,h) := 21, with probability (1 —0)>. Without loss of generality,

4 A more subtle issue arises if we allow for renegotiation off the equilibrium path. Off-the-equilibrium

path renegotiation is considered in Section 4.



we restrict attention to contracts where the investor pays 2F with probability 5 (3) at
date 1, and the merged firm pays R'(8) at date 1 and R?(8) at date 2, where the
message space is now S := {({,1), (I, k), (h, h)} . In principle, more general contracts are
conceivable, e.g. where the investor randomizes over payments that are different from
0 and 2F. As is shown in Appendix A, however, allowing for an extended contracting
space leads to the same results.

While we continue to assume that 7, — m; < F, we now allow for the possibility that
the merged firm can finance one (but only one) second-period project without borrowing
new capital at date 1. Formally, we shall distinguish between the following two cases:
if 2 (m, — m) < F, the investor is always needed for the merged firm to operate in the
second period (‘no self-financing’). On the other hand, if 2 (7, — m) > F, the merged
firm can finance exactly one second-period project with internal funds if and only if both
first-period returns are high (‘self-financing’). For expositional clarity, we deal with the

two cases in two separate subsections.

3.2 No Self-Financing

Under ‘no self-financing’, the merged firm cannot operate in the second period without

borrowing additional capital at date 1. Formally, this amounts to assuming that
(A2) 2(7rh—7rl)<F.
The investor’s contract-design problem is then

oo e =2F + 6° |[R' (1,1) + B (1,1) (R* (1,1) — 2F)] (6)
+29(1—9 (R (1, 1) + B (h,1) (R? (h,1) — 2F)]

)
—6)*|R! (h,h) + B (h, h) (R* (h, h) — 2F )]

s.t.
r(s) — R (s) + B (s) [27 — R? ()] (7)
> r(s)— R'(3)+ B(3) |27 — R* ()] forall 5,5 € S,
R'(s) <7 (s), (8)
and
R?(s) <r(s)— R'(s)+2m forall s € S. 9)

As under non-integration, the individual rationality constraints have been omitted as

they are implied by the limited liability constraints (8)-(9).
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Instead of solving the above problem, we consider a relaxed problem where the global
incentive compatibility constraints (7) are replaced by the constraints that neither type
(h, h) nor type (h,1) has an incentive to mimick type (I,) . In the proof of Proposition 1,
we then show that the solution to this relaxed problem also solves the original problem.
In the relaxed problem, the investor solves (6) subject to the limited liability constraints

(8)-(9) and the downwards incentive compatibility constraints
r(s) = R () + B (s) [27 = B? ()] = 7 (s) = R (1L1) + B (L) [2m — B2 (1,0)]

where s € {(h,h), (h,l)}. Denote these downwards incentive compatibility constraints

by C (h,h) and C (h,1), respectively. The following two lemmas simplify the analysis.
Lemma 1. At any optimum, it must hold that (3 (1,1) =0 and R'(l,1) = 2m.

Proof. We argue to a contradiction. Suppose 3(I,1) > 0, and define R'(l,1) := 2m
and R%(1,1) := R*(1,1) — 2m + R(1,1). If B(l,1) < 1, replacing (R*(l,1), R*(l,1)) with
(Rl(l 1), R2(1, l)) strictly increases the investor’s expected profit, whereas if 3(I,1) = 1,
replacing (RY(1,1), R?(1,1)) with (Rl(l,l), R%l,l)) leaves the investor’s expected profit
unchanged. Moreover, if C'(h, h), C(h,1), and the limited liability constraints hold under
RY(1,1) and R?(1,1), they also hold under R'(,1) and R*(,1).

From the second-period limited liability constraint for type (I,[), it follows that
R2(1,1) — 2F < 0. On the other hand, since # — F' > 0 and R?(l,1) < 2m, it must be
true that 27 — R?(1,1) > 0. Accordingly, reducing 3(I,1) strictly improves the investor’s
expected profit without violating any of the incentive compatibility constraints, which
contradicts the optimality of 5(l,1) > 0. Given that 3(l,l) = 0 is optimal, the fact that
RY(1,1) = 0 is also optimal is immediate. B

Lemma 2. At any optimum, the incentive compatibility constraints C(h,l) and
C(h, h) must be binding.

Proof. We argue again to a contradiction. Suppose C'(h, h) is slack. If G(h, h) = 0,
C'(h, h) implies that the first-period limited liability constraint for type (h, h) must also
be slack. But this implies that the investor can improve his expected profit by raising
RY(h, h) without violating any constraint, contradiction. If 8(h,h) € (0,1), the unique
optimal payments for type (h,h) are R'(h,h) = m + m, and R%*(h,h) = 2m. Since
RY(1,1) = 2m and B(I,1) = 0 by Lemma 1, however, this violates C(h, h), contradiction.
Finally, if 3(h, h) = 1, any optimal contract must satisfy R*(h, h)+ R%(h, h) = 27, +2m.
Since, 2(m, — m) > 2(7 — m), this violates again C'(h, h), contradiction.

Next, suppose C(h,l) is slack. If G(h,l) = 0, the argument is the same as above.
If 3(h,1) € (0,1), the unique optimal payments for type (h,l) are R'(h,l) = 7, + m
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and R?(h,l) = 2m. Observe that if 268(h,1)(7 — m) > m, — m, this contract is indeed
incentive compatible. Since 2(m — F) < 0, however, the investor is strictly better off
by reducing ((h,l), contradiction. Finally, if 5(h,l) = 1, any optimal contract must
satisfy RY(h,l) + R?(h,l) = m, + m + 2m. In particular, this implies that any optimal
contract yields the same profit to the investor as the contract where R(h,l) = 7, + m
and R?(h,l) = 2m. As was shown above, however, the investor would then want to
decrease ((h, 1), contradiction. B

Lemma 1 establishes that the lowest type (I,1) receives zero rent in equilibrium.
Lemma 2 is a standard feature of contracting problems of this sort. Equipped with

Lemmas 1 and 2, we can now derive the optimal contract.

Proposition 1. Under ‘no self-financing’, the following contract is optimal:
1) Type (1,1): 3(1,1) =0 and R (l,1) = 2m.

2) Type (I,h): B(h, 1) =1/[2(1 —0)], R* (h,l) = mp+m, and R* (h,1) =2m if 0 < 1/2,
and B (h,l) =1, R' (h,l) = 27, and R*(h,l) = 2m if 6 > 1/2.

3) Type (h,h) : B(h,h) =1, R' (h,h) = 27, and R? (h,h) = 2m,.

Proof. Setting 3(1,1) = 0 and R'(/,1) = 2m and inserting the binding C'(h,l) and
C'(h, h) constraints in (6), the objective function can be rewritten as

2(m—F)+2m +40(1—0)B(h, 1) (F—F)+2(1—=6)B(h,h)(T—F).  (10)

By inspection, (10) is strictly increasing in both G(h,l) and ((h,h), implying that the
solution is B(h,l) = B(h, h) = 1 if feasible. If 27 < 7, + 7, setting G(h,l) = B(h,h) =1
is indeed feasible. The optimal payments R' (h,l), R*(h,l), R' (h,h), and R? (h,h)
then follow from C'(h,l), C(h,h), and the respective limited liability constraints.

If 27 > 7, +m, setting 3(h, 1) = 1 violates either C'(h, 1) or the second-period limited
liability constraint for type (h,l). Hence, B(h,l) < 1. Next, observe that 27 > R%(h,1).
To see this, suppose to the contrary that 27 < R?(h,[). Subtracting the binding C'(h, )

constraint from the second-period limited liability constraint for type (h,[) gives
o+ m > R2(h,1) + B (h,1) [27 — R*(h,1)] . (11)

If 2 = R?(h,1), this violates 27 > ), + 7, contradiction. Suppose therefore that 27 <
R%*(h,1). Solving (11) for 3 (h,1), we have 83 (h,l) > [m, + m — R*(h,1)] / [27 — R*(h,1)],
which is strictly greater than 1 since 27 < R?(h,l) and 27 > 7, +m imply that ), +m <
R%*(h,1), contradiction. Solving the binding C'(h,[) constraint for 3(h,l), we obtain
B (h,1) = [RY(h,1) — 2m] / [27 — R%(h,l)] . Moreover, since 27 > R?(h,l), it holds that

10



9B(h,1)/OR (h,1) > 93(h,1)/0R?(h,l) > 0, implying that both the first-and second-
period limited liability constraint for type (h,l) must be binding. Solving the binding
limited liability constraints for R'(h,l) and R?*(h,l), we have R'(h,l) = 7, + m and
R%(h,l) = 2m. Inserting these values in 8 (h,l) = [RY(h,l) — 2m] /[27 — R?(h,1)], we
finally obtain g (h,l) = 1, —m]/[2(7 —m)| =1/[2(1 - 6)].

It remains to show that the solution to the relaxed problem also solves the original
problem (6)-(9) . Since C(h,1) and C(h, h) are both binding, all other incentive compat-
ibility constraints are also binding, which implies that the solution is globally incentive
compatible. B

As in the case of non-integration, some of the payments from the firm to the investor
are not unique. However, any optimal contract must exhibit the same continuation
probabilities and yield the same expected utility to both the firm and the investor as
the contract in Proposition 1.

When choosing an optimal contract, the investor faces a tradeoff between efficiency
and rent extraction. While continuation is socially efficient, it involves a personal loss for
the investor of 2 (m; — F). The investor is therefore only willing to finance second-period
production if doing so allows him to extract a greater repayment in the first period
over and above what he can obtain through a contract, viz. 2m. As for type (I,1), the
entire first-period profit is verifiable. Consequently, type (I,1)’s continuation probability
is 0. By contrast, type (h,h)’s first-period profit is sufficiently high to compensate
the investor for the maximum possible second-period loss. Accordingly, type (h,h)’s
continuation probability is 1. As for type (h,1), the maximum first-period repayment
that the investor can extract on top of the verifiable amount 27 is 7w, — 7. To make
type (h,l) indifferent between paying 2m and obtaining no follow-up financing, and
paying 2m plus R* (h,1) —2m < 7, —m and obtaining an expected second-period rent of
B (h,1)2 (7 — m), the continuation probability and the repayment R' (h,l) must satisfy

R (h,1) — 2m
1) = 2(m—m)
Clearly, if > 1/2, which implies that 7, —m, > 2 (T — m) , it is optimal to set R! (h,l) =
27 and (3 (h,l) = 1. Conversely, if 8 < 1/2, the first-period limited liability constraint
R (h,1) — 2m < m, — m is binding. The solution is then R! (h,l) = m}, + m and

T, — T 1

Bh.1) = 2F—m) 2(1—0)

as stated in the proposition.
By inserting the optimal contract in the investor’s objective function, we can compare
the investor’s profit under integration with his profit under non-integration. The result

is summarized in the following proposition.
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Proposition 2. If 0 < 1/2, the investor invests at date 0 if and only if F <
T—(T—m)/(2—0+6%) . Conversely, if 8 > 1/2, the investor invests at date 0 if and
only if F <7 — (F—m)/(2—0%). In both cases, integration is optimal.

Proof. If § < 1/2, the investor’s expected profit under the contract in Proposition
lis2(m—F)+2 [9 + (1 - 0)2} (T — F), and if § > 1/2, the investor’s expected profit
is 2(m — F)+2(1— 0% (7 — F). By contrast, the investor’s expected profit under non-
integration is 2 (m — F') 4+ (1 — 0) 2 (7 — F) (cf. (4)), which is strictly less than either of
the two profits under integration for all §. Solving the respective profits for F' completes
the proof. B

Thus, in the absence of self-financing, integration is always optimal. As the proposi-
tion shows, integration reduces both types of inefficiencies that are present if the firms
remain separate. First, the critical investment level under integration is greater than
under non-integration, implying that more projects are financed if they are put together
under the roof of a single firm. Second, if the investor invests, the expected welfare loss
from inefficient liquidation at date 1 is 6?2 (7 — F) if # > 1/2 and

(6°+20(1—0) 1= (D)) 2(F—F) = (0 -6°)2(F - F)

if & < 1/2. By contrast, the expected welfare loss under non-integration is 26 (7 — F'),
which is strictly higher than either of the two values under integration.

To see why integration improves efficiency, consider the case where one project has
a high return and the other has a low return (if both projects have the same return,
the repayments and continuation probabilities are the same under integration and non-
integration). If the two firms remain separate, one of them (type h) is continued while
the other (type [) is terminated. As argued earlier, increasing type I’s continuation
probability beyond 0 does not pay for the investor as he cannot extract more than the
verifiable amount 7; in the first period. At the same time, however, type h’s first-
period limited liability constraint is slack. While type h has excess liquidity of 7, — 7,
the investor cannot siphon off this excess liquidity as type h’s continuation probability
already attains the maximum value of 1. By contrast, if the two firms integrate, the
investor can siphon off some of type h’s excess liquidity in exchange for raising type
I’s continuation probability. As a result, the firms’ average continuation probability
is increased from [G(I)+ B (h)] /2 = 1/2 to B(h,]) = 1/[2(1—0)] > 1/2if § < 1/2
and 3 (h,l) = 1if § > 1/2, which explains the efficiency gain. Effectively, integration
thus involves a liquidity spillover from the high- to the low-return project with the
consequence that it is optimal for the investor to raise the firms’ average continuation
probability, thereby reducing the amount of inefficient liquidation.
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Incidentally, the efficiency gain cannot be replicated by an insurance contract where,
if there is both a high- and a low-return firm, the high-return firm transfers excess
liquidity to the low-return firm at date 1. The reason is that, under any such arrangement
the incentive-compatibility constraint of the high-return firm is violated, implying that
type h prefers to claim that he is type [ rather than make the insurance payment.’ In

order to realize the efficiency gain, the two firms must therefore necessarily merge.

3.3 Self-Financing

Under self-financing, the merged firm can finance one of the two second-period projects
with internal funds if and only if both first-period returns are high. Formally, this

amounts to assuming that

(A3) 2F>2(m—m)>F

Given that type (h, h) can finance a second-period project without borrowing additional
capital from the investor at date 1, the contract in Proposition 1 is no longer incentive
compatible. If type (h, h) tells the truth, his expected payoff is 27, — 2m;. By contrast,
if type (h, h) mimicks type (,[), he can use the retained cash of 27, — 2 to finance a
second-period project. His expected payoff is then 27, — 27, + (T — F'), which is strictly
greater than his expected payoff from truthtelling. To restore incentive compatibility, the
investor must raise type (h, h)’s payoff from truthtelling by reducing either R' (h, h) or
R? (h, h) . Reducing the first-period repayment R! (h, h) raises a new problem, however,
as type (h,!) may then want to mimick type (h, h). The contract below carefully avoids
this problem by reducing R? (h,h) and setting R (h,h) > 7, + m, thereby making it
physically impossible for type (h,[) to mimick type (h, h).

Proposition 3. Under self-financing, the following contract is optimal:
1) Type (1,1): 3(1,1) =0 and R (l,1) = 2m.

2) Type (I,h) : B(h,1) =1/12(1 —0)], R' (h,l) = m,+m, and R* (h,1) = 2m if 0 < 1/2,
and B (h,l) =1, R*(h,l) = 27, and R*(h,1) = 2m if 6 > 1/2.

3) Type (h,h): B(h,h) =1, R* (h,h) = 27y, and R*(h,h) =7 — 2(m, — m) + F.
Proof. As under ‘no self-financing’, we again solve a relaxed problem. The corre-

sponding incentive compatibility constraint for type (h,h), which explicitly takes into

account the possibility that type (h, h) can finance one or more second-period projects

Recall that in the case of non-integration, the incentive compatibility constraint of type h under
the optimal contract holds with equality.
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with internal funds by mimicking type (I,1), is denoted by C'(h, h).® Type (h, h)’s payoff

from deviating and mimicking type ([,1) is then as follows:

2~ RO + 60D RA RO op o R'(1,1) < 2F
o ] TLBLDIG-F) ) |
gw[h - R(( §]>2+< 8(, Q)W RO o~ R > 2R

Given that R'(l,1) < 2m, the case where 27, — R'(l,1) < F can be safely ignored
as it violates (A.3). Moreover, observe that Lemmas 1 and 2 continue to hold (with
C(h, h) being replaced by C(h,h)). Since 3(I,1) = 0 and R'(l,l) = 2m by Lemma 1,
(A.3) implies that UP(h,h) = 2(m, — m) + 7 — F. As in the proof of Lemma 1, the

investor’s objective function can then be rewritten as
—2(m —F)+20(1 —0)8(h,1)2(7 — F) + (1 — 60)*(28(h,h) — 1) (7 — F). (12)

As (12) is strictly increasing in both ((h,l) and ((h, h), the arguments in the proof of
Proposition 1 extend to the present proof. In particular, the optimal contracts for types
({,1) and (h,l) are the same as in Proposition 1. Furthermore, we have g(h,h) = 1,
which, in conjunction with C(h, h), implies that R'(h, h) = 2m), and R%(h,h) = 7 + F —
2(mp, — m). To check for the neglected incentive compatibility constraints, note that it

is impossible for type (h,1) to repay R'(h,h) = 27, at date 1. B

Both the repayments and the continuation probability for the lowest and the inter-
mediate type are the same as under ‘no self-financing’. What has changed, however, is
the repayment for the highest type. Type (h,h)’s payoff is now T — F + 2 (m, — 1),
which is strictly greater than his payoff of 2 (7, — m;) under ‘no self-financing’. As the
continuation probability of type (h, h) remains the same, this implies that the investor’s
profit is reduced by ™ — F. Thus, allowing for the possibility of self-financing causes a
shift in profits from the investor to the firm.

As under ‘no self-financing’, the payments from the firm to the investor are not
unique. However, any optimal contract must exhibit the same continuation probabilities
and yield the same expected utility to both the firm and the investor as the contract
in Proposition 3. Inserting the optimal contract in the investor’s objective function and

solving for F' provides us with the following proposition.

OWe ignore the possibility of on-the-equilibrium-path self-financing. As the solution to the relaxed
problem does not allow for this possibility, the restriction is without loss of generality. In Appendix A,
however, we consider a more general contracting environment which also allows for the possibility of

on-the-equilibrium-path self-financing.
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Proposition 4. If 0§ < /2 — 1, the investor invests at date 0 if and only if F <
T—(T—m)/(2-6). If § € [\/5 -1, 1/2) , the investor invests at date 0 if and only
if F<m—(Tm—m)/ (1 +0+(1—0) /2) . Finally, if 6 > 1/2, the investor invests at
date 0 if and only if FF <7 — (7—77;)/(1—1—20(1—9)—#(1—9)2/2>.

If 0 < /2 — 1, non-integration is optimal. Conversely, if 8 > /2 — 1, integration is

optimal.

Proof. If § < 1/2, the investor’s expected profit under the optimal contract in Propo-
sition 3is 2 (m; — F')+2 (0 +(1-6)° /2) (7 — F),and if § > 1/2, the investor’s expected
profit under the optimal contract is 2 (m; — F') +2 (20 (1—6)+(1—6)° /2> (m — F). By
contrast, the investor’s expected profit if the two firms remain separate is 2 (m, — F') +
(1—-0)2(7 — F), which is strictly less than his profit under integration if and only if
6 > /2 — 1. Solving the respective profits for F completes the proof. B

As the proposition shows, integration may no longer be optimal if it allows firms to
finance second-period production without having to return to the capital market. In
a world where financial contracting is incomplete, the threat not to provide follow-up
financing (the ‘termination threat’) may be the only effective instrument that investors
have to make firms repay their debt. Without this instrument, investors may be unwilling
to provide any financing at all. By reducing the firms’ exposure to the disciplinary
sanctions of investors, integration may thus aggravate financing constraints caused by
contractual incompleteness. In Proposition 4, this is reflected in a decrease in the critical
investment level compared with that in Proposition 2.

The decrease in the critical investment level goes hand in hand with a decrease in
investor profits. To ensure that type (h, h) does not mimick type (I, 1), the investor must
raise type (h,h)’s equilibrium payoff compared with that under ‘no self-financing’. In
fact, type (h,h)’s equilibrium payoff is now higher than twice the equilibrium payoff
obtained by type h under non-integration. Accordingly, if the ex ante probability of
type (h,h) grows sufficiently large, integration becomes too costly for the investor. In
the present context, this is the case if § < v/2 — 1.

4 Off-the-Equilibrium-Path Renegotiation

4.1 Non-Integration

As remarked earlier, there is no scope for on-the-equilibrium-path renegotiation as the
investor necessarily makes a loss in the second period. If the parties can renegotiate
off the equilibrium path, however, the “optimal” contract in Proposition 1 is no longer
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incentive compatible. To see this, suppose type h deviates and mimicks type [. In that
case, the firm is liquidated even though continuation would yield an efficiency gain of
7— F. To realize this gain, the firm would only need additional funds of F'— (7, — m) < m,
implying that it is mutually beneficial for the parties to replace the original contract with
a new contract stipulating a payment of F' — (7, — m;) from the investor to the firm at
date 1 and a repayment of F'— (7, — m;) < z < m from the firm to the investor at date 2.
Following Bolton and Scharfstein (1990), we assume that in the renegotiation game the
firm and the investor can make a take-it-or-leave-it offer with probability o and 1 — «,
respectively. Type h’s payoff from mimicking type [ and renegotiating is then

0(7—F+7Th—7Tl)—|—(1—01)<71'h—71'l):7Th—7Tl—|—C¥(7—F),

which is strictly greater than his payoff of 7, — m; from truthtelling. To restore incentive
compatibility, the investor must raise type h’s truthtelling payoff by o (7 — F), e.g. by
increasing R! (h) from 7 to 7, and reducing R? (h) from 7 to ®— (1, — m) —a (F — F) .7

We thus have the following proposition.

Proposition 5. Under non-integration and off-the-equilibrium path renegotiation,

the following contract is optimal:
1) Type I : 3(1) =0 and R (]) = m.
2) Type h: B(h) =1, RY(h) = mp,, and R*(h) =7 — (m, —m) —a(F— F).

Note that, as renegotiation reduces the investor’s expected profit by (1 — 0) a7 — F),

both the critical investment level and total welfare are lower than under full commitment.

4.2 Integration

As under non-integration, we would expect that allowing for off-the-equilibrium-path
renegotiation lowers investor profits and thereby reduces both the critical investment
level and total welfare. The question then is whether the decrease in profits is greater
under integration or non-integration. If the decrease in profits is greater under integra-
tion, the result that under ‘no self-financing’ integration is always optimal may no longer
hold. On the other hand, if the decrease in profits is greater under non-integration, the
result that under self-financing non-integration is optimal for sufficiently small values
of # may no longer be true. The purpose of this section is to illustrate that both re-

sults continue to hold if we allow for off-the-equilibrium-path renegotiation. In what

"Bolton and Scharfstein (1990, Section Ib) propose an alternative, but payoff-equivalent solution
where R? (h) is left unchanged and R! (h) is reduced to T — o (T — F) . Once again, this shows that the

transfers under the optimal contract are not unique.
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follows, we restrict attention to the case where 7, + m < 2F. The result, however, is
perfectly general and extends to all other parameter values (in total, there are 5 cases

to be distinguished). We begin with the optimal contract.

Proposition 6. Define 6 :=1— a(m, — F) / [(m, — m) (2 — @)], and suppose m, +
m < 2F. Under integration and off-the-equilibrium-path renegotiation, the following con-

tract is optimal:
1) Type (1,1): 3(1,1) =0 and R'(l,1) = 2m.

2) Type (I,h) : B(h,1) = [m—m +a(®—F)]/[2(7 —m)], R (h,]) = 7, + m, and
R?(h,1) = 2m if 6 <0, and B(h,1) = 1, RY(h,1) = m, + m, and R*(h,1) = 27 — ), +
m—a(@—F)if 0> 0.

3) Type (h,h) : B(h,h) = 1 and R'(h,h) = 2m,. Moreover, under (A.2) (‘no self-
financing’), type (h,h) receives R*(h,h) = 2|7 +m — 7, — (7 — F)], whereas under
(A.3) (self-financing), he receives R*(h,h) =2 [t +m — 7, — a(m — F)]—(1—a)(7—F).

Proof. See Appendix B.

Inserting the optimal contract in the investor’s objective function, we can again
compare the investor’s profit under integration with that under non-integration. The
following proposition shows that our results are robust with respect to the possibility of

off-the-equilibrium-path renegotiation.

Proposition 7. Suppose w, + m < 2F. Under ‘no self-financing’, integration is
always optimal. Under self-financing, there exists a critical value 0 < 8 < 1 such that

for all 6 < 0 non-integration is optimal, and for all 6 > @ integration is optimal.

Proof. Consider first (A.2) (‘no self-financing’). For types ([,1) and (h,l), investor
profits are the same under integration and non-integration, whereas for type (h,[), in-
vestor profits are strictly greater under integration for all #. Next, suppose (A.3) holds
(self-financing), and consider the case where 6 > 0, implying that B(h,l) = 1. By in-
spection, investor profits are greater under integration if and only if (1 —0)(1 —«a) < 26,
which is true for all & > 6. On the other hand, if # < 6, implying that B(h,l) < 1,

investor profits are greater under integration if and only if

™—F

(1-0)(1—a)(7—F) <20

[T — T+ (T — F)],

™ — T

P— 2 —
02?::J1+(1+ @ T F) —<1+ @ T F)

1—(1/7Th—7'('l 1—0(7Th—71'l

or

Comparing 6 with 0 yields 6> ., which completes the proof. W
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5 Correlated Projects

If a firm wants to merge with another firm, should it merge with a firm whose projects
are positively or negatively correlated with its own projects? In the following, we try to
answer this question by investigating to what extent the efficiency gain from integration
(if integration is efficient at all) depends on the underlying correlation coefficient p.
Notice that if p = 0, we are back to Section 3.

While it is immediate that the optimal contracts under both self-financing and ‘no
self-financing’ are the same as in Section 3, allowing for correlation between the projects
alters the probabilities of the respective types and thus the investor’s expected profit.®
Recall that if the projects are uncorrelated, the probability of type (I,1) is %, the prob-
ability of type (I,h) is 6 (1 — ), and the probability of type (h,h) is (1 —6)*. If the
projects are correlated, the corresponding probabilities are  [1 — (1 — p) (1 — )] for type
(1,1), 2(1 — p) O (1 — 0) for type (I,h), and (1 — ) [1 — 6 (1 — p)] for type (h,h).” Given
these probabilities, we can derive the counterparts of Propositions 2 and 4. Consider
first the case where (A.2) holds (‘no self-financing’). We have the following result.

Proposition 8. Suppose (A.2) holds (‘no self-financing’). If 6 < 1/2, the investor
invests at date 0 if and only if F <7 — (TF—m)/[2—0+ (1 —p)6%. Conversely, if
0 > 1/2, the investor invests if and only if F <7 — (F—m) /[2—0*— pf (1 —0)].

In both cases, integration is optimal for oll p < 1. If p = 1, integration and non-

integration are revenue-equivalent.

Proof. If < 1/2, the investor’s expected profit under the optimal contract in
Proposition 1is 2 (m; — F')+2 [«9 +(1-6)°— peﬂ (7T — F),and if @ > 1/2, the investor’s
expected profit is 2 (m — F)+2[1 — 6% — pf (1 — )] (7 — F'). By contrast, the investor’s
expected profit if the two firms remain separate is 2 (m, — F') + (1 — 0) 2 (7 — F'), which
is strictly less than (equal to) either of the two profits under integration if p < 1 (if
p = 1). Solving the respective profits for F' completes the proof. B

8To see why the optimal contracts are identical to Section 3, note that neither the incentive com-
patibility constraints nor the limited liability constraints depend on the probabilities of the respective
types. It is then straightforward to show that Lemmas 1 and 2 continue to hold. Inserting the results
from Lemmas 1 and 2 in the investor’s objective function shows that the objective function is increasing

in both g (h,1) and G (h, h) for all p. The rest is analogous to the proof of Proposition 1.
9The proof is straightforward. Denote the random variables associated with the two projects by X

and Y, respectively. The joint probabilities are then w := Pr(x = m,y = 7)) = Pr(x =mp,y =),
Prx=y=m)=0—-—w,and Pr(zr=y=m,) =1—60—w. Since p:=Cov (X,Y) /oxoy and ox = oy,
we have p=1—w/6 (1 — 0). Solving for w completes the proof.

Incidentally, as w < min[f,1— 0], we obtain as a lower bound for the correlation coefficient p =
1 — (min[f,1—6]) /[0 (1 —0)]. For each p, we call all ¢ for which p > p(6) holds feasible.
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Recall from Section 3 that integration only matters with respect to the intermedi-
ate type (h,l). If the firm is either of type ([,1) or (h,h), the investor’s profit under
integration and non-integration is the same. Consider now the extreme case where the
two projects are perfectly positively correlated. In this case, the probability of type
(h,l) is zero, implying that it makes no difference whether the projects are bundled or
not. By contrast, if p < 1 the probability of type (h,[) is non-zero and integration is
strictly optimal. The efficiency gain from integration is maximal if the two projects are
perfectly negatively correlated, in which case the ex ante probability of type (h,l) is 1.
In Proposition 8, this is reflected in the fact that the critical investment level is strictly
decreasing in the correlation coefficient p.

The result that the efficiency gain from integration is decreasing in the amount of
correlation is reminiscent of a similar result in portfolio theory. The reason for the di-
versification benefit is different, however, since all agents are risk neutral. What matters
is solely the probability of having a high- and a low-return project at the same time, in
which case liquidity spillovers can materialize.

Consider finally the case where (A.3) holds (self-financing). For the sake of brevity,
we only consider the question of whether to integrate or not. The corresponding critical
investment levels are easy to derive and listed in the working paper version (Inderst and
Miiller 1999).

Proposition 9. Suppose (A.3) holds (self-financing). Depending on the correlation
coefficient, the comparison between integration and non-integration is as follows.
1) p € (2/3,1] : Non-integration is always optimal.
2) p € (1/3,2/3] : If 6 < 1/[3(1 — p)] non-integration is optimal, whereas if 6 >
1/[3(1 — p)| integration is optimal.
3)pe(=1/2,1/3]: If 6 < := (p — 248+ p? — 8p) /12 (1 — p)] non-integration is
optimal, whereas if 0 > 0 integration is optimal.

4) p € [—1,—1/2] : Integration is always optimal.

Proof. If 6 < 1/2, the investor’s expected profit under the optimal contract in Propo-
sition 3is 2(m — F)+[1—0+60(1—p)(14+0)] (T— F), and if > 1/2, the investor’s
expected profit under the optimal contract is 2 (m, — F')+[1 + 30 (1 — p)] (1 — 0) (7 — F).
By contrast, the investor’s expected profit if the two firms remain separate is 2 (m;, — F')+
(1—0)2(7 — F). Comparing expected profits completes the proof. B

Proposition 9 is very intuitive. If the correlation coefficient is close to 1, the prob-
ability of having both a high- and a low-return project is negligible. Consequently,
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the liquidity spillover effect is small and the additional inefficiency due to self-financing
dominates (Case 1). In this case, non-integration is always optimal. Conversely, if the
correlation coefficient is close to —1, the liquidity spillover effect is sufficiently large and
integration is always optimal (Case 4).!° For all other values of p, there exists a critical
value of 6 (1/[3(1 — p)] in Case 2 and @ in Case 3) such that integration is optimal
if and only if € lies above this value. As is easy to show, the critical value is strictly
increasing in p. Moreover, if p = 2/3 the critical value is 1, and if p = 0 the critical

value is § = v/2 — 1, which corresponds to the solution in Section 3.

6 Concluding Remarks

This paper presents a theory of integration based on the inability of parties to write
comprehensive financial contracts. Integration entails both benefits and costs. On the
one hand, integration involves liquidity spillovers from high- to low-return projects en-
suring that integrated firms can finance more projects than non-integrated firms. On the
other hand, integration, by pooling firms’ cash flows, reduces the firms’ need to return
to the capital market for follow-up financing. But in a world where financial contracting
is incomplete, the threat not to provide follow-up financing may be the only instrument
that investors have to make firms repay their initial debt. By weakening this threat,
integration may thus aggravate already existing financing constraints.

In addition to addressing the question of optimal firm size, the paper also addresses
the twin question of optimal scope. Given that a firm wants to merge with another firm,
should it merge with a firm whose projects are positively or negatively correlated with its
own projects? Interestingly, the answer is that bundling negatively correlated projects
is always better even though in our model all agents are risk neutral, the reason being
that negative correlation maximizes the likelihood that liquidity spillovers materialize.
Similarly, one may ask whether a firm’s portfolio should optimally consist of projects
belonging to the same or a different risk class, or whether it is better to bundle projects
with the same or a different profitability. While neither question has been addressed in
the paper, the paper provides an ideal framework to examine these and other questions
concerning the composition of firms’ project portfolios.

Our paper also suggests that integration may be an optimal response to predation. As
pointed out by Bolton and Scharfstein (1990), the investors’ commitment to terminate
funding if a firm’s performance is poor may provide other firms with incentives to lower

their financially constrained rival’s profits, e.g. by increasing advertising or starting a

0Tf p € [-1,—1/2], there exist values of @ for which non-integration is optimal, but they lie outside
the feasible range (cf. footnote 10).
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price war. If there are two financially constrained firms, our results suggest that merging
the two firms may reduce their competitors’ incentives to prey as poor performance by
a project no longer necessarily leads to the project’s termination. In particular, if the
second project performs well, it may even be true that both projects are continued
with probability one. Hence, our model suggests that multi-project firms such as highly
diversified conglomerates have a deeper pocket and are thus less vulnerable to predatory

behavior by competitors than stand-alone firms.

7 Appendix A: General Contracting Environment

This section shows that the contracts derived in Propositions 1 and 3 remain optimal in
a more general contracting environment. We allow for the following contracting space.
After the investment of 2F at date 0, the firm announces a type s at date 1. With
probability 7;(s), where ¢ € I = {0,1,2} and Y ;c;7i(s) = 1, the investor makes (net)
payments N!(s) at date 1 and N?(s) at date 2. These payments are chosen such that
it is both feasible and optimal for type s to invest in exactly ¢ second-period projects in
case the realization of the random variable is i.

Given this setup, the investor’s objective function is

—2F— > 3, 1) [N} (1,1) + N2(L, 1) = 201 = 6) 3" ~i(h, 1) [N} (B, 1) + NZ(h, 1)

icl iel
—(1=0)>>"i(h, h) [N} (h,h) + N7 (h, )] .
iel

As in the main text, we consider a relaxed problem. The first- and second-period limited

liability constraints for type s € S, L!(s) and L2(s), are as follows:
- If yo(s) > 0, Li(s) and L3(s) are given by

v
o

r(s) + Ny (s)
r(s) + Ny (s) + N3(s) > 0.

- If y1(s) > 0, L3(s) and L3(s) are given by

r(s) + Ni(s) — F
r(s) + Ni(s) + Ni(s) — F+m > 0.

v
o

- If 5(s) > 0, Li(s) and L3(s) are given by

r(s) + Ny(s) — 2F
r(s) + Ny(s) + Ni(s) — 2F +2m > 0.

Y
=
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As an illustration, consider the case where i = 1. If L1(s) and L?(s) both hold, the firm
can invest in one second-period project. Since 7 — F' > 0, investment is strictly optimal.
The firm can, however, also invest in two second-period projects if it has sufficient funds
for both investment at date 1 and repayment at date 2 even in the worst possible state.
We ignore these additional constraints (for ¢ = 0,1) for the time being. Later, we will
show that they are satisfied by the characterized solution.

As in the main text, we restrict attention to the downwards incentive compati-
bility constraints for types (h,h) and (h,l) with respect to type (/,1) and show that
the neglected incentive compatibility constraints hold under the optimal solution. De-
note the payoff which type s obtains on the equilibrium path by U(s). Suppose type
s € {(h,l),(h,h)} deviates and announces ([,l). The respective payoff if i € I is re-
alized is denoted by U;(s). To calculate the payoffs for i = 0,1, we must first deter-
mine how many projects types (h, h) and (h,[) can finance given the specified payments
N}(1,1) and N2(I,1). Note that an upper bound on the number of projects is given by
the resources available at date 1 and by the required repayment at date 2. Consider
first © = 1 and suppose that the deviating type s has sufficient funds to invest in two
projects, i.e. r(s)+ Ni(l,1) > 2F. His second-period limited liability constraint is met if
r(s)+2(m — F)+ N}(,1) + N2(I,1) > 0. To see that this constraint is indeed satisfied,
simply insert L3(l,1). Hence, if type s has sufficient funds to invest in two second-period
projects, he will be able to repay NZ(I,1) at date 2. Consider next i = 0. We can again
use the previous argument to show that, if the deviating type s can invest in one project,

he can also repay NZ(I,1) at date 2. To summarize, we have

Us(s) = r(s)—2F + NX(1,1) + N2(1,1) + 2,
{MQ—F+%+MW@+NﬂM) if 7(s) + N(1,1) — 2F < 0

U
1(s) r(s) — 2F + 27 + N{(I,1) + N(1,1) otherwise,

and

r(s) + NL(L 1) + N2(1, 1) it r(s) + NA(LD) < F

if r(s) + Ng(l,1) > 2F and r(s) — 2F
+2m + Ng(1,1) + N3(1,1) > 0

r(s)+ Ng(l,0) + N&(I,1) + 7 — F otherwise.

Uo(s) =14 r(s)+ Ng(l,1) + N3(I,1) +2(7 — F)

The additional case distinction with regard to Uy(s) is due to the fact that, unlike
1t = 1,2, it does not generally hold for + = 0 that a firm investing in two projects
can automatically repay NZ(I,1) in all states. We are now in the position to state the
incentive compatibility constraint for type s € {(h, 1), (h, h)}, which is denoted by C(s):

U(s) > > v(l,DUi(s).

il
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The following two claims are analogous to Lemmas 1-2.

Claim 1. At any optimum, it must hold that vo(I,1) = 1 and Nj(I,1) + Ng(l,1) =
—2m,.. Moreover, it is optimal to set NE(l,1) = —2m; and Ng(l,1) = 0.

Proof. We show that 7;(,1) > 0 is not optimal for i = 1,2 by arguing to a contra-
diction. First, suppose the original contract for ¢ = 0 is replaced by a contract specifying
Na(1,1) = —2m and NZ(1,1) = 0. Clearly, the new contract satisfies L}(l,1) for t = 1, 2.
Moreover, the investor’s profit under the new contract is not smaller than under the old
contract (in fact, if L2(1,1) was previously binding, it is not affected at all). It remains
to check whether C(s) hold for types (h, h) and (h,1). This is indeed the case if Uy(s)
does not increase as a result of the replacement. But from the definition of Up(s), it is
obvious that the deviator’s payoff is non-increasing since the sum of payments at dates
1 and 2 is non-increasing while the funds available at date 1 are decreasing.!!

Next, consider the contract for ¢ # 0 assuming that ~;({,1) > 0. Suppose the orig-
inal contract is replaced by a contract specifying N}(I,1) = iF — 2m and N2(1,1) =
—um;. Obviously, the investor’s payoff cannot decrease as a result of the replacement.
Moreover, U;(s) cannot increase, implying that incentive compatibility is preserved.!?
Given the new contracts (Ng(I,1), N3(1,1)) and (N}(I,1), N3(1,1)), it then follows that
iF — N2(1,1) < 0 and U;(s) > Up(s). Hence, by reducing vixo(l,!) and increasing vo(l, 1),
the investor can strictly improve his profit without violating C/(s), which contradicts the
optimality of the original contract where +;(1,1) > 0 for some i # 0.

Having proved that vo(l,1) = 1, it is immediate that L?(/,!) must be binding, i.e.
that Ng(1,1) + N2(I,1) = —2m. Moreover, the investor is indifferent between payments
at date 1 and date 2, while increasing Ng(I,1) at the cost of decreasing NZ(I,1) only
relaxes the constraint C(s). Hence, there exists a solution specifying N2(1,1) = —2m
and Ny ([,1)=0.m

By Claim 1, we have Uy(h,l) = 7, — m, Ug(h,h) = 2(m, — m) if (A.2) holds (‘no
self-financing’), and Uy(h, h) = 2(m, — m) + 7 — F if (A.3) holds (self-financing) (note
that to derive these expressions, we only need v(,1) = 1 and Nj(I,1) + NZ(1,1) = —2m,,

which, according to Claim 1, must hold under any solution).

Claim 2. At any optimum, the incentive compatibility constraints é’(h, l) and

C' (h, h) must be binding.

Un fact, given (Na(1,1), N3(1,1)), we obtain Uy(h,l) = 7, — m, while for type (h,h) (A.2) implies
Uo(h,h) = 2(mp, — m), and (A.3) implies Uy(h,h) = 2(mp, —m) + 7 — F.

2Note that N} (l,1) = iF —2m and N2(l,1) = im imply U;(s) = r(s) — 2m +i(7 —m) for types (h,h)
and (h,1).
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Proof. Suppose to the contrary that C(s) is slack for s € {(k,1), (h, h)}. Moreover,
suppose that 7o(s) = 1. From C(s) it follows that L} (s) must also be slack, implying that
the investor can improve his profit by decreasing N (s) without violating any constraint,
contradiction. Suppose next that v(s) < 1, implying that +;(s) > 0 for some i = 1,2,
and replace the original contract by a new contract specifying N} (s) = iF — r(s) and
NZ(s) = N2(s) + [Nil(s) — N}(s)] Note that expected payoffs are not affected by this
change. In particular, if it was both feasible and optimal for the firm to invest in exactly
1 projects at date 1 under the original contract, this must also hold under the new
contract as the funds available at date 1 are exactly iF. Given that C(s) is slack, the
investor benefits from decreasing N?(s) until L?(s) becomes binding (which occurs if
N2(s) = —im). If this does not yet generate a contradiction, the investor can strictly
improve his profit by decreasing 7;(s) and simultaneously increasing 7 (s), contradiction
(observe that this is possible as C(s) is (still) slack). m

It follows from Claim 2 that U(h,l) = 7, — m, U(h, h) = 2(7, — m) under ‘no self-
financing’, and U (h, h) = 2(7,—m;)+7— F under self-financing. Inserting the solution for
type (I,1) and the binding incentive compatibility constraints in the investor’s objective
function, it is immediate that the contracts for types s € {(h,l), (h,h)} must be chosen
to maximize (7 — F)(71(s) + 272(s)). The following claim is then obvious.

Claim 3. Under ‘no self-financing’, it is optimal to set yo(h,h) = 1, Ny(h,h) =
2F — 27, and Ni(h,h) = —2m. Conversely, under self-financing it is optimal to set
Yyo(h,h) = 1, NJ(h,h) = 2F — 27, and Ni(h,h) = —7 — F + 2(m, — m). Moreover,
if additionally 27 > 7, + m, it is optimal to set vo(h,l) = 1, N}(h,1) = 2F — 27, and
N2(h,l) = —2m.

It remains to derive the contract for type (h,[) if 27 < 7, + m.

Claim 4. If 27 < 7, + m, it is optimal to set Ny (h,l) = 2F — m, — m, N2(h,l) =
—2m, Ny(h,1) = —m — mp, Ng(h,1) = 0, y(h,1) = 1/[2(1 = 0)], and o(h,1) = (1 -
20)/[2(1 — 0)].

Proof. First, observe that it cannot be true that v,(h, ) = 1 as this violates L3(h,1).
Moreover, it is obvious that v(h,l) = 1 cannot be optimal either. It therefore remains

to check the following three solution candidates.

Candidate 1): ~5(h,l) = 0. This immediately implies that ~;(h,[) = 1. Inserting the
result in the binding C (h,1) constraint yields

NE(h,l) + NZ(h,l) + 7 — F = —2m,.
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Hence, we can set N} (h,l) = —m, — m + F and NE(h,l) =7, — m — 7.
Candidate i1): v1(h,l) = 0. By the same arguments as in the proof of Proposition 1,
we have N} (h,l) = 2F — mj, — m, N2(h,l) = —2m, and

TTh — T 1

(ko) = 2m—m) 20-0)

Moreover, we can set Nj(h,l) = —m — m, and NZ(h,1) = 0.
Candidate 1): v1(h,1) > 0 and ~»(h,1) > 0. First, notice that L}(h,l) must be
binding, i.e. N}(h,l) =iF — 7, —m (if this were not the case, we could shift payments

from date 1 to date 2 without affecting expected payoffs.) As C’(h, [) is binding and
NZ(h,1) > —m by L3(h,1), we obtain

7w — m — Y2 (h, 1) (N3 (h, 1) + 27)
7+ N2(h,1)

71(h7 l) =
Note that 0 < v;(h,l) < 1. The contract for type (h,[) must then be chosen to maximize
(T = F)(m(h, 1) + 272(h, 1)), or

7 — 7+ Y2 (h, 1) 2NE(h, 1) — 2NZ(h, 1))
7+ Ni(h,l)

. (13)

Since 71 (h,l) and ~2(h,l) both lie strictly between 0 and 1, any solution must have
N2(h,1) = —2m;, i.e. L3(h,l) must be binding. Inserting the binding L3(h, 1) constraint
in (13) and differentiating with respect to N7(h,[) shows that the derivative is strictly
negative. Hence, it is optimal to set NZ(h,l) = —m, in which case L3(h,[) is binding.
It then remains to maximize (7 — F) [y1(h, 1) 4+ 272(h,1)] subject to the binding C/(h, 1)
constraint, which can be written as [y, (h, 1) + 272(h, )] (T —m) = 7, — 1. Consequently,
the investor is indifferent between shifting probability mass from ¢ = 2 to ¢ = 1, which
implies that we can restrict attention to candidates i)-ii).

Comparing the investor’s profit under i) and ii), we find that profits under candidate

ii) are greater than or equal to those under candidate i) if and only if

7Th—F
T — T

0 <

(14)

Since F' < 7, the RHS in (14) is bounded from below by (7, —7) /(7 —m;) = 6, implying
that (14) indeed holds. Accordingly, the contract specified in ii), which is the same as
in Claim 4, is optimal. &

Observe that the contracts in Claims 3-4 are equivalent to those in Propositions 1 and
3. It remains to verify that these contracts satisfy the neglected incentive compatibility
constraints. First, note that for any s € S and i € I with vi(s) > 0,the unique
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optimal solution is to invest in exactly ¢ projects. Second, if 27 < 7, + m and type
(h, h) mimics type (h, 1), the firm cannot continue at date 1 without additional funding
from the investor due to 27, + N} (h,1) = m, — m and (A.1). Consequently, type (h, h)
has no incentive to mimic type (h,[). Finally, it is obvious that all upwards incentive

compatibility constraints also hold. B

8 Appendix B: Proof of Proposition 6

As in Section 3, we solve a relaxed program which only considers the downwards incentive
compatibility constraints with respect to type ([,1). Unlike Section 3, however, we
must now also take into account the possibility that the parties can renegotiate both
on and off the equilibrium path. With regard to on-the-equilibrium-path renegotiation,
we can safely restrict ourselves to renegotiation-proof contracts. With regard to off-
the-equilibrium-path renegotiation, however, this is not possible. Given the contracting
space, renegotiation takes place if under the original contract the firm receives no second-
period funding. In this case, we follow Bolton and Scharfstein (1990) and assume that
the firm and the investor can make a take-it-or-leave-it offer with probability o and
1 — a, respectively. The new contract may now specify payments at dates 1 and 2 which
trigger investment in either zero, one, or two projects. Of course, the new contract must
also satisfy the firm’s first- and second-period limited liability constraints.

To set up the investor’s maximization problem, denote by (R!(s), R%*(s),3(s)) the
contract which is chosen by type s on the equilibrium path at date 1. First, we determine
the equilibrium utilities of both parties on and off the equilibrium path. Suppose type
s chooses the contract intended for type § (in case s # §, we are only interested in
s = (h,l) or s = (h,h), and § = (I,1)). If 5(5) = 1, renegotiation is not an issue. If
B(8) < 1, denote the firm’s (continuation) payoff in case it receives no funding under the
old contract by U(s, §). Similarly, denote the investor’s (continuation) payoff by V (s, ).
To derive these payoffs, we must distinguish between six cases.

Case 1: r(s) — R'(8) > 2F. In this case, type s can continue both projects without
additional funding, which yields U(s, 8) = r(s) — R*(3) + 2(7 — F) and V (s, 8) = R*(3).

Case 2: F < r(s) — RY(8) < 2F and r(s) — R'(5) > 2(F — m). While the firm can
only pursue a single project with internal funds, it can always obtain funding for the
second project. To see this, observe that continuing both projects requires only 2F' —
[r(s) — R'(3)], which is less than or equal to 27;. Hence, there exists a contract satisfying
both the firm’s first- and second-period limited liability constraints while allowing the

investor to break even. If the firm makes the take-it-or-leave-it offer, the continuation
payoffs, which shall be denoted by U¥ (s, 8) and V¥ (s, 5), are U (s,8) = r(s) — R(5) +
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2(7 — F) and VF (s, 8) = R*(3), respectively. If the investor makes the offer, the issue is
somewhat more involved. Straightforward computations show that the maximum that

the investor can realize is
V!(s,8) = R'(3) + min |7 — F,r(s) — R"(3) — 2F + 2m],
whereas the firm’s payoff is given by

. r(s)— R'$)+7—F ifr(s)— R (8) —2F+2m >7—F
2(m —m) otherwise.

We then have U(s,3) = aUF (s, 8) + (1 — a)U!(s, 8). Derivation of V (s, 5) is analogous.
Case 3: F <r(s) — R'(8) < 2F and r(s) — R*(8) < 2(F — m). In this case, the firm
can only continue a single second-period project, for which it already has the necessary
resources. Consequently, we have U(s, 8) = r(s) — RY(8) + @ — F and V (s, 8) = R(3).
Case 4: r(s) — RY8) < F and r(s) — R'(5) > 2(F — m). While the firm does
not have the funds to finance one or even more second-period projects, it can always
obtain sufficient funds to continue both projects. As in Case 2, we thus have U (s, §) =
r(s) — RY(8)+2(7 — F) and V¥ (s,3) = R'(3). If the investor makes the take-it-or-leave-
it offer, we must distinguish between the case where he continues with one project and

where he continues with two projects. If he continues with one project, he realizes
Vi(s,8) = R'(8) + min |7 — F,r(s) — R3) = F +m],
whereas if he continues with two projects, his payoff is
V12(s,5) = R*(8) + min [2(7? — F),r(s) — RY(3) — 2F + 27”} .

To resolve the investor’s possible indifference, we assume that if both alternatives yield
the same payoff, he continues with both projects. The firm’s payoff if one and two

second-period projects are continued is then

r(s)— RY8) ifr(s)— R (S§)—F+m>7—F

T —m otherwise,

Uhl(s, 8) :{

and
o, . r(s) — RY(8) ifr(s) — RY(3) — 2F +2m > 2(7 — F)
U™ (s,8) =9 .. :
2(m —m) otherwise,
respectively.
Case 5: 7(s) — RY(8) < F and F — m < r(s) — R(5) < 2(F — 7). In this case, the

firm cannot continue without the investor’s aid, and its resources only allow for external
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funding of one second-period project. We thus have U (s,8) = r(s) — RY(3) + 7 — F
and V¥ (s, 5) = R'(3), while

Vi(s,3) = Rl()—l—mm[w—FT() R1(§)—F+7rl}
and

o r(s)— RY8) ifr(s)—R'(@8)—F+m>7—F
{ T —m otherwise. ’
Case 6: r(s) — RY(8) < F — m. As there is no renegotiation, we obtain U% (s, 8) =
r(s) — RY(3) and V¥(s,38) = RL(3).
We are now in the position to state the incentive compatibility constraints C(s) for
types s € {(h, h), (h,])} :

B(s) [r(s) = R'(s) + 27 = R*(s)| + [L = B(5)] U(s, )
> B(L,1) [r(s) = R'(LD) +27 — R*(L1)] +[1 = B 1] U(s, (1,1).

Using the results from Cases 1-6, we have the following claim (recall that by assumption,
T, +m < 2F )

Claim 1. If RY(l,1) = 2m, the firm’s continuation payoffs from mimicking type
(1,1) and renegotiating are as follows:
i) Type (h,h): U((h,h),(1,1)) = 2(mp—m)+2a(7—F) under (A.2) (‘no self-financing’),
and U((h,h),(1,1)) = 2(m, — m) + (o + 1)(7 — F) under (A.3) (self-financing).

ii) Type (h,1): U((h,1),(1,1)) = 7 — m + a7 — F).

Proof. Consider first type (h, h). Suppose (A.2) holds, and set s = (h,h) and § =
(I,1). Since 2(mp, — m) > 2(F — m), we are in Case 4. If the investor makes the
offer, his continuation payoffs in the one- and two-project case are VI'!(s,8) = 7 — F
and V12(s,3) = 2(7 — F), respectively, implying that V%?%(s,5) > VI 1(s,8). From
this it follows that U(s,3) = 2(m, — m) + 2a(7 — F). On the other hand, if (A.3)
holds, Case 2 applies since r(s) — R'(8) = 2(m, — m) > F, r(s) — R*(8) < 2F, and
2(m, —m) > 2(F —m). As r(s) — RY(8) — 2F +2m > 7 — F, it immediately follows that
U(s,8) =2(m, —m) + (a+1)(7 — F).

Next, consider type (h,1) and set s = (h,1) and § = (I,1). Since r(s) — R*(8) = 7, —m,
m —m < F by (A1), 7y —m > F —m, and 7, — m < 2(F — m), Case 5 applies. As
r(s) — RY(8) — F —m > 7 — F, it follows that U(s,8) =7, —m + a(f — F). ®

The rest of the proof is analogous to that in Proposition 1 and 3 or Appendix A. We

first derive the unique optimal contract for type (I,1).

28



Claim 2. At any optimum, it must hold that 3(1,1) = 0 and R'(I,1) = 2m.

Proof. The proof is similar to that of Lemma 1. We first prove that §(I,1) = 0 by
arguing to a contradiction. Suppose therefore that 3(I,1) > 0 and adjust R?(l,[) such
that the second-period limited liability constraint for type (I,1) is binding. Note that this
increases the investor’s payoff, while C(s) still holds for types s € {(h,1), (h, h)}. Next,
set RY(1,1) = 2m and R*(1,1) = R*(l,1) — (2m — RY(l,1)), and define AR := 2m — R'(1,1).
We claim that for AR > 0, this improves the investor’s payoff while C(s) still holds.
If B(1,1) = 1, the investor is indifferent. If 3(I,l) < 1, however, the investor’s payoff
increases in states where no second-period funding is provided. Moreover, checking
Cases 1-6 confirms that V((1,1), (1,1)) is non-decreasing. A similar argument holds with
respect to C (s), i.e. as the deviating type s must pay the extra amount AR in case the
project is terminated, his renegotiation payoff U (s, (I,1)) is non-increasing.

We can now argue as in Lemma 1. By decreasing (3(l,[), the investor’s payoff strictly
increases without violating C(s) since R?(1,1) < 2F by the second-period limited liability
constraint for type (I,1), contradiction. It then follows that R(l,1) = 2m;. B

We proceed as follows. First, we derive the optimal contract for types (h, h) and (h, ()
from the class of renegotiation-proof contracts. Thus, if the contract specifies 3(s) < 1,
this requires that U(s, s) = r(s) — R'(s) and V (s, s) = R!(s) (this can always be ensured
by setting R'(s) = r(s)). Second, we show that the restriction to renegotiation-proof
contracts is without loss of generality.'?

The argument is now the same as in Propositions 1 and 3. Accordingly, C(s) is
binding and can be inserted in the investor’s objective function, which yields the con-
tracts in Proposition 6. As these contracts only solve the relaxed problem, we must
check whether the neglected incentive compatibility constraints are satisfied. First, note
that since R'(h,l) = m, + m, the contracts are indeed renegotiation-proof. Moreover,
type (h,[) cannot mimic type (h, h), implying that we only need to check whether type
(h,h) has an incentive to mimick type (h,l). In this case, type (h,h)’s resources are
equal to 7, — m. Two cases must be distinguished. First, suppose (A.2) holds. Since
additionally 7, +m < 2F, Case 5 applies. Moreover, UZ((h, h), (h,1)) = 7, — m. Hence,

U((h,h), (h,1)) is given by

Bh, D — m + 2(7 — m)] + (1 — Bk, ) [ — m + a7 — F)]
= 1 —m+ B D27 —m) + (1 — B(h, 1))a(F — F).

13 As we operate in a restricted contracting environment, the renegotiation-proofness principle does
not necessarily apply. It must thus be shown that restricting attention to renegotiation-proof contracts

involves no loss of generality.
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Inserting §(h,l) = [1, — m +a (7 — F)] /2(7 — m) yields

7Th—7Tl—|—Oé(ﬁ'—F)
2(7?—7'('1)

2y — m) + 20(7 — F) — a7 — F)

which is bounded from above by type (h, h)’s equilibrium payoff 2(7, — m) 4+ 2a(7 — F).
On the other hand, if (A.3) holds, Case 3 applies. In this case, incentive compatibility
is immediate as U((h, h), (h,1)) = 7, — m.

It remains to show that restricting attention to renegotiation-proof contracts for
types s € {(h,1), (h,h)} is without loss of generality. Suppose to the contrary that the
contract for some type s € {(h, 1), (h, h)} is renegotiated on the equilibrium path. In this
case, we can straightforwardly specify a new contract where R*(s) = r(s), R%*(s) < 2m,
and 3(s) < 1. As is easy to verify, this contract earns both type s and the investor the
same profit as the original contract and is not renegotiated if 3(s) < 1. W
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