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1. Introduction

People likewinning and didikelosing, yet thisfeature has never been incorporated
into the study of games. This paper remediesthat Stuation. It isassumed that besdesthe
utility he receives from his monetary payoff, a player gets a pogtive utility increment in
gtuationsin which he consders himsdf victorious, and suffers a negative utility increment
inany Stuationthat heconsdersadefeat. Natura notionsof victory and defeat in drategic
gtuations dlow the modd to accommodate much of the experimenta evidence on fallures
to behave purdy sdfishly in games, such as the behavior of responders in the ultimatum
game and proposersin the dictator game, aswdl as alowing for cooperative equilibriain
the one-shot prisoner’s dilemma and a smple public good provison game. More
aurprisgngly, though, notions of victory and defeat can be extended to decisons toward
risk, dlowing the mode to explain many of the expected utility violations found in the
experimentd literature, such as the Allais paradox and boundary effects, as well as
smultaneous gambling and insurance.! Thus, the paper congtructs a single model which
is able to accommodate behaviora patterns from two disparate branches of theliterature.

For games, itisnatura for aplayer tofed victorious or defested based on how his
monetary payoff comparesto those of hisopponents. It isassumed that the player suffers
adefeat if his monetary payoff issmall compared to his opponents monetary payoffs, he
experiences victory if his monetary payoff is large, but not too large, relaive to his
opponents', and experiencesneither victory nor defeat otherwise. Thisassumption enables
the modd to accommodate dl of the same behavior as models of fairness or inequity
averson, asin Bolton (1991), Rabin (1993), Fehr and Schmidt (1999), and Bolton and
Ockenfels (2000).2 Essentidly, if aplayer’s monetary payoff is either too high relativeto

! Boundary effects reflect the idea that people behave differently when some
dternatives have different numbers of outcomes than others, as in Neilson (1992) and
Harless and Camerer (1994).

2 There are severd related notions of concern for others, such asreciprocity (e.g.
Sugden (1984), Falk and Fischbacher (1999), Croson (1999)), spite (e.g. Saijo and
Nakamura (1995), Levine (1998)), and atruism (e.g. Andreoni (1995), Croson (1999)).
The modd proposed here can handle eements of these notions, but only those eements
that coincide with fairness. Rabin (1993), Levine (1998), and Bolton and Ockenfels
(2000) assume that a player’ sopponents’ intentions matter, and whileintentions could be
incorporated into the modd to determine whether the player feds victorious or defeated,
intentions are not considered here.



his opponents payoffs to lead to victory or sufficiently low to lead to defeat, he might
prefer adifferent strategy which reduces hismonetary payoff but leadsto amore equitable
payoff vector. By switching strategies, the player gets an extra utility boost by achieving
avictory in the first case or avoiding defegt in the second.

For an individua making a decision toward risk, there are no opponents with
which to compare payoffs, so different notions of victory and defeat are needed. The
andyss here rests on two key assumptions. The firgt isavoidability - if an outcomeisto
be consdered elther avictory or adefesat, the decison-maker must have the opportunity
to make some choice which would avoid that outcome. If the outcome is avoidable, then
the individud must make a conscious decisonnot to avoid it. The second assumption is
that the outcome must be unlikdy. So, the individua experiences victory if his payoff is
high, that payoff is not asure thing, and he could have made a choice in which that payoff
wasimpossble. He suffersadefeat if hispayoff islow, it isnot asure thing, and he could
have avoided the low payoff.

The mode itsdf is based on Karni’'s (1992) mode of event-dependent
preferences. Eventsare subsets of the state space, and event-dependent preferences are
smilar to Sate-dependent preferences except that asingle state-dependent utility function
is used for al states in a given event. The model assumes that there are three events,
corresponding to victory, defeat, and neutral outcomes, with the utility function
corresponding to the victory event higher than the neutrd utility function, which inturn is
higher than the utility function corresponding to defest. Much of the andlysisisdevoted to
assumptions that determine when a dtate is considered a victory, a defeat, or neutral.

The paper proceeds as follows. Section 2 adapts event-dependent preferences
based on Karni (1992) to fit notions of victory and defeat. Section 3 presents the
assumptions governing when an outcome in a game is considered a victory, a defest, or
neutral, and shows that these assumptions alow the model to accommodate inequity
aversonin an abstract setting. Section 4 illustrates how the moded can be used to analyze
gpecific games.  Section 5 looks at behavior toward risk, providing assumptions that
determine whether a state is considered avictory, adefeat, or neutral, and it aso supplies
assumptions that guarantee first-order stochastic dominance preference. Section 6 uses
the model to explain severd behaviord patternsthat areincons stent with expected utility.
Sections 4 and 6 also contain comparisons of thismode to other, existing modds. While
there are many existing models that can handle some of the evidence discussed in this
paper, there are no other models that fit the evidence on games and the evidence on risk.



Finaly, Section 7 offers some conclusions.

2. Event-dependent preferences

Inthissection, Karni's(1992) model of event-dependent preferencesisintroduced
and extended to accommodate notions of victory and defeet. Let S be a state space with
typicd dements. Let E,,...,.E beapartitionof S sothat cE;=SandE 1 E =1 fori
Oj. EachE, iscaled an event. Let x: S6 (i be apayoff function that maps Satesinto
monetary vaues. Assume that the set of possible monetary values is bounded, so that
payoffs lie in the interva [Xq,Xy]. The individud has preferences over probability
digtributions defined over the state space, and the preferences can be represented by the
functionV,, where the subscript distinguishes the preference function from one discussed
later. Following Karni (1992) the decison-maker is an expected utility maximizer with
event-dependent preferences if there exist functions uy,...,u, such that

V,(F) = & ou(X(9)dF.(9), 0

i:lEi

where F, is a probability digtribution defined over states. Karni (1992) provides an
axiomatic foundation for thismodel. The basic difference between event-dependent utility
and state-dependent utility is that event-dependent utility is more redtrictive.  Utility can
depend upon the dtate of the world, but the utility functions must be identica across a
subset of the states. The set of utility functions is unique up to an increasing affine
tranformation, so that V, and V, represent identical preferencesif u;”(x) = au;(x) + b for
i=1,..kwhereaisapodtivescdar and bisascadar.

For considerations of victory and defedt, it is assumed that there are just three
events, Ep, Ey, and E,;, with corresponding utility functions up, uy, and u,. Thedecison
maker considers himsdf victorious when a state in E,, occurs, he feds defeated when a
statein E occurs, and he experiences neither victory nor defeat when agtatein the neutral
event, Ey, occurs. Whether the individua identifies a state as a victory, a defeat, or
neutra depends on the nature of the decison task a hand. In particular, it dependsonthe
game the individud is playing.® For example, the player might fed victorious when his

3 This might be agame against nature, as discussed in Section 5.
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monetary payoff iszero and everyone e sg'sis negative, but the same zero payoff might be
conddered a defeat when dl other players receive postive payoffs. To account for this,
it isassumed that the events and their corresponding utility functions depend on the game.
Different games lead to different conceptions of victory and defest.

Formdlly, let G denote a monetary game, which includes the list of players, their
strategy spaces, and the monetary payoffs from action combinations* Let A, denote
playeri'sstrategy space.® Each player i's task isto choosethe optima strategy in A, given
the strategies chosen by the other players, so that the resulting strategy combination is a
Nashequilibrium.® A state s is a pure strategy (or action) combination, whichdetermines
the payoffsto the different players, and the probability distribution F, capturesany mixing.
Assume that for each game Gthere are three events, E (G, Ex(G), and Ey(G), and let
u(+ ), up(+ G, anduy(+; G bethe corresponding utility functions. Much of the remainder
of the paper isconcerned with how the eventsand their corresponding utility functionsvary
withthegame. Thefirg such assumptionisthat the neutrd utility function uy, dependsonly
on the payoff and not on the game, so that it is unbiased by fedings of victory or defeat.
The preference function, which now depends on the game G as well as the probability
distribution under congideration, becomes

Vi(FiG)= XSGR+ (XN (9+ F(X(NOUF(S. (o)

Ep (G) En (G) Ev (G)

Preferences that have the representation given in (2) are referred to here as VD
preferences, and (2) isthe VD model.

Two assumptions govern relationships within and between events. Thefirst Sates
that the individua mogt prefers a given monetary payoff when he is victorious and least
prefersit when he is defeated.

4 Crawford (1990) and Chen and Neilson (1999) dso anadyze monetary games.

® | depart from the usud convention of using “S’ to denote the strategy space
because S denotes the state space.

® This framework is adapted to fit decisions under risk in Section 5.
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Al —Ranking of events: For any combination of sand Gsuchthat sO E\(G),
U(X(9);3 > un(x(9)), and for any combination such that s 0 Ep(G),

Un(X(8)) > Up(X(s).G.

Assumption A1 dates that in comparison to the neutra event, the outcome x generates
more utility when it is a victory and less utility when it is a defeat.  This assumption,
combined with assumptions about when a date isavictory or adefeat, alows the model
to accommodate a wide variety of behaviora patterns. The second assumption states
amply that each of the event-dependent utility functions is nondecreasing.

A2 —Monotonicity within events. For any G up(X;G), uy(x), and uy(x;G are
al nondecreasing in x.

It is assumed throughout the remainder of the paper that conditions A1 and A2 are
stisfied.

3. Victory and defeat in strategic settings

The andysisbeginswith srategic Situations, in which natura notions of victory and
defeat involve acomparison of the player’ s monetary payoff with his opponents’ payoffs.
Three assumptions are used to govern whether astate is considered avictory, adefest, or
neutrad. To state these, let Gbe an n-player game and let the state s be a pure strategy
combination defining the state of the world, as above. Let x(S) be the individud's own
(monetary) payoff whenthe dateiss, as before, and let y(s) bethen-1 vector of the other
player's (monetary) payoffs. Whether or not a player consders an outcome of the game
a victory or a defeat depends on x(s) and y(s). However, since x(s) and y(s) have
different dimensions, afurther step is needed to compare them.

The function 2:0™ 6 0 is an evaluation rule if mn{y,,...y+ # 2(y) #
max{yi,....ym . S0, an evauation rule takes a vector and returns a vaue between the
highes and lowest components of the vector. The evauation rule ? is said to be
monotoneif 2(y) $ 2(y) whenevery’ $ y component-wisg, i.e.y;” $y, fori=1,...m, so
that when the components of the evaluated vector increase, the evaluation increases.’

" Sarin (2000) introduces monotone evauaion rules for the study of learning in
games. The evauation rules used here are different from his because here they must be
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Examples of monotone evauation rules are any weighted average with fixed weights and
any order datistic such as the minimum, maximum, or median.

The eventsin whichaplayer experiencesvictory or defeat are characterized using
monotone evauation rules. The avallability of different evduation rules dlows for
condderable flexibility in determining whet is avictory and what isadefeat. For example,
an individua might consder it avictory if his own monetary payoff is above the average
of his opponent's payoffs, and this can be characterized as s 0 E\(G) if X(s) $ 2(y(9) =
3yi(9)/(n11). For asecond example, anindividua might condder it avictory if hisown
monetary payoff is above everyone elsg's, in which case s 0 E\(Q if x(5) $ 2(y(9) =
max{yi(9),....Yym1(S9)}. Findly, aplayer might congder it adefeet if hisisthelowest of the
payoffs, in which case s 0 Ep(Q if x(9) # ?2(y) = min{yy(9),...,Yn11(S)}. All of these
examplesfit within the structure imposed by the next set of assumptions.

The firgt assumption governs whenadtrategy combination is considered avictory
for the player under consideration.

S1 — Minimum victory threshold: There exists a monotone evauation rule
?+n(y) and ascdar z,,(G < 4 suchtha if s 0 E/(G) then x(s) !

Znin(Y(8)) $ Znin(Q.

This assumption states that for an outcome to be a victory, the player's earnings must
exceed the evauation of his opponents earnings by & least z,;,,. So, for example, if the
evaduationrule?,,, istheaverage of the opponents payoffs, for an outcometo beavictory
the player's payoff must be at |east asgreat asthe average of hisopponents payoffs. Note
that z,,,, could be negative, so that the player does not necessarily need a higher monetary
payoff than his opponents to fed victorious. Also notethat S1 implicitly assumesthat the
evaduation rule is independent of the game, so that if the player uses the average of his
opponents payoffs as the point of comparison in one game, he usesit in al games.

The second assumption governs uneven distributions of payoffs when the
digtribution favors the player under consideration. Assumption S1 dtates that to be
considered a victory, the individud’s payoff must be high relative to his opponents
payoffs. The next assumption States that if the his payoff is too high rdative to his
opponents average payoff, he does not fed victorious.

bounded by the lowest and highest components of the vector being evaluated.
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S2 — Maximum victory threshold: There exists a monotone evauation rule
?2edy) @d ascdar z,,,(G such that if X(S) 1 ?2,.(Y(9) > Zu(O then s

0 En(G.

The assumption pogits the existence of a maxima payoff difference above which the
individud no longer feds victorious. The ideais that awin that is too lopsded is not a
victory, and it could reflect either inequity averson or fedingsof guilt. Of coursg, if z,,(G
issuffidently large, this effect has no consegquence for behavior.

The third assumption dedls with defest.

S3 — Minimum neutral threshold: There exists a monotone evauation rule
?o(y) and ascalar z,(G such that if x(s) ! ?5(Y(9) # z5(G) then sO
En(G.

The idea behind this assumption is sraightforward — if the player's payoff is too low
compared to his opponents payoffs, he considersit a defedt.

Assumptions S1 — S3 identify three, possibly different monotone evauationrules
for determining events. This dlows for quite abit of flexibility in modding behavior, and
the identification of the evauation rulesis an interesting question for further sudy. Most
of the experimenta evidencein the next section concernstwo-person games, inwhich case
thereisaunique evauation rule, ?(y) =y. For games with more than two players, other
evaduation rules are possble. For example, a player might use the minimum for ?p, the
average for 2., and the maximum for ?,,,. Under these conditions the player feds
defeated if his own payoff istoo far below the lowest of his opponents payoffs, and he
feds victorious if his own payoff compares favorably to the average of his opponents
payoffs but is not too high compared to the highest of his opponents payoffs.

There are good reasons for assuming that al three evaluation rules are the same.
Firdt, as noted above, when there is only one opponent there is only one evauation rule.
Second, other studiesof players concernfor othersuse only oneevauationrule. Notably,
Fehr and Schmidt (1999) and Bolton and Ockenfels (2000) use a comparison of the
player's own payoff to the average of his opponents payoffs in their models of inequity



averson.® Thefirg lemma shows how the setting is smplified when the same evauation
ruleisused for al three thresholds.

Lemma 1. If 25 = 2pin = 2 = ? A 25(Q) # Z1in( Q) # Zyon( G then
Eo(@ ={sx(s) ! 2Ay(s) # (G},
EV(Q = {8 Zin(Q # X(9) I 2(Y(9) # Zra( G}, and
En(@ = {9 (9 <x(9) ! 2Y(9)) < Zin(G} C {gx() ! 2(Y(9)) > Z( G} -

According to Lemma 1, if the difference between a player's own payoff x(s) and his
evauation of the vector of his opponents payoffs ?(y(9)) is low, the player feelsdefeated,
and when it is high but not too high he fells victorious. There are two reasons why an
outcome might be consdered neutrd. Fird, it could bethat z; < x(s) T 2(Y(9) < Zyin, SO
that the individua's payoff is too high to be consdered a defeat but too low to be
considered avictory. Second, it could bethat x(s) T 2(Y(S)) > Z SOthat theindividud's
payoff istoo high compared to his opponents payoffs. Note that these too-high payoffs
can result in aneutral state, but not a defest.

One notion of concern for others that has garnered increasing attention over the
years is fairness or inequity averson (see Fehr and Schmidt (1999) and Bolton and
Ockenfels (2000)). Basing their arguments on experimentd evidence from ultimatum and
other games, researchers have posited that players preferences exhibit inequity aversion
inthe sense that they sometimes choose strategiesthat reduce their own monetary payoffs
but result in more equitable monetary alocations across players. 1t can be shown that if
VD preferences satisfy assumptions S1 - S3 they are congstent with inequity aversion.

Not al games provide an opportunity for playersto exhibit inequity Let Gbe a
game, let A, denote player i’s Strategy s, let X(a;, a,;) denote the monetary payoff of
player i when he plays strategy a; and his opponents play the strategy vector a,;, and let
y(&;, a,;) denote the vector of monetary payoffsreceived by hisopponents under the same

8 In Fehr and Schmidt's (1999) model players care about the difference between
their payoffs and the average of their opponents payoffs, while in Bolton and Ockenfels
(2000) model players care about the ratio.



drategy combinaion. Given the evauation rule?(y), definez(a;, a,;) =x(a;, a;) 1 ?2(y(a;,
a,;)). Let (G ?, a,;) beatriple conasting of a game, a monotone evauation rule, and a
drategy vector for player i’ s opponents.

Definition. (G ?, a,;) potentially reveals inequity aversion for player i if there exist
drategiesa,”” and g, such that

() x(@&", a) $ x(a, ay) foral & 0 A, and
(i) @™, an)l < =@, an)l

The idea behind this definition is that given the game and his opponents  drategies, the
player under consideration hastwo strategiesof interest. Strategy a,”* isthe best response
in purely monetary terms, whilea,” pays lessin monetary terms but resultsin less inequity
as measured by the payoff difference z. In such a setting, it is possible for player i to
choosea,” overa,™, thereby trading some amount of money for decreased inequity. If so,
he exhibits inequity aversion.

Definition. A classof preferencesaccommodatesinequity aversion if for any triple (G
?, ay;) that potentidly reveds inequity aversion for player iand any pair of strategiesa,™
and 8" satisfying (i) and (i) above, there exists amember of that class of preferences for
which a," is chosen over a,"".

Notethat the classof standard, sdlfish preferences cannot accommodateinequity aversion,
because purely sdfish players aways choose the sdlfish best-response strategy a,”*. As
the next proposition shows, the class of VD preferences can accommodate inequity
averson.

Proposition 1. Theclassof VD preferencesthat satisfies S1 - S3 accommodatesinequity
averson.

Proof. Supposethat (G ?, a,;) potentialy revedsinequity aversion, and let a™"
and &" be asin the definition. It suffices to find the threshold levds z,(G), z,,(G axd
Ze(G), asin Lemma 1, that lead to a preference for a" over a"". Assume firg that
A& ) <& an). f & an) # 25(Q < Z& &) < Zyin(G), then playing & resuits
in adefeat but playing a,” resultsin aneutra outcome. If up(X(a,",ay;)) # uy(X(&",ay)),



player i chooses " in response to a;.

Now essumeindead that (8, ,ay;) >2(&" ). SetZnn(Q # Z&" ,ay) # 2O
<z(a"",a,;). Playinga” resultsin avictory while playing 3" resultsin a neutral outcome.
If u(x(a",a)) # uy(X(a™",as;)), player i chooses a,” in response to a;. 9

The VD modd accommodates inequity averson through a different mechanism
than most models, such as those proposed by Fehr and Schmidt (1999) and Bolton and
Ockenfds (2000). In those models opponents payoffs enter directly into the player’s
utility function, and a small increase in the opponents payoffs has a smal effect on the
player's utility. Here, in contrast, opponents payoffs only matter for determining the
events. A smdl increase in the opponents  payoffs can ether lead to a different event,
thereby causing a large change in utility, or it can lead to the same effect, in which case
thereisno change in utility. Thus, The VD mode treats opponents payoffs much more
discretdy than existing models.

4. Behavior in some common games

The modd of behavior in games congtructed in the preceding sectionsis able to
explain patterns of play observed in a variety of settings, including the behavior of the
proposer in dictator games, the responder in ultimatum games,® players in a one-shot
prisoner’ s dilemma, and playersin a public good contribution game. Of course, the first
two of these games potentidly reved inequity averson, so the results follow from
Proposition 1. Nevertheess, the andysis illugrates the usefulness of the VD modd in
games.

Dictator game

Inthedictator game, proposer isassigned thetask of splitting aprizeof szek. Let
X denote the amount he keeps for himsdlf, so that he givesk ! x to his opponent. While
standard game-theoretic analyss predicts that x = k, experimental studies show that
proposer tends to give away about 20% of the pot, consistent with x = 0.8k.

Proposer gives away money if two things happen. Firdt, kegping the entire pot of

® Andyzing the behavior of the proposar in ultimatum games involves anayzing
responses to beliefs about the behavior of the responder, which moves beyond the main
point of this paper.
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k must be inconsistent withvictory. Thisoccursif z.,, < k.2° If, in addition, z,,, > 0, it is
possible for proposer to fed victoriousand the highest monetary payoff condstent with the
victoryis(z. + K)/2. When this offer is made, the other player gets (k ! z,.,)/2 and the
payoff differenceisz,,,. For proposer to be willing to give away part of the pot, uy(k),
the neutrd utility from keeping k, must be below uy((Z. + K)/2), the victory utility of
keeping the smaler amount (z,, + k)/2. Thus, two conditions are required for proposer
to give away a postive amount of money in the dictator game, as seen in the following
proposition, whose proof is obvious.

Proposition 2. In the dictator game, proposer kegps an amount x <k if 0<z,,, <k axd
Uy((Zrax + K)/2) $ U (K).

The badc idea behind this result is that the proposer consdersit avictory if he earns a
higher payoff than the responder, aslong asit is not too much higher. If his payoff istoo
high, heno longer consdersit avictory, and o he kegpsthe largest amount consistent with
victory.

Notethat proposer'sgenerosity isgoverned entirely by the parameter z,,,,, and that
experimental evidence that proposer gives away 20% of the pot is condgtent with z,,, =
0.6k.

Ultimatum game

In the ultimatum game, proposer is assigned the task of splitting aprize of Szek.
Heoffersto give x to responder and keepk ! x for himsdf. Responder can either accept
the offer or rgect it. If she accepts, the payoffs are as proposed. If she rgects, both
players get zero. From responder's point of view, accepting leadsto z; = 2x ! k, while
rgecting leadstoz, = 0. Experiments show that responders often rgject offers of lessthan
about 20% of the pot.

Unlike the proposer'sdecision in the dictator game, the behavior of the responder
in the ultimatum game is driven by the parameter z,, which reflects the (negetive) payoff
difference below which the individud feds defeated. The next proposition showsthat in
the VD model responders reject offers that are too low.

10 Since there are only two players, the only evauation rule is ?(y) =y, wherey
is the opponent's monetary payoff.
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Propostion 3. Inthe ultimatum game, if 1k <z, <0<z, responder regects an offer of
x if and only if X # (k + z5)/2 and up(X) < uy(0).

Proof. By hypothesis, rgjecting an offer leadsto aneutral outcomefor responder.
So, utility from rgecting is uy(0). First suppose that x # (k + z5)/2 and up(X) < up(0).
The firg inequaity guaranteesthat z=x 1 2k # z,, sothat responder fed sdefeated if she
accepts. The second inequadity states that accepting the offer generates less utility than
rgjecting it does, so she rgects the offer.

Now suppose that one of the two inequdities fals. If x > (k + z,)/2, responder
does not experience defeat when she rgjects the offer, and uy(X) > uy(0).If, instead, x is
considered a defeat but uy(x) $ uy(0), she does not reject the offer of X, regardless of
whether it is conddered neutra or a defeat, because accepting leads to higher utility. 9

The basic idea behind this result is that responder considersit adefeet if her earnings are
too far below proposer's earnings, while she considersthergection outcometo be neutral.
If she finds the zero monetary payoff in a neutrd setting more attractive than the offered
payoff in adefeat setting, she regjects the offer.

Propogtion 3 impliesthat if z, < 0, responder accepts any offer of k/2 or more.
Also, if z, # 1k, responder accepts any postive offer. Experimental evidence that
responder rgjects offers of about 0.2k or lessis congstent with z, = 10.6k.

Prisoner's dilemma
Consder the following version of the prisoner's dilemma.

C D
3,3 0,4
4,0 2,2

Standard game-theoretic analysis prescribes that both players choose the dominant
grategy D, and thisis the unique equilibrium. The VD modd alows other equilibria as
well. In particular, under appropriate conditions there exists a Nash equilibrium in which
both playersplay C.

Proposition 4. If, for both players, z,, # 0 < Z, < 4 and u(3) $ uy(4), then the
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drategy combination (C,C) isaNash equilibrium.

Proof. Sincez,,# 0 < z,,,, both on-diagonal outcomes are considered victories
by both players. Sincez,,, < 4, the off-diagona outcomes are considered neutral by the
player with the higher monetary payoff. If his opponent plays C, a player recaives utility
uy(3) from playing C and utility uy(4) from playing D, and, by the hypothes's, prefersto
play C. 9

The basic idea behind this result is thet the playersconsider it avictory if they both get the
same payoff, but not if one player gets a much larger payoff than the other. While
defecting has a higher monetary payoff than cooperating when the opponent cooperates,
the extra utility from feding victorious is enough to compensate and remove any incentive
for defecting.

The requirements for cooperation in the prisoner’s dilemma as presented above
and the requirements for contributions in the dictator game are remarkably consstent. In
the dictator game the maximd payoff differenceisk, and behavior is consstent with z,,
= 0.6k. Inthe prisoner’s dilemmathe maxima payoff differenceisk = 5, and when z,,,,
= 0.6k thereisan equilibrium in which both players cooperate.

Public good provision

Suppose that n individuas are endowed with some amount e > 0, and each player
i can split his endowment between consumptiona; and contributions b, to a public good.
Lettingb = 3by;, each individud receives benefit gb from the public good, regardiess of his
own contribution, withg < 1 < ng. Thus, histotd “monetary” payoff isa, + gb. Sinceg
<1, in the unique Nash equilibrium eachindividud contributesb, = 0. But, if every player
contributed some positive amount, they would al be better off. Thisisthe sandard free-

riding problem.
The VD modd provides away around this free-riding problem. In particular,

under gppropriate parameter conditionsthere exist other Nash equilibria besidesthe free-
riding equilibrium.

Proposition 5. If dl playersareidenticd with z,,,, =0, thenfor every 0# [3# e such that
u(e ! B+ nglk) $ uy(e+ (n!1)gl) thereexigsaNash equilibriuminwhich every player
contributes 3.

Proof. Supposetheother n ! 1 playerseach contributel3. Thismeansthat dl of
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the other players recaive identicd payoffs, so that dl monotone evaduation rules for the
player under condderation yied the same evauation of his opponents payoffs. If the
player under consderation contributes (3, dl n players have the same monetary payoff of
e ! B+ ngR. If, instead, he contributes b < 3, hismonetary payoff ise ! b + (n 11)gR
+ gbandtheother n ! 1 playerseachget e I 3 + (n 1 1)g3 + gb. Thus, when he
contributes(3, z= 0 and he considersit avictory, but when he contributeslessthan 3, z>
0 and he condders the outcome neutrd. His highest possible neutrd payoff, giventhat dl
of the other players contribute 3, ise+ (n 1 1)gf3, which corresponds to a contribution of
zero. By the hypothess, he prefers to contribute 3. 9

As with the dictator game, dl of the action in the public good provison gameis
determined by the parameter z,,, which demarks a payoff-difference threshold below
which the player condders himsdlf victorious but above which he consders the outcome
neutra. In the public good game with identica players, contributions occur in Nash
equilibrium when players have an extremely strong notion of fairness so that they only
consider themsdlvesvictoriousif they have contributed at least as much to the public good
asthe average player.

Discussion

A number of other modelsof preferencesin games can explain thissame evidence.
Bolton (1991), Rabin (1993), Fehr and Schmidt (1999), and Bolton and Ockenfels
(1999), dl construct models in which individuas didike ineguitable dlocations!! Here
these notions are captured by the parameters z, and z,,,. When aplayer earnslessthan
Z, below his opponents average earnings, hefed s defeated. This effect makes srategies
which can yidd neutra outcomes more appedling, and these neutral outcomes must have
more equitable dlocations. When a player earns z,,, above his opponents average
earnings, he condders himsdf victorious, but if he earns more than z,,, aove his
opponents average earnings, he considers the outcome neutral. This effect makes
drategies that generate more equitable alocations more appeding. The mgor difference
betweenthe VD modd and the existing modd s of fairnessor inequity aversonistha inthe

11 Rabin (1993), Levine (1998), and Bolton and Ockenfels (1999) al assumethat
inequity averson depends not only on the payoff dlocation, but dso on the intentions of
the other players. Thisadded consideration could beincorporated into the VD modd, but
isnot here.
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exising modds payoff differences enter directly into the player's utility function, with
playerswilling to trade smdl decreasesin their own payoffs for smal decreasesin payoff
differences. Inthe VD modd, in contrast, payoff differencesenter the utility function more
discretely.

Sugden (1984), Croson (1999), and Falk and Fischbacher (1999) consider
notions of reciprocity. Podtive reciprocity entails rewarding kindness, while negative
reciprocity means punishing unkindness? In the VD model, negative reciprocity is
governed by the parameter z,. If a player's opponent plays a Srategy which helps the
opponent at hisexpense, causng the payoff differenceto fdl below z,, strategies that hurt
the opponent but make the payoffs more equal become more attractive. A good example
isthe propengty of respondersto rgect low offers in the ultimatum game, as discussed
above. Pogtivereciprocity can be discussed using the prisoner'sdilemma. I hisopponent
cooperates, putting himsdlf a risk, if z,,,, istoo high the player under consideration does
not find it attractive to defect, since thiswould punish his opponent'skind action. Thus, the
VD modd builds in tastes for reciproca behavior, but only through tastes for inequity
averson.

5. Victory and defeat in risky choice

In this section the event-dependent preferences discussed in Section 2 are used
to incorporate notions of victory and defeat into expected utility theory. Since the VD
modd was origindly developed in the context of games agangt other players, it is
necessary to transform the model to alow for gamesagaing nature. In these settings, only
the payoff the individua recelves and the st of payoffs he might have received determine
the events. The remainder of this section is devoted to placing restrictions on the events
and the utility functions, and these restrictions are then used in the next section to discuss
evidence on risky decisons.

Let S denote a state space with typica element s, as before, and let x(s) be the
payoff the individud receives from his choice when the state of theworld iss. Let Fgbe
a probability digtribution over sates, and let A be the individud’s choice set, thet is, the
set of probability distributions among which theindividua chooses. For considerations of
risky decisions, the choice set A replaces the game Gin specifications of the eventsand the
event-dependent utility functions.

12 Spiteis closdy related to negative reciprocity. See...
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Thefirg regtriction on preferences sates Smply thet if agiven sateisconsidered
avictory, any date that yields a higher payoff isaso congdered avictory. Smilaly, if a
date is consdered a defeet, any state that yields alower payoff is also a defedt.

R1 ! Monotonicity across events: If sO E(A) and x(S) $ x(s)then s 0
EV(A), andif sO Ep(A) and x(S) # x(s) then s 0 E5(A).

Besides being plausible, assumption R1 alows events to be characterized as payoff
intervas.

Proposition 6. If condition R1 holds, there exist payoffsxy(A) and x,(A) suchthat E;(A)
={sx(s) # xp(A)}, En(A) ={s|Xp(A) < X(s) <x\(A)}, and E\(A) = {s] xy(A) # X(9)} -

Proof. Let xp(A) = sup{x(s)| s0 Ep(A)}. Then by R1, Ep(A) = {9 x(5) #
Xp(A)}. Smilaly, let x(A) = inf{x(s)| s0 E(A)}. Thenby R1, E(A) = {g x(5 $
Xp(A)}. Since Xp(A) 0 X(Ep(A)), X\ (A) 0 X(E\(A)), and Ex(A) and E(A) aredigoint,
it must be the case that Xp(A) < Xy(A). Then Ey(A) = {9 Xp(A) < X(S) < X(A)}. 9

Let F(x) be the probability distribution over payoffs induced by the digtribution
function F4(s) defined over gates. Since both events and probability distributions can be
defined in terms of payoffsingead of dates, the preference function V, can be, as well.
Let

Xp (A) xv (A Xn
V(F;A) = Qu,(x;A)dF(x)+ Quy(X)dF(x)+ O, (xAdF(X), (3
Xo Xp (A) X (A)

where x, and x,,, are the lowest and highest possible payoffs, respectively, and the events
and utility functions are assumed to depend on the choice s&t, asin (2). By condruction,
V(F) $ V(F) if and only if V(F,) $ V4(F,) where F* and F are the probability
distributions over payoffsinduced by the probability distributions over states, F and F,
respectively. Thus, V represents the individud's preferences. For the remainder of the
discussion of preferences toward risk, stateswill beignored and events will be trested as
payoff intervas.
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Now define u(x;A) = u(x;A) on E;(A). ThenV(F;A) = Tu(x;A)dF(x), whichis
a sandard expected utility representation, dbeit with acomplicated utility function, and dl
of the standard results from expected utility theory can be extended to this setting. Most
importantly, results about first-order-stochastic dominance (FOSD) preferences can be
established under conditions A1 and A2 in Section 2, which state that uy(x;A) $ uy(X) $
up(X;A) for dl x and A and that u;(x;A) isincreasing in x for dl A, respectively.

Proposition 7. Under conditionsR1, A1, and A2, preferencesexhibit FOSD preference.

Proof. Under R1, it is enough to show that the function u(x) is increasing.
Suppose that x* > x. Therearetwo cases. Firg, if both x* and x are in the same event
E;, then A2 impliesthat u(x";A) = u,(x;A) $ U(X;A) = u(x;A). Alternaively, if x 0 E;(A)
and X" 0 E;(A) withi O j, then Aland A2 together imply that u(x";A) = u,(X";A) $ (X;A)
= u(x;A). 9

This proposition statesthat if the conditions A1, A2, and R1 hold, the decision-maker will
only choose from among theundominated dternativesin A, where F O A isundominated
inAif thereisno F' 0 A such that F' FOSD F.

Now turn atention to the issue of determining when a payoff condtitutes either a
victory or adefeat. Firdt, for an outcome to be considered either avictory or adefest, it
must have resulted from a purposeful choice; an inevitable outcome does not lead to the
extra utility boost. Thisleads to the next assumption.

R2 1 Avoidability: PayoffsinE,(A) and Ep(A) must beavoidable; that
is, given A, there exigts an undominated digtribution F in A such
that F(xp(A)) = 0, and there exists an undominated distribution F*
in A such that F(x(A)) = 1.

Takethe defeat casefirgt. Defeats occur when the decision-maker suffersalow outcome.
But, if there was nothing he could have done to avoid this outcome, the outcome is not
considered adefeat. Put another way, defeats cannot be caused by bad luck; instead, they
mugt result, at least in part, from a conscious decison.  So, the defeat occurs when the
decision-maker suffers alow outcome after choosing not to take a“safe’ option which
would have made the low outcome impossible.

The reasoning for victoriesissamilar. A victory occurs when the decision-maker
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obtains a high payoff, but a high-payoff done is not sufficient. To fed victorious, the
decison-maker must have passed up a safe option which would have precluded the high
outcome.

The other restriction on preferencesisthat victories and defests must be unlikely:

R3 ! Unlikeliness: PayoffsinE(A) and Ep(A) must be unlikely; that
is, there exist pp(A), py(A) 0 (0,1) such thet for dl undominated
FOA, F(xp(A) # pp(A) and F(x\(A)) $ 1 T py(A), withpp(A)
+pu(A) <1

If someone plays alottery in which he can win $1000 with probability 0.99 and win $0
otherwise, winning $1000 is unlikely to make him fed victorious. But, winning $0islikey
to make him fed defeated. Condition R4 places bounds on how likdy victories and
defeats can be, with the provision that some payoffs must be considered neutrdl.

Conditions R2 and R3 combined statethet if apayoff x isconsdered avictory by
the decision maker, there must be some undominated probability distribution in the choice
et for which the highest payoff islessthan X, so that x isavoidable, and there must be no
undominated probability distributionin the choice set for which the probability of receiving
at least x isgreater than py, so that x isunlikdy. If the payoff y is consdered a defest,
there must be some undominated probability digtribution for which the lowest payoff is
abovey, so that y is avoidable, and there must be no undominated probability distribution
for which the probaility of receiving y or lessis greater than pp, S0 that y isunlikdy.

The find assumption concernsthe shapes of the utility functions. Theneutra utility
function uy, which is independent of the choice set, is assumed to be S-shaped as in
Kahneman and Tversky (1979), so that it isrisk averse over gains and risk seeking over
losses.

R4 1 Diminishing sensitivity. uy(x) isconcavewhen x > 0 and convex when
x <0, and uy(0) = 0.

The resulting utility function is shown in Figure 1. Assumption R4 holds particular
importance for the issue of gambling and insurance in the next section. In particular,
without victory and defeat considerations, an expected utility maximizer satisfying R4
would never take afar gamble over gainsand would never purchasefair insurance against
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|osses.

6. Evidence on risky choice
In this section it is demonstrated that the VD modd is able to accommodate

)

Uy (%)

—— ]

uD(x/

Figure 1

severd important choice patterns that have been discussed in the literature. In particular,

the discussion includesthe Allais paradox, Conlisk's (1989) variants of the Allais paradox
including boundary effects, and Smultaneous gambling and insurance.

Tablel
Probabilities
Choice set=A, A A, A
Payoff F. F, Fs F, G G, H; H, Hj H,
$5M 0 10 0 .10 .88 .98 .10 .20 10 20
$1M 1 89 A1 0 A1 0 89 .78 19 .08
$0 0 01 .89 .90 01 .02 .01 .02 71 72

Aderisks denote the moda choicesin the pairs.

The Allais paradox
The Allais paradox involves the two pairs of choices A; and A, in Table 1. It

19




aises because individuds typicaly prefer F, toF, inA,, but prefer F, toF5inA,, and this
choice pattern isincons stent with stlandard expected utility specifications. TheVD modd
can accommodate the Allais pattern. Firgt, notethat whenthechoicesetisA, ={F;, F,},
the outcome $0 can be considered adefeat, becauseit isboth avoidableand unlikely. The
payoff $5M may or may not be considered a victory. To make F, as dttractive as
possible, $5M will be treated as avictory when the choice set isA;. Thus, the individud
chooses F; over F, iff

Un(SIM) $ .01Up($0; A,) + .89y ($1M) + .10Uy($5M: A,), 4)

assuming that $5M is considered avictory. When the choice setis A, = {F;, F,}, $0is
no longer avoidable, so it cannot be considered a defeat. The outcome $5M is both
avoidable and unlikely, while the outcome $1M is not avoidable. Thus, $1M is neutrd,
while $5M may or may not be avictory. To make F; as attractive as possible, $5M is
treated as neutra when the choice set is A,. The decision maker chooses F, over F; iff

.90uy($0) + .10u\($5M) $ .89u\($0) + .11uy($1M). (5

Smplifying and combining (5) and (6), the individua choosesF; and F, if'®
01up($0; A,) + .10uy($5M; Ay) # .11uy($IM) # .0Luy($0) + .10uy($5M). (6)
Theintuition behind (6) fitsexactly that originaly given by Allais (1953) to explain
his paradox. In the choice betweenF; and F,, theformer ischosen because receiving $0
would bevery bad. Thisiscaptured by $0 being considered adefeet in the left Sde of the
expression. In the choice between F; and F,, the decision maker will probably get $0
anyway, so he might aswell chooseF, and go for the $5M. Thisis captured by $0 being

consdered neutrd in the right Sde of the expression.

Conlisk's displaced Allais paradox

13 Imilar conditions could befound if $5M is considered neutral in one or both of
the choice pairs. The key to the result liesin tresting $0 as a defeet in A, but asneutrd in
A,.
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Conlisk (1989) congders two variants of the Allais questions. The firgt variant
congstsof having subjects choose between F; and F,, inchoiceset A, inTable 1, and also
between G, and G, in choice set A;. The first choice is governed by expression (4)
above. Inthe second choice neither of the extreme outcomes is avoidable, so the neutrd
utility function is used for dl of the outcomes. Conlisk finds that a mgority of subjects
prefer G, to G;, which isimplied by

0.98Uy($5M) + 0.02y($0) $ 0.88Uy($5M) + 0.11uy($1IM) + 0.01uy($0).  (7)

Thisreducesto 0.10uy($5M) +0.01uy($0) $ 0.11uy($1M), whichasoimpliesthechoice
of F,over F5in (5). So, condition (6) above implies Conlisk’s displaced Allais behavior
aswedl astheorigind Allais behavior.

Boundary effects

The digributionsin A, A,, and A5 in Table 1 dl lie dong the boundary of the
probability triangle* Conlisk (1989) also gave subjects choices that moved the origina
Allas digributions off of the boundary. Notice that the movement from H, to H, isthe
same as the movement from F, to F,, in the Allais paradox, removing mass 0.11 from the
intermedi ate outcome and adding mass 0.10 to the high outcome and mass 0.01 to thelow
outcome. Similarly, themovement from H; to H, is the same as the movement from F; to
F, inthe Allais paradox.

The choices in this problem differ from the Allais choices in an important
dimenson, though. In none of the dternatives is the individud able to avoid any of the
outcomes, al of the probabilities are strictly podtive. Since none of the outcomes are
avoidable, the neutra utility function uy is used for al of the outcomes, and the individua
must choose either H; and H; or he must chooseH, andH,. Thisiswhat Conlisk (1989)
finds, with 66 of the 215 subjects choosing H; and H,, and 81 choosingH, and H,. So,
68% of the subjects choices were conggtent with the VD modd. Once again assuming
that uy, isindependent of the choice s&t, the moda choice, H, and H,, isimplied by the

14 When there are three fixed outcomes, the st of lotteries with those three
outcomes is the two-dimensional smplex given by {(p1,P,Ps) 0 0.3 p, + p, + ps = 1}.
This is the probahility triangle. The boundary is the set where at least one of the three
probabilitiesis zero. Consequently, the digtributionskF,, F3, F4, G;, and G, in Table 1 dl
lie on the boundary of the probability triangle.
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condition 0.10uy($5M) + 0.01uy($0) $ 0.11u\($1M), whichisidentical to the condition
(5) for choosing F, over F5 and condition (7) for choosing G, over G;.

An ahility to predict the choices of F, over F, but H, over H; is important.
Typicdly this choice pattern has been labeled a “certainty” or “boundary” effect, and in
ther meta-study Harless and Camerer (1994) conclude from the evidence of boundary
effects that expected utility works well when the number of outcomes with positive
probability is congtant, but not when the number of probable outcomes changes. While
the VD model does not make exactly this prediction, it comes close. As the next
propositionshows, the VD mode coincideswith the standard expected utility modd when
al digtributions under consderation have the same support, but that Allais-type violations
can occur when digtributions have different supports, as with the Allais paradox.

Proposition 8. Let A, = {F;, F;'} and A, ={F,, F,},withF, ' F,"=F, ! F,” ad
supp F, F supp F,” and suppF, ¥ suppF,". Thendl VD preference maximizers choose
gither F, andF, or F,” andF," if and only if supp F; = supp F," and supp F, = suppF,".

Proof. Suppose that supp F; = supp F," and supp F, = supp F,". Then no
outcomes areavoidable, and the utility function uy, isused to evauate dl monetary payoffs.
ThenF, 6 F;" if and only if 0 # Tuy(X)[dFy(X) ¥ dF;"(X)] = Tuy(X)[dF,(x) ¥ dF,"(X)]
if and only if F, 6 F".

Now suppose that supp F; O supp F;". Therearetwo cases. First suppose that
inf supp F, > inf supp F;". Then choose inf supp F;" < Xp(A,) # inf supp F; and pp(A,)
= F1 (Xp(Ay)). Also let xp(A;) <inf supp F', xy(Ay) > sup supp F1', and x(Ay) > sup
suppF,". Thentheindividud usesuy, to evauate al monetary payoffsin A,, and uses uy
for dl monetary payoffs above xp(A,) in A;. Heuses up(-;A,) for dl moneary payoffs
below Xxp(A;) in A;, and these payoffs only occur if he chooses F;". If up(X;A;) is
sufficiently beow uy(x) for x # Xp(A,), it ispossbleto haveF; 6 F;" but F,” 6 F,.

The other casehasinf suppF, = inf supp F," but sup supp F; < sup suppF;". A
smilar argument showsthat it is possible for theindividua to experience victory from F,
but not from the other three lotteries, and have the preferencesF," 6 F; but F, 6 F,". 9

This proposition shows that Allaistype violations occur when one of the two lotteriesin
apar has adifferent support than its dternative. It aso showsthat Allaistype violations
are not caused by any sort of certainty effect —if the $1M for sure gamble in the origind
Allaislottery were replaced by a uniform distribution over [$0.95M, $1.05M], the VD
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modd predicts the same choice pattern.

Insurance and gambling

Begin with asmple insurance problem in which the individua faces the prospect
of loang L > 0 with probability p. Far insurance againg the loss costs pL.. Theisueis
under what conditions does the individud prefer paying pL for sure over facing the
potentid loss. Let (x,p) denote the probability distribution which pays x with probability
p and zero otherwise. The choice set A ={('L,p), (! pL, 1)}, s0 there are only two
choices. Notethat thelossof L isavoidable, and soisthe payoff of zero. If p # pp, then
using (3), theindividud purchasesinsuranceif and only if

Un(YpL) $ pup(TL;A). (8)

The standard reference dependence condition R4 tellsusthat uy (! pL) < puy(TL), sothat
without the effect of defeat the individua would not buy insurance. But, Snce up(1L;A)
< uy(TL),itispossblefor (8) to haldif uy(TL) ! uy(!L;A) issufficiently large.

Proposition 9. If TL # Xp(A) and if uy(Tpo(A)L) $ po(A)up(!L;A), there existsq #
Po(A) such that the individua insureswhenp 0 [q, po(A)].

Proof. If p# pp(A), then the expected utility from facing the risk is pup (! L;A)
and the expected utility from insuring is uy(! pL). The hypothesisstatesthat the individua
insureswhen p = pp(A). If p< pp(A) and uy(!pL) $ pup(!L;A), then note that
d/dp[un(TpL) T pup(TL;A)] = YLuy'(Ypl) ¥ ug(TL;A) S Thuy'(Tpl) T uy(Tpl)/p =
PL[uy'(TpL) ¥ uy(TpL)/(TpL)], and theterm in brackets is negative by the convexity of
Uy over losses. So, if the individud insures when the probability of lossis g, he insures
whenever g # p # pp(A). 9

Thisresult showsthat it ispossible for the modd to accommodate insurance againgt losses
if the lossislarge enough and unlikely enough to condtitute a defeat, and if the effect of a
defeat on utility is sufficiently large. Note that individuds only insure when losses are
unlikely.

A smilar andyssalowsfor gambling over large, unlikely gains. Herethe condition
isthat the probability of the gain G must be a most p(A) and the other condition is that

PUAU(G;A) $ uy(pU(A)G).
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Discussion

Thereare, of course, many modelsof behavior toward risk that can accommodate
the choice patterns discussed above, and there are model sthat share many of the elements
used in the congtruction of the VD modd. However, none of the models look explicitly
at notions of victory and defeat, and none of the models have counterparts which can be
used to address the game theory evidence.

The VD modd handles expected utility violaions through event-dependent
preferences. Currently, the most prominent existing model s are rank-dependent expected
utility theory (e.g. Quiggin (1993)) and the closdy-related cumulative prospect theory
(Tversky and Kahneman (1992)). Both of thesemodelsrely on probability transformation
schemes to explain expected utility violations, while the VD modd leaves probability
distributions untransformed. There are Smilarities, though. Most of the action from
probability transformations comesin thetals of the distributions, and dl of the action from
the victory and defeat events comes in the tails of the didributions. Still, in the exiging
modds the probability transformations are based only on the didtribution under
condderation, while in the VD mode the events are based on the choice set. Rank-
dependent expected utility theory and cumulative prospect theory are both able to
accommodate the Allais paradox as well as smultaneous gambling and insurance, but
unlessthe probability transformation function is discontinuous at its endpoints, they cannot
accommodate boundary effects.

Severa other models do not use probability transformations, and they are closer
to the VD modd.*® Landsberger and Meilijson (1990) proposeamode inwhich the utility
function is segmented, as here, and it predicts that people will gamble on large, unlikely
gans and insure againg large, unlikely losses. To accomplish this, they propose the
condition that the utility function is star-shaped, i.e. it exhibits nonincreasing average utility
with respect to some anchor point. The event-dependent utility function of the VD mode
is not star-shaped, because it is convex over losses.

Conlisk (1993) constructs amode in which the decison-maker has a preference
for gambling. In hismodd, theriskier of two choices generates additiond utility, and he
showsthat it can explain the Allais paradox and s multaneous gambling and insurance. His

BLuceet d. (1993) develop amode that usesthreshold levelsfor gainsand losses
withthesereferencelevel s dependent on the choice set. Themodd can accommodatethe
Allas paradox and a number of other choice anomalies. But, the modd aso relies on
probability weighting schemes.
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modd is closeto the VD modd, in that both augment utility according to something other
than the monetary payoff, and this augmentation depends on characteristics of the choice
set.’® But, this preference for gambling has no obvious application to the games discussed
here.

The two categories of models that are closest to the VD modd are those with
dissgpointment’ and elation (Loomes and Sugden (1986) and Bell (1988)) and those
congtructed to accommodate boundary effects (Cohen (1992), Neilson (1992)). Using
the terminology from this paper, one can think of the former class of modds, which are
amilar in nature to regret theory (Loomes and Sugden (1982), Bdll (1982)), as beginning
with aneutrd utility function, and adding utility from dation when the monetary payoff is
above the cartainty equivaent computed using the neutrd utility function, and subtracting
disutility from disgppointment when the monetary payoff isbeow the certainty equivaent.
Thisleads to two events, with the neutrd event missing, and the overdl utility function is
continuous, unlikethe one depicted in Figure 1. Whilethismodd can accommodate many
behaviord peatterns, it cannot explain boundary effects.

A variety of model s have been proposed to accommodate boundary effects. The
origina version of prospect theory (Kahneman and Tversky (1979) could accommodate
boundary effects through the discontinuity of the probability weighting function. Neilson
(1992) proposesamodd with discontinuousutility functionswheredifferent utility functions
are used for different probability distributions depending on how many outcomes are
assigned positive probability.*® Neither of these models exhibits stochastic dominance
preference, while the VD model does.

The closest modd to the VD modd for andyzing behavior toward risk isthethree-
criteria model of Cohen (1992). There the individual compares the expected utility of
different distributions, but different utility functionsare used for different distributions based

16 There are dso modelsin which the parameters of the utility function depend on
the lottery being considered, rather than the choice set. See, for example, Becker and
Sarin (1987).

1 The notion of disappointment discussed here differs from Gul's (1991) notion
of disgppointment aversion, which can be described asa preference for avoiding the risky
gamble in Stuaionslike the first Allais choice pair.

18 See Humphrey (1998) and Schmidt (1998) for extensions.
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on the highest and lowest payoffs available from the distribution.’®  Proposition 8 above
shows that in the VD modd, expected utility with a sngle, event-independent utility
function works well only when dl lotteries under consderation have the same support,
which matches exactly the prediction of Cohen's model. However, the likeihood of the
outcomes never enters into Cohen's modd.

7. Conclusions

This paper presentsasinglemode that can explain“anomaous’ behavior ingames
and toward risk. In particular, it can accommodate evidence of inequity averson,
cooperationin the one-shot prisoner’ s dilemma, and contributionsin afree-riding setting.
It can also accommodate the Allais paradox and its variations, boundary effects, and
amultaneous gambling and insurance. The success of asingle, unified modd for fitting this
wide variety of patterns suggeststhat it may not be necessary to use separate gpproaches
for games and for risk, and that it is fruitful to explore modds that can do both. The
success dso vaidates the interpretation of the evidence lent by the modd.

AccordingtotheVD mode proposed here, the propensity of respondersto reject
low offersin ultimatum games and the Allais paradox behavior both arise from the same
underlying motivation — both arise because the individua wishes to avoid states in which
they fed defeated. For the ultimatum game, this means avoiding states in which his
opponent’ s payoff istoo high compared to hisown. For the Allais behavior, this means
avoiding states in which an avoidable, unlikdly, low payoff occurs. If, as the moded
proposes, individuals do lose utility in states in which they fed defeated, then one should
expect them to take actionsto avoid this utility loss, and these actions manifest themsdves
in predictable patternsin a variety of settings, including both risk and games.

Inequity averson is captured through two effects. Firgt, when the player’ s payoff
is low relative to his opponents’, he can avoid defeat by reducing his own payoff but
reducing his opponents payoffs by more. Second, the player feds victorious when his
payoff ishigh rdativeto hisopponents' but not too high, and if his payoff istoo high hecan
retain victory by reducing his own payoff and raising his opponents. Thus, inequity
averson comes not from a naturd sense of fairness, but instead from a combination of a

19 Gilboa (1988) and Jaffray (1988) propose similar models but using only the
lowest possible payoff (the security level) and not the highest possible payoff (the potentia
leve).
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didike of losng and a sense of guilt for winning by too much.

Gambling and insurance arise through two effects as wel. Individuds have the
standard reference-dependent neutra utility functionintroduced by Kahnemanand Tversky
(1979), w0 that it is concave over gains and convex over losses. Without some other
congderation, then, individuas would never insure againgt large, unlikely losses and they
would never gamble on large, unlikely gains. But they do in the VD modd. Insurance
agang large, unlikely losses occurs because people consder themsalves defeated when
they suffer alarge, unlikdly loss, and insure againgt thissense of defeat. Gambling onlarge,
unlikely gains occursbecause people consider themsd vesvictoriouswhenthey winalarge,
unlikely prize, and they gamble on this sense of victory. This willingness to gamble on
victory suggeststhat playersin games might chooseriskier srategiesin an effort to achieve
avictory, dthough no games in which this effect can occur are explored in this paper.
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