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The decomposition of real GDP into trend and cycle remains a problem of

considerable practical importance, but two widely used methods yield starkly different

results. The unobserved component approach, introduced by Harvey (1985) and Clark

(1987), implies a very smooth trend with a cycle that is large in amplitude and highly

persistent. In contrast, the approach of Beveridge and Nelson (1981) implies that much of

the variation in the series is attributable to variation in the trend while the cycle

component is small and noisy. This conflict is apparent in Figures 1 and 2 in this paper

where the two cycle components are plotted, and has been widely noted; see Watson

(1986) Stock and Watson (1988) among others.

It should surprise us that the unobserved component (UC) and Beveridge-Nelson

(BN) methods produce very different trend-cycle decompositions since both are model-

based. Each implies an ARIMA representation. Neither imposes smoothness in the trend

component a priori as does the smoother of Hodrick and Prescott (1997) or as in the

polar case of a linear trend that forces all variation, save constant growth, into the cycle.

The UC and BN both "let the data speak for itself" in this regard. While it is often stated

that BN assumes a perfect negative correlation between trend and cycle innovations, that

is a property of the estimated trend and cycle, not the unobserved components, and it is a

property shared with the UC decomposition. This paper attempts to find out why we do

not, after decades of research, have a consistent picture of how variation in a series like

real GDP should be allocated between trend and cycle.

Briefly, section 1 demonstrates the theoretical equivalence between the

approaches. Section 2 investigates the source of the difference observed in practice.

Section 3 concludes.
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1. Theoretical Equivalence of the Beveridge-Nelson and Unobserved Component

Estimates of Trend and Cycle

The detrending problem is motivated by the idea that the log of aggregate output

is usefully thought of as the sum of a nonstationary trend component that accounts for

long-term growth and a stationary component that allows for transitory deviations of

output from trend. We follow custom in refering to the latter as the “cycle” even if it is

not periodic. The UC model takes the form:

(1a) yt = τt + ct

(1b) τt = τt-1 + µ + ηt; η ~ i.i.d. N(0,ση)

(1c) ct is stationary and ergodic

where {yt} is the observed series, {τt} is the unobserved trend assumed to be a random

walk with average growth rate µ, and {ct} is the unobserved stationary cycle component.1

The UC-ARMA adds the condition that {ct} is a stationary and invertible ARMA(p,q)

process with innovations that may be contemporaneously cross-correlated with trend

innovations,

(1d) φp(L) ct = θq(L) εt; ε ~ i.i.d. N(0,σε); Cov(ηt, εt+k) = σηε  for k=0; 0 otherwise.

In some implementations the rate of drift µ is allowed to evolve as a random walk, and an

additional irregular term may be added. Harvey (1985) and Clark (1987) suggest

specifying p=2 which allows the cycle process to be periodic in the sense of having a

                                                       
1 As noted in Blanchard and Quah (1989), the structural trend of output does not necessarily follow a
random walk. Therefore, any decomposition method which assumes a random walk trend runs the risk of
lumping transitory movements in output due to supply shocks in with movements due to demand shocks,
with only the latter movements directly connected to what economists traditionally refer to as the business
cycle. However, removal of the permanent component is still useful in business cycle analysis since it
should, in principal, render the output series stationary without removing any relevant information about
the cycle. Furthermore, to the extent that transitory movements are dominated by demand shocks, the
transitory component will provide a very accurate measure of the business cycle.
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peak in its spectral density function. They and others also assume that the trend and cycle

innovations are uncorrelated, setting

(1e) σηε = 0

thereby casting the UC model in state-space form by treating (1a) as the measurement

equation and (1b) as the state transition equation. We denote this constrained zero-

covariance UC-ARMA model as UC0.

In practice, the parameters are unknown and are estimated from the data series

(y1, .., yn) using the maximum likelihood method of Harvey (1981). Given the parameters,

the Kalman filter is used to compute the expectation of the trend component conditional

on data through time t:

[ ] ),..,( 1 tttttt yyYYE ==   where, ττ)

Alternatively, the BN estimate of trend for an I(1) time series {yt} is defined to be

the limiting forecast as horizon goes to infinity, adjusted for the mean rate of growth; so

[ ]tMtMt YMyEBN µ−= +∞→
lim .

BN showed that the time series {BNt} will be a random walk with drift, the deviation

from trend is a stationary process, and that the innovations of {BNt} and {yt - BNt} are

perfectly correlated. The series {BNt} is calculated from the ARIMA representation of

{yt}, which in principle is unique after cancellation of any redundant AR and MA factors.

It is well known that the UC–ARMA model always implies a univariate ARIMA

representation for {yt}. This is what Nerlove, Grether, and Carvalho (1979) refer to as the

canonical form of the UC model, and it may be useful to think of it as the reduced form.

Substituting (1b) and (1d) into (1a), taking first differences, and rearranging we obtain
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(2a) φp(L) (1-L)yt = φp(1)µ + φp(L) ηt + θq(L) (1-L)εt .

Recognizing that the right hand side will have non-zero autocorrelations through lag

max(p, q+1), Granger’s Lemma implies that the univariate representation will be

(2b) φp(L) (1-L)yt = µ∗ +  θ*
q*(L) ut; u ~ i.i.d. N(0,σu); q* = max(p, q+1)

This ARIMA reduced form of fully describes the joint distribution of the {yt} and

therefor the conditional distribution of future observations given the past and is unique.

Further, there is always a UC representation of any ARIMA process. As Cochrane

(1988) pointed out, the existence of the BN decomposition guarantees it. However, there

will not be a unique UC representation corresponding to a given ARIMA process. For

example, a series that is autocorrelated at lag one only has a UC representation as a

random walk plus random noise, but the variances of the two innovations and their

covariance are not all separately identified; see the discussion in Nelson and Plosser

(1981).

Given that a time series will not in general have a unique UC representation, it

seems surprising to us that the BN trend is the conditional expectation of the random

walk component of an I(1) process. As pointed out by Watson (1986), this is true

regardless of the covariance structure of the unobserved components. To see this,

consider the unconstrained UC model defined by (1a)-(1c), so cycle and trend

innovations may be cross-correlated. The conditional expectation of the trend component

at time t is

[ ] [ ]tMtttt YcEYE ++= ττ

for large enough M, since the cycle, by its ergodicity, has expectation zero far enough in
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the future. Further, the expected value of any future innovation in the trend is zero, so we

have

[ ] 







++= +

=
+∑ tMt

M

j
jtttt YcEYE

1

ηττ .

Recognizing that the terms of the right include all the elements of yt+M except the

accumulated drift, we have

[ ] [ ] ttMttMt

M

j
jtttt BNYMyEYcEYE =−=








++= ++

=
+∑ µηττ

1

.

Then the conditional expectation of the cycle at time t is simply

[ ] [ ] ttttttt BNyYEyYcE −=−= τ .

Thus, we can always compute conditional expectation estimates of trend and

cycle at any point in time from the ARIMA representation of the observed series. The

two assumptions, (a) the trend is a random walk, and (b) the cycle is ergodic, are

sufficient to identify the components, and this does not depend on knowing the

covariance between trend and cycle innovations. Intuitively, the forecast at a long enough

horizon reflects only the permanence of the random walk trend. Stronger assumptions

may be needed to identify the parameters of a UC representation, but they are irrelevant if

the only objective is to estimate trend and cycle. In that case, only the conditional

expectation of the future given the past is required, and the ARIMA reduced form

provides the relevant conditional distribution.

It follows that if a particular time series does have a representation as a UC0

process, then the Kalman filter and BN estimates of trend and cycle will be the same, as
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long as the parameters of the ARIMA model are those implied by the UC0

representation. In that case, BN is just another way to compute ttτ̂  and ttĉ ; the time

series of those estimates will be the same and they will have the same properties. In

particular, their innovations will be both be functions of the innovation in yt since it is

only new information that will cause the long range forecast, the trend, to change. Thus,

UC0 and BN share the often-noted property of the BN decomposition, that the

innovations of the estimated trend and cycle series are perfectly correlated. Further, none

of these results depend on limiting UC representations that might be modeled to the

constrained UC0 case; the corresponding ARIMA representation will always be an

equivalent way of obtaining the information relevant to estimating the trend.

To sum up this section, we have shown that whether one uses the UC approach to

trend-cycle decomposition based on a state-space representation and the Kalman filter, or

the BN approach based on long-range forecasts from a univariate ARIMA model, the

specific results should be the same. UC and BN are simply alternative ways of

calculating the same conditional expectation of the unobserved trend and cycle at a point

in time. The fact that the two have produced such different estimates of trend and cycle in

practice implies, then, that they must be based on conflicting representations of the data.

Identifying the source of the conflict is the subject of the next section.

2. In What Way Do UC and ARIMA Models of U.S. Real GDP Conflict?

The results of Section 1 imply that the differing results obtained in practice must

be traceable to restrictions on the reduced form ARIMA implied by the UC approach that

are in conflict with the unrestricted ARIMA model used in the BN approach. Those

restrictions presumably arise from the restrictions that have been placed on the UC–

ARMA representation used in implementing the Kalman filter, the particular ARMA(p,

q) form of the cycle process and the zero correlation between trend and cycle

innovations, what we called the UC0 model. Following Clark (1987) we set p=2, to allow

for cyclical dynamics, and q=0 in the UC0 model and obtain for real GDP 1947:1 –
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1998:2 the filtered estimate of ct t| shown in Figure 1.2 Confirming results in the literature,

the estimated cycle produced by the UC0 model is both large in amplitude and very

persistent. It agrees reasonably well with the NBER dating of the business cycle,

although it leads the NBER dating at peaks. Reflecting the smoothness of the trend, the

cycle shown here is qualitatively similar to that obtained by simple linear detrending of

log output by least squares. For example, both imply that the economy has been below

trend throughout the 1990s.

Table 1 reports the maximum likelihood estimates of the parameters and their

standard errors for the UC0 model. The roots of the estimated autoregressive polynomial

are complex, implying that the business cycle has a period of almost 8 years with a

standard deviation of about 3 percentage points around trend, confirming the visual

impression of persistence, periodicity, and amplitude in Figure 1. In contrast, the trend

process innovation has a standard deviation of only about 0.7 percentage points.

                                                       
2 Clark (1987) allowed the drift parameter to evolve as a random walk, but estimates of the variance are
small. We have assumed that this parameter remains constant, implying that output is I(1).
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Fig. 1: UC0 Cycle, U.S. Real GDP.
Percent deviation from trend, NBER recessions shaded

Table 1: Maximum Likelihood Estimates of UC0 Parameters

Estimate Standard Error
Trend process
Drift: µ 0.811914 (0.050050)
Innovation: ση 0.689342 (0.103756)

Cycle process
φ1 1.530307 (0.101162)
φ2 -0.609731 (0.114031)
Innovation: σε 0.619867 (0.131859)

AR Roots (inverted) 0.765154 +/- 0.155792i
Implied cycle: period 7.7 years, standard deviation .03.

Log Likelihood -286.605332
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The reduced form ARIMA representation for this UC0 model corresponding to

(2b) is obtained as follows:

tt

ttt

LLL

cLLy

εφφηµ
τ

12
21 )1)(1(

)1()1(
−−−−++=

−+−=∆
.

Multiplying both sides by ( )1 1 2
2− −φ φL L  gives:

(3) 2
*
21

*
1

*
12211

*2
21 )1( −−−−− +++=−+−−+=∆−− ttttttttt uuuyLL θθµεεηφηφηµφφ .

using the fact that the right-hand side has a representation as an MA(2) by Granger’s

lemma, the univariate innovations ut being i.i.d. N(0, σu), and µ* is µ(1-φ1-φ2).

While the reduced form of the UC0 model is ARIMA(2,1,2), when we estimate

that model and compute the BN cycle component from it we get the very different results

seen in Figure 2. As reported in the literature, the estimated BN cycle is small in

amplitude compared to the UC0 cycle and much less persistent.

Table 2 reports the maximum likelihood estimates of the parameters for the

reduced-form ARIMA(2,1,2) model. Confirming the visual impression from Figure 2, the

period of the cycle implied by the AR parameters here is much shorter, only 2.4 years

instead of 8. The fact that the value of the log likelihood is greater by roughly 2 for the

unrestricted ARIMA must reflect restrictions in UC0 model not imposed in the reduced

form, in particular zero correlation between trend and cycle innovations. To see what

correlation is implied by the ARIMA parameters, we next solve for the parameters of the

unrestricted UC model of equations (1a)-(1d) that correspond to the estimated

unrestricted ARIMA parameters.
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Fig. 2: Beveridge-Nelson Cycle, U.S. Real GDP.
Percent deviation from trend, NBER recessions shaded.

Table 2: Maximum Likelihood Estimates for ARIMA(2,1,2)

Estimate Standard Error
Drift µ 0.815603 (0.086490)
φ1 1.341846 (0.151854)
φ2 -0.705894 (0.173021)
θ1 -1.054277 (0.195914)
θ2 0.518756 (0.225004)
SE of Regression 0.969392 (0.047822)

AR roots (inverted) 0.670923 +/- 0.505724i
Implied cycle: period 2.4 years

Log Likelihood -284.650664
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First note that the AR parameters are the same in both the UC and ARIMA

reduced form since the AR polynomial on the left side of (2) is the AR polynomial of the

UC cycle. Now the observable moments on the MA side of (2) are the mean, which

identifies µ, and the autocovariances:

(4)

γ φ φ σ σ φ σ
γ φ φ σ σ φ φ σ
γ φσ φσ
γ

η ε ηε

η ε ηε

η ηε

0 1
2

2
2 2 2

1

1 1 2
2 2

2 1

2 2
2

2

1 2 2 1

1 1

0 3

= + + + + +
= − − − − − +
= − −
= ≥

( ) ( )

( ) ( )

,j j

The three non-zero autocovariance for the MA(2) are just sufficient to identify the three

remaining parameters of the UC representation, namely ση
2 , σε

2 , and σηε . We note that

in a particular case the solution to (4) might not imply a positive definite covariance

matrix for the trend and cycle innovations, in which case there would not exist a

corresponding UC-ARMA(2,0) representation.

Table 3 compares the estimates from Table 1 for the UC0 model with the implied

estimates from the unrestricted ARIMA(2,1,2) reduced form. While the parameters for

the cycle component are somewhat similar, the implied standard deviation of the trend

innovations is almost twice as large for the unrestricted reduced form, and the implied

correlation between trend and cycle innovations is large and negative. To avoid

misunderstanding, we note that the latter is the estimated correlation between unobserved

innovations, not the correlation between the innovations in the observed series ttτ̂  and

ttĉ . The former is a function of parameters of the ARIMA reduced form representation

which could imply any correlation value, while the latter is always –1 when the two

representations imply the same ARIMA representation, as discussed above.
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Table 3: Parameters of UC0 Model and Those Implied by Unrestricted
ARIMA(2,1,2) Reduced Form

UC0 Model Implied by ARIMA
Trend process
Drift: µ 0.811914 0.815603
Innovation: ση 0.689342 1.2368

Cycle process
φ1 1.530307 1.341846
φ2 -0.609731 -0.705894
Innovation: σε 0.619867 0.74867

Covariance σηε zero (constrained) -0.83913

Correlation ηερ zero (constrained) -0.90621

The fact that σηε  is identified in this case implies that we can relax the constraint

that it is zero in the UC model and estimate it directly by maximum likelihood.3 The

unconstrained UC-ARMA(2,0) model is recast in state-space form simply by including

the cycle component with the trend in the state equation; see appendix for details. Figure

3 displays the filtered estimate ct t|  of the transitory component for this model. The

estimated cycle is essentially identical to the estimated cycle from the BN

decomposition.4 This verifies that the filtered estimates from the UC model and the BN

estimates are equivalent.

More generally, the order condition for identification of the cross-correlation

between trend and cycle innovations is satisfied, in the sense of having as many moment

equations as parameters, when p=q+2 as it is in this case with p=2, q=0.

                                                       
3 By matching moments of the MA part of the ARIMA and UC representations, it is readily shown that a
condition for identification of the covariance between innovations is that p ≥ q+2.
4 The only difference is for the first observation, which is different due to the need to provide an initial
guess for the value of the random walk trend in estimation via the Kalman filter.
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Figure 3 – UC1 Cycle (NBER dated recessions shaded)

Table 4 reports the maximum likelihood estimates of the parameters for the

unconstrained UC model. The most striking feature of these estimates is that they are all

essentially the same as the implied estimates from the unrestricted ARIMA model

reported in Table 3. Confirming identification of the covariance between trend and cycle

innovations, the standard error of the estimate of σεη is small, and a .95 confidence

interval does not include zero. The log likelihood value is also the same as for the

ARIMA model, and significantly larger than for the restricted UC0 model. The likelihood

ratio statistic for testing the restriction σεη = 0 is 3.909, with a corresponding p-value of

0.048. Thus we can strongly reject the restriction of a zero correlation between permanent

and transitory shocks by comparing the results for the UC0 model with either the results

for the reduced-form ARIMA model or the unrestricted UC model.

Finally, the actual estimated correlation is –0.906. This finding implies that a

positive permanent shock is very closely related to a negative transitory shock, and vice

versa.
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Table 4: Maximum Likelihood Estimates for Unconstrained UC Model

Estimate Standard Error
Trend process
Drift: µ 0.815608 (0.086518)
Innovation: ση 1.236757 (0.151798)

Cycle process
φ1 1.341909 (0.145616)
φ2 -0.705974 (0.082245)
Innovation: σε 0.748524 (0.161431)

Roots of AR process 0.670955 + 0.505761i
0.670955 - 0.505761i

Covariance: σεη -0.838944 (0.109599)

Log Likelihood Value -284.650664

3. Summary and Conclusions

We have shown that trend-cycle decompositions based on unobserved component

models cast in state-space form and on the long run forecast implied by an ARIMA

model differ not because they differ in principle but because the empirical models that

have been used differ. In particular, the restriction that trend and cycle innovations are

uncorrelated has been imposed in the former while it is not imposed in the latter. We note

that when this restriction is relaxed in the state-space model, the two approaches lead to

identical trend-cycle decompositions and identical univariate representations. Further,

this restriction is strongly rejected by the data for U.S. real GDP, quarterly 1947-1998.

If we accept the implication that innovations to trend are strongly negatively

correlated with innovations to the cycle, then case for the importance of real shocks in the

macro economy is strengthened. For example, a positive productivity shock will

immediately shift the level of potential output upward, leaving actual output below trend

until it catches up with potential. In contrast, a positive nominal shock, say a shift in Fed



16

policy towards stimulus, will be an innovation to the cycle without any immediate impact

on potential output.

Closing with a caveat, we note that the decompositions considered here share a

common restriction, that the cycle process is symmetric. Recent business cycle research

suggests that postwar recessions have exhibited important asymmetry; see Neftci (1984),

Sichel (1993, 1994), Beaudry and Koop (1993), and Kim and Nelson (1999). If

asymmetry is important, then the dominating variation of the trend component that we

have seen in this paper may reflect the dominating influence of expansions in postwar

GDP, periods of time when actual output is relatively close to potential and the cycle

component is short-lived and small in amplitude.
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Appendix

This appendix contains notes on how to calculate the BN decomposition and how

to set up the state-space model in order to estimate the UC1 model via the Kalman filter.

BN decomposition

The simplest way to calculate the BN decomposition for any ARIMA model is to

first convert the model into its companion VAR(1) form. For the ARIMA(2,1,2) model,

this is given as follows:
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or, more compactly,

β βt t tF v= +− 1 . (A.1’)

Then, the BN cycle can be calculated at any given point of time as

[ ]c F I Ft t t| ( )= − − −1 0 0 0 1 β . (A.2)

Note that this is just the vector generalization of the BN cycle for a simple AR(1).

Specifically, the BN cycle represents the accumulation of the forecastable momentum

inherent in a series, given its present relationship to a long-run equilibrium.

The State-Space Model

One possible explanation for prevalence of the unnecessary zero correlation

assumption in empirical work is the way the state-space model for a UC model is
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traditionally set up and estimated. In particular, the random walk trend is often treated as

the state variable, while the AR(2) cycle is treated as a residual in the observation

equation. Given this setup, estimation via the Kalman filter requires an assumption of

independence between trend and cycle innovations.

However, there are other ways of setting up the state-space model for a UC

model. One possibility is to make the observation equation an identity, with both the

trend and cycle treated as state variables. This is the approach we take:

Observation Equation:
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or, more compactly,

y Ht t= β , (A.3’)

State Equation:
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, (A.4)

or, more compactly,

β µ βt t tF v= + +−
~

1 . (A.4’)

Then, we can use the Kalman filter to estimate the model, even if we allow the trend and

cycle innovations to be correlated. That is,
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Q E v vt t≡ ′=

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[ ]
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2

2

0
0

0 0 0
. (A.5)

The Kalman filter is given by the following six equations:

β µ βt t t tF| |
~

− − −= +1 1 1 , (A.6)

P FP F Qt t t t| |− − −= ′+1 1 1 , (A.7)

y y y Ht t t t t t− = −− −| |1 1β , (A.8)

f HP Ht t t t| |− −= ′1 1 , (A.9)

β βt t t t t t t tK y y| | |( )= + −− −1 1 , (A.10)

P P K HPt t t t t t t| | |= −− −1 1 , (A.11)

where β β ψt t t tE| [ | ]− −≡1 1 , for example, is the expectation of βt  conditional on

information up to time t − 1 ; Pt t| − 1  is the variance of βt t| − 1 ; f t t| − 1  is the variance of

( )|y yt t t− − 1 ; and K P H ft t t t t≡ ′− −
−

| |1 1
1  is the Kalman gain.5

Given some initial values β0 0|  and P0 0| , we can iterate through (A.6)-(A.11) for

t T= 1,...,  to obtain filtered inferences about βt  conditional on information up to time t.

Also, as a by-product of this procedure, we obtain ( )|y yt t t− − 1  and f t t| − 1 , which we can

use to find maximum likelihood estimates of the hyper-parameters based on the

prediction error decomposition (Harvey, 1990):

                                                       
5 For a more general discussion of the Kalman filter and state-space models, as well as details on the
derivation of the Kalman gain, refer to Hamilton (1994a,b) and Kim and Nelson (1998).
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max ( ) ln( ) ( ) ( )| | | |θ τ τ
θ πl f y y f y yt t

t

T

t t t t t t t t
t

T

= − − − −−
= +

− −
−

−
= +

∑ ∑1
2

2
1
21

1
1 1

1
1

1
, (A.12)

where θ µ φ φ σ σ ση ε ηε= ( , , , , , )1 2 .

In terms of the initial values β0 0|  and P0 0| , we assume an arbitrary estimate for the

random walk component, but assign it an extremely large variance. For the transitory

component, we use the unconditional mean and variance of the AR(2) process.


