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Abstract

A method is proposed for the consistent nonparametric estimation of conditional
probability and probability density functions along with associated gradients when
both the conditioned and conditioning variables are categorical, continuous, or a mix-
ture of both types. The method builds on the work of Aitchison & Aitken (1976)
who proposed a novel method for kernel density estimation when using multinomial
categorical data types. Simulations show that the proposed method performs quite
well for a number of conditional simulated processes that mix both categorical and
continuous variables. Applications of the proposed method to (i) the widely-cited Iris
dataset of Fisher (1936), (ii) the female labor supply dataset from the Panel Study
on Income Dynamics examined in Mroz (1987), and (iii) the Swiss labor force data
studied by Gerfin (1996) all demonstrate that the proposed method performs better
than conventional parametric models for predicting multinomial discrete choice. The
method extends the realm of nonparametric modeling through the seamless blending
of both categorical and continuous variables, and is capable of detecting structure in
the data which frequently remains undetected by conventional parametric approaches.
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1 Introduction

Conditional probability density functions (CPDF) play a key role in applied statistical anal-
ysis. Often the CPDF is itself of direct interest while at other times it is embedded in
objects of interest such as a conditional expectation or higher order conditional moment.
Unfortunately, a parametric framework is not well-suited for the modeling of a CPDF. In a
parametric framework we would require a functional specification for the joint CPDF combin-
ing potentially different marginal distributions for both continuous and categorical variables
prior to estimation. Compound this with modeling unknown dependence among variables
and, in the absence of knowledge regarding the underlying CPDF, parametric approaches
quickly become intractable. Aitchison & Aitken (1976, page 419) refer to the simplest of
such problems as “parametrically awkward”. For this reason the direct modeling of CPDF's
has received little attention even though such models could prove to be extremely valuable in
a variety of situations. The modeling of labor force participation conditional upon a vector
of personal characteristics (Mroz (1987)), the modeling of consumer choice and the response
of choices to changes in variables influencing choice (Amemiya (1981), McFadden (1984)),
and the modeling of nonlinear discriminant rules (Mardia, Kent & Bibby (1979, Chapter
11)) are all examples of situations which could be modeled via a CPDF.

The intractable nature of modeling a CPDF in a parametric framework arises simply
because we are ignorant of nature’s data generating process (DGP). Parametric approaches
force us to make ‘functional guesses’ prior to estimation which are unlikely to be correct in
this setting, and using an incorrectly specified parametric CPDF will result in biased and
inconsistent estimates, while hypothesis tests based upon such estimates will have asymp-
totically incorrect size and power.

Nonparametric methods, on the other hand, permit us to model a CPDF without requir-

ing that the researcher correctly specify the unknown distribution, and are consistent under



less restrictive assumptions than those required for the consistency of parametric methods
though at the cost of rates of convergence which depend on the number of variables involved
(often called the ‘curse of dimensionality’). This tradeoff is commonly encountered when
choosing modeling procedures - if you impose less structure then you need more data in
order to achieve the same degree of precision. When faced with discrete data, however,
the conventional nonparametric approach uses a ‘frequency estimator’ to handle the discrete
variables by splitting the sample into a number of subsets or ‘cells’. When using conven-
tional frequency-based nonparametric approaches one suffers a loss of efficiency arising from
a reduction in the sample size due to splitting the sample into a number of cells and also
faces the issue of how to assess interaction effects.

This paper considers a kernel-based solution to the problem of modeling a CPDF and
related objects when faced with both continuous and categorical data types. We consider
hybrid multivariate product kernels in which ‘categorical kernels’ and ‘continuous kernels’
can be seamlessly mixed building upon the work of Aitchison & Aitken (1976) who proposed a
novel method of nonparametric density estimation for multivariate binary data. Silverman’s
(1986) book also contains a brief but informative discussion of these issues. The proposed
method does not suffer from finite-sample efficiency losses arising from sample splitting, and
naturally handles interaction among the discrete and continuous variables. The strength of
the proposed method lies in its ability to model situations involving complex dependence
among categorical and continuous data in a fully-nonparametric regression framework.

Related work includes that of Hall (1981) who considered bandwidth selection issues
which arise when using the method of Aitchison & Aitken (1976) when there exist empty cells
for categorical data and who proposed a robust solution to this problem, Hall & Wand (1988)
who considered nonparametric discrimination in which the bandwidths for the density for
each population are chosen jointly (they model both categorical and continuous variables),

and Chaudhuri & Dewanji (1995) who considered theoretical underpinnings of likelihood



cross-validation for both parametric and nonparametric approaches to the estimation of
conditional probabilities for continuous data types.

This paper proceeds as follows: in Section 2 we consider the underlying DGP, while in
Section 2.2 we outline the hybrid multivariate product kernel which is central to the current
work; Section 2.3 outlines the proposed nonparametric estimator of the conditional density
function and its gradient in the presence of categorical and continuous data types; Section
4 considers a number of empirical applications of the proposed technique; Section 5 reports
simulation results that examine the finite sample performance of the proposed estimator,

while Section 6 concludes.

2 Estimating A Conditional Density With Mixed Cat-

egorical and Continuous Data

2.1 Background and Notation

Let (Y, X) = (Y1,...,Y, X1,...,X,) denote a (k+p)-dimensional vector of random variables
of interest, and define y = (y1,...,yx) and z = (z1,...,2p) to be k and p-dimensional
realizations of Y = (Y7,...,Y;) and X = (X\,..., X,) respectively. The joint density of the

random vector Y conditional on the vector X is defined as

f(ler":Yk:Xh"pr)

g(YI,...,Yk|X1,...,Xp)= 0% X))
T yr sy Ap

which we shall write simply as
(Y, X)
fa(X)

where g(-) denotes the density of ¥ conditional upon X, f(-) the joint density of (Y, X), and

g(Y|X) = (2)

fz(+) the marginal density of X.



Often the response of the CPDF with respect to the conditioning data is of interest. We
define the gradients of g(Y|X) with respect to X as

dg(Y|X)

Vo9(Y|X) = 5%

eRP (3)

Now we arbitrarily let Y = (Y¢,..., Y%, Y}, 41,... Y3) denote the vector Y = (V1,..., ¥4)
with the first k; variables being the categorical ones and the remaining k — k; being continu-
ous. As well, let X = (X{,..., X% X, 11,...X,) denote the vector X = (Xi,...,X,) with
the first p; variables being the categorical ones and the remaining p — pg being continuous.
We use Z to denote (Y, X). Without loss of generality we assume that each categorical
variable Z¢ can assume the ¢; discrete values 0,...,¢c; — 1 fort =1,..., kg + pg and c; > 2.

We now turn our attention to the consistent nonparametric estimation of g(Y|X) and

V.9(Y|X) in the presence of mixed continuous and categorical variables.

2.2 Hybrid Kernels Admitting Mixed Categorical and Continuous

Data

We briefly review the approach of Aitchison & Aitken (1976) towards kernel estimation
of probability functions for categorical data and demonstrate how this can be applied to
the estimation of conditional probability functions. Extensions to handle more complicated
cases involving categorical data such as ordered categories follow naturally and the interested
reader is referred to Aitchison & Aitken (1976) and Habbema, Hermans & Remme (1978)
for examples of such categorical kernels.

Recall that we defined Z = (Y, X), and we can also partition Z into Z¢ and Z¢, where Z¢
contains the discrete variables in Z, and Z¢ is the remaining continuous variables. Let Z¢

be the tth component of Z¢ and assume Z¢ is a c;-category discrete variable. A univariate



kernel for ¢;-category data (Bowman (1980)) is given by

1—Xe if Zd~ — Zd~
Wz, z¢, \) =38 “! A S T (4)
At otherwise

where ); is a smoothing parameter. One of the interesting features of this kernel is that

when )\; = 0 we obtain the maximum likelihood estimator (probabilities for each category

given by sample relative frequencies) while when A\, = 1/¢; we obtain a uniform distribution

across the categorical variable (equal probabilities for each category). The product kernel
for Z¢ is defined as

ka+pa
1z 240 = [1 12t 2% 5)
Let Zf be the tth component of Z¢, let w(-) be a univariate kernel function for a univariate

continuous variable, and let W(-) be the product kernel function for Z¢. We define
k+p—kq—pqg
Z¢. — Z¢,
c c di-f -1 t,Z ty]
wizezm T e (B, ©)

where h; is the smoothing parameter associated with continuous variable Z;.

The product kernel for Z = (Z¢, Z¢) is therefore given by
The product kernel for X is similarly defined as K, (Xi, X}, Ae, he) = L(XE, X§, M)W (XF, X5, hy).

2.3 Kernel Estimation of g(Y|X)

Define Y; = (V4,...,Yd

tky?

de+1,...,}/;k) and Xz = (de17 X szd+17"'7Xip) to be

pg?

realizations of Y and X for 7z = 1,...,n where n denotes the sample size. Define A, and A,



to be vectors of smoothing parameters for the categorical variablesin Y and X, and let A, and
h, be vectors of smoothing parameters for the continuous variables in Y and X respectively.
Letting K(Y;,Y;, Xy, X, Az, hay Ay, By) and K, (X;, X, Az, hy) denote multivariate product
kernels using the categorical kernel if the variable is categorical and a continuous kernel for
continuous data, the proposed kernel estimator of a conditional density evaluated at the
point (Y;, X;) is given by

A(Y|X) Z_;'LzlK(K7E7Xi7Xj7)\w7hw7)‘y7hy)
g\ri|Aq) = n
Zj:le(XhXj:)\w:hw)

, 1=1,...,n. (8)

This is essentially the ratio of two Parzen (1962) estimators, the first being the estimator

of the joint density of (Y, X) given by
. 1 & .
f(sz:Xz): _ZK(1/;71/}7Xi7Xj7)‘w7hw7)‘y7hy)7 Z:17"'7n' (9)
n
j=1
and the second being the estimator of the marginal density of X given by
R 1 <
2(Xi) = — Ky (X3, X5, g hg), t=1,...,m. 10
) = DK (X Xy o), n (10)

in which the smoothing parameter vector (A, h;) for the conditioning data is identical for
both the joint and marginal density estimators. This mirrors the framework used for the
Nadaraya-Watson (Nadaraya (1965), Watson (1964)) estimator of a conditional expectation
in which the kernel function in the numerator and denominator employ the same bandwidths.

Bandwidth selection can proceed via likelihood cross-validation. Theoretical results for
consistency of likelihood cross-validatory bandwidth selection for nonparametric estimators
of a CPDF using continuous data can be found in Chaudhuri & Dewanji (1995). It is known,

however, that maximum likelihood cross-validation can break down when the data is drawn



from fat-tailed distributions which is of concern when we mix continuous variables in with
the discrete variables (see Hall (1987a), Hall (1987b)). An alternative to likelihood cross-
validation is to choose (), h) to minimize the weighted integrated squared difference between
g(y|z) and g¢(y|z) which is known not to suffer from the aforementioned problems. Using
the notation [ dydz = 3743« [ dy°dz®, then a weighted integrated squared difference

between §(-) and g(-) is

I, = / 8(ulz) — 9(u|2)2fu(z) dy da
= [P @ dyds -2 [ 9in)gin) ) dyda+ [loulo)P L) dyds

T — 2L + / 9(y]2) () dy da, (11)

where I, = [[9(y|2)]*fo(2) dydz, Ln = [ §(y|z)9(y|z) fz(z) dydz, and the last term on
the right-hand-side of Equation (11) does not depend on either A or h. Define G(z) =
[[4(y|x)]?dy. Then we have I, = [ G(z)f.(z)dz = E[G(X)]. Therefore, we estimate I,
by

o 1 N

= 2606 (12)

Note that I, = [ §(y|z)g(y|z) fo(z) dydz = [ §(y|z)f(y, ) dydz = E[g(Y|X)]. Hence,
we estimate I, = E[§(Y|X)] by

~ 1 R
L = ~ > amilx). (13)

Define Kw,ij = K(Xinjy)\wth)a Ky,ij = K(Y},Y}',)\y,hy), and Ky,j = K(y,Y_;,)\y,hy)

Then using Equation (7) we have



_ X dy
[fo(Xi)J2
n-? 225 20 Kagij Ko [ Ky Ky dy
[fe(2)]?
_ n2y K“]KNZKZSJ)Z (14)
FXP

YL
Ye-Y£

WOYEYE, hy) = T2, hyw® () and w® (v) =

where K = L@ (YE, Vi, \ )W (YE, YF, hy) with LO (Y YA, A) = 30 LY 3% M) LY, 4, M),
J w(u+v)w(u) du is the second order
convolution kernel derived from w(:).

Therefore, we choose (A, h) to minimize

CV(ANR) = I — 2Dy,
n — n n 2 N
s n2y i e Ky iiKeaKyy B 2f(YiaXi)
Py [fa(Xi)]? f2(X5)

(15)

We use (A, h) to denote the above cross-validatory choice of (A, k). The following as-
sumptions are used to derive the rates of convergence of (), 2) and f(z).

Assumption (A1) (i) {Z;}, = {X;, Y}, isiid. as Z = (X,Y), D, the support of
Z4, is finite, and ming,ecpyp(2%) > 6 for some § > 0. (ii) Let f(y|z) denote the conditional
density function of ¥ given X = z, assume that f(-|z) is four times differentiable, and
assume that f(y|z) and its derivatives are bounded on the support of Z¢ for all 2¢ € D.

Assumption (A2) (i) The kernel function w(-) is non-negative, bounded and symmetric
around zero, also [w(v)dv = 1, [w(v)vidv < oco. (ii) & lies in a shrinking set H, = {h :

heR,,h=0(l),(nh?)~' =0(1)} (e.g., Hirdle & Marron (1987)).

Theorem 2.1 Under assumptions (A1) and (A2), we have

§(y|z) — g(y|z) = 0,(1), provided g(y|z) > & for some & > 0.

Proof: The proof for the general case is quite tedious. Here we only provide a proof for



the simple case where Z¢ is a multivariate binary variable, Z¢ € {0, 1}%*P¢. Also, we will
assume \; = \ for all ¢ = 1,..., kg + pa.

First note that when A = 0, §(y|z, A = 0, h) becomes the usual frequency kernel estimator
of g(y|z), and we know that g(y|lz, A = 0,h) = o0,(1) because h € H,. Then from 0 <
LA\ h) < I,(0,h) = 0,(1), we get

() (3, B) = a,(1).

Next, one can show that when A # 0,(1),

(i) Tn(A B) = BLLOB)] + 0p(1) = X257 G0 + 0,(1) = Oy(1) # 0,(1),
where C,’s are constants and some of them are non-zero. That is, I,,(}, H) can be expanded
as as a polynomial function of A.

(i) and (ii) imply that A = o,(1). The fact that A\ = 0,(1) and h € H, imply that

G(y|z) — g(y|z) = 0p(1). This completes the proof of Theorem 2.1.

3 Kernel Estimation of V, g(Y|X)

Often interest lies in the response of the CPDF to changes in the conditioning variables. We
shall call this vector of responses V,¢(Y|X) = d¢(Y|X)/0X. For continuous conditioning

variables X¢ we propose a kernel estimator of V,¢(Y|X) given by

G 3(VIX) = S K (Y3, Yy, Xy X, M My A Ap)
aXC ZJIK(XX)\)\)

7 pr

- 2]

_ KOS RO SEOSK)  pore
SraE

where K'() = 0K (Y;,Y;, X;, X;, A\, h) /0X§ and K(:) = 0K (X;, X, Ay, hy) /OX{ are the

(p — pqg)-dimensional analytical derivatives of the respective product kernel functions.



For categorical variables, arbitrarily focusing upon an assumed categorical variable X¢,
we define the difference between the CPDF when X¢ = 0 and X¢ = X¢ (0 < Xf < ¢; — 1)
to be

gV Xi=0,..., X, =X,) —g(Y;...,. Vi Xi= X! ..., X, = X)) (17)

which is naturally estimated using

@Xlg(mxi) =gV X{=0,...,X,=X,) - 9(Y;... . VX=X ..., X, =X,). (18)

That is, for categorical variables we compute response simply by the difference in the CPDF
when a categorical variable takes on the value 0 versus its sample realization while all other

variables assume their sample realizations.

4 Applications

4.1 Modeling Fisher’s Iris Data

We begin with perhaps the most well-worn polychotomous data set in existence, the Iris
data set reported in Fisher (1936). The data report four characteristics (sepal width, sepal
length, petal width and petal length) of three species of Iris flower, and there are n = 150
observations. The goal, given the four measurements, is to predict which one of the three
species of Iris flower the measurements are likely to have come from. This is a widely used
and publicly available benchmark for various classification and discrimination techniques,
and we adopt it for this purpose. Data can be downloaded from the Statlib archives located

at

http://lib.stat.cmu.edu/DASL/Datafiles/Fisher’sIris.html
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The range commonly found by various discriminant methods is 96-99%. Using the pro-
posed method with bandwidths selected via the proposed method of cross-validation, the
proposed technique correctly predicts 96.7% of all observations. However, Fisher’s measure-
ments were discrete in nature as they were rounded and recorded with no decimal places,
and so there were only 22 unique values for sepal width, 43 for sepal length, 23 for petal
width and 35 for petal length. It is of interest therefore to model these measurements as
categorical rather than continuous. Application of the proposed method treating the mea-
surements as categorical rather than continuous correctly predicts 100% of all observations.
This simple application suggests that the proposed method can perform as well or better

than conventional parametric models.

4.2 Modeling Swiss Labor Market Participation

For our next application we use the data of Gerfin (1996) who models the labor market
participation of married Swiss women using a cross-section data set of size n = 872 having
six explanatory variables. He uses a Probit model along with three semiparametric spec-
ifications, and finds that the Probit specification cannot be rejected and that the models
yield similar results. He concludes that “more work is necessary on specification tests of
semiparametric models and on simulations using these models”. We simply use this dataset
to see whether predictions given by the Probit and semiparametric specifications can be
substantially improved upon (we do not include Gerfin’s (1996) semiparametric results here
as they all yielded similar results.)

Data for this study can be found at
http://qed.econ.queensu.ca/jae/1996-v11.3/gerfin/

The variables used by the Gerfin (1996) study are

11



1. LFP: Labor force participation dummy.
LNNLINC: Log of non-labor income.

AGE: Age in years.

EDUC: Years of formal education.

NYC: Number of young children (younger than 7).
NOC: Number of older children.

NS o e N

FOREIGN: Dummy, = 1 if obs is not Swiss.

We compare the results of our estimator with those from Gerfin (1996), and the con-
fusion matrices and classification rates for both the proposed and Probit approaches are
summarized in Table 1. A confusion matrix is one whose diagonal elements are correctly
predicted outcomes and whose off-diagonal elements are incorrectly predicted outcomes. We
also report the overall correct classification rate and correct classification rates for each val-
ues assumed by the categorical variable!. As can be seen from Table 1, the proposed method
correctly predicts 74.1% of all observations while a Probit model correctly predicts 66.5%
which represents a marked improvement in model performance. To address potential con-
cerns that these results are an artifact of within-sample ‘overfitting’, we randomized the data
and split it into independent estimation and evaluation samples?. The predictive ability of
the model as measured by performance on the independent data mirrors the within-sample
results reported in Table 1 for a large number of different splits indicating that this is indeed

a general improvement in predictive ability and not simply an artifact of overfitting.

4.3 Modeling U.S. Female Labor Force Participation

Our final application uses the Mroz (1987) data file which is taken from the 1976 Panel

Study of Income Dynamics, and is based on data for 1975. There are 753 observations in

1For example, CCR(0) is the number of predicted zeros + number of zeros in the sample x 100.
2For example, we considered estimation samples of size n1 = 700 and prediction samples of size ny = 172,
n1 = 750 and ne = 122 and so on.
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Kernel Logit

A/P| 0 1 A/P] 0 1
0 |360 111 0 |358 113
1 |115 286 1 179 222

%Correct  74.1% %Correct 66.5%
%CCR(0) 76.4% %CCR(0) 76.0%
%CCR(1) 71.3% %CCR(1) 55.3%

Table 1: Confusion matrix and classification rates for the kernel and Logit models.

this dataset, the first 428 for women with positive hours worked and the remaining 325
observations for women who did not work for pay. For a complete discussion of the data
see Mroz (1987, Appendix 1). This is a widely cited study on ‘second-generation models
of labor supply’ and is featured in Berndt (1991, Chapter 11), a popular textbook used to
train undergraduate and graduate students of economics. Data and TSP code to replicate

the study can be found at

http://www.stanford.edu/"clint/berndt/

and we consider an application of the proposed method to modeling the female labor force
participation decision following Berndt (1991, Chapter 11, page 654-657).
We replicate the results of Berndt (1991, Chapter 11, page 654-657), and the following

variables from Mroz’s (1987) data file were therefore used:

1. LFP: A dummy variable equal to 1 if the woman worked in 1975, 0 otherwise.
2. KL6: The number of children less than 6 years old in the household.

3. K618: The number of children between ages 6 and 18 in the household.

4. WA: The wife’s age.

5. WE: The wife’s educational attainment, in years.

6. CIT: A dummy variable equal to 1 if the woman lives in a large city (SMSA), 0
otherwise.

13



7. AX: The actual years of the wife’s previous labor market experience.

8. UN: The unemployment rate in county of residence, in percentage points. This is taken
from bracketed ranges.

9. LWW1: The log of the wage (wife’s average hourly earnings, in 1975 dollars) for
working women, the log of predicted wage for non-workers.

10. PRIN: The wife’s property income computed as total family income minus the labor
income earned by the wife.

The Logit and Probit approaches model Item (1) as the dependent variable and items
(2) through (10) as explanatory variables in addition to a constant term, while the proposed
approach does not require the use of the constant term. For the proposed method we
use the fact that items (1) through (7) are categorical while items (8) through (10) are
continuous. Again, bandwidths were determined via the proposed method of cross-validation.
The confusion matrices and classification rates for both the proposed and Logit approaches

are summarized in Table 2.

Kernel Logit
A/P] 0 1 A/P] 0 1
0 314 11 0 166 159
1 74 354 1 80 348

%Correct  88.7% %Correct 68.2%
%CCR(0) 96.6% | %CCR(0) 51.0%
%CCR(1) 82.7% %CCR(1) 81.3%

Table 2: Confusion matrix and classification rates for the kernel and Logit models.

The estimated Logit and Probit models of labor force participation correctly predict 514
(68.2%) and 512 (68.0%) of the labor force participation decisions respectively. As can be
seen from Table 2, the proposed method correctly predicts 668 (88.72%) labor force par-
ticipation choices which translates into an additional 154 choices being correctly predicted,
which is a fairly dramatic improvement in terms of prediction accuracy. On the basis of the

simulations presented in Section 5.2 this suggests that the Logit specification is inappropriate
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for this DGP though obviously no formal test of this hypothesis is conducted at this point.
To address possible concerns that these results are an artifact of within-sample ‘overfitting’,
we again randomized the data and split it into independent estimation and evaluation sam-
ples, and the predictive ability on the independent sample reflected the within-sample results
reported in Table 2. This is also suggestive that the gradients based upon the parametric
models are poorly specified and therefore any inference based up these gradients would be
suspect. For the continuous variables we compute the average derivatives of the probability
that Y = 1 which are typically reported along with Logit and Probit estimates, and this is

reported in Table 3.

Variable Logit dP/dX Kernel Vy, §(Y;| X;)
PRIN —7.30199 x 107% —3.09158 x 10~
LWW1  0.081026 0.157381

UN —0.0036825 —0.00296792

Table 3: Logit and Kernel Estimates of the average change in the probability of participation
(Y = 1) with respect to the continuous variables influencing this decision.

Though quantitative results from each approach differ, qualitative results are similar in
that the higher the property income or rate of unemployment or the lower the wage the lower
is the probability of an individual participating in the labor force. Often interest focuses on
how the participation decision is affected by changes in market wages. The proposed method
suggests that the average response in the probability of participation is roughly double that
based upon the Logit and Probit models (0.16 versus 0.08) suggesting that participation
elasticities with respect to wages may be substantially larger than those implied by the
Logit or Probit specifications, though again no formal test of this hypothesis is attempted

here.
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5 Simulations

By way of example we assume that interest lies in predicting ¢(Y|X) and V,g¢(Y|X) for a
categorical variable conditional upon a vector of realizations of continuous data. This is a
common situation in economics that is frequently modeled used a linear-index Logit model
which is adopted here as a parametric benchmark. We assume that interest lies in predicting
Pr[Y = y|Xi1,...] where Y € {0,1,...} and in estimating how this probability responds to
changes in the conditioning variables. Note that the proposed method is applicable when
the conditioned data set is multivariate, and therefore is more general than the following
examples would suggest - the examples are chosen simply due to the popularity of prediction
of categorical data and due to potential problems which can arise when using standard

parametric approaches.

5.1 Predicting Nonlinear Binary Choice - Univariate Conditioning
Set

We begin with a simple example in which X; is distributed U[—4,4] and Y € {0,1} is a

binary variate that is conditionally determined by

1 ifXi+e>0
Y = ' (19)

0 otherwise

where € is a white noise N(0,02) error term with o, = 1. This example is often modeled
using either a linear single-index Probit or Logit model. As both give virtually identical

results for this DGP and the Logit is more widely used, we consider as a benchmark the
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Logit specification given by

1

1+ exp(—(81 — f2x))
1

1+ exp(—I(z))

Prly =1|z] =
(20)

where I(z) denotes an ‘index function’. We note that the Logit model assumes that the
distribution of choices is symmetric, unimodal, correctly specified by the Logistic distribution
with the underlying index being correctly specified by I(z) = 8 + oz in this instance. Also,
though not modeled here, we note that when categorical variables appear as conditioning
variables, the researcher must specify how each value taken on by the categorical variable
affects each and every parameter in the model.

We draw random samples from the DGP in Equation (19) and compute the proposed
kernel estimator and gradient along with the Logit model and its gradient evaluated at 100
equally spaced points over their support. We repeat this 5,000 times, compute the median
value for all objects at each of the evaluation points, and vary the sample size in order
to examine the finite-sample performance of the proposed estimator relative to a correctly
specified parametric model. Bandwidth selection is achieved via the proposed method of
cross-validation for each Monte Carlo replication for all experiments which follow, and the
Gaussian kernel is used throughout (Silverman (1986, page 43)).

The median predicted conditional probabilities that ¥ = 1 and associated median gradi-
ents from this Monte Carlo experiment are plotted in Figure 1 for sample sizes of n = 100
and n = 1,000. As can be seen, the proposed method is capable of consistently modeling
this DGP, and it does so without requiring the researcher to specify either the functional
form of the unknown index or the functional form of the distribution function as would be
required by the Logit method. As with all kernel estimators, there is some finite-sample

bias which increases with the curvature of the object being estimated, but this bias vanishes
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Figure 1: Median kernel and Logit estimates of the conditional probability that ¥ = 1 and
the response of the probability with respect to the conditioning variable X; for 5,000 Monte
Carlo replications. The figures on the left are the estimated conditional probabilities while
those on the right are the gradient of this probability with respect to X;. The top figures
are for a sample size of n = 100 while the lower figures are for n = 1, 000.
asymptotically, and it is evident that going from a sample size of n = 100 to n = 1,000 re-
sults in smaller bias. Of course, the Logit will be inappropriate if the distribution of choices
is asymmetric or multimodal or if the underlying index is other than I(z) = £ + S22, so one
would trade off bias for consistency when moving from correctly specified parametric models
to a nonparametric framework.

In addition to examining the performance of the estimator of ¢(Y|X) and V,g9(Y|X),
we consider the predictive performance of the proposed estimator relative to this correctly
specified Logit model. For each Monte Carlo replication, §(Y'|X) and the Logit estimator

PrlY = 1|z] and their gradients were computed and then predictions were made for an

independent sample drawn from the same DGP at each of the evaluation points. We then

18



compute the average confusion matrix for each approach which simply tabulates average
predicted versus average actual outcomes for each independent data set and report this in
Table 4. The results in Table 4 suggest that the proposed method is capable of mimicking
the performance of a correctly specified parametric model even for samples that would be
judged to be small in a nonparametric framework (for example, n = 100). There is a slight
loss in efficiency relative to the correctly specified parametric model as well as finite-sample
bias evident in the estimated gradient, but both diminish asymptotically as can be seen from

Table 4 and Figure 1.

Kernel Logit
A/PT 0 1 A/PT 0 1
0 44.6 5.4 0 44.9 5.1
1 5.3 447 1 5.1 44.8

%Correct  89.3% %Correct  89.8%
%OCR(0)  89.2% | %CCR(0)  89.8%
%CCR(1)  89.4% %CCR(1) 89.8%

Kernel Logit
A/PT 0 1 A/PT 0 1
0 45.1 4.9 0 45.1 4.9
1 49 45.0 1 4.9 45.1

%Correct  90.1% %Correct  90.2%
%CCR(0)  90.1% %CCR(0)  90.1%
%CCR(1)  90.1% %CCR(1)  90.2%

Table 4: Confusion matrix and classification rates for the proposed method and that from a
Logit model. The top is that for n = 100 and the bottom for n = 1, 000.

We next consider a DGP in which X, is again distributed U[—4,4] and Y is a binary
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variate € {0,1} that is conditionally determined by

1 if —2<Xi+e<?2
Y =

0 otherwise

where € is a white noise error term drawn from the skewed I'(1, 1) distribution.

Situations similar to this are often observed in economic settings, an example being
consumer goods that are normal for some range of income and inferior for another. As
income rises we often observe an increased likelihood of a choice being made but as income
continues to rise beyond some range we begin to observe a decreased likelihood of choices
being made. Of course, the applied researcher may have no insight into underlying consumer
preferences and may prefer to employ estimation techniques that are consistent and do not

place rigid parametric restrictions on such behavior.
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Figure 2: Median kernel and Logit estimates of the conditional probability that ¥ = 1 and
the response of the probability with respect to the conditioning variable X; for 5,000 Monte
Carlo replications.

The median kernel and Logit estimates are plotted in Figure 2, and the Logit model is
seen to fail completely in this situation. The median Logit estimate is constant across X;
and therefore does not use any of the conditioning information - it returns an unconditional
prediction, and none of the estimated parameters (except the constant) in the Logit model

are significant. As well, the median gradient is everywhere zero as can be seen from Figure
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Table 5 presents the confusion matrices for this case which are quite revealing. The Logit
model gets quite ‘confused’ and effectively predicts that every case will be a ‘0’ and yields
predictions no better than flipping a coin in this case, while the proposed method is quite
successful in detecting both the choice, its asymmetric nature, and the underlying choice

gradient as can be seen in Figure 2 and Table 5.

Kernel Logit
A/PT 0 1 A/PT 0 1
0 42.0 9.1 0 473 3.9
1 8.7 40.2 1 47.0 1.9

%Correct  82.2% %Correct  49.2%
%CCR(0) 82.2% | %CCR(0)  92.4%
%CCR(1) 82.2% %CCR(1)  3.8%

Table 5: Confusion matrix and classification rates for the proposed method and that from a
Logit model.

We now proceed to the more interesting instance of multivariate conditioning sets and bi-
nary prediction and then consider multivariate conditioning sets and multivariate categorical

prediction.

5.2 Predicting Nonlinear Binary Choice - Multivariate Condition-
ing Set

We begin with a simple example in which X; and X, are both U[—4,4]. Y is a binary variate

€ {0,1} and is conditionally determined by

1 1fX1+X2+€>0
y = (22)

0 otherwise
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where € is a white noise N(0,0?) error term with o, = 1.

The median predicted conditional probability and that for the correctly specified Logit
model for a sample size of n = 100 are plotted in Figure 3, while Table 6 computes the average
confusion matrices and classification rates for two sample sizes, n = 100 and n = 1,000

allowing us to assess the cost of not knowing the parametric form of the underlying DGP.

SRR 2 N ’:’.”q”””i’"”
(i |2 e LR PrlY = e QQuRuus
R OO
0.5 RO 0.5 HOUOCRNAELOKEA0
4 4
4 X1 4 X,
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Figure 3: Median kernel and Logit estimates of the conditional probability that ¥ = 1. The
Logit estimate is the figure on the right. The contour line on the horizontal plane represents
the boundary between the estimated conditional probability that Y = 0 and Y = 1 for a
sample size of n = 100 based upon 5,000 Monte Carlo replications.

This situation is often modeled with a Logit specification. As in Section 5.1, we are inter-
ested in how well the proposed method performs relative to a correctly specified parametric
model. In Section 5.1 we can see that the proposed method compares favorably to the Logit
method when the Logit is correctly specified and there is only one conditioning variable. We
are aware of the ‘curse of dimensionality’ present in the nonparametric approach, and wish
to assess its impact in this setting. As can be seen from Table 6, there is more of a loss

in terms of predictive accuracy for a given sample size relative to that detailed in Table 4,
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Kernel Logit

A/P| 0 1 A/P] 0 1
0 |481.0 635 0 |4929 515
1 63.4 4812 |1 51.7  492.8

%Correct 88.4% %Correct 90.5%
%OCR(0)  88.3% | %CCR(0)  90.5%
%CCR(1) 88.4% %CCR(1) 90.5%

Kernel Logit
A/P| 0 1 A/P| 0 1
0 493.5 51.1 0 4954  49.1
1 51.2  493.2 1 49.1 4954

%Correct 90.6% %Correct 91.0%
%CCR(0) 90.6% %CCR(0) 91.0%
%CCR(1) 90.6% %CCR(1) 91.0%

Table 6: Confusion matrix and classification rates for the proposed method and that from a
Logit model. The upper table is that for n = 100 while the lower is for n = 1, 000.
as is expected, but this sample size of n = 100 involving three variables, Y, X;, and X, is
extremely small by nonparametric standards. Table 6 considers how this loss behaves as the
sample size increases from n = 100 to n» = 1,000, and again we witness the consistent nature
of the proposed approach being revealed as the sample size increases.

Next we consider a situation in which X; and X5 are both U[—4,4]. Y is a binary variate

€ {0,1} and is conditionally determined by

1 1fX1+3S1n(X2)+6>0
Yy = (23)

0 otherwise

where € is a white noise N (0, 62) error term with 62 = 0.1. The median predicted conditional
probability and that for the Logit model are plotted in Figure 4 while the confusion matrices

are presented in Table 7.
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Figure 4: Median kernel and Logit estimates of the conditional probability that ¥ = 1. The
Logit estimate is the rightmost figure. The contour line on the horizontal plane represents
the boundary between the estimated conditional probability that Y = 0 and Y = 1 for a
sample size of n = 1,000 based upon 5,000 Monte Carlo replications.

Kernel Logit
AP 0 1 AP 0 1
0 504.5 40.0 0 427.0 117.5
1 39.8 504.7 1 116.5 428.0
%Correct 92.7% %Correct 78.5%
%CCR(0) 92.6% %CCR(0) 78.4%
%CCR(1) 92.7% %CCR(1) 78.6%

Table 7: Confusion matrix and classification rates for the proposed method and that from a
Logit model.

Modeling this situation with a Logit model would fail except in the situation where
the researcher correctly guessed that the index was given by Sy + f1.X1 + Basin(Xs). It is
interesting to consider the estimated gradients for the proposed approach compared with the
Logit approach, plots of which can be found in Appendix A. Misspecification of the index

function completely distorts the estimated gradient. Often concern lies with how changes
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in the conditioning variables affects probabilities, and this would therefore be of concern to
applied researchers using parametric approaches.
We now consider a situation in which X; and X, are both U[—4,4]. Y is a binary variate

€ {0,1} and is conditionally determined by

1 if —2<Xi+eg<2and —2<Xo+e <2
Y = (24)

0 otherwise

where €; and €, are white noise N(0,02) error terms with o = 0.1. The median predicted

conditional probability along with the gradient with respect to X; are plotted in Figure 4.
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Figure 5: Median kernel estimate of the conditional probability that ¥ = 1 and the gradient
with respect to X;. The contour line on the horizontal plane represents the boundary between
the estimated conditional probability that Y = 0 and Y = 1 for a sample size of n = 1,000
based upon 5,000 Monte Carlo replications.

This is a case in which the Logit model completely breaks down, as can be seen from an
examination of Table 8, and is analogous to results found in Figure 2 and Table 5. Again,

the Logit specification uses none of the conditioning information contained in X; and X, and
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Kernel Logit

A/P| 0 1 A/P] 0 1
0 |799.2 338 0 |8305 25
1 369 2191 |1 [256.0 0.0

%Correct 93.5% %Correct 76.3%
%CCR(0) 95.9% %CCR(0) 99.7%
%CCR(1) 85.6% %CCR(1) 0.0%

Table 8: Confusion matrix and classification rates for the proposed method and that from a
Logit model.

simply predicts all zeros. The gradients from the Logit model are therefore zero everywhere
and again none of the estimated parameters in the Logit model are significant save for the
constant.

More interesting cases arise when considering conditional prediction of multinomial cat-
egorical data. These situations are frequently encountered in practice. Using a multinomial
Logit approach, for example, raises a number of issues such as normalization, identification,
and specification of multiple indices. The proposed method does not suffer from any of these

issues. Consider the case in which the DGP is given by

1 ifX;+¢ >0and Xy+6>0
Y= 2 ifXj+e<0and Xo+e<0 (25)

0 otherwise

where again €; and €, represent white noise N(0,0?) with o, = 0.1. error terms.

Both the median kernel and Logit estimators of Pr[Y = 0|X;, X,] are plotted in Figure
6 below, while the confusion matrices and classification rates appear in Table 9. As can be
seen, the multinomial Logit model cannot consistently model this situation and the gradients
in particular from the Logit approach will be totally misleading.

The point to be made is that the proposed estimator can readily model nonlinear con-
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Figure 6: Median kernel and Logit estimates of the conditional probability that ¥ = 0 for
a sample size of n = 100 based upon 5,000 Monte Carlo replications. The Logit results are
presented in the rightmost figure.

Kernel Logit

AP 0 1 ) AP 0 1 )

0 252.6 194 0.3 0 223.5 48.8 0.0
1 19.0 506.6 18.9 1 49.6 446.4 48.6
2 0.3 19.7 252.3 2 1.2 48.5  222.6
%Correct 92.9% %Correct 82.0%
%CCR(0) 92.8% %CCR(0) 82.1%
%CCR(1) 93.0% %CCR(1) 82.0%
%CCR(2) 92.7% %CCR(2) 81.8%

Table 9: Confusion matrix and classification rates for the proposed method and that from a
Logit model.

ditional prediction of binary and multinomial categorical data when the conditioning data
are continuous and categorical without requiring the researcher to specify functional forms
for indices and distribution functions that, when incorrectly specified, lead to biased incon-

sistent estimation and hypothesis tests having asymptotically invalid size and power. The
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method compares favorably to correctly specified parametric models with an expected loss
in efficiency in this instance while it can handily outperform standard parametric models in

a wide variety of situations.

6 Conclusion

In reference to parametric models, G. Box wrote that “all models are wrong, but some
are useful”. However, there are situations in which it is extremely difficult to specify a
parametric model, and the modeling of joint conditional distributions in the presence of
both categorical and continuous data would be one such instance. Sometimes parametric
models of these conditional distributions simply ignore the conditioning information and
return unconditional predictions, and therefore are not useful at all.

This paper presents a nonparametric approach to the estimation of a multivariate condi-
tional probability density function and its gradient when faced with mixed categorical and
continuous data. The approach can be useful in a wide variety of situations, and does not
place the burden of correct specification on the researcher.

The technique can be applied to a number of interesting but parametrically awkward
and sometimes parametrically intractable problems. We consider numerous simulations and
applications, and offer some general guidelines as to when the technique may outperform
parametric approaches when conducting multinomial conditional prediction. The simulations
presented in this paper highlight both the consistency and the flexibility of the proposed
approach for a number of situations and also examine the statistical finite-sample loss of
using the proposed method relative to correctly specified parametric models. One of the
benefits of using this approach is best appreciated in comparison to parametric methods
such as Logit models for categorical prediction: approaches such as the Logit place rigid

restrictions on both the choice probabilities and on the gradient of the predicted conditional
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probabilities, while the proposed approach is capable of detecting a wide variety of situations
with no functional guessing required by the researcher. For a number of publicly available
datasets used for categorical prediction, the proposed method stages a strong performance
suggesting that this method may be of value in applied settings.

The main benefit of the proposed approach lies simply in the ability to proceed with
estimation of conditional distributions and their gradients without placing the unrealistic

burden of correct parametric specification of the underlying DGP upon the researcher.
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A Gradient Estimation

One of the important features of the proposed method is the consistent estimation of the
gradient. Often incorrectly specified parametric models are adequate for prediction, but
completely misleading when the gradient is of interest. Figure 7 plots the median probability

gradient with respect to X; for the proposed method and the Logit method.

R s
i oo
oy

Figure 7: Median kernel and Logit estimates of the gradient vector of the conditional prob-
ability that ¥ = 1 with respect to X; for a sample size of n = 100. The figure on the right
is that from a Logit model.

Note that the gradient of the Logit model with respect to X is simply Pr[Y = 1|X, X] X
(1—PrlY =1|X1, X3)) Bj- Any misspecification of either the error distribution or the index

function will result in biased inconsistent estimates of this response.
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Figure 8 plots the median probability gradient with respect to X; for the proposed method
and the Logit method. The limitations of the Logit approach quickly become apparent since
all responses are required to have the same ‘shape’ differing only by the magnitude/sign
of the associated parameter in the index function. The proposed method places no such

limitations on the underlying gradient.
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Figure 8: Median kernel and Logit estimates of the gradient vector of the conditional prob-
ability that ¥ = 1 with respect to X, for a sample size of n = 100. The figure on the right
is that from a Logit model.
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