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Abstract: This paper considers nonparametric identification of “latent” competing risks
and Roy duration models in which one does not know which process has been observed.
It is shown that these models are identifiable without the usual conditional independence
and exclusion restrictions.

1. Introduction

Competing risks models have been widely applied in the statistical sciences. As is often
the case with nonlinear and multivariate models, identification can be problematic and a
number of authors have addressed this issue in various contexts. Cox (1962) and Tsiatis
(1975) showed that, in the absence of independence, the underlying joint distribution is,
in general, not identifiable. Heckman and Honoré (1989) and Abbring and van den Berg
(1999) demonstrated that, with observable covariates, identification of these models is
possible. Omori (1998) showed identifiability of independent competing risks with multiple
spells. A feature of these studies, and that of most empirical work on competing risks, is
that the researcher, in addition to observing the minimum survival time, also knows the
cause of failure. However, this is not always the case, and there are many situations when
an outcome is the minimum (or maximum) of several processes, but is inappropriately
modeled as a univariate process. At best, this results in estimates of a “reduced form”
whose parameters may be uninterpretable. At worst this leads to misspecification and
inconsistent estimates of the underlying “structural” models. The purpose of this study is
to consider situations when these “latent” competing risk models are identified.
It is useful to consider some examples. In epidemiology, (see Lee, 1992, for various

studies), a subject’s death may be attributed to one particular disease when in fact it may
have been caused by any one of several disorders. Likewise, in reliability research, (see
Meeker and Escobar, 1998, for various studies), one may observe an equipment failure,
but be uncertain as to what actually caused the breakdown. A third example is when a
data set has been subjected to right censoring, but the researcher is unaware which of the
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spells have been censored. In econometrics, the length of strikes is typically modeled as a
univariate process (Kennan, 1985) but, under collective bargaining, strikes only end when
both employers and unions agree to return to work. The timing of financial transactions
has been modeled as a univariate process (Darolles, Gourieroux and Le Fol, 1998), but
occurs only when buyer and seller have agreed on a price. In health economics the length
of hospital stays is typically modeled as univariate (Holt, Merwin and Stern, 1996) although
in some circumstances the patient may be discharged only when both he or she and the
caregiver are agreed they are ready.
These examples have two common characteristics. The first is that, underlying the

duration outcome, there are in fact two or more known random processes and one observes
the minimum (or the maximum) of these. In this sense they are competing risks models.
However, the second characteristic is that the researcher is unaware which process has
actually been observed. For this reason we refer to these as latent competing risks. In
many situations, the structural parameters of interest may be those of the joint distribution
rather than those of the reduced form mixture distribution. The inference problem is to
estimate the parameters of this joint distribution when one only observes the minimum
(or maximum) of these variables. The logical starting point and the focus of this paper is
whether and under what circumstances one can even identify the parameters of this joint
distribution.
One difference amongst the above examples is that the first three, from epidemiology,

reliability analysis and censoring, represent the minimum of two or more processes and
are like standard competing risk models except one does not know which risk is observed.
In the other three examples, of strikelength, timing of financial transactions and length of
stay, the outcome is the maximum of two processes. From a formal perspective one can
clearly take the negative of the maximum of several processes and view this as a competing
risks model. However, we examine both the competing risks and “Roy duration” models.
In the economics literature, the Roy (1951) model is used to analyze markets in which one
observes the maximum of two or more random variables (typically wages and not duration
variables) and numerous statistical results have been established with respect to the Roy
model which are relevant to competing risk models. In discussing the identification of these
models it also makes more intuitive sense to refer to the maximum of several duration
variables rather than the minimum of the negative of these variables. The conditions we
use for identification of these models, while symmetric, are different and it is of interest to
consider their meaning in specific empirical situations.
Identification of the “latent” version of the Roy model1 has been shown under certain

conditions by Heckman and Honoré (1990), but their results do not cover all interesting
situations. Specifically, their results apply when, conditional on covariates, (possibly un-
observable) the durations are independent and exclusion restrictions are applied to achieve
identification. This excludes situations where one wants to consider the direct interaction
between durations. This is clearly important when examining, say, diseases or timing of
marriage. In certain circumstances it may not be plausible to employ exclusion restric-
tions. For example, in the case of strikes, it may be argued that both parties condition on
the same information and it makes little sense to include a covariate in one hazard rate

1i.e. for the case when a person’s salary is known but not the sector they work in.
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and exclude it from the other. In this paper we show how, in a standard duration context,
each of these assumptions can be relaxed, using other restrictions which may be plausible
in various situations.
This discussion proceeds as follows. In the next section we summarize the traditional

approach to identification of duration models, using the approach of Elbers and Ridder
(1982) and cast Heckman and Honoré’s (1990) identification results into a duration con-
text. In Section 3 we allow for direct dependence amongst the risk sets and show when
identification is possible. In Section 4 we show how in some cases identification can be
obtained even without exclusion restrictions. In each of these cases, our results provide
sufficient conditions for identification. We provide specific, intuitive, examples of these.
As is standard in this literature, our results are nonparametric, in that they rely on

exclusion, shape and normalization assumptions and do not rely on restricting the distri-
butions to families indexable by a finite parameter space. It is most certainly the case that
other conditions are sufficient as well. Our results may be indicative of other sufficient
conditions. As is also quite standard we allow for unobservable frailty or heterogeneity.
In the present context, there are unobservables entering into each hazard rate. These are
allowed to be dependent although, as is typical, we assume the unobservable and observ-
able covariates are independent. For clarity, we assume throughout that there are only
two processes, although this can clearly be generalized.

2. Univariate identification and identification by exclusion restrictions

Our method of identification follows that of Elbers and Ridder (1982) for univariate
duration models. Assume that the hazard rate, conditional on the observable covariates,
x, and an unobservable, is separable so that

(2.1) h(t|x, ν) = φ(t)θ(x)ν

where ν ≥ 0 has distribution function G. x and ν are assumed to be independent so that
the observable survivor function is written

(2.2a) S(t|x) =
Z ∞

0

e−Φ(t)θ(x)νdG(ν) ≡ L (Λ(t, x))

where

(2.2b) Φ(t) =

Z t

0

φ(u)du, Λ(t, x) =

Z t

0

λ(u, x)du, λ(t, x) = φ(t)θ(x)

λ, θ ≥ 0
and L is the Laplace transform of G. Let θ0(x) denote the derivative of θ with respect to
its first element, denoted x1. To identify the latent competing risks/Roy models we will be
using assumptions about the hazard rates for limiting values of the observable covariates.
It is useful to prove a (weaker) variant on the basic Elbers and Ridder (1982) result
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using these kinds of conditions. First we formalize what is meant here by identification,
adopting the definition of Roehrig (1988). In what follows, a “structure” is a set of functions
thought to underlie the population distribution function. In the usual case of the univariate
proportional mixed hazard rate model, a structure is a triple Γ = {φ(t), θ(x), G(ν)} such
that S(t|x) = R

exp{φ(t)θ(x)ν}dG(ν). It is assumed that Γ lies in some set of triples, Ω,
which satisfy certain regularity conditions.

Definition. Let S(t|x) and S†(t|x) be conditional survivor functions for T given the
covariate X = x implied by the structures Γ and Γ†. Then Γ and Γ†are observationally
equivalent if S(t|x) = S†(t|x)
Definition. Γ is identifiable (in Ω) if there exists no other Γ† (in Ω) which is observation-
ally equivalent to Γ.

Remark 1. The definitions actually refer to identifiability of each of the “structural” func-
tions at a point. In fact, with the exception of the last two of our results, all of the functions
we consider are identifiable at each point of their domains. When this is not the case, we
indicate for which values of their arguments each function is identified. ¤
Proposition 1. Let the survivor function be as in (2.2). Suppose that E[ν] = L(0) <∞,
φ(t) > 0, Φ(0) = 0, Φ(1) = 1 and Φ(∞) = ∞. For some x = x1 and x = x0, θ(x1) = 1
and θ(x0) = limx→x0 θ(x) = 0. θ(x) is continuously differentiable with respect to x1 and
θ0(x) > 0, x 6= x0. Then, θ, Φ and L are identifiable.
Remark 2. The assumptions imply that the unobserved heterogeneity is assumed to have
finite (not necessarily known) mean. Elbers and Ridder (1982) normalize E[ν]. We find
it more convenient, particularly with the multivariate generalizations below, to impose
the normalization Φ(1) = 1. (Any other positive value will do.) This is easily imposed
in practice, for example with a Weibull baseline hazard, Φ(t) = tα. The restrictions on
the covariates are stronger than Elbers and Ridder (1982), but note that they are easily
satisfied. A simple example is if θ(x) = exp(x0β) with one of the x’s taking values on the
real line. ¤
Proof of Proposition 1. With E[ν] finite and θ(x1) = 1,

∂
∂tS(t|x)
∂
∂tS(t|x1)

=
φ(t)θ(x)L(1) (Λ(t, x))

φ(t)L(1) (Φ(t))

= θ(x)
L(1) (Λ(t, x))

L(1) (Φ(t))
(2.3)

and we can identify θ by observing that

(2.4) θ(x) = lim
t→0

∂
∂tS(t|x)
∂
∂tS(t|x1)

.

(Note that Φ(0) = Λ(0, x) = 0.) Next, we have
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∂
∂x1
S(t|x)

∂
∂x1
S(1|x) =

Φ(t)θ0(x)L(1) (Λ(t, x))
θ0(x)L(1) (θ(x))

= Φ(t)
L(1) (Λ(t, x))

L(1) (θ(x))
(2.5)

and

(2.6) Φ(t) = lim
x→x0

∂
∂x1
S(t|x)

∂
∂x1
S(0|x) .

Since we can observe Φ for all values from zero to infinity we can evaluate L over its domain
(and G, since there is a unique relationship between the two) by varying t and observing
L(Φ(t)) = S(t|x1). Since θ, Φ and L can be expressed directly as functions of S, they are
identifiable. (Any other values of θ, Φ and L would necessarily imply a different S and
hence could not be observationally equivalent.) ¤
To adapt the Heckman and Honoré (1990) results for duration models we consider

bivariate models with hazard rates analogous to the univariate case so that

(2.7) hj(t|x, ν) = φj(t)θj(xj , z)νj ≡ λj(t, xj , z)νj , j = 1, 2.

We index the x’s to allow for exclusion restrictions. The vector of observed covariates is
decomposed as x = (x1, x2, z) where xj appears only in θj , j = 1, 2. z can be common
to both hazard rates. This is similar to exclusion restrictions in simultaneous equations
estimation. We make normalizations completely analogous to the univariate case.
The joint distribution of the two duration variables can be modeled the same way for

both the competing risk and Roy duration models. The difference is the way the max/min
operator affects the observed duration. In the first case we look at, the two processes are
independent, conditional on the observable and unobservable covariates. We formalize the
structure as follows.

Assumption 1. The marginal survivor functions for the two processes are written as

(2.8) Sj(t|x, ν) = exp(−Φj(t)θj(xj , z)νj),

Φj(t) =

Z t

0

φj(u)du, Λj(t, xj , z) =

Z t

0

λj(u, xj , z)du,

(2.9) λj(t, xj , z) = φj(t)θj(xj , z)
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λj , θj ≥ 0, j = 1, 2

(ν1, ν2) ∼ G12 : <+ ×<+ → [0, 1]

This is the bivariate analogue to what is usually assumed in econometrics and biometrics
for continuous univariate processes. The observed dependence between T1 and T2 in this
case comes from the unobservables. This is relaxed below to allow for direct dependence
between the two processes. Let θ0j(xj , z) denote the derivative of θj(xj , z) with respect to
its first element, j = 1, 2. We also use some smoothness restrictions and normalizations
comparable to those in the univariate case. These are given in the following.

Assumption 2. For j = 1, 2, suppose that E[νj ] = Lj(0) < ∞, φj(t) > 0, Φj(0) = 0,
Φj(1) = 1 and Φj(∞) =∞.
Assumption 3. For j = 1, 2, for some (xj , z) = (x

1
j , z

1) and xj = x
0
j , θj(x

1
j , z

1) = 1 and

θ(x0j , z) = limxj→x0
j
θj(xj , z) = 0. x1 ∩ x2 = ∅. θj(xj , z) is continuously differentiable with

respect to xj1 and θ
0
j(xj , z) > 0, xj 6= x0j .

Consider first the latent competing risks model. In this case, the observed minimum
has a survivor function which is given in the following assumption.

Assumption 4. The survivor function of the observed durations is given by

Sc(t|x) =
ZZ

S1(t|x, ν1)S2(t|x, ν2) dG12(ν1, ν2)

=

ZZ
e−Λ1(t,x1,z)ν1e−Λ2(t,x2,z)ν2 dG12(ν1, ν2)

≡ L12(Λ1(t, x1, z),Λ2(t, x2, z)).(2.10)

We let L1(Λ1) = L12(Λ1, 0), L2(Λ2) = L12(0,Λ2), denote the “marginal” Laplace trans-

forms and indicate their derivatives by L
(1)
j , j = 1, 2. The partials of L12 are indicated

by L
(j)
12 , j = 1, 2. θ0j indicates the partial derivative of θj with respect to its first ele-

ment, xj1. Note that Lj(0) = 1, Lj(∞) = 0, and L
(1)
j (0) = E[νj ], j = 1, 2. Also define

x10 = (x01, x2, z), x
20 = (x1, x02, z) .

The intuition of our results is very simple. For both the competing risk and Roy duration
models, we find conditions under which the “observable” survivor function is equal to the
marginal survivor function of processes. Given that, Elbers and Ridder (1982) -like results
can be applied directly. For example, in the case of psychiatric patients, the physician may
wish to discharge a patient, say because of overutilized resources. In this case, one can
infer that if a patient is still in the hospital it is by his/her choice and one can identify the
patient’s survivor function. Symmetric assumptions allow us to identify the physician’s
survivor function. Moreover, since the parameters of interest are expressed directly in
terms of the survivor function and its derivatives, these can be estimated directly by their
sample analogues.
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Proposition 2. Let Assumptions 1, 2, 3 and 4 hold. Then, θj ,Φj , j = 1, 2 and L12 are
identifiable.

Proof of Proposition 2. With E[ν1] finite and θ1(x
1
1, z

1) = 1,

∂
∂tS

c(t|x1, x02, z)
∂
∂tS

c(t|x11, x02, z1)
=
φ1(t)θ1(x1, z)L

(1)
12 (Λ1(t, x), 0)

φ(t)L
(1)
12 (Φ1(t), 0)

= θ1(x1, z)
L
(1)
1 (Λ1(t, x))

L
(1)
1 (Φ1(t))

(2.11)

and we can identify θ1 by observing that

(2.12) θ1(x1, z) = lim
t→0

∂
∂tS

c(t|x1, x02, z)
∂
∂tS

c(t|x11, x02, z1)
.

Next,

∂
∂x11

Sc(t|x1, x02, z)
∂

∂x11
Sc(1|x1, x02, z)

=
Φ1(t)θ

0
1(x)L

(1)
12 (Λ1(t, x), 0)

θ01(x)L
(1)
12 (θ1(x), 0)

= Φ1(t)
L
(1)
1 (Λ1(t, x))

L
(1)
1 (θ1(x))

(2.13)

and

(2.14) Φ1(t) = lim
x1→x0

1

∂
∂x11

Sc(t|x1, x02, z)
∂

∂x11
Sc(1|x1, x02, z)

.

θ2 and Φ2 are identified symmetrically. If we put t = 1, we can evaluate L12(θ1, θ2) =
Sc(1|x) over a rectangle by simultaneously altering x11 and x21. Since Φ1 and Φ2 are
identifiable and take values over <+×<+ we can also vary t to evaluate L12(Φ1θ1,Φ2θ2) =
Sc(t|x) over <+ ×<+. ¤
Remark 3. Note that since there is a unique relationship between L12 and G12, the latter
is also identifiable. ¤
For the case of the Roy model, the marginal survivor functions for the two duration

times, conditional on x and ν1, ν2, are the same as for the competing risks in (2.9). However,
the probability of the maximum of two variables is the sum of the marginals minus the
joint probability. Therefore, conditional on x and (ν1, ν2), the maximum duration time
has a survivor functional:

(2.15) Sr(t|x, ν) = e−Λ1(t,x1,z)ν1 + e−Λ2(t,x2,z)ν2 − e−Λ1(t,x1,z)ν1e−Λ2(t,x2,z)ν2 .

Denoting the marginal distribution functions of ν1 and ν2 as G1 and G2 respectively, the
survivor function of the maximum, conditional on the observable covariates, is as in the
following assumption.
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Assumption 5. The survivor function of the observed durations is given by

Sr(t|x) =
Z
e−Λ1(t,x1,z)ν1 dG1(ν1) +

Z
e−Λ2(t,x2,z)ν2 dG2(ν2)

−
ZZ

e−Λ1(t,x1,z)ν1e−Λ2(t,x2,z)ν2 dG12(ν1, ν2)

≡ L1(Λ1(t, x1, z)) + L2(Λ2(t, x2, z))− L12(Λ1(t, x1, z),Λ2(t, x2, z)).(2.16)

We use one additional limiting assumption here as follows.

Assumption 6. For some xj = x
∞
j , j = 1, 2, θ(x

∞
j , z) = limxj→x∞j θj(xj , z) =∞.

The identification result for the latent Roy model is as follows.

Proposition 3. Let Assumptions 1, 2, 3, 5 and 6 hold. Then, θj ,Φj , j = 1, 2 and L12
are identifiable.

Remark 4. The difference between the assumptions in Propositions 2 and 3 is the as-
sumption that θ(x∞j , z) = ∞, in addition to θ(x0j , z) = 0, j = 1, 2. This may appear as
inconsistent with the competing risks case but it is actually not. The limiting assumptions
on θj have two purposes. As in the univariate case, setting θj = 0 allows us to identify
Φj . In the bivariate case we also need some x to appear only in θi such that S

r = Lj . In
the Roy model it is sufficient to have θ(x∞i , z) =∞. The corresponding assumption in the
competing risk case is that θ(x0i , z) = 0. Since this assumption, for j = 1, 2 is also used
for identifying Λi, we appear to get away with one less assumption in the competing risks
model.
Intuitively, to identify the structure we require conditions under which one knows which

variable is the maximum. The assumption then, say, that θ2 =∞ guarantees that subject
two “exits” at time 0 and is never at risk. This is the opposite from the competing risk
case. ¤
Proof of Proposition 3. With E[ν1] finite and θ1(x

1
1, z

1) = 1,

∂
∂t lim

x2→x∞2
Sr(t|x1, x2, z)

∂
∂t lim

x2→x∞2
Sr(t|x1, x2, z)

=
φ1(t)θ1(x1, z)L

(1)
1 (Λ1(t, x))

φ(t)L(1)1 (Φ1(t))

= θ1(x1, z)
L
(1)
1 (Λ1(t, x))

L
(1)
1 (Φ1(t))

(2.17)

and we can identify θ1 by observing that

(2.18) θ1(x1, z) = lim
t→0

∂
∂t

lim
x2→x∞2

Sr(t|x1, x2, z)
∂
∂t lim
x2→x∞2

Sr(t|x1, x2, z)
.
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Next,

∂
∂x11

lim
x2→x∞2

Sr(t|x1, x2, z)
∂

∂x11
lim

x2→x∞2
Sr(1|x1, x2, z)

=
Φ1(t)θ01(x)L

(1)
1 (Λ1(t, x))

θ01(x)L
(1)
1 (θ1(x))

= Φ1(t)
L
(1)
1 (Λ1(t, x))

L
(1)
1 (θ1(x))

(2.19)

and

(2.20) Φ1(t) = lim
x1→x0

1

∂
∂x11

lim
x2→x∞2

Sr(t|x1, x2, z)
∂

∂x11
lim

x2→x∞2
Sr(1|x1, x2, z)

.

θ2 and Φ2 are identified symmetrically. As in Proposition 2 we can then find L12 for any
value in <+ ×<+ by simultaneously altering x11 and x21 and evaluating

(2.21) L12(Λ1(t)θ1(x1, z),Λ1(t)θ2(x2, z)) = S1(t|x1, z) + S2(t|x2, z)− S(t|x1, x2, z). ¤

As noted after Proposition 2, this also identifies G12.

3. Identification with conditionally dependent duration variables

We now generalize the above results to allow the two duration times to be dependent,
conditional on the observables and unobservable heterogeneity. Doing so raises identifica-
tion problems not dealt with in the Heckman and Honoré (1990) paper. A fairly general
class of models can be obtained as follows. We write the joint survivor of the two duration
times as the product of the marginal and conditional, i.e.

(3.1) S12(t1, t2|x, ν) = S2|1(t2|t1, x, ν)S1(t1|x, ν)
where S1 is as in Assumption 1 and S2|1 is the survivor based on a conditional hazard
function of the form

(3.2) h2|1(t2|t1, x, ν) = φ2(t2)ρ(t1, x3)θ2(x2, z)ν2.
A structure such as this is commonly used for modeling multiple spells in which case t1
and t2 represent consecutive spells. For example, suppose b(t) is some positive function of t

and put ρ(t, x3) = b(t)1[x3=x
1
3]. In the length of stay example, b(t) could correspond to the

doctor’s response to the patient’s opinion and for some particular diagnosis, say extreme
schizophrenia, this is completely ignored (1[·] = 0). We formalize this in the following
assumption.
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Assumption 7. The survivor functions for the two latent processes are written as

S2|1(t2|t1, x, ν) = exp(−Λ2|1(t2|t1, x)ν1), S1(t1|x, ν) = exp(−Λ1(t, x)ν2),

Λ2|1(t2|t1, x) =
Z t2

0

λ2|1(u|t1, x)du, Λ1(t1, x) =

Z t1

0

λ1(u, x)du,

λ2|1(t2|t1, x) = φ2(t2)ρ(t1, x3)θ2(x2, z), λ1(t1, x) = φ1(t1)θ1(x1, z)

ρ,φj , θj ≥ 0, j = 1, 2

(3.3) (ν1, ν2) ∼ G12 : <+ ×<+ → [0, 1]

We continue to define Φj(t) =
R t
0 φj(u)du, j = 1, 2. Note that we partition x =

(x1, x2, x3, z) to allow for a subset of the observed covariates to enter into ρ. We show
identification of this model under two different sets of assumptions (in addition to the
normalizations used above.) We either assume that x3 is a subset of x with no elements in
common with either x1, x2 or z and x3 has a certain limiting impact on ρ or we will show
that certain shape restrictions on φ2 and ρ can identify the components of this model. The
rest of the structure is as in the models in the previous section. We impose the natural
restriction that ρ(0, x3) = 1 so that the marginal distributions with this model are as in
the conditionally independent model. ρ0 denotes the partial derivative of ρ with respect
to t. As before, for j = 1, 2, θ0j indicates the partial derivative with respect to its first
element, xj1.
Consider first the latent competing risks model. In this case, the observed minimum

has a survivor function which is written

Assumption 8. The survivor function of the observed durations is given by

Sc(t|x) =
ZZ

S1(t|x, ν1)S2|1(t|t, x, ν2)dG12(ν1, ν2)

=

ZZ
e−Λ1(t,x1,z)ν1e−Λ2|1(t,t,x2,z,x3)ν2 dG12(ν1, ν2)

≡ L12(Λ1(t, x1, z),Λ2|1(t, t, x2, z, x3)).(3.4)

As above, we let Lj , j = 1, 2, denote the “marginal” Laplace transforms and indicate their

derivatives by L
(1)
j , j = 1, 2. The partials of L12 are indicated by L

(j)
12 , j = 1, 2. We define

x10 = (x01, x2, z, x3), x
20 = (x1, x

0
2, z, x3).

Assumption 9. ρ is differentiable with respect to t, ρ(0, x3) = 1 and for some x3 = x
1
3,

ρ(t, x13) = 1. x2 ∩ (x1 ∪ x2 ∪ z) = ∅.
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Proposition 4. Let Assumptions 2, 3, 7, 8 and 9 hold. Then, θj , Φj , j = 1, 2, ρ and L12
are identifiable.

Proof of Proposition 4. θ1 and φ1 can be identified in the same way as in Proposition
2 by evaluating Sc(t|x1, x02, z, x3). Also as in Proposition 2, we can identify θ2 by first
evaluating the ratio

∂
∂tS

c(t|x01, x2, z, x3)
∂
∂tS

c(t|x01, x12, z, x3)
=
θ2(x)L

(1)
2

¡
Λ2|1(t|t, x)

¢
∂
∂t (Φ2(t)ρ(t, x3))

L(1)2 (Φ2(t)ρ(t, x3))
∂
∂t
(Φ2(t)ρ(t, x3))

= θ2(x)
L
(1)
2

¡
Λ2|1(t|t, x)

¢
L
(1)
2 (Φ2(t)ρ(t, x3))

(3.5)

and

(3.6) θ2(x) = lim
t→0

∂
∂t
Sc(t|x01, x2, z, x3)

∂
∂tS

c(t|x01, x12, z, x3)
.

To identify ρ,

∂
∂x21

Sc(t|x01, x2, z, x3)
∂

∂x21
Sc(t|x01, x2, z, x13)

=
ρ(t, x3)Φ2(t)θ

0
2(x)L

(1)
2 (Φ2(t)ρ(t, x3)θ2(x))

Φ2(t)θ02(x)L
(1)
2 (Φ2(t)θ2(x))

= ρ(t, x3)
L
(1)
2 (Φ2(t)ρ(t, x3)θ2(x))

L
(1)
2 (Φ2(t)θ2(x))

(3.7)

and consequently

(3.8) ρ(t, x3) =

lim
x2→x0

2

∂
∂x21

Sc(t|x01, x2, z, x3)

lim
x2→x0

2

∂
∂x21

Sc(t|x01, x2, z, x13)
.

Similarly,

(3.9) Φ2(t) =

lim
x2→x0

2

∂
∂x21

Sc(t|x01, x2, z, x13)

lim
x2→x0

2

∂
∂x21

Sc(1|x01, x2, z, x13)
.

L12 is identified as in Proposition 2. ¤
Remark 4. Without the identifying variable, x3, it is still possible to identify the parame-
ters using functional form restrictions. Note that in this case,
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∂
∂tS

c(t|x01, x2, z)
∂

∂x21
Sc(t|x01, x2, z)

=
∂
∂t (ρ(t)Φ2(t)) θ2(x2, z)L

(1)
2

¡
Λ2|1(t, x2, z)

¢
ρ(t)Φ2(t)θ02(x2, z)L

(1)
2

¡
Λ2|1(t, x2, z)

¢
=

∂
∂t log (ρ(t)Φ2(t))
∂

∂x21
log θ2(x2, z)

(3.10)

We can thus identify

(3.11)
∂

∂t
log (ρ(t)Φ2(t)) =

∂

∂x21
log θ2(x2, z)

∂
∂tS

c(t|x01, x2, z)
∂

∂x21
Sc(t|x01, x2, z)

,

that is, the log derivative of the product of ρ and Φ. In general, it is not possible to
decompose this into the two functions. However, for certain, fairly rich parametric models
one can show that, if ρ(t) = ρ(t; a) and Φ(t) = Φ(t; b), where the true values are a0 and b0,
say, then for any other values, a0 and b0, say, that ρ(t; a0) 6= ρ(t; a0) and Φ(t; b0) 6= Φ(t; b0)
on a set on positive measure. Consequently, it is possible to identify the two functions.
For example, suppose Φ(t) = ta, ρ(t) = (1 + t)b and say for two values a0, b0 and a0, b0

these are the same. Then

0 =
d

dt
(a0 log t + b0 log(1 + t))− d

dt
(a0 log t+ b0 log(1 + t))

=
a0 − a0
t

+
b0 − b0
1 + t

(3.12)

or

(3.13) t = −
µ

1

a0 − a0 +
1

b0 − b0
¶
(b0 − b0)

a constant, which can only hold on a set of measure zero. The rest of the identification
follows as previously. ¤
For the corresponding Roy duration model, the observed maximum has a survivor func-

tion which is written as follows

Assumption 10. The survivor function of the observed durations is given by

Sr(t|x) =
Z
S1(t|x, ν1) dG1(ν1) +

Z
S2|1(t|0, x, ν2) dG2(ν2)

−
ZZ

S1(t|x, ν1)S2|1(t|t, x, ν2) dG12(ν1, ν2)

=

Z
e−Λ1(t,x1,z)ν1 dG1(ν1) +

Z
e−Φ2(t)θ2(x)ν2 dG2(ν2)

−
ZZ

e−Λ1(t,x1,z)ν1e−Λ2|1(t|t,x)ν2 dG12(ν1, ν2)

≡ L1(Φ1(t)θ1(x)) +L2(Φ2(t)θ2(x))− L12(Φ1(t)θ1(x),Φ2(t)θ2(x)ρ(t, x3)).
(3.14)
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Define x11 = (x11, x2, z, x3) and x
21 = (x1, x12, z, x3).

Proposition 5. Let Assumptions 2, 3, 6, 7, 9 and 10 hold. Then, θj , Φj , j = 1, 2, ρ and
L12 are identifiable.

Proof to Proposition 5. θ1 and φ1 are identified as in Proposition 3. Also as in the proof
to Proposition 3 we have

∂
∂t lim
x1→x∞1

Sr(t|x1, x2, z, x3)
∂
∂t lim
x1→x∞1

Sr(t|x1, x12, z, x3)
=
φ2(t)θ2(x)L

(1)
2 (Φ2(t)θ2(x))

φ2(t)L
(1)
2 (Φ2(t))

= θ2(x)
L
(1)
2 (Φ2(t)θ2(x))

L
(1)
2 (Φ2(t))

(3.15)

and

(3.16) θ2(x2, z) = lim
t→0

∂
∂t lim

x1→x∞1
Sr(t|x)

∂
∂t lim

x1→x∞1
Sr(t|x21) .

Similarly

∂
∂x21

lim
x1→x∞1

Sr(t|x)
∂

∂x21
lim

x1→x∞1
Sr(1|x) =

Φ2(t)θ
0
2(x2, z)L

(1)
2 (Φ2(t)θ2(x))

Φ2(1)θ02(x2, z)L
(1)
2 (Φ2(1)θ2(x))

= Φ2(t)
L
(1)
2 (Φ2(t)θ2(x)))

L
(1)
2 (θ2(x2, z))

(3.17)

and

(3.18) Φ2(t) = lim
x2→x0

2

∂
∂x21

lim
x1→x∞1

Sr(t|x)
∂

∂x21
lim

x1→x∞1
Sr(1|x) .

Next note that,

∂

∂x21
Sr(t|x10)

= Φ2(t)θ
0
2(x)

³
L
(1)
2 (Φ2(t)θ2(x))− ρ(t, x3)L(1)2 (Φ2(t)ρ(t, x3)θ2(x))

´(3.19)



14

so that

(3.20) ρ(t, x3) = lim
x2→x0

2

1

Φ2(t)θ02(x)

µ
1− ∂

∂x21
Sr(t|x10)

¶
Identification of L12 follows as in the proof to Proposition 3. ¤
Remark 5. Note that the proof of this result does not use the additional covariate, x3,
for identification. While this may appear inconsistent with the case of competing risks,
actually the result is due to the asymmetric manner in which ρ is introduced. By assump-
tion, ρ does not appear in the marginal distribution of T2. As we see, for limiting values
of x1 we can effectively observe both L2(Φ2θ2) and L2(Φ2ρθ2) This allows us to identify
the parameters in this model without the extra covariate x3. With the competing risks
model we can only observe L2(Φ2ρθ2), making separate identification of Φ2 and ρ more
problematic. ¤

4. Identification without exclusion restrictions

In many situations it may not be plausible to impose exclusion restrictions. For example,
in bargaining situations in economics, if both agents have access to the same information,
there is no reason to expect that one agent will condition on less information than the
other. However, it may be plausible to make an assumption as to how a covariate will
impact on each agent’s duration dependence, at least in a limiting sense. For simplicity
we suppose x is a scalar. Crossley, Paric and Rilstone (1999) consider a strike situation
in which work does not recommence until both parties sign a contract (a Roy duration
model). They assume that firms (j = 2) and workers (j = 1) react asymmetrically to wage
changes, x. One would expect firms to react negatively to a large wage increase, and hence
θ2 gets very small for large x, large for small (negative) x. Conversely, θ1 gets very large
for large x, small for small x. The point is that, for large enough wage changes, if a firm
is still on strike, one can be fairly certain that it is of the firm’s choosing; if wage changes
are very small or negative, it is the workers’ doing. Intuitively, we would like to simply
set θ1 =∞ for values of x greater than some value, θ2 =∞ for all values of x below some
level. This of course raises some technical difficulty. Rather than doing this, we simply
assume that, conditional on very high wage changes, we have Sr(t|x) = S2(t|x) and for
very small or negative wage changes, we have Sr(t|x) = S1(t|x). These assumptions are
formalized in the following propositions for the competing risks and Roy duration models.
We consider the Roy model first.
Define a Roy type survivor function as in (2.16), with one common covariate for each

underlying process such that:

Sr(t|x) =
Z
e−Λ1(t,x)ν1 dG1(ν1) +

Z
e−Λ2(t,x)ν2 dG2(ν2)

−
ZZ

e−Λ1(t,x)ν1e−Λ2(t,x)ν2 dG12(ν1, ν2)

≡ L1(Λ1(t, x)) + L2(Λ2(t, x))− L12(Λ1(t, x),Λ2(t, x))(4.1)
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Put

(4.2) Sj(t|x) =
Z
e−Λj(t,x)νj dGj(νj), j = 1, 2.

With the asymmetric limiting assumptions on θ1 and θ2, the observable survivor function
is given in the following.

Assumption 11. The survivor function for the observed durations is

Sr∗(t|x) = Sr(t|x)1[x2∞ < x < x1∞] + S2(t|x)1[x ≥ x1∞] + S1(t|x)1[x ≤ x2∞].
(4.3)

By inspection of this last line it is intuitive how the model is identified. The components
of S1 are identified using values of x such that x ≤ x2∞. Conversely the components of
S2 are identified using values of x such that x ≥ x1∞. We require that the relevant
normalizations can be imposed within these ranges. These are as follows.

Assumption 12. For some xj0, xj1, limx→xj0 θj(x) = 0, θj(x
j1) = 1, j = 1, 2, where

x10, x11 < x2∞ and x20, x21 > x1∞. θj(x) is continuously differentiable with respect to x
and θ0j(x) > 0, x 6= x0j , j = 1, 2.
Remark 6. An example of the type of functions which are implied by this assumption and
the structure of Sr∗ is in Figure 1. What we have in mind are asymmetric responses to a
covariate. The opposing hyperbolas in that figure, with the placement of the xji’s will give
rise to the sort of limiting behaviour we have in mind, say in the strike example. Another
example would be in the timing of marriage where each individual could be expected to
react asymmetrically to the relative dowry of the other. ¤
Proposition 6. Let Assumptions 2, 11 and 12 hold. Then Φj and Lj , j = 1, 2 are
identifiable, θ1 is identifiable over x < x20 and θ2 is identifiable over x > x10.

Remark 7. Note that Proposition 6 only partially identifies the model (at least nonpara-
metrically.) Without imposing other restrictions we can identify θ1(x) (θ2(x)) only for
those values of x < x2∞ (x > x1∞). L1 and L2 are identifed over their domains since we
can identify Λ1 and Λ2 and vary these over [0,∞). However to identify L12 we need to be
able to evaluate it for arbitrary values of both its arguments. This is not possible. ¤
Proof to Proposition 6. First note that

Sr∗(t|x, x > x1∞) = L1(∞) + L2(Λ2(t, x))− L12(∞,Λ2(t, x))
= L2(Λ2(t, x))(4.4)

so that

∂
∂xS

r∗(t|x, x > x1∞)
∂
∂xS

r∗(1|x, x > x1∞) =
Φ2(t)θ

0
2(x)L2(Λ2(t, x))

θ02(x)L2(θ2(x))

= Φ2(t)
L2(Λ2(t, x))

L2(θ2(x))
(4.5)
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and

(4.6) Φ2(t) = lim
x→x20

∂
∂xS

r∗(t|x, x > x1∞)
∂
∂xS

r∗(1|x, x > x1∞) .

Similarly,

∂
∂tS

r∗(t|x, x > x1∞)
∂
∂tS

r(t|x21, x > x1∞) =
φ2(t)θ2(x)L2(Λ2(t, x))

φ2(t)L2(Φ2(t))

= θ2(x)
L2(Λ2(t, x))

L2(Φ2(t))
(4.7)

and

(4.8) θ2(x) = lim
t→0

∂
∂tS

r(t|x, x > x1∞)
∂
∂tS

r(t|x21, x > x1∞)

We can similarly identify θ1 and Φ1. The identification of L1 and L2 follows by noting
that

L1(Φ1(t)) = S
r∗(t|x11),(4.9)

L2(Φ2(t)) = S
r∗(t|x21). ¤(4.10)

In the competing risk case, it is also not possible in general to identify all the functions
over their entire domains. (If one is willing to impose that these functions belong to a
known finite dimensional family then that is, of course, a different story.) First, put

Sc(t|x) =
ZZ

e−Λ1(t,x)ν1e−Λ2(t,x)ν2 dG12(ν1, ν2)

≡ L12(Λ1(t, x),Λ2(t, x))(4.11)

and

(4.12) Sj(t|x) =
Z
e−Λj(t,x)νj dGj(νj), j = 1, 2.

With the asymmetric limiting assumptions on θ1 and θ2, we have the following assumptions.
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Assumption 13. The survivor function for the observed durations is

Sc∗(t|x) = 1[x20 < x < x10] + S2(t|x)1[x ≥ x10] + S1(t|x)1[x ≤ x20].
(4.13)

Assumption 14. For some x21 > x10, θ2(x) = 1, for some x
11 < x20, θ1(x) = 1. θj(x) is

continuously differentiable θ01(x) > 0, x < x20 and θ
0
2(x) > 0, x > x10.

Proposition 7. Let Assumptions 2, 12 and 13 hold. Then Φj and Lj , j = 1, 2 are
identifiable, θ1 is identifiable over x < x

20 and θ2 is identifiable over x > x
10.

Remark 8. Note again that while the marginal Laplace transforms, L1 and L2 are identi-
fiable, L12 is not. The reason is that to trace out L12 we need to simultaneously change
both its arguments at points which are not degenerate. Note that effectively there are no
x’s such that both θ1 and θ2 are nonzero. See Figures 1 and 2 for stylized examples of the
asymmetric reaction functions in the Roy and competing risks models. ¤
Proof to Proposition 7. Note first that

(4.14) Sc(t|x, x > x10) = L12(0,Λ2(t, x)) = L2(Λ2(t, x))

so that

∂
∂xS

c∗(t|x, x > x10)
∂
∂xS

c∗(0|x, x > x10) =
Φ2(t)θ02(x)L

(1)
2 (Λ2(t, x))

θ02(x)L
(1)
2 (θ2(x))

= Φ2(t)
L
(1)
2 (Λ2(t, x))

L
(1)
2 (θ2(x))

(4.15)

and

(4.16) Φ2(t) = lim
x→x20

∂
∂xS

c∗(t|x, x > x10)
∂
∂xS

c∗(0|x, x > x10) .

Similarly,

∂
∂tS

c∗(t|x, x > x10)
∂
∂tS

c∗(t|x21, x > x10) =
φ2(t)θ2(x)L

(1)
2 (Λ2(t, x))

φ2(t)L
(1)
2 (Φ2(t))

= θ2(x)
L
(1)
2 (Λ2(t, x))

L
(1)
2 (Φ2(t))

(4.17)
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and

(4.18) θ2(x) = lim
t→0

∂
∂tS

c∗(t|x, x > x10)
∂
∂tS

c(t|x21, x > x10) .

Using the normalizations θj(x
j1) = 1, j = 1, 2 we have

(4.19) Lj(Φj(t)) = S
c∗(t|xj1), j = 1, 2

so that L1 and L2 are identifiable. ¤

5. Summary

This paper has shown that, under a variety of restrictions, a class of “latent” competing
risks and Roy duration models can be identified. Since the functions we consider are
written in terms of the survivor function and its derivatives, our results suggest a couple
of estimation strategies. One can either consider using nonparametric analogues of the
survivor function and its derivatives or parameterize the components of the model and use
standard maximum likelihood procedures.
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