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Abstract. We provide a proof of the consistency and asymptotic nor-
mality of the estimator suggested by Heckman (1990) for the intercept of a
semiparametrically estimated sample selection model. The estimator is based
on “identi…cation at in…nity” which leads to non-standard convergence rate.
Andrews and Schafgans (1998) derived asymptotic results for a smoothed ver-
sion of the estimator. We examine the optimal bandwidth selection for the
estimators and derive asymptotic MSE rates under a wide class of distribu-
tional assumptions. We also provide some comparisons of the estimators and
practical guidelines.
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1. Introduction
Semiparametric estimation of sample selection models has attracted considerable in-
terest in the last decade. More recently the estimation of the intercept of the semi-
parametric estimated sample selection model has received due attention, see Heckman
(1990) and Andrews and Schafgans (1998).

The discussion around the estimation of the intercept arose, since, with the ex-
ception of Gallant and Nychka (1978), all semiparametric estimation approaches to
the sample selection model precluded the estimation of the intercept; the intercept
was absorbed in the nonparametric sample selection bias correction term. The semi-
nonparametric estimator proposed by Gallant and Nychka (1978), however, has a
drawback in that although it is consistent, its asymptotic distribution is unknown.
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The importance of this intercept is evident, e.g., when using the sample selection
model in the evaluation of social programs. Estimation of the intercept allows one to
evaluate the net bene…t of a social program, by allowing one to compare the actual
outcome of participants with the expected outcome had they chosen not to partic-
ipate. Empirically, the estimation of the intercept of semiparametrically estimated
sample selection models has proven desirable in the estimation of wages. Its estima-
tion allows for a decomposition of the wage-gap between socio-economic groups (e.g.,
male–female) in order to assess the extent of “discrimination” (Schafgans (1998a) and
allows for a discussion of its evolution over time (Buchinsky (1998)).

In Andrews and Schafgans (1998), the …rst consistent and asymptotically normal
estimator was derived for the intercept, ¹0. Their estimator was based on a sugges-
tion by Heckman (1990) to estimate ¹0 using only those observations for which the
probability of selection in the truncated or censored sample is close to one and in
the limit as n ! 1 is one. The justi…cation of this approach is that the conditional
mean of the errors in the outcome equation for the observations having probability of
selection close to one is close to zero. Due to the di¢culty in deriving the asymptotic
distribution of the Heckman (1990) estimator, arising from the non-di¤erentiability of
the indicator function, Andrews and Schafgans (1998) introduced a smooth monotone
[0,1]-valued function, s(¢). Since we will make reference to the Andrews and Schafgans
(1998) paper frequently, we will call it AS henceforth.

In this paper, we derive the consistency and asymptotic distribution of the Heck-
man estimator itself. This provides the empirical researcher with the advantage of not
having to specify the smoothing function introduced by Andrews and Schafgans. We
investigate a wide class of distributional assumptions for the model and derive “op-
timal” bandwidth parameters and corresponding asymptotic rates for mean squared
error (MSE) for the two estimators. Since the solution for the optimal bandwidth may
not be practical, we provide simpler bounds on the optimal bandwidth parameter;
using a bound may imply preference for either AS or the Heckman estimator.

The remainder of this paper is organized as follows: Section 2 introduces the
sample selection model considered and the estimators of Heckman (1990) and AS. The
asymptotic normality result for the Heckman estimator is given in Section 3. Section 4
discusses the optimal selection of the bandwidth and the rate of the asymptotic mean
squared error. Section 5 concludes. Various appendices follow. Appendix A contains
the proof of the asymptotic normality result given in Section 3. Appendix B derives
the asymptotic bias and variance for the two estimators under a class of general
distributional assumptions and the optimal bandwidth choices given in Section 4.
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2. Intercept Estimation
The sample selection model that we consider can be written as:

Y ¤i = ¹0 + Z
0
iµ0 + Ui ;

Di = 1(X 0
i¯0 > "i) ; and

Yi = Y ¤i Di for i = 1; :::; n ;
(1)

where (Yi; Di; Zi; Xi) are observed random variables. The …rst equation is the out-
come equation and the second equation is the participation equation. For convenience,
we set

Wi = X
0
i¯0 : (2)

The literature on semiparametric estimation of sample selection models gives sev-
eral root-n consistent and asymptotically normal estimators for the selection para-
meters, ¯0 (up to some unknown scale), and the slope parameters of the outcome
equation, µ0. For instance, one could consider: Ichimura (1993), Han (1987), Newey
(1988), Robinson (1988), Powell (1989), Powell, Stock, and Stoker (1989), Ichimura
and Lee (1990), Andrews (1991), and Klein and Spady (1993). The existing litera-
ture and AS can deal both with censored samples (as in the model given in (1)), or
truncated samples. In the latter case, that is where Yi is observed only if Di = 1,
®0 and ¯0 need to be estimated simultaneously using, e.g., Ichimura and Lee (1990).
Regarding the selection parameters ¯0; furthermore, it should be noted that only the
slope parameters are required in the context of estimating the intercept ¹0. The loss
of identi…cation of the intercept in the selection equation, e.g., when using Ichimura
(1993) or Ichimura and Lee (1990) is innocuous therefore.

A consistent and asymptotically normal estimator for the intercept, ¹0, which
uses these preliminary estimators, was provided by AS. Their estimator, call it the
AS estimator, is given by

¹̂s =

Pn
i=1(Yi ¡ Z 0ibµ)Dis(X 0

i
b̄ ¡ °n)Pn

i=1Dis(X 0
i
b̄ ¡ °n)

; (3)

where s(¢) is a non-decreasing [0,1]-valued function that has three derivatives bounded
over R and for which s(x) = 0 for x · 0 and s(x) = 1 for x ¸ b for some 0 < b < 1
(AS, Assumption 3). The preliminary estimators (bµ; b̄) are root-n consistent estima-
tors of (µ0; ¯0). The parameter °n is called the bandwidth or smoothing parameter,
where the bandwidth parameter is chosen such that °n ! 1 as n ! 1.

The Heckman (1990) estimator, on which the AS estimator was based, is given by

¹̂I =

Pn
i=1(Yi ¡ Z 0ibµ)Di1(X 0

i
b̄ > °n)Pn

i=1Di1(X
0
i
b̄ > °n)

(4)
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Comparing the two formulae (3) and (4), it is clear that the AS estimator b¹s
di¤ers from Heckman’s (1990) ¹̂I only in that it replaces the indicator function 1(¢)
with a smooth function s(¢).

Heckman’s estimator ¹̂I is essentially a sample average of the random variables
Ui + ¹0 over a fraction of all observations, since Yi ¡ Z 0ibµ !p Ui + ¹0 as n!1 for
all i ¸ 1. The e¤ective sample size is equal to the number of observations used for
the estimation of ¹0: Since AS introduced a weighting scheme for these observations,
viz., the smooth function s(¢); the estimator b¹s is a weighted sample average of the
random variables Ui+¹0; where observations with X 0

i
b̄ greater than °n and with X 0

i
b̄

close to the threshold °n are weighted less than those further away.
Estimation using the AS or Heckman estimator involves two choices, that of the

bandwidth parameter °n and that of a function s(¢) (or 1(¢)). It is clear that the
choice of °n has the most important consequences for the properties of the estimator
while the impact of the function s(¢) is small in comparison. This is con…rmed in the
analysis of Section 4; nevertheless there are cases when the choice of s(¢) (or 1(¢))
a¤ects the asymptotic rate of the MSE; results are presented in Section 4.

First, we turn to our asymptotic normality result for the Heckman estimator.

3. Asymptotic normality of the Heckman estimator
Here we prove the conjecture made by Andrews and Schafgans that the Heckman
estimator also is asymptotically normal. In the unrealistic case where the true µ0 and
¯0 are known, Andrews and Schafgans already showed that the Heckman estimator,
¹̂I;0, is asymptotically normal (i.e., in Andrews and Schafgans (1998) the indicator
replaces the s(¢) function when the true µ0 and ¯0 are known).1

For our purposes, all we need to show now is that
p
nEDi1(Wi > °n)

¾

¡
¹̂I ¡ ¹̂I;0

¢ p¡! 0; (5)

where ¾2 = Var(Ui). Essentially, the proof requires us to deal directly with the
non-di¤erentiability of the indicator function.

There are di¤erent ways of dealing with asymptotics for non-di¤erentiable func-
tions. Typically assumptions regarding the probability density function are required.
This is due to the fact that the expectation of the Dirac ±-function, which is the
generalized derivative of the indicator function, equals the value of the p.d.f. at zero.
In our case we need to consider the non-di¤erentiable function ®in given by

®n(^̄;Wi; Xi) with ®n(¯;W;X) = 1(X 0¯ > °n)¡ 1(W > °n); (6)

1The estimator ¹̂I;0 is identical to ¹̂I with the preliminary estimators replaced by their true
values.
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where W = X 0¯0. Transform Xi via a linear transformation into the random vector
partitioned as (Wi;¡i): For our purposes, it will be convenient to let ¡i = Xi(¡1);
where Xi(¡1) is Xi with the exclusion of its …rst component.

We add the following Assumption A to the Assumptions 1–7 of AS.2

Assumption A: (a) For some A > 0 the conditional probability density function
p:d:f:W;¡j¡ exists for all W > A and declines monotonically. The marginal probability
density function p:d:f:W is such that for some d ! 0; dn1=6 ! 1

p:d:f:W (°n ¡ d)
Pr(Wi > °n)

3=4
= O(1):

(b) For any Wi > A the conditional moment E jW=Wi
(
°°Xi(¡1)

°°3) exists.

Similar to Assumptions 4 and 7 of AS, Assumption A(a) relates to the upper tail
behaviour of the selection indexWi = X

0
i¯0. It is satis…ed if Wi has a Weibull, Pareto

or “combined” upper tail. If Assumption 4 of AS is satis…ed with » = 0, then this
condition can be replaced by:

p:d:f:W (°n)

Pr(Wi > °n)
3=4
= O(1):

In both cases, the condition is less strong than requiring a bounded hazard function
on Wi; since p:d:f:W (°n ¡ d)1=4 = o(1).

The second part of Assumption A requires the existence of the conditional mo-
ment, but does not place any restrictions on its behaviour as a function of Wi. This
assumption is satis…ed, for example, if the unbounded components of Xi have a joint
normal or spherical distribution with Wi:

The following theorem summarizes our result for the Heckman estimator which
satis…es Assumption 30 of AS.

Theorem 1: Under Assumptions 1, 2, 4–7 of AS and Assumption A

(a)

p
nEDi1(Wi > °n)

¾

µ
¹̂I ¡ ¹0 ¡ EUiDi1(Wi > °n)

EDi1(Wi > °n)

¶
d¡! N (0; 1)

(b)

p
nEDi1(Wi > °n)

¾
(¹̂I ¡ ¹0)

d¡! N(0; 1) i¤ Assumption 8 of AS holds.

2Essentially, Assumptions 1 and 2 of AS require existence of moments and independence between
(Ui; "i) and (Zi;Xi); Assumption 3 and 30 deal with the shape of s(¢); Assumption 4 characterizes
the upper tail of Wi in terms of a parameter 0 · » < 1=3 with “fatter” tails if » = 0; Assumption 5
is root-n consistency and asymptotic normality of (bµ; b̄); Assumption 6 is °n ! 1; where its speed
is restricted by Assumption 7 in terms of the tail of Wi > °n:
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Proof: See Appendix A. 2

To test hypotheses and construct con…dence intervals for functions of (¹0; µ0; ¯0),
we need a joint asymptotic normality result for (¹̂I ;bµ; b̄). This result, similar to that
in AS, is given by

Theorem 2: Under Assumptions 1, 2, 4–8 of AS and Assumption A
0
B@

p
nEDi1(Wi > °n)

¾
(¹̂I ¡ ¹0)

p
n­¡1=2

¡bµ¡µ0
b̄¡¯0

¢

1
CA d¡! N(0; I):

Proof: See Appendix A. 2

In the following section, we compare the performance of the estimators and provide
guidelines for selection of the bandwidth parameter and function s(¢) (or 1(¢)).

4. Bandwidth selection and comparison of the estimators
Here we use the asymptotic MSE as a criterion for bandwidth selection and choice of
the estimator. Two characteristics of the model are of importance for these choices:
the tail behaviour of the selection index, Wi, and the tail behaviour of the function
!(W ) de…ned below that determines the asymptotic bias of the estimator. Speci…-
cally, let

!(W ) = EjW=WUi1("i > W ): (7)

The asymptotic bias (abias) of the estimator b¹s (or b¹I for s(¢) = 1(¢)) is given by3

abias(b¹s) =
¡E [!(Wi)s(Wi ¡ °n)]
[EDis(Wi ¡ °n)]

: (8)

Under the bivariate normality assumption of (Ui; "i), !(W ) is equal to ¾"U
¾"
Á(W

¾"
);

where Á(¢) denotes the standard normal density function.
There are circumstances when !(W ) may be zero for large enough W , e.g. if the

distribution of "i has …nite support, in which case a comparison of the asymptotic
variance will determine the optimal estimator. When !(W ) di¤ers from zero for large
W we need to establish the importance of the asymptotic bias relative to the asymp-
totic variance to select our estimator, which of course will depend on the behaviour
of this conditional expectation. From Theorem 2 in AS and Theorem 1 in this paper,

3Since E(Uis(Wi > °n)) = 0 by independence of Ui and Wi, this follows as E(UiDis(Wi > °n)) =
¡E(Ui(1 ¡ Di)s(Wi > °n)) = ¡E(Ui1("i > Wi)s(Wi > °n)): By law of iterated expectations, this
equals ¡E(!(Wi)s(Wi > °n)).
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the asymptotic variance (avar) of the estimator b¹s (or b¹I for s(¢) = 1(¢)) is given by

avar(b¹s) =
¾2E [Dis

2(Wi ¡ °n)]
n [EDis(Wi ¡ °n)]2

: (9)

Proposition 1 shows that there may be a trade-o¤ between asymptotic variance
and asymptotic bias depending on the choice of function s(¢) (or 1(¢)). Here and
below, “a(x) ¼ b(x)” is de…ned to mean that a(x) = b(x)(1 + o(1)) as x ! 1.

Proposition 1: Under Assumptions 1–7 of AS and Assumption A, for a given
sequence °n

(a) avar(b¹s) ¸ avar(b¹I)

(b) jabias(b¹s)j · jabias(b¹I)j ; if E1(Wi > °n)=E1(Wi > °n + b) ¼ 1 ( » = 0 in
Assumption 4 of AS ) and !(Wi) ¸ 0 8Wi > °n (or !(Wi) · 0 8Wi > °n):

Proof: See Appendix B. 2

If there is no asymptotic bias, naturally the Heckman estimator is preferred based
on asymptotic MSE (and variance).

We can characterize the tail behaviour of the selection index Wi as “fat-tailed”
if Assumption 4 of AS is satis…ed with » = 0; if Assumption 4 of AS is satis…ed
only with » > 0, we say that Wi is “thin-tailed”. Examples of fat tails of Wi are
Pareto upper tails (i.e., 1 ¡ F (W ) ¼ cWW

¡¸; ¸ > 0) or Weibull (¸; c) upper tails
(i.e., 1¡F (W ) ¼ cW exp(¡¸W c); ¸ > 0) with c · 1: For Pareto and fat Weibull tails
of W the condition in (b) is satis…ed.

Proposition 2 shows that for fat-tailed distributions ofWi the choice of the function
s(¢) or 1(¢) does not a¤ect the asymptotic variance; the asymptotic bias if una¤ected
if additionally !(Wi) does not go to zero too fast.

Proposition 2: Under Assumptions 1–7 of AS and Assumption A,

(a) If E1(Wi > °n)=E1(Wi > °n+b) ¼ 1 ( » = 0 in Assumption 4 of AS) avar(b¹s) ¼
avar(b¹I):

(b) If additionally to (a), jE!(W )1(W > °n + b)j = jE!(W )1(W > °n)j ¼ 1 and
!(Wi) ¸ 0 8Wi > °n (or !(Wi) · 0 8Wi > °n); then abias(b¹s) ¼ abias(b¹I):

Proof: See Appendix B. 2

Unlike the assumptions encompassed in our Proposition 2, it is frequently assumed
that Wi has thinner upper tails, e.g., the normal (Lee (1982)). We next examine
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the AS and Heckman estimators for a class of models with tails of the selection
index 1 ¡ F (W ) ¼ cWW ®e¡¸W

c
and !(W ) ¼ c!W &e¡¹W

d
where the parameters

®; ¸; c; &; ¹; d are such that the functions 1¡ F (W ) and !(W ) ! 0 as W ! 1: This
class of models includes the Pareto, Weibull (with c · or c > 1) as well as “combined”
tails. If U; " and W are jointly normally distributed d = c = 2; ® = ¡1; ¸ = 1

2¾2W
; ¹ =

1
2¾2"
; and & = 0.4 In order to facilitate the derivation of the asymptotic mean squared

error for this class of distributions, we restrict our attention to s(¢) functions satisfying
the following assumption

Assumption S: Let s(¢) be a function satisfying Assumption 3 of AS. For some q
its derivatives at zero are such that

s(i)(0) =

8
<
:
0 i < q
aq 6= 0 i = q
exists i = q + 1:

Note that any function that satis…es AS for which the lowest order of non-zero deriv-
ative is q · 2 satis…es Assumption S as well; it is only functions with two (or more)
zero derivatives at 0 that require this additional assumption.

The following proposition provides expressions for the asymptotic variance and
asymptotic bias. To simplify the expressions in Proposition 3 we omit the constant
factors, if they are present the expressions below for avar acquire c¡1W and for abias
c! as a factor. Furthermore, we omit the subscript n on °.

Proposition 3: Under Assumptions 1, 2, 5–7 of AS, Assumptions A and S

(a) If 1¡ F (W ) ¼ W ® exp(¡¸W c)

avar(¹̂s) =

½
avar(¹̂I) = ¾

2n¡1°¡® exp(¸°c) if c · 1
¾2n¡1

¡
2q
q

¢
°¡® exp(¸°c) if c > 1;

where avar(¹̂I) when c > 1 obtains for q = 0 (
¡
0
0

¢
= 1).

(b) If additionally to (a) !(W ) ¼ W & exp(¡¹W d)

4In AS it was mistakenly claimed that the normal distribution has a Weibull tail with c = 2; in
fact its tail is W¡1 exp(¡ 1

2¾2
W

W 2)(1 + o(W¡1)):
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abias(¹̂s) =

8
>>>>>>>>>>><
>>>>>>>>>>>:

abias(¹̂I) = ¡°& exp(¡¹°d) if c · 1; d · 1; d < c
abias(¹̂I) = ¡ ¸

¸+¹
°& exp(¡¹°c) if c · 1; d · 1; c = d5

abias(¹̂I) = ¡ ¸c
¹d
°&+c¡d exp(¡¹°d) if c · 1; d · 1; d > c6

¡ aq¸c

(¹d)q+1
°&+(c¡d)(1+q) exp(¡¹°d) if c · 1; d > 16

¡°& exp(¡¹°d) if c > 1; d < c;

¡
³

¸
¸+¹

´q+1
°& exp(¡¹°c) if c > 1; d = c

¡
³
¸c
¹d

´q+1
°&+(c¡d)(1+q) exp(¡¹°d) if c > 1; d > c;

where abias(¹̂I) obtains for q = 0 ( 0! = 1) where it is not de…ned explicitly and
a0 ´ 1.

Proof: See Appendix B. 2

We see that under our assumptions on s(x), the asymptotic MSE is a¤ected by the
choice of function s(¢) via q and the value of the derivative s(q)(0) only. When avar(¹̂s)
depends on q it is an increasing function of q, while if abias(¹̂s) depends on q, its
absolute value declines with q.

As an example of Proposition 3, if U; " and W are jointly normally distributed
(c = d = 2), the asymptotic bias and variance of ¹̂s (including all relevant constant
factors) equals

abias(¹̂s) = ¡ ¾"Up
2¼¾"

(
¾2"

¾2" + ¾
2
W

)q+1 exp(¡ 1

2¾2"
°2)

avar(¹̂s) =
¾2

n

p
2¼

¾W
°

µ
2q

q

¶
exp(

1

2¾2W
°2):

The asymptotic bias and variance of ¹̂I under the joint normality assumption obtains
for q = 0:

If all the parameters determining the tail behaviour of W and the function !(W )
were known a solution that would provide an optimal °¤ = argmin(MSE) as a function
of n, q (the s(¢) function) and all those parameters could be obtained (at least via
a numerical algorithm) from the formulae in Proposition 3. If the asymptotic bias
is not present (in which case one would choose the Heckman estimator based on
Proposition 1) the bandwidth parameter arising from reducing MSE (or equivalently
avar) as ° ! 1 can be presented as °¤ = ( µ

¸
lnn)1=c if c 6= 0 and °¤ = n¡µ=®

6If c = d = 0, the constant ¸
¸+¹ becomes ®

®+& :
6If c = 0, then the expression ¸c in the constant becomes ¡®:
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if c = 0 with µ close to zero and would result in a MSE proportional to n¡1+µ.
Proposition 4 deals with situations where an asymptotic bias is present and may be
severe. It characterizes the bandwidth parameter °¤ and the best possible rate for
MSE depending on the relation between the rate of decline in the tail of W and
the function !(W ); we also provide simple bounds on °¤ which bring MSE close to
achieving the best possible rate.

Proposition 4: Under Assumptions 1, 2, 5–7 of AS and Assumptions A and S, if
1¡ F (W ) ¼ cWW ®e¡¸W

c
and !(W ) ¼ c!W &e¡¹W

d
as W ! 1:

(a) There exists a sequence °¤n unique up to o(°¤¡v) for some v > 0 that minimizes
the asymptotic MSE(¹s) (or ¹I):

(b) The optimal asymptotic MSE¤ can be represented as a product of a polynomial
component n¡¿ ; ¿ ¸ 0 and a logarithmic component O ((lnn)º) ; where ¿ depends only
on the parameters which characterize the leading term in the tail of W , i.e. ® for a
Pareto and ¸; c for a Weibull or combined tail, and parameters of the leading term
of !(W ):

(c) There exist bounds °H and °L such that °L < °¤ < °H ; where °H and °L are
functions of the coe¢cients of the leading terms in tail of W and !(W ) only and
MSE(°H), MSE(°L) decline at a rate with the polynomial component n¡¿ (H); n¡¿ (L)

with one (or both) of ¿(H) and ¿(L) either equal to ¿ ; or arbitrarily close to ¿ :

(d) When 0 · d < c, that is !(W ) goes to zero exponentially slower than the tail of
W distribution, ¿ = 0 and only a logarithmic rate of decline (at best) can be obtained
for MSE. When, conversely, 0 · c < d, ¿ = 1:

Proof: See Appendix B. 2

Appendix B also provides the speci…c form ¿ ; ¿ (L); and ¿(H) take for all cases
considered in Proposition 3.

As an example of Proposition 4, if U; " and W are jointly normally distributed
(c = d = 2), °¤ is bounded by °L = (µLlnn)

1=2 ; µL < 2¾2"¾
2
W =(¾

2
" + 2¾

2
W ), and

°H = (µH lnn)
1=2 ; µH > 2¾

2
"¾
2
W =(¾

2
" + 2¾

2
W ). The optimal asymptotic MSE has the

polynomial component n¡¿ with ¿ = 1 ¡ ¾2"=(¾
2
" + 2¾

2
W ). We note that ¿ can get

arbitrarily close to 1 if ¾2W À ¾2": (In general, if c = d, ¿ can be made arbitrarily
close to 1 given ¸ ¿ ¹).The MSE(°H) ¼ avar(b¹s) with ¿H = 1 ¡ µH=(2¾2W ), and
MSE(°L) ¼ abias(b¹s) with ¿L = µL=¾2": Both ¿L and ¿H are arbitrarily close to ¿
when µL; µH are close to 2¾2"¾

2
W=(¾

2
" + 2¾

2
W ):
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After characterizing the optimal bandwidth parameter, it remains to determine
the “optimal” choice of function s(¢) (or 1(¢)) in situations where an asymptotic bias
is present. Following Proposition 4, if all the parameters of the tail distribution of W
and in the function !(W ) are known solving the …rst-order condition for ° and then
substituting into the MSE and minimizing over q (where it appears) as well would
give us the “optimal” estimator. When the bounds °H , or °L, are used instead of
°¤ they imply dominance of MSE by asymptotic variance or abias, correspondingly.
This in turn implies preference for the function 1(¢) or function s(¢) with large value
of q (where it matters) correspondingly.

The use of the bounds °H , or °L, as the desired bandwidth (bringing MSE close or
equal to its best possible rate) might be more practical since the bounds are functions
of the leading terms of the tails of Wi and !(Wi) only. For fat tailed distributions,
we can estimate the upper tail index of a distribution e.g., using Hill (1975) and
Danielsson and De Vries (1997) (see Huisman et al. (1997) for its estimation in
small samples). Alternatively, a probability weighted moment estimator (or maximum
likelihood) of the parameters from the generalized extreme value distribution can be
considered (Hosking et al. (1985)).

5. Conclusions
The paper presents the asymptotic behaviour of the intercept in the sample selection
model based on “identi…cation at in…nity,” which was …rst proposed by Heckman
(1990). Technical problems in derivations arise from the non-di¤erentiability of the
indicator function. This problem was circumvented by AS via introduction of a dif-
ferentiable function to replace the indicator function. Here we deal with the problem
by introducing an assumption on the p.d.f. that essentially permits to obtain the
expectation of the “derivative” of the indicator function.

Next, the paper examines the selection of the bandwidth and choice of the estima-
tor of the intercept (Heckman 1990 versus AS 1998) using as a criterion the asymp-
totic MSE. Two characteristics of the model are of importance for such a choice: the
tail behaviour of the selection index, Wi, and the tail behaviour of a function !(W )
that determines the asymptotic bias of the estimator. A wide class of distributional
assumptions for the model is investigated, speci…cally, 1 ¡ F (W ) ¼ cWW ®e¡¸W

c

and !(W ) ¼ c!W
&e¡¹W

d
: This class of models includes Pareto, Weibull as well as

“combined” tails.
We have shown that for fat-tailed distributions of Wi the choice of the function

s(¢) or 1(¢) does not a¤ect the asymptotic variance; the asymptotic bias if una¤ected
if additionally !(Wi) does not go to zero too fast. In general, however, the asymptotic
MSE may be a¤ected by the choice of function s(¢) but then via q and the value of
the derivative s(q)(0) only, where q is the order of the …rst non-zero derivative of s(¢)
at zero.
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If all the parameters determining the tail behaviour of W and the function !(W )
were known a solution that would provide an optimal °¤ = argmin(MSE) as a
function of n, q (the s(¢) function) and all those parameters could be obtained (at
least via a numerical algorithm) from the formulae in Proposition 3. Similarly, the
“optimal” choice of function s(¢) (or 1(¢)) can be obtained. Since the solution for
the optimal bandwidth (and choice of function s(¢) (or 1(¢)) may not be practical,
we provide simpler bounds on the optimal bandwidth parameter; using a bound may
imply preference for either AS or the Heckman estimator.

Asymptotically, we give preference to the Heckman estimator in cases where there
is no asymptotic bias and reveal the equivalence of the two estimators under fat-tailed
distributions of Wi if additionally !(Wi) does not go to zero too fast. For thinner-
tailed distributions the decision is less clear, nevertheless, we argue that the optimal
selection of the bandwidth is of primary importance. For …nite samples, the AS
estimator might still have advantages over the Heckman estimator, in that the trade-
o¤ between bias and variance, like in nonparametric estimation problems, is better
for smooth “kernels”. Nevertheless, only observations at the margin are a¤ected by
the choice of the function s(¢). In Schafgans (1998b) simulations are presented that
reveal these …ndings clearly.

Appendix A: Asymptotic normality result for the Heckman estimator

To prove asymptotic normality, all we need to show is that (5) holds. We start
by deriving a few su¢cient conditions for (5). As in the proof of Theorem A-1 of AS
the left hand side of (5) can be written as C( bA

bB ¡ A
B
) = C

bA¡A
B

B
bB ¡ C bB¡B

B
A
B
B
bB , where

C =
p
nEDi1(Wi > °n)=¾, A =

Pn
i=1(Yi ¡ Z 0iµ0)Di1(Wi > °n), bA =

Pn
i=1(Yi ¡

Z 0ibµ)Di1(X 0
i
b̄ > °n), B =

Pn
i=1Di1(Wi > °n), and bB =

Pn
i=1Di1(X

0
i
b̄ > °n). To

show (5), therefore, it su¢ces to show that

(i) bB=B p! 1

(ii) C( bA¡A)=B p! 0
(iii) A=B = Op(1)

(iv) C( bB ¡B)=B p! 0:

(A.1)

From Assumption 7 and Lemma A-2 of AS it follows that C ! 1 which means
that (iv) implies (i) in (A.1). From Lemmas A-1 and A-2 of AS one gets that ¾C=B
equals n¡1=2 Pr(Wi > °n)

¡1=2 in probability and thus (ii) is implied by the following
su¢cient conditions.

1p
n

Pn
i=1(Ui + ¹0)Di®in

Pr(Wi > °n)
1=2

p! 0 ; (A.2)
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¡(bµ ¡ µ0)0 1pn
Pn

i=1 ZiDi®in

Pr(Wi > °n)
1=2

p! 0 ; and (A.3)

¡(bµ ¡ µ0)0 1pn
Pn

i=1 ZiDi1(Wi > °n)

Pr(Wi > °n)
1=2

p! 0 ; (A.4)

where ®in is given by (6).
Condition (iii) has been shown to hold in the proof of Theorem A-1 in AS, it is

equivalent to
1
n

Pn
i=1 UiDi1(Wi > °n)

Pr(Wi > °n)
= Op(1) : (A.5)

Finally, Condition (iv) would follow if we show that

1p
n

Pn
i=1Di®in

Pr(Wi > °n)
1=2

p! 0 : (A.6)

Note that under Assumptions 1, 5 and 6 of AS and using Hölder’s inequality the
expression in (A.4) is bounded by

Op(1)E kZik 1(Wi > °n)

Pr(Wi > °n)
1=2

· Op(1)
¡
E kZik3

¢1=3
(Pr(Wi > °n))

2=3¡1=2 ! 0 : (A.7)

The proof of Theorem 1, therefore, requires us to show that (A.2), (A.3) and (A.6)
which involve the discontinuous function ® hold.

We do this in three steps: …rst, a technical lemma is given (Lemma 1), then a
lemma is given which examines terms in the expressions of interest (Lemma 2) and
…nally we give the proofs of the theorems which combine the intermediate results.

Lemma 1: Under Assumptions 1, 2, 6, 7 of AS and Assumption A, there exists a
su¢ciently slowly increasing fMng such that n¡1=2Mn < 1 and
sup

k¯¡¯0k<Mnp
n

E(
p
nk­ik®n(¯;Wi;Xi))

Pr(Wi>°n)
1=2 ! 0 as n ! 1 for ­i = Zi=

p
n, ­i = Ui, or ­i = 1; 8i:

Proof of Lemma 1:
It will be su¢cient to show that for the sequence fn 1

3g

sup
k¯¡¯0k<Mnp

n

p
nE

³
k­ik ¢ j®n(¯;Wi; Xi)j ¢ 1(kXik > n

1
3 )

´

Pr(Wi > °n)
1=2

! 0; (A.8)
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and

sup
k¯¡¯0k<Mnp

n

p
nE

³
k­ik ¢ j®n(¯;Wi; Xi)j ¢ 1(kXik · n

1
3 )

´

Pr(Wi > °n)
1=2

! 0: (A.9)

Noting that j®n(¯;Wi; Xi)j · 1, we get for (A.8) in the case ­i = Ui (using the
independence condition of Assumption 2(b) of AS) and similarly for ­i = 1, under
Assumptions 1 and 7 of AS

p
nE(k­ik¢j®n(¯;Wi;Xi)j¢1(kXik>n1=3))

Pr(Wi>°n)
1=2 ·

p
nE(k­ik¢1(kXik>n1=3))

Pr(Wi>°n)
1=2

·
p
nEk­ik¢Pr(kXik>n1=3)

Pr(Wi>°n)
1=2 ·

p
nEk­ik¢EkXik3=n
Pr(Wi>°n)

1=2

= Ek­ik¢EkXik3
(nPr(Wi>°n))

1=2 ! 0

(A.10)

using Jensen’s and Markov’s inequalities. In the case ­i = Zi=
p
n; (A.8) converges

to zero even faster, since similarly

E(kZik¢j®n(¯;Wi;Xi)j¢1(kXik>n1=3))
Pr(Wi>°n)

1=2 · (EkZik3)
1=3
(EkXik3)2=3

n1=6¢(nPr(Wi>°n))
1=2 ! 0: (A.11)

The left hand side of (A.9) for ­i = Zi=
p
n is bounded by

¡
E kZik2

¢ 1
2

(nPr(Wi > °n))
1=4

0
@ sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(kXik < n1=3)

Pr(Wi > °n)
1=2

1
A
1=2

(A.12)

using Hölder’s inequality. Given Assumptions 1 and 7 of AS, therefore, it remains
only to show (A.9) for ­i = 1 and Ui.

Using the independence of ­i and Xi for ­i = 1 and Ui (by Assumption 2(b) of
AS) we can rewrite the denominator of (A.9) as

E (k­ik) ¢ sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(kXik < n1=3): (A.13)

By examining the function ®n(¯;Wi; Xi); (6), we can see that j®n(¯;Wi; Xi)j equals 1
if either °n < Wi < °n+jX 0

i(¯ ¡ ¯0)j for negativeX 0
i(¯¡¯0) or if °n¡jX 0

i(¯ ¡ ¯0)j <
Wi < °n for positive X 0

i(¯ ¡ ¯0) and zero otherwise. In view of the restrictions on
k¯ ¡ ¯0k and kXik we have jX 0

i(¯ ¡ ¯0)j < Mn

n1=6
, which impliesWi > °n¡ Mn

n1=6
. Hence,

sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(kXik < n1=3)

= sup
k¯¡¯0k<Mnp

n

p
nE j®n(¯;Wi; Xi)j 1(Wi > °n ¡ Mn

n1=6
)1(kXik < n1=3): (A.14)
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Consider the linear transformation L : X !
¡
W
¡

¢
, where ¡ = X(¡1) is the vec-

tor of all components of X except the …rst (NB the matrix of this transformation is

L =

µ
¯01 ::: ¯0k
0 Ik¡1

¶
; which is non-singular). Then X = L¡1

¡
W
¡

¢
and X 0(¯ ¡ ¯0) =

W (L0¡1(¯ ¡ ¯0))(1)+¡0 (L0¡1(¯ ¡ ¯0))(¡1), where subscript (1) denotes the …rst com-
ponent of a vector. We denote (L0¡1(¯ ¡ ¯0))(1) = b7 and (L0¡1(¯ ¡ ¯0))(¡1) = B.
Re-examining, for negative X 0

i(¯¡¯0); the condition °n < Wi < °n+ jX 0
i(¯ ¡ ¯0)j =

°n¡W (L0¡1(¯ ¡ ¯0))(1)¡¡0 (L0¡1(¯ ¡ ¯0))(¡1) we realize that for negativeX 0
i(¯¡¯0)

j®n(¯;Wi;Xi)j equals 1 for °n < Wi <
°n¡¡0B
1+b

. Similarly for positive X 0
i(¯ ¡ ¯0)

j®n(¯;Wi;Xi)j equals 1 for °n¡¡0B
1+b

< Wi < °n. Thus (A.14) equals

sup
k¯¡¯0k<Mnp

n

p
nE

2
4
Z °n¡¡0B

1+b

°n

1(X 0
i(¯ ¡ ¯0) < 0)1(kXik < n1=3)p:d:f:W;¡j¡(W;¡)dW+

Z °n

°n¡¡0B
1+b

1(X 0
i(¯ ¡ ¯0) > 0)1(Wi > °n ¡ Mn

n1=6
)1(kXik < n1=3)p:d:f:W;¡j¡(W;¡)dW

#
:

(A.15)

The p.d.f.W;¡j¡ exists for large enough n, since the expression under the integrals is
non-zero only ifWi > °n¡ Mn

n1=6
and thus as °n ! 1 forMn = O(n1=6) becomes greater

than A; the conditional p.d.f.W;¡j¡ declines monotonically in W: Denote °n ¡ Mn

n1=6
by

~°n: The …rst integral on the right hand side of (A.15) is bounded by p:d:f:W;¡j¡(~°n;¡)¢h
°n¡¡0B
1+b

¡ °n
i
, the second can be bounded by p:d:f:W;¡j¡(~°n;¡) ¢

h
°n ¡ °n¡¡0B

1+b

i
: Thus

the sum is bounded by

sup
k¯¡¯0k<Mnp

n

2
p
n

Z µ
p:d:f:W;¡j¡(~°n;¡)

¯̄
¯̄ ¡0B
1 + b

¯̄
¯̄
¶
dPr¡ (A.16)

· 2Mn

1+b

Z
k¡kp:d:f:W (~°n)dPr¡jW=~°n =

2Mn

1+b
p:d:f:W (~°n)EjW=~°n k¡k ;

where ¡ = X(¡1) and kBk =
°°°(L¡1(¯ ¡ ¯0))(¡1)

°°° ´ 8
°°(¯ ¡ ¯0)(¡1)

°° · Mn

n1=2
using

the restriction on k¯ ¡ ¯0k : The notation dPr¡ indicates that a Stiltjes integral with
respect to the cumulative probability function ¡ is taken, if a marginal density exists

7Note: jbj ·
°°L¡1

°° ¢ k¯ ¡ ¯0k ·
°°L¡1

°° Mnp
n
. Assume that Mn is such that

°°L¡1
°° Mnp

n
· G < 1.

8Here we use the fact that L¡1 =

Ã
1

¯01

¡¯02

¯01
¢ ¢ ¢ ¡¯0k

¯01

0 Ik¡1

!
.
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dPr¡ = p:d:f:¡(¡)d¡. By Jensen’s inequality, and in view of Assumption A(b) this is
bounded almost surely by

2Mn

1+b
¢ p:d:f:W (~°n) ¢ EjW=~°n

³°°X(¡1)
°°3

´1=3
: (A.17)

Let us consider EjW=~°n

³°°X(¡1)
°°3

´
. By Assumption 1 of AS, we know that the

unconditional expectation E
³°°X(¡1)

°°3
´

is bounded; this implies that for the …xed

A of Assumption A E
³°°X(¡1)

°°3 1(W > A)
´

is bounded as well.

E
³°°X(¡1)

°°3 1(W > A)
´
=

ZZ °°X(¡1)
°°3 1(W > A)p:d:f:W;¡jW (¡)p:d:f:W (W )d¡dW

=

Z
J(W )p:d:f:W (W )1(W > A)dW; (A.18)

where J(W ) =
R °°X(¡1)

°°3 p:d:f:W;¡jW (¡)d¡ is a function of W only. Since the in-

tegral
R
J(W )p:d:f:W (W )dW ´ E

³°°X(¡1)
°°3

´
exists, it implies that as W ! 1

J(W )p:d:f:W (W ) = o(W
¡1), or

J(W ) = o
¡
W¡1 (p:d:f:W (W ))

¡1¢ : (A.19)

Equation (A.17), can then be rewritten as follows

2Mn

1+b
¢ p:d:f:W (e°n) ¢ J(e°n)1=3 = 2Mn

1+b
¢ p:d:f:W (°n ¡ Mn

n1=6
)2=3o(°¡1=3n ): (A.20)

This implies that for ­i = 1 and Ui (A.9) can be bounded as

E (k­ik) 2Mn

1+b
¢ p:d:f:W (°n ¡ Mn

n1=6
)2=3o(°

¡1=3
n )

Pr(Wi > °n)
1=2

· E (k­ik) 2Mn

1+b

Ã
p:d:f:W (°n ¡ Mn

n1=6
)

Pr(Wi > °n)
3=4

!2=3

o(°¡1=3n ): (A.21)

Set Mn = minfdn1=6; °1=3g with d > 0 as in Assumption A. Using Assumptions 1 and
6 of AS and Assumption A(a) the right-hand side of (A.21) converges to zero forMn.
2

The next lemma will help to show that terms, involving ®in; which appear in
(A.2), (A.3), and (A.6) have a zero probability limit.
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Lemma 2: Under Assumptions 1, 2, 5–7 of AS, and Assumption A
1p
n

Pk­ikj®inj
Pr(Wi>°n)

1=2

p! 0 as n ! 1 for ­i = Zi=
p
n, ­i = Ui, or ­i = 1; 8i:

Proof of Lemma 2:
We would like to show that for any ³ > 0

Pr

Ã
1p
n

P k­ik j®inj
Pr(Wi > °n)

1=2
> ³

!
! 0 as n ! 1: (A.22)

From Lemma 1, let Mn satisfy Mno(°
¡1=3
n ) ! 0 and Mn

n1=6
· d. The left hand side of

(A.22) is equal to

Pr

µ
1p
n

Pk­ikj®inj
Pr(Wi>°n)

1=2 > ³;
°°°b̄ ¡ ¯0

°°° · Mnp
n

¶
+ Pr

µ
1p
n

Pk­ikj®inj
Pr(Wi>°n)

1=2 > ³;
°°°b̄ ¡ ¯0

°°° > Mnp
n

¶

· Pr

µ
1p
n

Pk­ikj®inj
Pr(Wi>°n)

1=2 > ³;
°°°b̄ ¡ ¯0

°°° · Mnp
n

¶
+ Pr

³°°°b̄ ¡ ¯0
°°° > Mnp

n

´
: (A.23)

The second expression on the right hand side of (A.23) converges to zero by Assump-
tion 5 of AS, since

p
n(b̄ ¡ ¯0) = Op(1) implies

p
n(b̄ ¡ ¯0)=Mn = op(1). The …rst

expression on the right hand side of (A.23) is bounded by

sup
k¯¡¯0k·Mnp

n

Pr

µ
1p
n

Pk­ikj®n(¯;Wi;Xi)j
Pr(Wi>°n)

1=2 > ³

¶
(A.24)

· sup
k¯¡¯0k·Mnp

n

E

µ
1p
n

Pk­ikj®n(¯;Wi;Xi)j
Pr(Wi>°n)

1=2

¶

³
= sup

k¯¡¯0k·Mnp
n

p
nE k­ik j®n(¯;Wi;Xi)j
³ Pr(Wi > °n)

1=2
;

where the inequality is based on Markov’s inequality. This term converges to zero for
all ³ > 0 by Lemma 1. 2

Proof of Theorem 1: For our proof it is su¢cient to show (A.2), (A.3), and (A.6).
By Assumptions 1 and 5 for bµ¡µ0 of AS, the left-hand sides of (A.2), (A.3) can be
bounded by:

1p
n

Pn
i=1 jUij ¢ j®inj

Pr(Wi > °n)
1=2

+ j¹0j
1p
n

Pn
i=1 j®inj

Pr(Wi > °n)
1=2
; (A.25)

Op(1)
1
n

Pn
i=1 kZik ¢ j®inj

Pr(Wi > °n)
1=2

; (A.26)

respectively. From Lemma 2, (A.25) and (A.26) have zero probability limits.
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Finally, to prove (A.6), we note that its left-hand side can be bounded by

1p
n

Pn
i=1 j®inj

Pr(Wi > °n)
1=2
; (A.27)

which by Lemma 2 again converges in probability to zero. This completes the proof
of our theorem. 2

Proof of Theorem 2: By Cramer-Wold device, this result follows directly from
(5) and Theorem A-4 in AS. In the latter, the result in Theorem 2 is shown for the
case where b¹I is replaced by b¹I;0. 2

Appendix B: Asymptotic variance and bias:
Selection of Bandwidth and Estimator

In this Appendix we provide the asymptotic bias, variance, and mean squared
error of the AS and Heckman estimator. Using Lemma A–2 of AS and Theorem 1 of
this paper, we write the asymptotic bias and variance as

abias(b¹s) ¼ ¡E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

; abias(b¹I) ¼ ¡E!(Wi)1(Wi > °n)

E1(Wi > °n)
;(B.1)

avar(b¹s) ¼ ¾2n¡1
Es2(Wi ¡ °n)
[Es(Wi ¡ °n)]2

; avar(b¹I) ¼ ¾2n¡1 (E1(Wi > °n))
¡1
: (B.2)

In the following we let !(Wi) ¸ 0 8Wi > °n (similar proofs can be given when
!(Wi) · 0 8Wi > °n).

Proof of Proposition 1: For (a), we note that by Cauchy-Schwartz inequality

Es(Wi¡°n) = Es(Wi¡°n)1(Wi > °n) · [Es2(Wi¡°n)]1=2[E1(Wi > °n)]
1=2: (B.3)

This inequality combined with (B.2) gives the result that (a) holds for any sequence
°n.

Next we turn to (b). Using (B.1), we get

jabias(b¹s)j ¼ E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

· E!(Wi)1(Wi > °n)

E1(Wi > °n + b)

¼ jabias(b¹I)j
E1(Wi > °n)

E1(Wi > °n + b)
:

(B.4)

Since E1(Wi > °n)=E1(Wi > °n + b) ¼ 1 (b) follows. 2
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Proof of Proposition 2: From Proposition 1(a), we know

Es2(Wi ¡ °n)
[Es(Wi ¡ °n)]2

¸ [E1(Wi > °n)]
¡1 : (B.5)

Furthermore as Es2(Wi ¡ °n) · Es(Wi ¡ °n) and Es(Wi ¡ °n) ¸ E1(Wi > °n + b);

Es2(Wi ¡ °n)
[Es(Wi ¡ °n)]2

· [E1(Wi > °n + b)]
¡1 ¼ [E1(Wi > °n)]

¡1 ; (B.6)

and (a) follows.
Under the same assumptions, we know from Proposition 1(b) that

E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

· E!(Wi)1(Wi > °n)

E1(Wi > °n + b)
¼ E!(Wi)1(Wi > °n)

E1(Wi > °n)
: (B.7)

In addition, we have

E!(Wi)s(Wi ¡ °n)
Es(Wi ¡ °n)

¸ E!(Wi)1(Wi > °n + b)

E1(Wi > °n)
¼ E!(Wi)1(Wi > °n)

E1(Wi > °n)
: (B.8)

Combining these inequalities we obtain (b). 2

For the remainder of this appendix we have omitted the subscript n on ° to
simplify notation. For the proof of Proposition 3, we make use of the following
technical lemma:

Lemma 3: As ° ! 1,

(a)
R1
°
¸c(W ¡ °)iW vexp(¡¸W c)dW = °i+v¡c+1¡ciexp(¡¸°c)(¸c)¡ii!(1 + o(°¡c))

(b) For a>f,
R1
°
¹a(W ¡ °)iW vexp(¡¹W a ¡ ¸W f )dW =

°i+v¡a+1¡aiexp(¡¹°a ¡ ¸°f )(¹a)¡ii!(1 + o(°¡a)):

Proof: The integral in (a), I, can be rewritten as

I =

1Z

°

¸c
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡jW j+v exp(¡¸W c)dW

=
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j

1Z

°

¸cW j+v exp(¡¸W c)dW: (B.9)
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By setting W c = z, we get

I =
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j ¢ ¸

Z 1

°c
z
j+v¡c+1

c exp(¡¸z)dz: (B.10)

Combining 3.381#3 and 8.357 in Gradshteyn and Ryzhik (1994)9 we obtain

I =
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j¸ ¢ ¸¡ j+v+1

c ¡(
j + v + 1

c
; ¸°c)

=
iX

j=0

µ
i

j

¶
(¡1)i+j°i¡j¸ ¢ °j+v¡c+1exp(¡¸°c) ¢

Ã
L¡1X

m=0

(¡1)m¡(1¡ j+v+1
c

+m)

°cm¸m¡(1¡ j+v+1
c
)

+ o(°¡cL)

!
(B.11)

= (¡1)i°i+v¡c+1 exp(¡¸°c)
iX

j=0

µ
i

j

¶
(¡1)j

Ã
L¡1X

m=0

Pm
s=0 ·s(

j
c
)s

°cm¸m
+ o(°¡cL)

!
;

where we have substituted (¡1)m¡(1¡ j+v+1
c
+m)=¡(1¡ j+v+1

c
) =

Pm
s=0 ·s(

j
c
)s, with

·s = 1 for s = m and some known constant for s = 0; :::;m¡ 1: Using the fact that
iP
j=0

¡
i
j

¢
(¡1)jjm = 0 for i ¸ m+1 ¸ 1; 00 ´ 1 (see 0.154#3 in Gradshteyn and Ryzhik

(1994)), we get

I = (¡1)i°i+v¡c+1exp(¡¸°c)
iX

j=0

µ
i

j

¶
(¡1)j

Ã
( j
c
)i

°ci¸i
(1 + o(°¡c))

!

= °i+v¡c+1¡ci exp(¡¸°c)(¸c)¡ii!(1 + o(°¡c)); (B.12)

where the second equality uses 0.154#4 in Gradshteyn and Ryzhik (1994).
Next consider the integral (b), I 0, for a > f . We notice that I 0 can be rewritten

as follows,

I 0 = exp(¡¸°f)
Z 1

°

¹a(W ¡ °)iW vexp(¡¹W a)
¡
exp(¡¸(W f ¡ °f ))

¢
dW (B.13)

= exp(¡¸°f)
Z 1

°

¹a(W ¡ °)iW vexp(¡¹W a)

Ã 1X

r=0

(¡1)r¸r(W f ¡ °f )r
r!

!
dW;

9There is a typographical error in 3.381#3 in G&R; the correct formula reads
R 1

u
xv¡1e¡¹xdx =

¹¡v¡(v; ¹u):
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where we have substituted the series representation for the last exponential function
in the integral. By dominating convergence theorem, we can interchange the integral
and summation, giving

I 0 = exp(¡¸°f )
1X

r=0

(¡1)r¸r
r!

Z 1

°

¹a(W f ¡ °f )r(W ¡ °)iW vexp(¡¹W a)dW: (B.14)

To complete the proof, we need to reapply the steps taken in (B.9)–(B.12). The …nal
result is obtained by setting r = 0 (all remaining terms converge to zero faster). A
detailed proof of this can be obtained from the authors. 2

Proof of Proposition 3: In this proof we will not attempt to formally show
all cases considered, but indicate the method used to derive the results, pointing
primarily to the more complex derivations.

Using the results from Proposition 2, avar(¹I) ¼ avar(¹s) if 1 ¡ F (W ) ¼
W ®e¡¸W

c
with c · 1, since Assumption 4 of AS holds with » = 0 and E1(W >

°)=E1(W > ° + b) ¼ 1. The variance in these cases can be easily derived using
¾2=(nE1(Wi > °)); see (B.2).10

When on the other hand 1 ¡ F (W ) ¼ W ®e¡¸W
c with c > 1 we need to derive

avar(¹s) using the de…nition in (B.2) (Assumption 4 of AS does not hold with » = 0).
For this we need to apply Lemma 3(a). Notice that for any ² > 0 we can write
Es(Wi ¡ °) as

Es(Wi ¡ °) = aq
q!

Z 1

°

(W ¡ °)q¸cW ®+c¡1 exp(¡¸W c)dW

¡aq
q!

Z 1

°+²

(W ¡ °)q¸cW®+c¡1 exp(¡¸W c)dW (B.15)

+

Z °+²

°

h
s(W ¡ °)¡ aq

q!
(W ¡ °)q

i
¸cW ®+c¡1 exp(¡¸W c)dW

+

Z 1

°+²

s(W ¡ °)¸cW ®+c¡1 exp(¡¸W c)dW:

By Lemma 3(a), the …rst integral is ¼ aq°q+®¡cq(¸c)¡q exp(¡¸°c); the second is
similarly ¼ ¡aq(° + ²)q+®¡cq(¸c)¡q exp(¡¸(° + ²)c) which goes to zero at an expo-
nentially faster rate than the …rst as long as ²°c¡1 ! 1 since exp(¡¸(° + ²)c) =
exp(¡¸°c) exp(¡¸c²°c¡1(1 + o( ²

°
))). Using Assumption S and Lemma 3(a), the ab-

solute value of the third integral can be bounded by O(1)²q+1°® exp(¡¸°c)(1+o(°¡c))
10For W > ° the p:d:f:(W ) equals ¸cW®+c¡1 exp(¡¸W c)(1 + o(°¡c)), where ® = ¡¸ if c = 0

(Pareto tail case).
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(we apply a (q + 1)th order Taylor expansion to s(¢) around zero). If ²q+1°(c¡1)q ! 0
this implies that the third integral goes to zero faster than the …rst. Finally, the
fourth integral can be bounded by one where the function 1(¢) is substituted for s(¢),
thus by Lemma 3(a) it is bounded by (° + ²)® exp(¡¸(° + ²)c)(1 + o(°¡c)) and (sim-
ilarly to the second integral) goes to zero exponentially faster than the …rst one if
²°c¡1 ! 1. If the conditions are met, the …rst integral dominates Es(Wi ¡ °), i.e.,

Es(Wi ¡ °) ¼ aq°
q+®¡cq(¸c)¡q exp(¡¸°c): (B.16)

For Es2(W ¡°), we get similarly four terms, the …rst of which ¼ a2q
¡
2q
q

¢
°2q(1¡c)+®¢

(¸c)¡2q exp(¡¸°c); the second is the corresponding integral from °+ ² to in…nity and
requires "°c¡1 ! 1 to go to zero exponentially faster. The third one can analogously
be bounded by

Z °+"

°

¯̄
¯̄s2(W ¡ °)¡

³
aq
q!

´2
(W ¡ °)2q

¯̄
¯̄ p:d:f:W (W )dW

· O(1)²2q+1°® exp(¡¸°c)(1 + o(°¡c))

and thus needs ²2q+1°(c¡1)2q ! 0: And …nally, the fourth integral can be bounded
again by replacing s2(¢) by 1(¢), which using Lemma 3(a) goes to zero exponentially

faster than the …rst one if ²°c¡1 ! 1. For ² = °¡
(c¡1)(2q+{ )

2q+1 with 0 < { < 1 the …rst
integral dominates Es2(Wi ¡ °), i.e.,

Es2(Wi ¡ °) ¼ a2q
¡
2q
q

¢
°2q+®¡2cq(¸c)¡2q exp(¡¸°c): (B.17)

This ² also satis…es the requirement for (B.16) to hold. Combining (B.16) and (B.17)
give avar(¹s):

Concerning the results presented in (b), if 1¡ F (W ) ¼ W ®e¡¸W
c

with c · 1 and
!(W ) ¼ W & exp(¡¹W d) with d · 1 all assumptions in Proposition 2 are satis…ed and
abias(¹I) ¼ abias(¹s). The derivations of the asymptotic bias in that case requires
us to compute ¡E(!(Wi)1(Wi > °)) (see (B.1)). Substituting 1¡ F (W ) and !(W )

E(!(Wi)1(Wi > °)) = ¸c

Z 1

°

W &+®+c¡1 exp(¡¹W d ¡ ¸W c)(1 + o(°¡c)dW: (B.18)

When d = c, this expectation can be obtained straightforwardly using the analysis of
the asymptotic variance given above. When d 6= c, Lemma 3(b) gives

E(!(Wi)1(Wi > °)) ¼
½

¸c
¹d
°&+®+c¡d exp(¡¹°d ¡ ¸°c)(1 + o(°¡c)) d > c

°&+® exp(¡¹°d ¡ ¸°c)(1 + o(°¡c) d < c:
(B.19)

When c or d (or both) exceed 1, the asymptotic bias of the Heckman and AS
estimator are not equal any more. In that case we need to extend the analysis above



On Intercept Estimation in the Sample Selection Model 23

to derive ¡E(!(Wi)s(Wi ¡ °)). As in (B.15), we write E(!(Wi)s(Wi ¡ °)) as a sum
of four integrals, where ² > 0

E(!(Wi)s(Wi ¡ °))

= aq
q!

Z 1

°

(W ¡ °)q¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW (B.20)

¡aq
q!

Z 1

°+²

(W ¡ °)q¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW

+

Z °+²

°

h
s(W ¡ °)¡ aq

q!
(W ¡ °)q

i
¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW

+

Z 1

°+²

s(W ¡ °)¸cW &+®+c¡1 exp(¡¹W d ¡ ¸W c)dW:

In the case where c = d the result follows directly from Lemma 3(a). Using a similar
discussion when c 6= d, Lemma 3(b) gives us

E(!(Wi)s(Wi ¡ °))

¼
½
aq

¸c
(¹d)q+1

exp(¡¸°c ¡ ¹°d)°q+&+®+c¡d¡dq d > c

aq(¸c)¡q exp(¡¸°c ¡ ¹°d)°q+&+®¡cq d < c:
(B.21)

This completes the derivations required for the proof. 2

Proof of Proposition 4: According to Proposition 3, the asymptotic MSE for
all cases to be considered has the form

MSE = an¡1°¡® exp(¸°c) + b°2´ exp(¡2¹°d); (B.22)

where

´ =

8
<
:
& + (c¡ d)(1 + q) if d > c; d > 1
& + (c¡ d) if d > c; d · 1
& otherwise.

(B.23)

Thus
@MSE

@°
= an¡1°¡®¡1 exp(¸°c)(¡®+¸c°c)+b°2´¡1 exp(¡2¹°d)(2´¡2¹d°d): (B.24)

The optimal bandwidth °¤ solves the …rst order condition in which we ignore terms
that go to zero faster than the ones we keep, i.e., °¤ solves:

(i) ¡®a exp(¸)n¡1°¤¡®¡1 + 2´b exp(¡2¹)°¤2´¡1 = 0 if c = 0; d = 0 (®; ´ < 0)
(ii) ¸can¡1°¡®+c¡1 exp(¸°c) + 2´b exp(¡2¹)°2´¡1 = 0 if c > 0; d = 0 (´ < 0))
(iii) ¡®a exp(¸)n¡1°¡®¡1 ¡ 2¹db°2´+d¡1 exp(¡2¹°d) = 0 if c = 0; d > 0 (® < 0)
(iv) ¸can¡1°¡®+c¡1 exp(¸°c) ¡ 2¹db°2´+d¡1 exp(¡2¹°d) = 0 if c > 0; d > 0:
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We discuss each case separately.

Case (i). In this case we get an analytic solution °¤ = (2´b exp(¡2¹)
®a exp(¸)

n)
1

¡®¡2& and

MSE(°¤) = a exp(¸)(2´b exp(¡2¹)
®a exp(¸)

)
®

®+2& n¡
2´

®+2´
)(1 + b exp(¡2¹)

a exp(¸)
), so ¿ = 2´

®+2´
: Here for

any ° = µn
1

¡®¡2& , the corresponding rate equals ¿ .

Case (ii). Substituting from the …rst order conditions we can express MSE(°¤) as
¼ b°¤2´ exp(¡2¹)(1 + 2´

¸c
°¤¡c) ¼ b°¤2´ exp(¡2¹). If ° = (µ lnn)1=c the …rst term in

the derivative is proportional to n¡1+¸µ(lnn)
¡®+c¡1

c while the second is proportional
to (lnn)

2´¡1
c ; thus for °L = (µL lnn)

1=c with µL < 1
¸
, the second negative term domi-

nates the growth in the derivative (abias2 dominates MSE(°L)) and ¿ (L) = 0. For
°H = (µH lnn)

1=c µH >
1
¸
, the …rst term dominates the derivative (avar dominates

MSE(°H)) and ¿ (H) = 1¡ ¸µH (note: only if µ = 1
¸

does the variance not increase
with n). Since °L < °

¤ < °H , we get (a), (b), (c), and (d).

Case (iii). Here similarly,MSE(°¤) = an¡1°¤¡® exp(¸)(1¡ ®a
2¹d
°¤¡d)¼ an¡1°¤¡® exp(¸).

If °L = (µL ln n)
1=d and µL < 1

2¹
the derivative is negative,MSE(°L) is dominated by

abias2 and declines at a rate with polynomial component n¡¿(L) with ¿ (L) = 2¹µL. If
°H = (µH ln n)

1=d and µH > 1
2¹

the derivative is positive, avar dominates and declines
with ¿ (H) = 1; (a), (b), (c), and (d) follow.

Case (iv). Note that substituting from the …rst order condition here MSE(°¤) ¼
an¡1°¤¡® exp(¸°¤c) ¼ ¡2¹d

¸c
°¤2´+d¡c exp(¡2¹°¤d). If c < d, set °L = (µL lnn)

1=d; 0 <
µL <

1
2¹

and °H = (µH ln n)
1=c; 0 < µH < 1

¸
, then for MSE(°L) ¼ abias2 we have

¿L = 2¹µL; MSE(°H) ¼ avar we have ¿L = 1 ¡ ¸µH . As µL (µH) is selected
close to 1

2¹
(0) we approach ¿ = 1 and (a), (b), (c), and (d) follow. If c > d,

°L = (µL lnn)
1=c; 0 < µL <

1
¸

and °H = (µH lnn)
1=d; 0 < µH <

1
2¹

. We get ¿(L) =
¿(H) = 0: Since here the expression for MSE(°¤) for °¤ > °L grows faster than
n¡1 exp(¸µL ln n) = n¡1+¸µL for any µL, ¿ = 0. Thus (a), (b), (c) and (d) follow. For
c = d, set °L = (µL ln n)1=c; 0 < µL <

1
¸+2¹

and °H = (µH ln n)1=c;
1

¸+2¹
< µH <

1
¸
. In

the expression forMSE(°¤) with °¤ > °L we have ¿ < 1¡µL¸ for all 0 < µL < 1
¸+2¹

,
therefore considering µL arbitrarily close to 1

¸+2¹
we get ¿ = 2¹

¸+2¹
: Thus (a), (b),

(c), and (d) follow. If ¡® = 2´ an analytic solution °¤ = ( 1
¸+2¹

)1=c(lnn + ln(2¹b
¸a
))1=c

obtains.

This completes the proof. 2
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