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1 Introduction

Dekel [1989] made the point that having a preference for portfolio diversi�cation is an

important feature when modelling markets of risky assets. He also observed that the rela-

tionship between risk aversion and preference for diversi�cation is trivial in the expected-

utility model, and much more complicated in alternative models. More precisely, the equi-

valence between these two properties established in the EU framework does not hold in

more general models. There, diversi�cation implies risk-aversion but the converse is false.

This note takes up the study of diversi�cation to the case of uncertainty, that is, non-

probabilized risk, focussing on the Choquet-expected-utility model. Even though there is

still no commonly accepted notion and measure of uncertainty aversion in this set-up,

it is widely agreed that two properties are of special interest, namely the non-emptiness

of the core and the convexity of the capacity (see Ghirardato and Marinacci [1997], Ep-

stein [1997]).

In this paper we seek to provide characterizations in terms of diversi�cation of these two

properties, thus providing a further understanding of what exactly they mean. As could

be expected, it is di�cult to disentangle properties of the utility index from properties of

the capacity. We establish that preference for portfolio diversi�cation (i.e. convexity of the

DM preferences) is equivalent to the agent having a convex capacity and a concave utility

index. We then introduce a weaker notion of preference for diversi�cation, i.e. preference

for sure diversi�cation. This property simply says that when indi�erent between several

assets, an agent should prefer a combination of these assets that yields a constant act to

any of the ones used in the combination. We show that preference for sure diversi�cation

implies that the core of the capacity is non-empty. The converse holds true under the

assumption that the utility index is concave.

This leads us to �nd conditions under which the utility index is concave. As it turns

out, the concavity of the utility index is equivalent to a property we name comonotone

diversi�cation. This states that if two assets are indi�erent and comonotone, then an

agent prefers a combination of these assets to any of them. Comonotone diversi�cation

is therefore of a very di�erent nature than sure diversi�cation since no hedging at all is

involved, the two assets being comonotone. Actually, these two notions of diversi�cation are

almost at each end of the spectrum, as one deals with portfolio perfectly hedged while the

other one abstracts from any hedging argument. A CEU agent might exhibit preference for

sure diversi�cation but not comonotone diversi�cation, as we make clear with an example.

Conversely, it is clear that an agent exhibiting preference for comonotone diversi�cation

does not necessarily exhibit a preference for sure diversi�cation.

A corollary to the previous result is that comonotone diversi�cation and sure diver-
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si�cation is equivalent to the capacity having a non-empty core and the utility index

being concave. Finally, we show that these di�erent notions of diversi�cation cannot be

distinguished in the EU model, and are all equivalent to the concavity of the utility index.

Our contribution has some links with the recent debate around the de�nition and

measurement of ambiguity aversion. Schmeidler [1989] provided an axiomatic de�nition

of ambiguity aversion for his model, showing that it is characterized by the convexity

of the capacity. Assuming the linearity of the utility index, Wakker [1990] and Chateau-

neuf [1991] derived convexity of the capacity from axioms respectively labelled pessimism-

independence and strong uncertainty aversion, that are strengthenings of comonotone

independence used in the derivation of CEU. Ghirardato and Marinacci [1997] de�ned am-

biguity aversion assimilating a priori uncertainty neutrality with expected utility. They

then show that this notion of ambiguity aversion is equivalent to non-empty core. Ep-

stein [1997] based his de�nition of ambiguity aversion on the a priori identi�cation of

uncertainty neutrality with probabilistic sophistication. His notion of uncertainty aversion

however cannot be directly linked to convexity of the capacity or non-emptiness of its core.

Our analysis, by providing some axioms giving rise to these various assumptions on the

capacity might help clarifying some of these issues.

We �rst introduce the notation and recall some de�nitions, before stating our main

results. Proofs are gathered in an appendix.

2 Notation and de�nitions

There are k possible states of the world, indexed by superscript j. Let S be the set of

states of the world and A the set of subsets of S.

Let � be the preference relation of a decision maker, de�ned on the set D of non-
0negative random variables on S. Say that two random variables C and C are indi�erent,

0 0 0 jthat is C � C , if C � C and C � C. C 2 IR is wealth in state j.+

As usual, say that an agent's preferences are

0 0 0 0� convex if 8C; C 2 D; 8� 2 [0; 1]; C � C ) �C + (1� �)C � C

k k k� continuous if for all x 2 IR , fC 2 IR j C � xg and fC 2 IR j x � Cg are closed.+ + +

0 0 0� monotone if 8C;C 2 D; C � C ) C � C .

We focus on Choquet-Expected-Utility (Schmeidler [1989]). Preferences are then re-

presented by the Choquet integral of a utility index U with respect to a capacity �. The

function U is cardinal i.e. de�ned up to a positive a�ne transformation.
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A capacity is a set function � : A ! [0; 1] such that � (;) = 0, � (S) = 1, and, for all

A;B 2 A; A � B ) � (A) � � (B). We assume throughout that there exists A 2 A such

that 1 > � (A) > 0.

A capacity � is convex if for all A;B 2 A, � (A [ B) + � (A \ B) � � (A) + � (B).

The core of a capacity � is de�ned as follows8 9< =X
k jcore (�) = � 2 IR j � = 1 and � (A) � � (A) ; 8A 2 A+: ;

j

P
jwhere � (A) = � . core(�) is a compact, convex set which may be empty.j2A

SWe now de�ne the Choquet integral of f 2 IR :

Z Z Z0 1

fd� � E (f) = (� (f � t)� 1) dt+ � (f � t) dt�
�1 0

j 1 2 kHence, if f = f (j) is such that f � f � . . . � f :

Z k�1X
j kfd� = [� (fj; . . . ; kg)� � (fj + 1; . . . ; kg)] f + � (fkg) f

j=1

j 1 kand, if we assume that an agent has wealth C in state j, and that C � . . . � C , then

his preferences are represented by:

� � � � � �
1 j kV (C) = [1 � � (f2; ::; kg)]U C + ::: [� (fj; ::; kg)� � (fj + 1; ::; kg)]U C + :::� (fkg)U C

It is well-known that when � is convex, its core is non-empty and the Choquet integralR
of any random variable f is given by fd� = min E f (see Shapley [1967] and��2core(�)

[1971], Rosenmueller [1972], Schmeidler [1986]) .

3 Convexity and the core

We now study the implications of di�erent forms of diversi�cation. We �rst de�ne a natural

notion of diversi�cation (see also Dekel [1989]).

De�nition 1 � exhibits preference for diversi�cation if for any C ; C ; . . . ; C 2 D,1 2 n

nX
[C � C � . . . � C ]) � C � C1 2 n i i 1

i=1Pnwhere � � 0 for all i and � = 1.i ii=1
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For sake of completeness we recall that this notion of diversi�cation is equivalent to

convexity of preferences, that is, in our set-up, equivalent to the quasi-concavity of V .

Proposition 3.1 Let � be continuous and monotone. Then, the following two assertions

are equivalent :

(i) � exhibits preference for diversi�cation

(ii) � is convex

The following result provides a characterization of CEU agents that are diversi�ers. We

establish that convexity of preferences is equivalent to the capacity being convex and the

utility index being concave. This generalizes results in Schmeidler [1989], Wakker [1990]

and Chateauneuf [1991], where U is assumed linear.

Theorem 3.1 Assume U : IR ! IR to be continuous, di�erentiable on IR and strictly+ ++

increasing. Then, the following statements are equivalent

(i) � exhibits preference for diversi�cation

(ii) V is concave

(iii) V is quasi-concave

(iv) U is concave and � is convex.

This notion of diversi�cation might seem fairly strong and we now introduce a weaker

notion.

De�nition 2 � exhibits preference for sure diversi�cation if for any C ;C ; . . . ; C 2 D,1 2 rPr� ; . . . ; � � 0 such that � = 1, and b � 0:1 r ``=1" #
rX

C � C � . . . � C ; and � C = b1 ) b1 � C 8`1 2 r S S` ` `

`=1

Thus, sure diversi�cation means that if the decision maker can attain certainty by a

convex combination of equally desirable random variables, then he prefers certainty to any

of these random variables.

Theorem 3.2 Let a decision maker be a CEU maximizer with capacity � and continous

utility index U , di�erentiable on IR and strictly increasing. Then,++

(i) � exhibits preference for sure diversi�cation ) core(�) 6= ;.

(ii) If U is concave, core(�) 6= ; ) � exhibits preference for sure diversi�cation.

This theorem falls short of a complete characterization of sure diversi�cation. Indeed,

if the DM has a convex utility index, he might or might not be a sure diversi�er even
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though core(�) 6= ;. The following two examples illustrate this point. In example 3.1, the

DM has a capacity with a non-empty core and a convex utility index and is not a sure

diversi�er. In example 3.2, the DM also has a capacity with a non-empty core and a convex

utility index, but this time he is a sure diversi�er.

11 2 2Example 3.1 Assume there are two states. Let � = � = and U (C) = C . core(�)3
1 1is obviously non-empty. However, (1; 11) � (11; 1) and (1; 11) + (11; 1) = (6; 6) but2 2

v (6; 6) = 36 < v (1; 11) = 41. 3

The following example shows that a DM might be a sure diversi�er even though his

utility index is convex.

1 1 2Example 3.2 Assume there are two states, 1 and 2. Let U (x) = 3x+ and � = � =1+x
1 . U is strictly increasing, strictly convex.4 � �

21 2We show that the set C = fC = C ; C 2 IR j C � a1 g is above the hyperpla-S+n o� � 2 1 11 2 1 2ne H = C = C ;C 2 IR j C + C = a . We then conclude that any sure convex+ 2 2

combination of elements of C is preferred to a1 .S

In order to show that the set C is above the hyperplane H, it is enough to note that
2 1 1the indi�erence curve C consists of two concave curves, C : C = g (C ); 0 � C � a1 1

2 1 1 1and C : C = g (C ); a � C � b, such that the slope of the tangent to C for C = 0 is2 2 1

1smaller than �1, and, symmetrically, the slope of the tangent to C for C = b is greater2

than �1.

Notice that the existence of b and c such that (0; c) and (b; 0) belong to C follows from

strict increasingness, continuity and unboundedness of U ; concavity of g and g comes1 2

�60from concavity of U . Finally, straightforward computations yield that g (0) = and
01 U (c)

�1 �10 0 0 0 0g (0) = U (b). Since U (x) � 3 8x 2 IR , it comes g (0) � �2 and g (0) � , and+2 1 26 2
0 0hence g (0) � �1 and g (0) � �1. Figure 1 illustrates this example. 31 2

Now, the concavity of the utility index can be shown to be equivalent to a di�erent

form of diversi�cation, from which any hedging is eliminated.

To de�ne this notion of diversi�cation, we �rst need to recall the de�nition of comonoto-
0ny of random variables. Say that two random variables x and x are comonotone if there is

0 0 0 0 0no s and s such that x (s) > x (s ) and x (s ) > x (s). Observe that two random variables

that are comonotonic cannot be used to hedge against each other.

De�nition 3 A decision maker exhibits preference for comonotone diversi�cation if for
0 0 0all comonotonic C and C such that C � C one has �C+(1� �)C � C for all � 2 (0; 1).
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Hence, comonotone diversi�cation is nothing but convexity of preferences restricted to

comonotone random variables. Note that any hedging (in the sense of Wakker [1990]) is

prohibited in this diversi�cation operation.

This type of diversi�cation turns out to be equivalent, in the CEU model, to the

concavity of U .

Theorem 3.3 Let a decision maker be a CEU maximizer with capacity � and continuous

utility index U , di�erentiable on IR and strictly increasing. Then, the following two++

assertions are equivalent:

(i) � exhibits preference for comonotone diversi�cation.

(ii) U is concave.

Corollary 3.1 Let a decision maker be a CEU maximizer with capacity � and continuous

utility index U , di�erentiable on IR and strictly increasing. Then, the following two++

assertions are equivalent:

(i) � exhibits preference for comonotone and sure diversi�cation.

(ii) U is concave and core(�) is non-empty.

We end this note by discussing the implications of the di�erent forms of diversi�cation

in the (subjective) expected utility model. It is well-known (although may be not in the

�nite case, for which the proof is more intricate, see Debreu and Koopmans [1982] and

Wakker [1989]) that diversi�cation (i.e. preference convexity) is equivalent to the concavity
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of the utility index. One can also deduce from theorem 3.3 that comonotone diversi�cation

is equivalent to the concavity of the utility index in the EU model as well. Finally, sure

diversi�cation is also equivalent, in the EU model, to concavity of the utility index.

2Proposition 3.2 Let a decision maker be an EU maximizer with utility index U , C

on IR , strictly increasing and continuous on IR . Then, the following assertions are++ +

equivalent :

(i) � exhibits preference for diversi�cation

(ii) � exhibits preference for sure diversi�cation

(iii) � exhibits preference for comonotone diversi�cation

(iv) U is concave

In the EU model, the two forms of diversi�cation we introduced, namely sure and

comonotone diversi�cation, are both represented by concavity of the utility index and

consequently cannot be distinguished. Furthermore, they cannot be distinguished from

the usual notion of diversi�cation (i.e. convexity of the preferences).
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Appendix : Proofs

Proof of proposition 3.1:

(ii) ) (i) Let C 2 D, i = 1; . . . ; n be such that C � . . . � C , and let us prove byi 1 nP
induction on n that � C � C . The result is straightforwardly true for n = 2. Assumei i 1i

it holds true for n � 2, and let us show it is true for n + 1. Let C � . . . � C � C1 n n+1Pn+1 �iand � > 0, i = 1; . . . ; n + 1, � = 1. De�ne � = , i = 1; . . . ; n. Fromi i ii=1 1��n+1P Pn nthe induction hypothesis, � C � C and hence � C � C . Now, � convexi i 1 i i n+1i=1 i=1P Pn n+1implies (1� � ) ( � C ) + � C � C that is � C � C .n+1 i i n+1 n+1 n+1 i i 1i=1 i=1

(i)) (ii) What remains to be proved is that

0 0 0C � C ) �C + (1� �)C � C where � 2 [0; 1]

0 0 0f� j 0 � � � 1; C � (1 � �)Cg 6= ; since C � 0 implies C � 0 by monotonicity. Let
0 0" 2 IR be de�ned by " = inff�; 0 � � � 1; C � (1 � �)Cg. " > 0 since C � C . Let us+

0show now that (1�")C � C . Let (" ) be a stricly increasing sequence converging towardsn

0 0". From the de�nition of ", (1� " )C � C , and from continuity (1� ")C � C . Therefore,n

0 0 0(1� ")C � C . Applying (i) gives �(1� ")C + (1��)C � C and hence by monotonicity
0 0�C + (1� �)C � C . 2

Proof of theorem 3.1:

(i), (iii) follows from proposition 3.1.

(ii)) (iii) is well-known.

We now establish that (iii) ) (iv). We �rst show V quasi-concave implies � convex.

Convexity of � is equivalent (see Shapley [1971]) to:

8A;B;E 2 A s.th. B � A and E \ A = ;; � (A [E)� � (A) � � (B [E)� � (B) (1)

Assume (1) is false, and let A;B;E 2 A be such that:

B � A, E \ A = ;, and (� (A [E)� � (A)) � (� (B [E)� �(B)) + � < 0 for some

� > 0.
0Let c 2 IR be such that U (c) > 0 and let a; b 2 IR satisfy a < c < b. Finally, let++ +

F;E;A nB;B be a partition of S and consider the following random variables:

F E A nB B
C a c� "� c+ "� b1 2
0C a c+ "� c� "� b1 2

where " > 0 is su�ciently small so that a and b are respectively the smallest and the
0largest value of C and C , and where

� = � (A)� � (B) � = � (A [E)� � (A) + �1 2

� = � (A [E)� � (B [ E) + � � = � (B [E)� � (B)1 2
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Let us assume, w.l.o.g., that U (a) = 0 and U (b) = 1. A straightforward computation

yields, knowing that U is strictly increasing:

� �
0C + C

V < (� (A [E)� � (B))U (c) + � (B)
2

Now, one gets the following expression for V (C):

V (C) = (� � �)U (c� "� ) + � U (c+ "� ) + � (B)2 1 1 2� � � �
0 0= (� � �) U (c)� "� U (c) + "� (") + � U (c) + "� U (c) + "� (") + � (B)2 1 1 1 2 2� �

0= (� (A [ E)� � (B))U (c) + � (B) + " U (c)� �+ � (")1 3

where � (") ! 0 as " ! 0 for i = 1; 2; 3. � > 0 since if it were not then (1) would bei 1

0true by monotony of �. Hence, U (c)� � > 0, and therefore:1

V (C) > (� (A [E)� � (B))U (c) + � (B)

for " small enough.
0A similar argument would establish the same inequality for V (C ), and therefore we

get: � �
0 � � ��C + C

0V < min V (C) ; V C
2

that is, V not quasi-concave, a contradiction. We conclude that � is convex.

Let us now show that V quasi-concave implies that U is concave. Recall �rst theorem

2 in Debreu and Koopmans [1982]:

Let I and J be open intervals in IR, f and g functions that are non-constant

on I and J and such that F : I � J ! IR de�ned by F (x; y) = f (x) + g (y) is

quasi-convex. Then, at least one of the two functions f or g is convex.

Let a > 0 and A 2 A be chosen such that 0 < �(A) < 1. Let I �]0; a[ and J �]a;+1[

cand de�ne F on I � J by F (x; y) = V (x1 + y1 ).A A

Clearly, F is quasi-concave and F (x; y) = (1� �(A))U (x)+ � (A)U (y). Therefore, U

is concave on ]0; a[ or on ]a;+1[ for all a > 0, hence on ]0;+1[ since U is di�erentiable,

and on IR since U is continuous.+ R
Finally, (iv) ) (ii). Indeed, V (C) is then equal to min U (C) dQ and isQ2core(�)

therefore concave being the minimum of a family of concave functions. 2
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Proof of theorem 3.2:

(i) Recall �rst (see Shapley [1967]) that core(�) 6= ; is equivalent to" #
r rX X
a 1 = 1 ; a � 0 ) a � (A ) � 1; where A 2 A` A S ` ` ` ``

`=1 `=1PrLet A 2 A, a � 0 be such that a 1 = 1 . W.l.o.g., assume a > 0.A S` ` ` ``=1 `P
Assume there exists x > 0 such that a � (A ) > 1 + x. L will denote the set` ``

0f` j�(A ) > 0g. Let a > 0 be such that U (a) > 0 and choose " > 0 such that`

" (1 + x) � a (2)

De�ne now the following positive random variables:

cD = [a� "� (A )]1 + [a+ " (1 + x� �(A ))] 1A A`;" ` ` `` Pa` rPLet � = . A straightforward computation (recall that a 1 = 1 ) yields:` ` A S`=1 `a``P
� D = d (")1 where` `;" S`  !X"Pd (") = a+ 1 + x� a � (A ) < a` `

a`` `

If ` =2 L, �(A ) = 0 and clearly V (D ) = U(a).` `;"

If ` 2 L, a computation similar to the one of theorem 3.1 yields:

0V (D ) = U (a) + U (a) " (x� (A ) + � ("))`;" ` `

0where � (") ! 0 as " ! 0. By assumption, U (a) > 0. Hence, V (D ) > U (a) for all` `;"

` 2 L if " > 0 is su�ciently small.

Let " be such an ". For all ` 2 L, consider the following random variables:0

0D = D � t 1`;" ` S`;t 0`

0where t � 0 is chosen such that D � 0. Let` `;t`� �
0g (t ) � V D = (1� �(A ))U (a� t � " �(A ))+� (A )U (a � t + " (1 + x� �(A )))` ` ` ` 0 ` ` ` 0 ``;t`

g is continuous, strictly decreasing, and g (0) = V (D ) > U (a) as previously shown.` ` `;"0

0Let us now prove that there exists t � 0 such that D � 0 and g (t ) � U(a). It is` ` ``;t`

enough to show that there exists t satisfying:`

a� t � " � (A ) � 0 (3)` 0 `

a� t + " (1 + x � �(A )) � 0 (4)` 0 `

�t + " (1 + x � �(A )) � 0 (5)0` `
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Since (3) implies (4), it is enough to note that there exists t � 0 satisfying (3) and`

(5), i.e., t � 0 such that " (1 + x� �(A )) � t � a � " � (A ). This proves to be true0 0` ` ` `

from (2).
0 0�Hence, for all ` 2 L, there exists t > 0 such that D � 0 and D � a1 . Let` S� �`;t `;t` `P

0C = D if ` =2 L, and C = D if ` 2 L. Then C � a1 for all `, and � C = b1 ,S S` `;" ` ` ` `�0 ``;t`P
�where b � 0, and b = d (" )� � t < a, a contradiction.0 ` ``2L

(ii) Suppose U concave and assume core(�) 6= ;. Let C , ` = 1; . . . ; r be such that`P Pr rC � C � . . . � C and � C = b1 , � � 0; � = 1. Let � 2 core (�).1 2 r ` ` S ` ``=1 `=1R
Then, U (C ) d� � E U (C ) for all ` (see, e.g., proposition 2.1 in Chateauneuf, Dana�` `

and Tallon [1997]). Hence,

 !Zr r rX X X
� U (C ) d� � � E U (C ) � E U � C = U (b)` ` ` � ` � ` `

`=1 `=1 `=1R
Therefore, U (b) � U (C ) d� for all `, i.e. b1 � C for all `. 2S` `

Proof of theorem 3.3:

[(i) ) (ii) ] The same argument as in the end of the proof of (ii) ) (iii) of theorem

c3.1 applies, since the random variables considered there, i.e. x1 + y1 are comonotone.A A

0 0[(ii) ) (i) ] Let C and C be two comonotone random variables such that C � C ,
0 0and � 2 (0; 1). Then, �E U (C) + (1� �)E U (C ) = E [�U (C) + (1� �)U (C )]. This� � �

0last expression is less than E U (�C + (1� �)C ) by concavity of U and hence �C +�

0(1� �)C � C. 2

Proof of proposition 3.2:

The following implications are straightforward, [(iv)) (i)], [ (i)) (ii)]. [(iii)) (iv)]

follows from theorem 3.3.

What remains to be proved is [(ii) ) (iv)]. To that e�ect, suppose U is not concave

on IR . Hence, there exists x 2 IR such that U"(x ) > 0, and therefore there exist+ 0 ++ 0

a; b 2 IR , a < b, such that U"(x) > 0 on [a; b]. U is hence strictly convex on [a; b].++

cLet A and A be events with probability � and 1� � such that 0 < � � 1� �.
0Now, since U is strictly increasing, continuous and � � 1=2, there exists a 2 IR ,+

0b > a � a such that

0�U(a) + (1� �)U(b) = �U(b) + (1� �)U(a )

0
c cConsider now the following two acts C = a1 + b1 and C = b1 + a 1 . Notice1 A A 2 A A

that C � C .1 2

12



0b�aLet � = 2 (0; 1). A straightforward computation gives :
0b�a +b�a

2 0b � aa
�C + (1� �)C = k1 with k = 2 IR1 2 S ++02b� a� a

But U(k) = E(U(�C +(1��)C )) < �E(U(C ))+(1��)E(U(C )) by strict convexity1 2 1 2

of U on [a; b]. E(U(C )) = E(U(C )) then implies C � k1 , a contradiction. 21 2 1 S
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