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Abstract

This paper studies multiunit common value auctions with informed

and less informed bidders. In these auctions, we show that bidders with

less information can bid very aggressively and do surprisingly well. We

also show that the degree of aggressiveness and success of bidders with

less information is positively related to the number of units for sale.

We explain these phenomena in terms of the balance of the winner's

curse and the loser's curse and their di�erential e�ect on bidders with

di�erent quality of information.
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1 Introduction

This paper studies multiunit, common value auctions in which some bidders

have better information than others. In equilibria of such auctions the worse

informed bidders can bid very aggressively and do surprisingly well. We display

this e�ect in a sequence of models and discuss when it arises, and when it does

not. We also argue that the correct intuitive explanation for these results relies

on the balance of the winner's curse and the loser's curse e�ects.

The theoretical study of multiunit, common value auctions is important

because a number of real life auctions have at least some similarity to such

auctions. Examples are auctions of oil and gas leases, treasury bill auctions,

and auctions of parts of the radio spectrum. It is important to understand

how poorly informed or uninformed bidders behave in these auctions because

their actions can in
uence the eÆciency of the auction outcome as well as the

expected revenue of the auctioneer. Their presence can then also a�ect the

optimal auction design.

For the case that bidders have unit-demand, and that the number of units

for sale is smaller than the number of well-informed bidders, Milgrom (1981)

has displayed an equilibrium of a second price auction in which bidders without

relevant private information lose out to better informed bidders with probabil-

ity one. In this paper, we focus on the opposite case, that there are at least as

many units for sale as there are well-informed bidders. In practice, for example

in the auctions cited in the previous paragraph, it often seems realistic that

well-informed bidders form only a small fraction of the total market.

We show that Milgrom's result is reversed, and that the uninformed or

poorly informed bidders can win with positive probability. In fact, we �nd a

kind of monotonicity: The more units are for sale, the more aggressively is the

bidding behaviour of uninformed or poorly informed bidders, and the more

likely it is that they win. In extreme cases, this probability can become one.

We also show that the unconditional expected utility of the informed bidders

may be less than that of the completely uninformed bidders.

It is important to emphasise that, although we consider multiunit auctions,

like Milgrom we maintain the assumption that each bidder individually de-

mands only one unit. Thus, our results are unrelated to the diÆcult problems

arising in auctions in which bidders are allowed to submit multiunit-demands.

Because we maintain the unit-demand assumption, it is also obvious how the

second price auction needs to be de�ned in the multiunit case, say with k units

for sale: the bidders with the k highest bids win and pay the k + 1-th highest

bid.

The observation that uninformed bidders may win auctions is not original to

this paper. In fact, Engelbrecht-Wiggans, Milgrom, and Weber (1983) showed

that this may happen in the single unit case if the format is a �rst price auction.
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Engelbrecht-Wiggans, Milgrom and Weber's result was extended by Daripa

(1998) to a multiunit setup, using a generalisation of the �rst price auction.

The auction format of Daripa is more diÆcult to analyse than ours. His

analysis is also complicated by the fact that he allows for multiunit-demand. As

a consequence, we obtain a more clear-cut analysis than Daripa. For example,

we do not face as severe problems of multiplicity of equilibria as Daripa does.

Another reason for our interest in the second price format is that it allows

us to develop particularly clearly the intuition for our �ndings. We explain

the relatively good performance of poorly informed or uninformed bidders with

respect to informed bidders in terms of the di�erential e�ect of the winner's

curse and the loser's curse on the incentives to bid of bidders with di�erent

quality of information.

In the (generalised) second price auction a bidder will want to raise his

bid by a small amount, say from b to b + �, if the expected value of a unit,

conditional on its price being p 2 (b; b + �), is larger than p. The price is p

if and only if the k-th highest bid of the other bidders is p. This event is the

intersection of two events, one of which implies good news whereas the other

implies bad news for the bidder. The good news is that at least k � 1 other

bidders have been willing to bid p or more, and that at least one other bidder

has been willing to bid p. If these bidders had any private information at all, it

must have been favourable. This is good news. This e�ect has been called the

\loser's curse" as a bidder who neglects this e�ect will regret losing. The bad

news is that at least m� k� 1 bidders (where m denotes the total number of

bidders) have bid p or less, and hence, if they had any private information at

all, this must have been unfavourable. This e�ect has been called the \winner's

curse" as a bidder who neglects this e�ect will regret winning.1

The winner's curse reduces the incentives to bid higher, whereas the loser's

curse raises the incentives to bid higher. Both e�ects are stronger for less

informed bidders. The reason is that the average quality of the information of

the other bidders is higher from the point of view of a poorly informed bidder

than from the point of view of a well-informed bidder. If the loser's curse is

suÆciently strong in comparison to the winner's curse we can expect that in

equilibrium bidders with less information win more often than bidders with

more information. Moreover, we can also expect that the stronger the loser's

curse in comparison to the winner's curse, the more often less informed bidders

win. This explains the monotonicity of the behaviour of uninformed or poorly

1The "winner's curse" is well-known in the auction literature, see for instance the survey

by Milgrom (1989). The concept of "loser's curse" is less stablished. It was �rst used by Holt

and Sherman (1994) in the context of a bargaining model. The concept was introduced in

auction models by Pesendorfer and Swinkels (1997). They also presented a formal de�nition

of the meaning of the winner's curse and the loser's curse in the spirit of that given in our

paper.
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informed bidders with respect to the number of units. The more units there

are for sale, the more winners and the fewer losers there are in the auction,

thus the loser's curse will be stronger and the winner's curse will be weaker.

Notice that the loser's curse can only arise when there is more than one

unit for sale. At the opposite extreme is the case when the number of units for

sale equals the number of bidders minus one. Then the winner's curse plays

no role, and it can only be the loser's curse that a�ects the incentives to bid

higher. Consequently, when the number of units for sale equals the number

of bidders minus one and there is more than one unit for sale, less informed

bidders bid more aggressively than better informed bidders.

One possible application of our results concerns the case in which the auc-

tioneer can choose into how many "lots" to divide what he has for sale. For the

case that the auctioneer is committed to a generalised second price auction,

our results indicate that he should choose a large number of \lots" if, for some

reason, the success chances of poorly informed bidders is important to him.

The most closely related papers are those of Milgrom (1981), Engelbrecht-

Wiggans, Milgrom, and Weber (1983) and Daripa (1998) which were already

discussed above. Another related study is that of Pesendorfer and Swinkels

(1997). This paper, like ours, studies the generalisation of the second price

auction to the multiunit case when bidders have unit-demand. Pesendorfer

and Swinkels (1997) di�ers from our paper in two respects. Firstly, they as-

sume that all bidders have signals of equal informativeness, whereas our focus

is on the case that some bidders have more informative signals than others.

Secondly, they focus on the case that the number of units for sale and the

number of bidders are large. By contrast, our focus is on the case of a �xed,

�nite number.

This paper is structured as follows: In Section 2, we study a basic model

in which there are one bidder with relevant, although potentially incomplete

information, and several other, completely uninformed bidders. Section 3 ex-

tends the model and analyses a case in which there are several bidders who

hold relevant information whereas other bidders are completely uninformed.

In Section 4, we extend the model of Section 2 into a di�erent direction, and

allow the bidders who were uninformed in Section 2 to hold some pieces of in-

formation. We only assume that their information is less signi�cant than that

of the well-informed bidder. We show that the equilibria in this setup converge

in an appropriate sense to the equilibrium in Section 2 as the signi�cance of

the less informed bidders' signals tends to zero.
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2 An Auction with One Informed and Many

Uninformed Bidders

An auctioneer puts up for sale through auction k indivisible units of a good.

There are n + 1 bidders, n � 2.2 Each bidder can bid for one or zero units of

the good.3 We assume that the number of bidders is greater than the number

of units for sale, n+ 1 > k.

Each bidder obtains a von Neumann Morgenstern utility of v � p if she

obtains one unit of the good, and she obtains a von Neumann Morgenstern

utility of zero if she obtains no unit. The value v is common to all bidders. One

bidder, the informed bidder, receives privately a signal s, whereas the other

bidders, the uninformed bidders, do not receive any signal. For simplicity we

assume that v = s.4 The signal s is drawn from the interval [s; s] (where

0 � s < s) with a continuous distribution function F (s). This distribution is

assumed to have support [s; s].

The auction used is a uniform price auction. We assume that there are

neither a reserve bid nor an entry fee. All bidders submit simultaneously non-

negative bids. The bidders who make the k highest bids win one unit each.

The price which they have to pay is the k+1-th highest bid. If the k-th highest

bid and the k + 1-th highest bid have the same value b, then the price in the

auction is b, all bidders who make a bid strictly higher than b get one unit

with probability 1, and the remaining winners are randomly selected among

all bidders who have made bid b, whereby all such bidders have the same

probability of being selected.

To analyse equilibrium bidding in this auction we begin with the following

observation:

Proposition 1. The informed bidder has a weakly dominant strategy: b�I(s) =

s for all s 2 [s; s] :

Proof. This follows from the standard argument that is used to show that in

single object, private value, second price auctions bidding one's true value is a

dominant strategy. �

Given Proposition 1 we can focus on the behaviour of the uninformed bid-

ders. We shall assume that all uninformed bidders play the same pure or

2In the case n = k = 1 the auction game which we are considering has very many

equilibria. Since an analysis of these equilibria would distract from the main point of this

paper, we restrict attention to the case n � 2.
3Equivalently we could assume that a perfectly divisible good is for sale. All bidders have

constant marginal utility. The auctioneer splits the good into k identical lots and allows

each bidder to bid for at most one of these lots.
4Engelbrecht-Wiggans, Milgrom, and Weber (1983) show that this assumption is equiv-

alent to assume that v and s are two aÆliated random variables.
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mixed strategy. We shall describe this mixed strategy by its distribution func-

tion G�

U : [s; s] ! [0; 1]. Notice that we rule out bids which are not in the

interval [s; s]. Such bids are weakly dominated. We shall call a strategy of the

uninformed bidders an equilibrium strategy if together with the weakly domi-

nant strategy of the informed bidder it constitutes a Bayesian Nash equilibrium

of the auction game.

We consider �rst two cases that allow for an analysis specially clear-cut.

The �rst of these is when the number of units for sale is only one. Then,

the only e�ect on the incentives to bid is the winner's curse as it was already

suggested in the introduction. In this case, due to the absence of the loser's

curse, the incentives to win are always higher for the informed than for the

uninformed bidders. As expected, the next proposition states that there is a

unique equilibrium where the uninformed bidders bid lower than any type of

the informed bidder.

Proposition 2. If there is only one unit for sale, k = 1, there is only one

equilibrium strategy for the uninformed bidders, to bid s with probability one.

Proof that the proposed strategy is an equilibrium strategy: In the proposed e-

quilibrium the uninformed bidders get utility zero. The only possible deviation

for uninformed bidders is to raise their bids. If all uninformed bidders except

one bid s
�
, and one uninformed bidder raises her bid to some value b >s

�
, then

this uninformed bidder wins if and only if the informed bidder's bid is between

s
�
and b. Moreover, the price which the uninformed bidder has to pay is exactly

the informed bidder's bid which equals the true value of one unit. Therefore,

the expected utility from raising the bid is zero. Thus, there is no strict

incentive for uninformed bidders to raise their bids.

Proof that there are no other equilibrium strategies: Suppose all uninformed

bidders choose the same mixed strategy, and assume that this strategy assigns

positive probability to bids above s
�
. Then each uninformed bidder can gain by

changing her strategy, and bidding s
�
with probability 1. To see this distinguish

the following two events: (i) the highest of all other uninformed bidders' bids

is greater than the informed bidders' bid; and (ii) the highest of all other

uninformed bidders' bids is less than or equal to the informed bidders' bid.

Observe that both events occur with positive probability. In event (ii) all bids

give expected utility zero, thus the change in bidding strategy has no e�ect.

In event (i), however, there is a strict incentive to be among the losers of the

auction, this is, there is a winner's curse. If the bidder adopts the same mixed

strategy as all other uninformed bidders, there is a positive probability that

she is among the winners. Thus, she can strictly gain by deviating to s. �

Remark 1. If k = 1 : (i) The price is completely uninformative, since it is

always equal to s. (ii) The informed bidder wins with probability 1 the unique
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unit for sale. (iii) The informed bidder has positive expected utility whereas

the uninformed bidders have expected utility zero.

The other specially simple case is when the number of units for sale equals

the number of uninformed bidders. As we suggested in the introduction, then

there is no winner's curse, but loser's curse. In this case, the incentives to

win of the uninformed bidders are always greater than those of the informed

bidder. As a consequence the uninformed bidders bid higher than any type of

the informed bidder:

Proposition 3. If there are n units for sale, k = n, there is only one equilib-

rium strategy for the uninformed bidders, to bid s with probability one.

Proof that the proposed strategy is an equilibrium strategy: In the proposed e-

quilibrium the uninformed bidders have utility zero. This is because they

all win with probability one, but the price equals the bid of the informed

bidder, i.e. the value of the good. If an uninformed bidder lowers her bid, she

loses the auction whenever the informed bidder's bid is above her lower bid.

Otherwise she wins, but at a price which equals the informed bidder's bid.

Hence her expected utility is again zero. Thus, no uninformed bidder can gain

by deviating.

Proof that there are no other equilibrium strategies: Suppose all uninformed

bidders choose the same mixed strategy, and assume that this strategy assigns

positive probability to bids below �s. Then each uninformed bidder can gain by

changing her strategy, and bidding �s with probability 1. To see this distinguish

the following two events: (i) the lowest of all other uninformed bidders' bids

is greater than or equal to the informed bidders' bid; and (ii) the lowest of all

other uninformed bidders' bids is less than the informed bidders' bid. Observe

that both events occur with positive probability. In event (i) all bids give

expected utility zero, thus the change in bidding strategy has no e�ect. In

event (ii), however, there is a strict incentive to be among the winners of the

auction, this is, there is a loser's curse. If the bidder adopts the same mixed

strategy as all other uninformed bidders, there is a positive probability that

she is not among the winners. Thus, she can strictly gain by deviating to

�s. �

Remark 2. If k = n : (i) The price reveals the true value. (ii) With probability

1 all units are won by uninformed bidders. (iii) All bidders have expected utility

zero.

In other cases, namely when 1 < k < n, both the winner's curse and

the loser's curse e�ects can a�ect the equilibrium outcome. The study of the

interaction of these two e�ects requires a slightly di�erent analysis than that

of the previous cases. This analysis is done in the next proposition:
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Proposition 4. If 1 < k < n, then there exists a unique equilibrium strategy

for the uninformed bidders:
5

G�

U(b) =
F (b)(n� k) (b� E [sj s � b])

F (b)(n� k) (b� E [sj s � b]) + (1� F (b))(k � 1) (E [sj s � b]� b)
;

for all b 2 [s; s].

Proof. This proof is broken down into two steps.

Step 1. In the �rst step we consider mixed strategies of the uninformed

bidder that have a continuous distribution function. A necessary condition for

such strategies to be an equilibrium is that each uninformed bidder is indi�er-

ent between all the bids in the support, if she takes as given that all the other

uninformed bidders adopt the proposed strategy, and that the informed bid-

der plays her weakly dominant strategy. This is just the standard indi�erence

condition characterising Nash equilibria in mixed strategies, extended to the

case of in�nite strategy spaces.

This indi�erence condition is satis�ed only if each uninformed bidder gets

zero expected utility. To see why notice that the number of units for sale is

less than the number of uninformed bidders, thus the lowest bid in the support

of uninformed bidders' strategy must lose with probability one. Thus, she gets

zero expected utility.

To apply this condition we distinguish two events under which an unin-

formed bidder can win the auction: (i) the price in the auction equals the

bid of the informed bidder, and (ii) the price in the auction equals the bid of

another uninformed bidder. Under event (i), the expected utility of winning

is trivially zero, the price equals the value of the good. Hence, the expected

utility of winning must also be zero under event (ii) for all bids of the unin-

formed bidders that are in the support of G�

U . Or equivalently, the expected

utility of winning under event (ii) and conditional on the price equals b must

be zero almost surely.

To formalise the last necessary condition, we introduce for an arbitrary b in

the support of the equilibrium mixed strategy of the uninformed bidders, the

notation P(b). This stands for the probability that the informed bidder's bid,

s, is greater than b, conditional on the following event: there are exactly k� 1

bids above b among n� 2 uninformed bidders' bids and the informed bidder's

bid. This is the probability that an uninformed bidder su�ers a loser's curse at

price b. Similarly, 1�P(b) is the probability that an uninformed bidder su�ers

a winner's curse at price b. Using this notation, we can write our necessary

condition as:

5Here and in the following E [ :j :] denotes the expected value of the random variable in

front of the vertical line, conditional on the event which is de�ned after the vertical line.

7



P(b)E[sjs � b] + (1� P(b))E[sjs < b]� b = 0; (1)

almost surely. Here P(b) equals by de�nition:

�
n�2

k�2

�
[1� F (b)][1�G�

U(b)]
k�2G�

U(b)
n�k�

n�2

k�2

�
[1� F (b)][1�G�

U(b)]
k�2G�

U(b)
n�k +

�
n�2

k�1

�
F (b)[1�G�

U(b)]
k�1G�

U(b)
n�k�1

:

The unique G�

U that solves the above necessary condition for a given b

must be as de�ned in the proposition. Since this function is continuos, strictly

increasing and satis�es G�

U(s) = 0 and G�

U(s)=1, the unique candidate for an

equilibrium continuous distribution function must be that in the proposition.

It only remains to be shown that this distribution function is in fact an equi-

librium strategy. This follows since we have already shown that the expected

utility of each uninformed bidder given that the other uninformed bidders play

the proposed strategy, and that the informed bidder plays her weakly dominant

strategy, is zero for all bids in [s; s].

Step 2. In this second step we study mixed strategies that has a discontin-

uous distribution function. Assume that G�

U is one of such strategies with an

atom at b̂. We focus on the incentives to deviate of an uninformed bidder, say

bidder l. For the sake of simplicity we introduce the following notation. Let

b(k) be the k-th highest bid of all the bidders but l. De�ne the event "b̂ wins"

to be the event in which bidder l when making a bid b̂ wins one unit, and the

event "b̂ loses" the complement of "b̂ wins", this is the event in which bidder

l when making a bid b̂ loses the auction.

We begin by arguing that we must have: E[vjb(k) = b̂ and b̂ wins] � b̂.

Suppose instead E[vjb(k) = b̂ and b̂ wins] < b̂. If this were the case, then

bidder l could gain by shifting all probability mass that is placed on b̂ to some

bid b̂ � � where � > 0 is close to zero. This change would obviously make no

di�erence to player l's utility in the case that b(k) > b̂, nor would it a�ect l's

utility in the case that b(k) = b̂ and b̂ loses. Finally, it would obviously also not

make any di�erence in the case that b(k) < b̂� �. In the event that b(k) = b̂ and

b̂ wins, which has positive probability, the change in strategy would lead to a

strict increase in player l's utility. Finally, the probability of the event that

b̂� � � b(k) < b̂ can be made arbitrarily small by choosing a suÆciently small

�, so that it does not a�ect the advantageousness of the proposed deviation.

In a similar way it can be argued that we must have E[vjb(k) = b̂ and b̂

loses] � b̂.

If b̂ = s, the event b(k) = b̂ means that the bid of the informed bidder is

below s. As a consequence the �rst of the conditions above cannot be satis�ed.
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Similarly, it can be shown that b̂ = s violates the second of the conditions

above.

We can complete our indirect proof by arguing that if s < b̂ < s, then

E[vjb(k) = b̂ and b̂ wins] < E[vjb(k) = b̂] < E[vjb(k) = b̂ and b̂ loses], this is, that

there is a winner's and a loser's curse at price p̂. This last inequality obviously

contradicts the other two inequalities. Suppose you knew that b(k) = b̂, but

you did not know whether the informed bidder is bidding above or below b̂. If

you learned that the informed bidder is bidding above b̂, then the probability

that b̂ wins would drop. Hence, b̂ wins has strictly negative correlation with

the event that the informed bidder is bidding above b̂, conditional on b(k) = b̂.

This implies that whenever b̂ wins it is ex post more likely that the informed

bidder is bidding below b̂, and vice versa when b̂ loses. �

Remark 3. If 1 < k < n : (i) The price contains information about the true

value, but it is an imperfect signal. (ii) All bidders have positive probability

of winning. (iii) The informed bidder has positive expected utility, but the

uninformed bidders have expected utility zero.

In order to state the next result of the paper, we introduce the following

de�nition:

De�nition: We say that the uninformed bidders bid relatively more aggres-

sively than the informed bidder the more units there are for sale if and only

if for every s in (s; s) the probability that the bid of an uninformed bidder is

above b�I(s) increases when the number of units for sale increases.

We can now state next corollary:

Corollary 1. The uninformed bidders bid relatively more aggressively than

the informed bidder the more units there are for sale.

Proof. The corollary follows trivially from Proposition 2 and Proposition 3

when the starting number of units for sale is 1 or when the �nal number of

units for sale is n respectively. In other cases since the bid of the informed

bidder is b�I(s) = s, it is enough to show that 1�G�

U(b) increases with k. This

follows directly from the de�nition of G�

U in Proposition 4. �

This corollary can be explained in terms of the winner's and loser's curse.

Increasing the number of units for sale increases the relative strength of the los-

er's curse with respect to the winner's curse. This implies that the uninformed

bidders' incentives to win increase more than those of the informed bidder. As

a consequence, each uninformed bidder bids relatively more aggressively than

the informed bidder.

Figure 1 shows the plot of the density of the distribution of the equilibrium

mixed strategy of the uninformed bidders for k = f2; 3; 4; 5g given that F is a
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uniform distribution function on [0; 1] and n = 6. Since the bid of the informed

bidder does not change with k, this graph illustrates Corollary 1.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
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2.5

 b
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k=3
k=4

k=5

 g*
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Figure 1: Plot of the density (g�U) of G
�

U for n = 6.

3 An Auction in Which Uninformed Bidders

have Positive Expected Utility

In the model of the previous section the uninformed bidders can win with

positive probability but they will always receive zero expected utility. The

purpose of this section is to construct a model in which the uninformed bidders

can win, and their expected payo� is strictly positive.

As before, we assume that there are k units of the same good for sale. The

number of bidders is now assumed to be nI + nU , where nI + nU > k and

nI < nU . Among the bidders, nI bidders are called informed bidders. Each

of these bidders receives privately a signal si. The other nU bidders are called

uninformed bidders. They receive no signal. The value of the good, v, equals
Pn

I

i=1
si

nI
. We assume that the signals si are independently drawn from the set

[s; s] (0 � s < s) according to the same continuous distribution function F

with support [s; s]. Bidders' preferences and the auction game are the same as

in Section 2.

As in Section 2, we shall focus on symmetric equilibria. In this section, this

will mean that all informed bidders play the same strategy, and all uninformed
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bidders play the same strategy. For simplicity, we shall focus on equilibria in

pure strategies instead of allowing for mixed strategies as in Section 2. We shall

denote by b�I : [s; s]! R+ the strategy of the informed bidders and by b�U 2 R+

the bid of the uninformed bidders. We shall further simplify our arguments by

assuming that the informed bidders play a continuous and strictly increasing

strategy.

Some of the results of the previous section generalise in natural ways to

the model of the current section. For example, in the case k � nI , it can be

proved that in the unique equilibrium outcome the uninformed bidders lose

with probability one. Such equilibria generalise the equilibrium in Proposition

2. For the case nI < k < nU one can show that there is no equilibrium in pure

strategies. In this respect this case is similar to the case of Proposition 4.

We shall not deal explicitly in this paper with the two cases mentioned in

the previous paragraph. We shall also omit the rather special case k = nU .

Instead, we shall focus on the case that k > nU . This case yields for our

purposes the most interesting result. The result is similar to Proposition 3.

We use the symbol s(r) to refer to the r-th highest signal of the informed

bidders.

Proposition 5. Suppose k > nU . Then the bidding strategies (b�I ; b
�

U) consti-

tute an equilibrium if and only if:

b�I(s) = E
�
vj s(q) = s(q+1) = s

�
b�U � E

�
vj s(q) = s(q+1) = s

�
:

Here, we de�ne q � k � nU .

These conditions are such that the uninformed bidders win with probability

one in equilibrium.

We �rst provide an example of equilibrium bidding functions. In this ex-

ample we assume nI = 6, nU = 8, k = 10 and F to be a uniform distribution

function with support [0; 1]. Then b�I = 2=3s + 1=4 and b�U = 11=12 satisfy

the conditions in Proposition 5. A plot of these equilibrium bidding functions

appears in �gure 2.

Proof that the conditions in the Proposition are suÆcient: The strategy of the

informed bidders is the same as in the standard symmetric equilibrium in an

auction of q units and no uninformed bidders. The arguments used for the

standard symmetric equilibrium by Milgrom (1981) to show that the bidders

do not have incentives to deviate also explain why the informed bidders do not

have incentives to deviate if the conditions in the proposition are satis�ed.

To see that the uninformed bidders do not have incentives to deviate sup-

pose that all the bidders stick to some strategies that satisfy the proposed con-

ditions. Under this assumption we can state the following arguments. First,
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Figure 2: Equilibrium bidding functions with nI = 6, nU = 8 and k = 10.

each uninformed bidder does not have incentives to arise her bid since she is

already winning with probability one. Second, if one uninformed bidder lowers

her bid below b�U she does not improve her payo�s. This is because by deviat-

ing the bidder loses when the price in the auction is between her deviating bid

and b�U , and the expected value of winning at a given price is positive for all

the equilibrium prices. To see why, take an arbitrary price of the auction p.

This price p must correspond to the equilibrium bid of a type s of the informed

bidders. Then, the expected utility of winning at price p is the di�erence be-

tween the expected value of the good conditional on the q+1-th highest signal

equals s, and the price p. Since the price p equals the expected value of the

good conditional on the q-th and q + 1-th highest signals equal s by de�nition

of s, the di�erence is positive.

Proof that the conditions in the Proposition are necessary: Assume that the bid

of the uninformed bidders is above all the bids of the informed bidders, then

the informed bidders' equilibrium strategy must be an equilibrium strategy

of the same auction game with q units for sale, nI informed bidders and no

uninformed bidders. In this last case, we can use a proof similar to that by

Harstad and Levin (1986) to show that there is a unique equilibrium strategy.

This equilibrium strategy is such that each informed bidder bids the expected

value of the good given that the q and the q+1 highest signal of the informed

bidders equal her own private signal. This is the equilibrium bidding function

that appears in the proposition.

In order to complete the proof it only remains to be shown that the unin-
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formed bidder cannot lose the auction with positive probability in equilibrium.

This proof follows a similar structure and notation to Step 2 of the proof of

Proposition 4.

Assume that the uninformed bidders' bid, b�U , is below the maximum bid

of the bidding function of the informed bidders. We focus on the incentives

to deviate of an uninformed bidder, say bidder l. We reintroduce the notation

b(k) for the k-th highest bid of all the bidders but l. De�ne the event "l wins"

to be the event in which bidder l wins when making the bid b�U and the event

"l loses" as its complement, this is, the event in which bidder l loses when

making the bid b�U .

We can use the same arguments as in Step 2 of the proof of Proposition 4

to show that two necessary conditions of equilibrium are: E[vjb(k) = b�U and l

wins] � b�U and E[vjb(k) = b�U and l loses] � b�U .

We start showing that these inequalities cannot be met simultaneously if

b�U is between the minimum and the maximum bid of the informed bidders. We

prove this using a random variable ~I6 that stands for the number of informed

bidders that bid above b�U . Our indirect proof is to show that the conditional

distribution of ~I shifts in the sense of strictly �rst order stochastic dominance,

upwards when l loses and downwards when l wins. Since we restrict atten-

tion to equilibria in which the informed bidders' bidding function is strictly

increasing, this is suÆcient for our claim.

By de�nition:7

Pr
�
l winsj ~I = I; k � nU < ~I < k

�
= k�I

nU

Pr
�
l losesj ~I = I; k � nU < ~I < k

�
= n

U
�k+I

nU
;

where k� nU < ~I < k is the same event than b(k) = b�U . If
~I is less than k but

more than k � nU , the k-th highest bid of the other bidders is the bid of one

of the uninformed bidders, all of which bid b�U .

Hence,

Pr
�
l winsj ~I = I; b(k) = b�U

�

Pr
�
l losesj ~I = I; b(k) = b�U

�

decreases strictly with I. Therefore, l wins and l loses, conditional on b(k) = b�U
can be interpreted as a pair of signals that satisfy the Monotone Likelyhood

Ratio Property. Consequently, the distribution of ~I conditional on l loses and

6We use the standard notation ~I for the random variable and I for its realisation.
7Here and in the following Pr( :j :) denotes the expected probability of the random variable

in front of the vertical line, conditional on the event which is de�ned after the vertical line.

13



b(k) = b�U strictly �rst order stochastically dominates the distribution of I

conditional on l wins and b(k) = b�U .

We complete our proof with the case in which b�U is equal or below the

minimum bid of the informed bidders. In this case, since the events l wins, l

loses and b(k) = b�U are uninformative of v, the two inequalities above simplify

to b�U = E[v]. Moreover, since the number of informed bidders is less than

the number of units for sale, this means that the price in the auction is E[v]

with probability one. Hence, an informed bidder with a signal low enough

has incentives to deviate and bid below b�U . Bidding above means winning

with probability one at price E[v] and bidding below losing with probability

one. �

Proposition 6. If k > nU , then the expected utility of each uninformed bidder

is strictly positive and strictly greater than the unconditional expected utility of

each informed bidder in equilibrium.

Proof. Each uninformed bidder wins with probability one and pays the q + 1

highest bid of the informed bidders. This di�erence is strictly positive because

the expected value of the good given that the q+1 highest bid of the informed

bidders equals the price is higher than the price for all potential prices. On the

other hand, from an ex ante point of view, an informed bidder wins if and only

if her signal is among the q highest signals of the informed bidders. This is with

probability q=nI. Conditional on winning, the informed bidder gets one unit

of the good and pays the q+1 highest bid of the informed bidders, this is, she

gets the same utility as each uninformed bidder. Since each uninformed bidder

wins with probability one and each informed bidder only with probability q=nI
the proposition follows. �

It is remarkable that, contrary to the previous section, competition among

the uninformed bidders does not dissipate all the uninformed bidders' rents.

The reason for this is that their demand (nU units) is less than their supply

(k units).

4 An Auction with One Informed and Many

Poorly Informed Bidders

In this section we extend the analysis of Section 2 to a model where there is

one informed bidder and some "poorly" informed bidders. The purpose of this

extension is double. First, to show that similar results to those in Section 2

also hold in this more general set-up. Second, to prove that the equilibria in

this extended model converge in an appropriate sense to the equilibria in the
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model of Section 2 when the informativeness of the poorly informed bidders'

signal goes to zero.

In this section we keep all the assumptions of Section 2 except the infor-

mation structure. This is modi�ed to allow for less informative signals.

More precisely, we assume that the value of the good v is a weighted average

of one signal s and n signals sPi (i = 1; 2; :::n). Each signal sPi is less informative

about v than s in the sense of a smaller weight in the former average. Formally,

v =
s+�
P

n

i=1
sP
i

1+n�
, with 0 < � < 1. We assume that the signal s and all the signals

sPi are independently drawn from the set [s; s] (0 � s < s) according to the

same continuous distribution function F with support [s; s]. We shall assume

that one bidder (the informed bidder) receives privately the signal s, whereas

each of the other bidders (the poorly informed bidders) receives privately a

di�erent signal sPi .

An equilibrium of the game is a bidding function b�I : [s; s] ! R
+ for the

informed bidder and a bidding function b�P : [s; s]! R
+ for the poorly informed

bidders, such that (b�I ; b
�

P ) is a Bayesian Nash equilibrium of the game.

For the sake of simplicity we restrict attention to equilibria in continuous

and strictly increasing strategies. Moreover, only equilibria in which all the

bidders have an unconditional positive probability of winning the auction are

analysed. This constraint rules out some strange equilibria that exist in the

case k = 1 and k = n.8

Next, we introduce an assumption that simpli�es the analysis of equilibria.

Assumption 1. � �E [sj s � �] and E [sj s � �]� � are respectively strictly

increasing and strictly decreasing in �.

Assumption 1 is satis�ed by many distribution functions. If F has a con-

tinuously di�erentiable density, Bikhchandani and Riley (1991) show (Lemma

3) that a suÆcient condition for the �rst part of the assumption is that F (s) is

strictly log-concave. Similarly, if F has a continuously di�erentiable density, a

suÆcient condition for the second part is that 1� F (s) is strictly log-concave,

this is that F (s) has an increasing hazard rate.

For the analysis of this section we use a function � : [s; s] ! [s; s]. This

function assigns to each type sP of the poorly informed bidders the type �(sP )

of the informed bidder who, in equilibrium, makes the same bid b as sP does.

8For instance, if k = 1, there exists a set of equilibria where the informed bidder bids

high enough and the poorly informed bidders bid low enough. In this case, the informed

bidder does not have incentives to deviate because she wins with probability one at a very

low price. On the other hand, a poorly informed bidder could win only if she would bid

above the very high bid of the informed bidder. Since in this case winning would mean

paying the very high bid of the informed bidder, the poorly informed bidders do not have

incentives to deviate. Equilibria of this type have been called in a di�erent set-up degenerate

by Bikhchandani and Riley (1991).
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This function will be implicitly de�ned by an equation 	(�(sP ); sP ) = 0, where

	 : [s; s]2 ! R is the di�erence between the expected value of the good given

that there are k � 1 bidders bidding above b, two poorly informed bidders

bidding b and all the other bidders bidding below b; and the expected value

of the good given that there are k � 1 poorly informed bidders bidding b, the

informed bidder and one poorly informed bidder bidding b and all the other

bidders bidding below b. In order to express this condition formally we project

the �rst expected value on the events s � � and s < �:

	(�; sP ) = P
�(�; sP )E[vjs � �; sP(k�1) = sP(k) = sP ]

+ (1� P
�(�; sP ))E[vjs < �; sP(k) = sP(k+1) = sP ]

� E[vjs = �; sP(k) = sP ]; (2)

where P�(�; sP ) is the probability that the bid of the informed bidder is above b

given that there are k�1 bidders bidding above b among the bid of the informed

bidder and the bids of n� 2 poorly informed bidders. This is P�(�; sP ) = 0 if

k = 1, P�(�; sP ) = 1 if k = n and if 1 < k < n:

P
�(�; sP ) = �

n�2

k�2

�
[1� F (�)][1� F (sP )]k�2F (sP )n�k�

n�2

k�2

�
[1� F (�)][1� F (sP )]k�2F (sP )n�k +

�
n�2

k�1

�
F (�)[1� F (sP )]k�1F (sP )n�k�1

:

Lemma 1. There exists a unique �(sP ). This function � is continuous and

strictly increasing in sP .

See the proof in the Appendix.

The next proposition makes use of the function � to characterise the set of

equilibrium bidding functions.

Proposition 7. The pair of bidding strategies (b�I ; b
�

P ) is an equilibrium, if and

only if:

b�P (s
P ) = b�I(�(s

P )) = E
�
vj s = �(sP ); sP(k) = sP

�
; (3)

for all sP 2 [s; s], and:

� If k = 1:

Z s

�(s)

(E[vj~s = �; sP(1) = s]� b�I(�))f(�)d� � 0; (4)

for all s in [�(s); s].
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� If k = n:

Z �(s)

s

(E[vj~s = �; sP(n) = s]� b�I(�))f(�)d� � 0; (5)

for all s in [s; �(s)].

See the proof in the Appendix.

Next lemma shows that if 1 < k < n, equation (3) determines uniquely not

only b�P but also b�I . In the other cases, Proposition 7 does not determine a

unique b�I .

Lemma 2.

(i) If k = 1, then �(s) = s and �(s) < s.

(ii) If k = n, then �(s) > s and �(s) = s.

(iii) If 1 < k < n, then �(s) = s and �(s) = s.

See the proof in the Appendix.

In Figures 3, 4 and 5 there appear some examples of equilibrium bidding

functions that illustrate Lemma 2. All these examples are done assuming that

F is a uniform distribution function with support [0; 1].

17



Figure 3: Equilibrium bidding functions with k = 1, n = 5 and � = 0:2.

Figure 4: Equilibrium bidding functions with k = 3, n = 5 and � = 0:2.

Figure 5: Equilibrium bidding functions with k = 5, n = 5 and � = 0:2.
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We apply Proposition 7 to show that we can state a similar result to Corol-

lary 1 in Section 2 in this new framework. We start with the following de�ni-

tion:

De�nition: We say that the poorly informed bidders bid relative more

aggressively than the informed bidder the more units are for sale if and only if

for every s in (s; s) the probability that the bid of a poorly informed bidder is

above b�I(s) increases when the number of units for sale increases.

We can now state the next corollary:

Corollary 2. Each poorly informed bidder bids relatively more aggressively

than the informed bidder the more units there are for sale.

See the proof in the Appendix.

The last point of this section is to provide a robustness test for the equi-

librium outcomes given in Section 2. The next proposition accomplishes this

task.

Proposition 8. When � goes to zero:

(i) If k = 1, then the equilibrium bidding function of the poorly informed

bidders converges point-wise to s. Moreover, in the limit each poorly

informed bidder loses with probability one.

(ii) If k = n, then the equilibrium bidding function of the poorly informed

bidders converges point-wise to s. Moreover, in the limit each poorly

informed bidder wins with probability one.

(iii) If 1 < k < n, then the equilibrium bidding function of the informed bidder

converges point-wise to b�I(s) = s, the equilibrium bidding function of the

informed bidder in Section 2. The equilibrium distribution of bids of the

poorly informed bidders converges to the equilibrium distribution of bids

of the uninformed bidders in Proposition 4, Section 2.

See the proof in the Appendix.

5 Conclusions

In this paper we have studied several models in which there were one or more

well informed and some other bidders with either no information or worse

information. We have shown in this set-up that the relative performance of
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the more informed-less informed bidders depends on the interaction of two

e�ects, the winner's curse and the loser's curse, and its di�erential e�ect on

bidders with di�erent quality of information. Basically, we showed that the

leading e�ect is the loser's curse if the number of units for sale is large and

the winner's curse if it is small. We based on these arguments to explain the

surprising result that when there are several units for sale, bidders with less

information can do better than bidders with better information in terms of

probability of winning and expected revenue.

Our analysis leaves several extensions for further research. We distinguish

two pro�table ways of complementing our analysis. The �rst one is the study of

other auction procedures, especially the open ascending auction. This popular

auction is similar to the (generalised) second price auction studied in this

paper. The main di�erence to our concern is that the losers' bids are revealed

along the auction and so the winner's curse is very much alleviated. Thus,

we could expect that the loser's curse dominates (if there is more than one

unit for sale) and consequently, that less informed bidders do better than

more informed bidders. The second branch of extensions is the study of the

consequences for auction design of our analysis on the performance of less

informed bidding. For instance, this should be a major worry if the auctioneer

concern is to promote the entry of poorly informed or uninformed bidders, or

if he is interested in providing incentives to acquire information.

Appendix

In this appendix we provide the proofs of the lemmas and propositions in

Section 4. To follow our arguments more easily, it is useful to notice that 	

simpli�es to:

	(�; sP ) =

(k � 1)(1� F (�))F (sP )

A

�
E [sj s � �]� �� �

�
E
�
sj s � sP

�
� sP

��
�

(n� k)F (�)(1� F (sP ))

A

�
�� E [sj s � �]� �

�
sP � E

�
sj s � sP

���
; (6)

where A � (k � 1)(1� F (�))F (sP ) + (n� k)F (�)(1� F (sP )).

Proof of Lemma 1. We start the proof showing by contradiction that E[sjs �

�]� ���
�
E[sjs � sP ]� sP

�
and ��E[sjs � �]� �

�
sP � E[sjs � sP ]

�
must

be non negative when 	(�; sP ) = 0. Assume that one is negative. Then

	(�; sP ) = 0 implies that they are both negative. But under Assumption

1, if the �rst expression is negative, � > sP , and if the second expression is

negative, � < sP .
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As a consequence, under Assumption 1, 	 must be strictly decreasing in its

�rst argument and strictly increasing in its second when 	(�; sP ) = 0. Hence,

the lemma follows as 	 is continuous. �

Proof of Proposition 7.

Necessary proof. A local necessary condition that must be satis�ed by the

equilibrium bidding functions almost everywhere is the following: if marginal

changes in a bidder's bid change marginally her probability of winning, then

her conditional bid must be equal to the expected value of the good conditional

on the her private information and on the k-th highest bid of the other bidders

equals her bid.

Our proof starts with the study of a set of bids B where the condition above

binds. This set B is de�ned as the intersection of the interior of the range of

the bidding function of the informed bidder and the interior of the range of

the bidding function of the poorly informed bidders.

The �rst step is to show that B is not empty. Since the functions b�I and b�P
are by assumption continuous and strictly increasing, B can be empty if and

only if either b�I(s) � b�P (s) or b
�

P (s) � b�I(s). We only need to check that none

of these two possibilities can happen in equilibrium.

If k = 1 then it can be neither b�I(s) � b�P (s) nor b
�

P (s) � b�I(s). The reason

is that in these cases there are bidders that lose the auction with probability

one, and by assumption we rule out this possibility in equilibrium. If k = n

the case b�P (s) � b�I(s) is ruled out because of identical reasons.

If k > 1 it cannot be that b�I(s) � b�P (s). To see why, assume that this is

the case. Then, the informed bidder gets one unit with probability one and the

poorly informed bidders compete for the k � 1 units left. As a consequence,

the equilibrium strategies of the poorly informed bidder must be equilibrium

strategies of an auction with n poorly informed bidders, k � 1 units for sale

and without informed bidder. In this last case, we can use a proof similar to

that by Harstad and Levin (1986) to show that there is a unique equilibrium

strategy such that: b�P (s
P ) = E[vjsP(k�1) = sP(k) = sP ]. But given this bidding

function, types of the informed bidder with a very low signal have incentives to

bid below b�P (s). This is because the expected utility of winning the auction of

a type of the informed bidder s0 conditional on the price close enough to b�P (s)

is arbitrary close to the di�erence between the expected value conditional on

b(k) = b�P (s) (E[vjs = s0; sP(k) = s]) and b�P (s) (E[vjs = s0; sP(k) = sP(k+1) = s]),

that is strictly negative for s0 close enough to s.

Similarly, it can be shown that if 1 < k < n, it cannot be that b�P (s) � b�I(s).

In this case, types of the informed bidder with signals close enough to s have

incentives to rise their bids.

We continue our argument considering a generic bid b in B. The local

necessary condition implies that the type of the informed bidder that bids
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b must be such that b equals the expected value of the good conditional on

the private information of this type and on the k-th highest bid of the poorly

informed bidders equals the bid b. If we de�ne �(b) and �P (b) as the inverse

bidding functions of the informed bidder and of the poorly informed bidder

respectively, we can formalise this condition as:

b = E
�
vj s = �(b); sP(k) = �P (b)

�
: (7)

Similarly, the local necessary condition implies that the type of the poorly

informed bidders that bids b must be such that b equals the expected value of

the good conditional on the information of this type and on the k-th highest

bid of the other bidders equals the bid b. In order to simplify this condition

we distinguish two di�erent events: either (i) the k-th highest bid of the other

bidders is the bid of the informed bidder, or (ii) the k-th highest bid of the

other bidders is the bid of another poorly informed bidder. Both events happen

with strictly positive probability. The local necessary condition of the poorly

informed bidders is identical to the local necessary condition of the informed

bidder under event (i). This implies that the local necessary condition of the

poorly informed bidders must also be satis�ed under event (ii). We formalise

this last condition projecting on two events: the event the informed bidder's

bid is above b and the event the informed bidder's bid is below b:

b = P
�(�; �P )E

�
vj s � �(b); sP(k�1) = sP(k) = �P (b)

�
+

(1� P
�(�; �P ))E

�
vj s � �(b); sP(k) = sP(k+1) = �P (b)

�
: (8)

Using simultaneously equations (7) and (8) we get the condition: 	(�(b);

�P (b)) = 0. Thus, �(b) = �(�P (b)) for all b in B.

We next show that B = (b�P (s); b
�

P (s)). Suppose that the in�mum of B is

not b�P (s). Since b�I and b�P are continuous and strictly increasing, b�I(s) must

be strictly greater than b�P (s), but this contradicts that � is strictly increasing

and that �(s) � s according to its de�nition. Similarly, we can show that the

supremum of B must be b�P (s).

To complete this part of the proof it only remains to be shown that the

inequality (4) is necessary if k = 1 and the inequality (5) is necessary if k = n.

We only consider the case k = 1, the other case can be proved in a symmetric

way. Suppose that there is an s in [�(s); s] such that the inequality (4) is not

satis�ed. Then, it can be shown that the types of the poorly informed bidders

arbitrarily close to s are better o� bidding b�I(s) than their equilibrium bid.

SuÆcient Proof. We start with two remarks that we use to show that no type

of the bidders has incentives to lower her bid. The �rst remark is that a type of

one bidder does not have incentives to lower her bid if lower types do not have
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incentives to do so. The reason is that higher types of a bidder put higher value

on winning than lower types, they expect to pay the same price but they give

a higher expected value to the good. The second remark is that the necessary

proof conducted above showed that the conditions of the proposition assure

that the type s of the informed bidder and of the poorly informed bidders

do not have incentives to lower her bid and that no type of the bidders has

incentives to reduce her bid locally. Since we restrict attention to continuous

and increasing bidding functions, the two remarks above are enough to prove

that no type of no bidder has incentives to lower her bid.

Similarly, we can show that no type of no bidder has incentives to rise her

bid. �

Proof of Lemma 2.

(i) De�ne �(s) = s � E [ ~sj ~s � s]. Assumption 1 assures � is strictly in-

creasing for all s 2 [s; s]. If k = 1, then �(sP ) = ��1(��(sP )). Hence,

�(s) = ��1(��(s)) < ��1(�(s)) = s.

(ii) De�ne �(s) = E [sj s � s] � s. Assumption 1 assures � is strictly de-

creasing for all s 2 [s; s]. If k = n, then �(sP ) = ��1(��(sP )). Hence,

�(s) = ��1(��(s)) > ��1(�(s)) = s.

The other claims are trivial since 	(�; sP ) has a straight forward unique

solution in those cases. �

Proof of Corollary 2. To prove the corollary it is enough to show that the type

of the informed bidder that bids the same bid as a given type of the poorly

informed bidders in equilibrium increases when the number of units increases.

Since by Proposition 3 b�P (s
P ) = b�I(�(s

P )), the statement before follows if

�(sP ) shifts upwards when we increase k. We can use the same arguments

than in the proof of Lemma 1 to show that 	 is strictly decreasing in its

�rst argument and shifts upwards when we increase k around points such that

	(�; sP ) = 0. This completes the proof. �

Proof of Proposition 8.

(i) We use the function � de�ned in the proof of Lemma 2. Since �(s) = 0,

lim�!0 �(s) = lim�!0 �
�1(��(s)) = ��1(0) = s.

(ii) We use the function � de�ned in the proof of Lemma 2. Since �(s) = 0,

lim�!0 �(s) = lim�!0 �
�1(��(s)) = ��1(0) = s.

(iii) The �rst part follows directly from lim�!0 b
�

I(s) = s because of Propo-

sition 3. For the second part, notice that 	 is continuous in � and has

unique solution to 	(�; sP ) = 0 for all sP 2 [s; s] when � = 0. Then
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�(sP ) must satisfy in the limit 	(�(sP ); sP ) = 0. Given that in the limit

b�I(s) = s, we can write the condition before as 	(b; ��1(b)) = 0. This

implies that in the limit: F (��1(b)) = G�

U(b) for all s 2 [s; s], where

G�

U(b) is as de�ned in Proposition 4.

�
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