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I. Introduction

The neoclassical normative analysis of taxation, stemming from Ramsey [1927], soon

found application to the theory of optimal �scal policy.1 A �rst wave, along the lines

of Barro [1979], emphasized the welfare signi�cance of smoothing tax distortions across

time, while a second wave, along the lines of Lucas & Stokey [1983], added another di-

mension, that of smoothing tax distortions across di�erent states in a stochastic world.2

Public debt has thereby been identi�ed as an instrument through which the government

can acquire insurance from the private sector and stabilize the economy across both time

and states.

For what we are concerned in this paper, the literature on optimal �scal policy �

including Lucas & Stokey [1983], Zhu [1992], Chari, Christiano & Kehoe [1991, 1994,

1996], and Chari & Kehoe [1999] � has heavily relied on the assumption that public debt

is traded in state-contingent obligations, as if the government had access to a complete

set of Arrow securities. In reality, however, debt is mostly non-contingent. There is

hence a disturbing and uneasy gap between theory and reality, leaving one to question

how relevant and applicable the complete-markets paradigm of optimal �scal policy is

to a world where the government can issue only non-contingent debt. This question gets

indeed more pressing in the light of the recent work by Marcet, Sargent & Seppala [1999],

who consider an economy where the government has access only to risk-free one-period

debt, and �nd that optimal �scal policy in such an environment may di�er substantially

from what is predicted by the complete-markets paradigm.

Lucas & Stokey [1983, p.88] themselves admit that �the option to issue state-

contingent government debt is important: tax policies under uncertainty have an es-

sential `insurance' aspect to them.� But the caveat is precisely that, while critical in the

theory, in reality this option is not available.

So, is the existing theory just as irrelevant as it is silent about optimal �scal policy

under uncertainty with non-contingent debt?

The resolution we o�er is quite reassuring: Strikingly enough, we show that a rich

1The pertinent literature is immense, including Barro [1979, 1995, 1997], Bohn [1990], Chari & Kehoe

[1990, 1993, 1999], Chari, Christiano & Kehoe [1991, 1994, 1995, 1996], Hansen, Roberds & Sargent

[1991], Judd [1985, 1987], Kydland & Prescott [1980], Lucas & Stokey [1983], Mankiw [1987], Marcet,

Sargent & Seppala [1999], and Zhu [1992]. Barro [1989] o�ers an authoritative overview.
2Beyond Barro [1979], Pigou [1947] and Kydland & Prescott [1977, 1980] as well observed that

Ramsey's approach could be applied to the study of optimal �scal policy, by just reinterpreting the

di�erent goods in Ramsey's formulation as consumption at di�erent dates. And similarly, Lucas &

Stokey [1983] essentially reinterpreted Ramsey's economy in terms of an Arrow-Debreu economy, with

di�erent goods representing consumption in di�erent dates and di�erent states/events.
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maturity structure can substitute, even perfectly, for state-contingency of debt. Hence,

a world of non-contingent debt can be isomorphic to a world of contingent debt.

In particular, we consider a stochastic closed economy without capital like the one

in Lucas & Stokey [1983],3 but we allow for incomplete markets in the sense that public

debt can not be state-contingent, and we essentially preclude any type of ex-post lump-

sum transfers.4 All debt has to be held in certain, non-contingent obligations, but these

can be of various maturities. On the one hand, it is precisely the lack of contingent debt

that di�erentiates our analysis from Lucas & Stokey [1983] and the pertinent literature.

On the other hand, it is the possibility for long maturity that di�erentiates us from

Marcet, Sargent & Seppala [1999], and this will turn out to be critical in restoring the

validity of the complete-markets paradigm.

We �rst observe that any long maturity provides some state-contingency for the debt

burden, thanks to the endogenous state-contingency of the equilibrium term structure of

bond prices.5 We then show that the government can manipulate the term structure so as

to attain as much cross-state insurance as necessary to sustain with non-contingent debt

essentially any tax policy that would be sustainable with state-contingent debt. More

precisely, if the maturity structure is as rich as the number of possible continuation

states, then non-contingent bonds complete the markets for any generic policy.

A simple example reveals the intuition: Consider an economy facing booms and

recessions. Naturally, the Ramsey optimal policy dictates that the government runs a

countercyclical budget de�cit, coupled with a countercyclical debt burden and sustained

by a procyclical present value of surpluses. This scheme serves as optimal insurance,

transferring funds from booms to recessions. If the government had access to state-

contingent debt, it would implement this scheme simply by borrowing in a debt contract

that promises to pay a lot in a boom and little in a recession. But, what if instead debt is

non-contingent? Allow the government at date t to borrow in long-term debt, and assume

that short-term bond prices are procyclical.6 As soon as date t+ 1 arrives and a boom

or a recession is realized, the government can trade (buy) the outstanding past issues

of long-term bonds at the contemporaneous short-term price. The procyclicality of the

3On the way we also get a reduced form to the social planner's problem which provides microfoun-

dations to Barro's [1979] formulation.
4For example, we exclude default and ex-post state-contingent taxation of debt holdings or interest

payments, like that in Zhu [1992] or Chari & Kehoe [1999].
5Bohn [1990] and Barro [1997] identi�ed the risk-hedging possibilities in long-term debt, but their

analyses were limited by the fact that they adopted a partial-equilibrium portfolio-management frame-

work and treated interest rates as exogenous. Nobody whatsoever has examined the potential for

manipulating equilibrium interest rates or the implications of the endogeneity of bond prices.
6The procyclicality assumption is not restrictive � see Section IV.D and Footnote 34.
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latter then implies that the market value of the outstanding debt stock, or the e�ective

debt burden, is also procyclical, just as the complete-markets Ramsey optimum dictates.

So, the basic intuition is two-fold: First, via the design of the maturity structure of debt,

the government can exploit the cyclical properties of the term structure of interest rates,

and thereby condition its debt burden on the state of the economy as desired. Second, the

government can induce and manipulate the endogenous term structure via tax policies.

Thus, it is as if we had access to a complete set of Arrow securities.

Next, we know that introducing new assets in an incomplete-markets economy may

not always increase welfare. With the government reoptimizing, however, monotonicity

is ensured: Welfare at the third best always increases with market completeness.

Finally, a quite striking �nding is that the optimal maturity structure, which im-

plements the complete-markets Ramsey optimum with non-contingent debt, is invariant

over the business cycle: Debt issues are the same in peaks and recessions. This result

contrasts sharply both to common wisdom and to martingale models of taxation and

debt à la Barro [1979].

Our result is good news for the existing theory on optimal �scal policy, in that con-

tingent debt is just a valid parable. Similarly, our �nding could o�er a resolution of the

puzzle why we do not observe contingent debt while it appears to be so desirable for tax

smoothing.7 Apart from the moral-hazard issues involved in contingent debt, we may not

have contingent debt simply because we do not need it. To put it di�erently, if we need

more insurance along the business cycle, we can get it by expanding and appropriately

managing the maturity structure.8 And if, nonetheless, observed policy appears remote

from the Ramsey optimal one, then at least we know that this is not due to the lack of

contingent debt, but rather due to some other distortion.9 Besides, contingent debt may

face all the typical problems of complete contracts � e.g., di�culties in describing and

verifying the state. On the contrary, bond prices are directly observable in the market,

implying that the implementation of the endogenous contingency induced by the term

structure is immediate.10

Further, advocates of the complete-markets paradigm have suggested that some of

7Lucas & Stokey [1983, p.77] prompt us to �wonder why governments forego gains in everyone's

welfare by issuing only debt that purports to be a certain claim on future goods.�
8This may relates to Shiller's [1993] proposals for new macro markets: We may not need new markets

for contingent debt if the maturity structure is rich enough.
9For instance, the government may not know what the right policy is, or may not be benevolent, or

may not be able to commit to the optimal but time-inconsistent policy plan.
10The last observation suggests a way moral-hazard and asymmetric-information problems may be

mitigated when debt is held in long maturity rather than contracted as state-contingent obligations.

This is an interesting open question.

4



the desired contingency for the debt burden can be induced by countercyclical in�a-

tion and/or procyclical taxation of debt holdings. None of this, however, seems em-

pirically relevant, at least not to the extent that the optimal Ramsey policy would

require,11 so that the puzzle remained unanswered. Besides, raising asset taxes during a

recession may exacerbate moral-hazard issues, involve political complications, or under-

mine government reputation/credibility � not to mention that countercyclical in�ation

would aggravate recessions and that monetary policy appears to aim at independent tar-

gets. However, provided a su�ciently rich maturity structure, monetary and tax policies

can be disentangled from those considerations � and that's good news for both Alan

Greenspan and Larry Summers!

The layout of the paper is as follows: Section II sets up our model economy and

Section III proceeds to equilibrium analysis for any given tax policy. In Section IV we

�rst determine the sets of sustainable tax policies with and without contingent debt; we

next establish that the two sets coincide when the maturity structure is rich enough; and

we reconsider in detail our business-cycle example. Section V turns to the implemen-

tation of the complete-markets optimal Ramsey policy with non-contingent debt and

characterizes the optimal maturity structure. We conclude in Section VI with various

remarks on robustness, scope, applicability, and empirical implications. The Appendix

includes the proofs not appearing in the main text.

II. An Economy Without Capital

A. The Fundamentals of the Economy

We consider a standard neoclassical stochastic economy without capital. The funda-

mentals are identical to Lucas & Stokey [1983]. Labor is the only input in production,

and the technology is subject to productivity shocks. Government spending is exoge-

nous and stochastic, �nanced either by income taxes or by public debt. The government

has a single tax instrument, a �at tax rate on total income/output, which distorts the

labor-leisure choice.

Without loss of generality, we assume that the exogenous stochastic disturbances

of the economy (government spending, productivity, endowments, etc.) are generated

by a �nite-support stationary Markov process. We let S be the number of possible

11In a portfolio-management framework, Bohn [1990, p.1226] crudely estimates for the US that his-

torical in�ation would induce the desired cross-state �uctuation in the real debt burden, if the level of

nominal debt was as high as 2,680% of GDP. The actual �gure of about 50% suggests the in�ation-

induced contingency is rather negligible.
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states, S = f�1; :::; �Sg the �nite support of the Markov process (the state space),12

and �(:j:) : S � S ! (0; 1) the transition-probability function (the conditional p.d.f.).

We let st 2 S denote the state of the economy at date t; ts � (s0; ::::; st�1; st) 2 St a

typical history/path of states up to period t; or the event at t; and ftsg � Sj the set of

all possible continuation events j periods ahead of node (t;t s). Finally, by the Markov

property, Pr(ts; st+1jts) = �(st+1jst) and Pr(t+jsjts) = �(st+jjst+j�1):::�(st+1jst)8j:

Throughout we let Ct(ts); Lt(ts); Yt(ts); G(st); and � t(ts) denote aggregate consump-

tion, the labor share of time, total output, government spending, and the tax rate, re-

spectively, all as of date t and event ts = (s0; ::::; st):
13 The technology is given by a

stationary function F : R+ � S ! R+ ; with FL > 0 � FLL;
14 so that the economy's

resource constraint at date-event (t;t s) is:

Ct(ts) +G(st) = Yt(ts) = F (Lt(ts); st) (1)

We consider a labor-only economy �rst because that accords precisely with Lucas &

Stokey [1983], secondly because our economy can be loosely reinterpreted as the lim-

iting steady state of a growth economy, and �nally because of space limitations and

technical di�culties in incorporating capital.15 Apart from some hints we give on the

way, the extension to a capital economy remains an open project. Yet, by the end of

our analysis we expect the reader to agree that leaving out capital is not critical for our

main reasoning.

Finally, preferences are standard VonNeumann-Morgenstern, separable across time

and states, given by EtUt = U(Ct; 1 � Lt) + � � EtUt+1; where Et is the expectation

12The assumption of a �nite-support stationary Markov process is quite `ergotic', but stronger than

necessary. All we need for our main results is the number of possible continuation events, conditional

on the current event, to be �nite. Then our framework can allow, e.g., productivity and spending to be

non-stationary and have a growth trend.
13The realization of the endogenous random variables may depend on the whole history of states,

but the Markov assumption implies that the realization of government spending (like productivity,

endowments, and any other exogenous disturbances) is determined by the contemporaneous state only

� there is a �xed mapping G : S ! R+ such that Gt(ts) = G(st)8(t;t s):
14An example is the linear speci�cation Y = F (L; s) = A(s)L+ e(s); with A denoting labor produc-

tivity and e the endowment, both random.
15Consider the steady state of a neoclassical Solow-Cass-Koopmans economy, or a limiting Ak

endogenous-growth economy: Following Chamley [1986], Judd [1987], Jones, Manuelli & Rossi [1995,

1997], Zhu [1993], and Chari & Kehoe [1999], tax rates on capital should be zero either asymptotically

or even after �nite time. Labor taxes are then the only taxes raised, so we conjecture the steady-state

stochastic dynamics of such an economy to be quite close to the labor economy we consider here. This

is not exactly true because of the persistence introduced by capital, and it is exactly there that the

technical di�culty arises. See also Footnote 40 and the concluding Section.
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operator conditional on (t;t s) and U (C; 1� L) is the utility �ow out of consumption C

and leisure (1� L). So, as of date 0:

E0U0 =
1X
t=0

�t
X
ts

�(tsjs0) � U (Ct(ts); 1� Lt(ts)) (2)

where �(tsjs0) = Pr(tsjs0). The utility function U : R++ � (0; 1) ! R is standard

neoclassical: increasing, strictly concave, smooth, and assumed to satisfy the Inada

conditions that preclude corner solutions. Finally, should we choose to incorporate

preference shocks, U could be state-dependent.

B. The Household and the Government Budget, with Non-Contingent Debt

Let us index by (t; j;t s) a non-contingent bond of maturity j issued at date t and event

ts; and promising to pay one unit of consumable at date t + j; whatever the then state

st+j and the then event t+js. LetM � 1 be the maximum maturity; let j 2 f1; 2; :::;Mg;

and �nally let bt;j(ts) be the stock of maturity�j bonds issued at date-event (t;t s); and

pt;j(ts) the price as of (t;t s) for any bond maturing j periods ahead.

As a matter of convention, the government re�nances its debt every period,16 so

that the bonds market opens every period t with only issues dated t� 1 and closes with

only issues dated t. We can hence write the household budget at any date t and event

ts = (t�1s; st) as follows:

Ct(ts) +
MX
j=1

pt;j(ts)bt;j(ts) � [1� � t(ts)]Yt(ts) +
M�1X
j=0

pt;j(ts)bt�1;j+1(t�1s) (3)

with the convention that pt;0(:) = 1. The government budget, on the other hand, is:

G(st) +
M�1X
j=0

pt;j(ts)bt�1;j+1(t�1s) � � t(ts)Yt(ts) +
MX
j=1

pt;j(ts)bt;j(ts) (4)

Notice that
PM�1

j=0 pt;jbt�1;j+1 is the market value of old debt that has just matured or is

bought out to be re�nanced, while
PM

j=1 pt;jbt;j is the revenue from new debt issues. We

�nally denote by Pt = (pt;1; :::; pt;M) and Bt = (bt;1; :::; bt;M ) the term structure of bond

prices and the maturity structure of debt issues, respectively.

C. Complete Markets and State-Contingent Debt

16This convention is without any loss of generality because bonds issued at any di�erent dates but

maturing at a common future date are perfect substitutes, and thus, by simple arbitrage, they have a

common price.
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Above we assumed the government to issue only non-contingent bonds. If instead mar-

kets are complete and debt is state-contingent, then the traded bonds take the form of

Arrow securities that pay only in particular states/events. We index by (t; j;t s;t+j s)

securities of maturity j, issued at date-event (t;t s) and paying one unit of consumable

at date-event (t+ j;t+j s) and zero otherwise, and we let qt;j(t+1sjts) be their price. We

accordingly let dt;j(t+1sjts) be the contingent debt raised at (t;t s) in securities paying at

(t + j;t+j s). With state-contingent debt, the household and government budgets have

to be adjusted appropriately, but we defer this to Section IV.B.

III. The Competitive Equilibrium

A. De�nition and Characterization

We have fully determined the fundamentals of the economy � these are given as the

collection E = fS; �; s0; F; G; U; �; �B�1;Mg. A tax policy � = f� t(:)g
1
t=0 is a sequence of

mappings � t : S
t ! [0; 1): The de�nition of a competitive equilibrium, for a given tax

policy, is then as follows:

De�nition 1 An Incomplete-Markets Competitive Equilibrium for the economy

E consists of a bounded sequence of tax rates and bond issues, f� t(:); Bt(:)g
1
t=0, of con-

sumption, labor and output allocations, fCt(:); Lt(:); Yt(:)g
1
t=0 ; and bond prices, fPt(:)g

1
t=0 ;

such that: (i) Given f� t(:); Pt(:)g
1
t=0, fCt(:); Lt(:); Bt(:); Yt(:)g

1
t=0 maximizes the repre-

sentative consumer's utility in (2) subject to her budgets (3) and the technology (1);17

and (ii) given fPt(:); Yt(:)g
1
t=0, f� t(:); Bt(:)g

1
t=0 satis�es the series of government budget

constraints in (4), starting with given initial debt �B�1. We then also say that the tax

policy � = f� t(:)g
1
t=0 is sustainable.

As usual, given any tax policy, competitive equilibrium allocations are characterized

by the optimality conditions for the representative household's problem. Letting Uc(t) �

Uc(Ct; 1�Lt), Ul(t) � Ul(Ct; 1�Lt); and wt = FL(Lt; st); optimality requires that Ul(t) =

[1 � � t]wtUc(t) and Uc(t)pt;j = �jEtUc(t + j) 8j, at all dates and events � plus the

transversality conditions, limt!1 �tpt;jbt;j = 08j, or equivalently, limt!1 �t+jEtUc(t +

j)bt;j = 0 8j. As a standard result, these conditions are both necessary and su�cient.

B. Equilibrium Allocations in an Economy without Capital

17To be precise, we should have added the standard no-Ponzi-game constraint.
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In equilibrium, at any date and event, the MRS between consumption and leisure is

equal to the net-of-tax wage rate:

Ul(Ct(ts); 1� Lt(ts))

Uc(Ct(ts); 1� Lt(ts))
= [1� � t(ts)] � FL(Lt(ts); st) (5)

If we combine (5) with the resource constraint (1), we see that the contemporaneous state

st and the contemporaneous tax rate � t alone fully determine the static equilibrium allo-

cation (Ct; Lt) at any date and event. The same holds true for the resulting utility �ow

Ut and the primary surplus Rt � � tYt�Gt. Moreover, an increase in � t reduces both con-

temporaneous Ct and Lt,
18 and reduces Ut as well. Letting Ut(ts) � U (Ct(ts); 1� Lt(ts))

and Rt(ts) � � t(ts)Yt(ts)�Gt(ts); we have:

Proposition 1 (Static Allocations) For any generic19 stationary economy E with-

out capital, there are �xed mappings C�; L�; u�; R� : [0; 1] � S ! R such that, in any

competitive equilibrium and for any policy f� t(:)g
1
t=0: Ct(ts) = C� (� t(ts); st) ; Lt(ts) =

L� (� t(ts); st) ; Ut(ts) = u�(� t(ts); st); and Rt(ts) = R�(� t(ts); st); at all (t;t s). Further,

C�
� (� ; s) < 0 and L�� (� ; s) < 0 8� : Finally, u�� (0; s) = 0 > u�� (� ; s) > �1 = u�� (1; s)

8� 2 (0; 1).

The result about the utility �ow Ut(ts), simply translates the distortionary e�ects

of taxation in terms of equilibrium welfare, with u�� being the shadow cost or marginal

disutility of taxation. In fact, u�(� ; s) plays exactly the role of the welfare cost of

taxation as in Barro's [1979] formulation: The period-t social welfare �ow is decreasing

in the contemporaneous tax rate (u�� < 0), and the marginal social cost of taxation may

well be increasing in the rate itself (u��� < 0).20 We �nally emphasize that the above are

equally valid under either complete or incomplete markets.

C. Equilibrium Bond Pricing

As before, let qt;j(t+jsjts) be the price of an Arrow security issued at date-event (t;t s)

and paying at date-event (t+j;t+j s). Optimality on the household side implies that this

18The e�ect of the tax rate on leisure/labor is unambiguous because in general equilibrium there is

no income e�ect counteracting the substitution e�ect.
19In non-generic cases, the mappings may simply fail to be single-valued, meaning multiple equilibria.

From now on we ignore such multiplicity, without loss of generality.
20This di�ers from Barro [1979] is that the economy is expectably stochastic and the e�ciency costs

of taxation depend on the contemporaneous state of the economy. As seems intuitive, we expect the

marginal cost, u�� (:); to increase with government spending, to decrease with endowments, and to be

ambiguous with respect to productivity.
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is equal to the corresponding probability-weighted MRS in consumption: qt;j(t+jsjts) =
�j�(t+jsjts)Uc(Ct+j(t+js);1�Lt+j(t+js))

Uc(Ct(ts);1�Lt(ts))
: Letting qt(ts; st+1) � qt;1(ts; st+1jts) for the typical one-

period security, simple arbitrage then dictates that qt;j(t+jsjts) =
Qj�1

n=0 qt+n(t+ns; st+n+1).

Proposition 1 then provides us with the following:

Lemma 1 9 q�j : [0; 1)2�Sj+1 8j � 1 such that qt;j(t+jsjts) = q�j (� t(ts); �(t+js); st; :::; st+j)

8t+js 2 ftsg � Sj and qt;j(t+jsjts) = 0 otherwise. Also, Ucl � 0 or Ucl > FLUcc implies

@q�j (� ; �
0; :)=@� < 0 < @q�j (� ; �

0; :)=@� 0. Finally, lim�!1 q
�
j (� ; �

0; :) = 0; lim� 0!1 q
�
j (� ; �

0; :) =

+1.

We can now turn to the equilibrium pricing of non-contingent bonds. The house-

hold's optimality conditions dictate that pt;j(ts) equals the expected MRS in consump-

tion between t and t + j. That is:

pt;j(ts) =

P
t+js

�j�(t+jsjts)Uc (Ct+j(t+js); 1� Lt+j(t+js))

Uc(Ct(ts); 1� Lt(ts))
=
X
t+js

qt;j(t+jsjts) (6)

Lemma 1 then implies:

Proposition 2 (Bond Pricing) There are stationary pricing rules p�j : [0; 1)�[0; 1)jS�

S ! R+ (j = 1; :::;M), such that for all t,ts,j:

pt;j(ts) = p�j (� t(ts); � t+j(:jts); st) �
X
t+js

q�j (� t(ts); � t+j(t+js); st; ::; st+j) (7)

where � t+j(:jts) � f� t(t+js) : t+js 2 ftsg � Sjg denotes the continuation tax structure j

periods ahead of (t;t s). Further, unless consumption and leisure are too strong substi-

tutes, @p�j (� ; �
0; :)=@� < 0 < @p�j(� ; �

0; :)=@� 0. That is, @pt;j(ts)

@� t(ts)
< 0 < @pt;j(ts)

@� t+j(t+js)
8ts;t+j s; t; j,

while @pt;j(ts)

@�n(ns)
= 0 8ts;t+n s; t; j; n =2 ft; t+ jg:

So, the equilibrium price of a bond maturing j periods ahead depends only on (i)

the contemporaneous state, (ii) the contemporaneous tax rate, and (iii) the expected tax

structure at the maturity date. Further, the return typically increases with a rise in the

contemporaneous tax rate, and decreases with an expected tax increase at the maturity

date. The intuition is straightforward: An increase in the current tax rate reduces

current consumption and thereby increases the contemporaneous marginal utility of

consumption.21 It follows that the intertemporal MRS between t and t + j decreases

with the tax rate in t and increases with any tax rate in t + j.

21The increase in the tax rate also increases leisure, but, unless consumption and leisure are too

strong substitutes, the marginal utility of consumption still increases with the current tax rate.
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Parenthetically, the term structure satis�es the following recursive pricing rule:

pt;1(ts) =
P

st+1
qt(ts; st+1) and pt;j(ts) =

P
st+1

[qt(ts; st+1)pt+1;j�1(ts; st+1)] 8j � 2:

This means pt;1 = Et [MRSt;t+1] and pt;j = pt;1Et[pt+1;j�1] + Covt(MRSt;t+1; pt+1;j�1)

8j � 2, so that the covariance term measures the risk premium on maturity j. From a

portfolio-management perspective, these risk premia appear as a cost we have to incur

in order to exploit the term structure. However, if exploiting and manipulating the term

structure allows us to attain better tax smoothing, then consumption is stabilized across

states, which mitigates uncertainty and may in turn reduce risk premia on all maturities

� that's the beauty in general-equilibrium analysis!

D. Existence and Uniqueness of Equilibrium

Following Propositions 1 and 2, we have established that any given sustainable policy

induces a unique competitive equilibrium:

Proposition 3 (Competitive Equilibrium) For a generic economy E ; given any sus-

tainable tax policy f� t(:)g
1
t=0 ; a competitive equilibrium exists and is unique. The equi-

librium allocations fCt(:); Lt(:)g
1
t=0 and bond prices fPt(:)g

1
t=0 are as in Propositions 1

and 2.

We emphasize that uniqueness is meant in terms of allocations fCt(:); Lt(:)g
1
t=0 and

prices fPt(:)g
1
t=0 ; but there might well be multiple debt issues fBt(:)g

1
t=0 satisfying the

series of government budgets in (4). That is, the maturity structure may be indetermi-

nate. This is evident in the certainty case: What is then determinate is the value of net

debt trade, not the exact maturity structure � the set of equilibrium-consistent Bt is

indeed a continuum of dimensionM�1: We conjecture that this indeterminacy is partly

removed when we introduce uncertainty. The intuition is that di�erent maturities are

perfect substitutes in a deterministic economy, whereas they incorporate di�erent risks

and provide di�erent hedging opportunities in a stochastic world. Proposition 6 later

con�rms this conjecture.

IV. Sustainable Policies and the Maturity Structure

We now seek to characterize the set of sustainable tax policies with non-contingent debt.

To start with, consider the case of a deterministic economy with debt held in one-period

bonds. The government budget constraint at t is Rt � � tYt � Gt � ptbt�1 � bt; and the

series fRt � ptbt�1 � btg
1
t=0 is equivalent to the single intertemporal constraint at date

0:
P1

t=0

hQt

j=0 pj

i
Rt � �b�1: Thus, in the certainty case, a policy f� tg

1
t=0 is sustainable

11



if and only if it satis�es this single constraint. But, what about a stochastic economy?

Can we derive an analogous characterization of sustainable policies? And how then does

the access to state-contingent debt or the maturity structure matter?

A. Sustainable Policies under Incomplete Markets

Fixing a date-event (t;t s) and summing up the temporal budgets (4) over all continuation

date-events, we derive the intertemporal budget constraint:22

1X
n=0

X
t+ns2ftsg�Sn

qt;n(t+nsjts)Rt+n(t+ns) �
M�1X
j=0

pt;j(t�1s; st)bt�1;j+1(t�1s) (8)

This simply requires that the expected present value of surpluses (across all future dates

and events) covers the market value of the outstanding debt at that particular date-event.

In the light of Proposition 2, we observe that, when M > 1, at t the government

can a�ect the market value,
PM�1

j=0 pt;jbt�1;j+1; of its inherited debt, Bt�1 = [bt�1;j], by

manipulating Pt = [pt;j]; the contemporaneous term structure of bond prices. Further,

di�erent maturity structures Bt�1 issued at t�1 will induce di�erent cyclical behavior for

the period-t debt burden, depending on the endogenous cyclical behavior of Pt. Ex post,

this makes the inherited debt burden e�ectively contingent on the contemporaneous state

� observe that
PM�1

j=0 pt;j(t�1s; st)bt�1;j+1(t�1s) depends on st via bond prices. Ex ante,

this means that the government can induce the cyclical behavior in the term structure

and manage the maturity structure in such a way that its debt obligations/claims become

appropriately contingent on the state of the economy. This already sounds as if multiple

maturity can substitute for state-contingent debt.

Now, de�ne PVt(ts) as the left-hand side of (8), or, in recursive form, PVt(ts) =

Rt(ts) +
P

st+1
qt (ts; st+1)PVt+1(ts; st+1). That is, PVt(ts) is the present value of fu-

ture surpluses expected at (t; st). Evaluated in equilibrium, PVt(ts) =
1P
n=0

P
t+ns2ftsg�Sn

q�n(:)R
�(:) � PV � (st; f� t+n(:jts)g

1
n=0) ; so that it is a function of the current state and

the continuation tax policy. Using (8), we can now characterize the set of sustainable

policies with non-contingent debt as follows:

Proposition 4 (SPI) The policy � = f� t(:)g
1
t=0 is sustainable with non-contingent

debt, given initial debt �B�1 = [�b�1;j] 2 RM ; if and only if:

(i) The policy � satis�es the equilibrium intertemporal budget at date 0:

PV � (s0; �)| {z }
PV0

�

M�1X
j=0

p�j (� 0; � j(:); s0) � �b�1;j+1| {z }
p0;j ��b�1;j+1

(9)

22For the derivation see the proof of Proposition 4 below.
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(ii) At any date t � 1 and event t�1s 2 fs0g � St�1; there is some vector Bt�1(t�1s) =

[bt�1;j(t�1s)] 2 RM such that the continuation sequence f� t+n(:jt�1s)g
1
n=0 satis�es

PV � (st; f� t+n(:jt�1s; st)g
1
0 )| {z }

PVt(t�1s;st)

�
M�1X
j=0

p�j (� t(t�1s; st); � t+j(:jt�1s; st); st) � bt�1;j+1(t�1s)| {z }
pt;j(t�1s;st)�bt�1;j+1(t�1s)

(10)

for all st 2 S. We then let SPI denote the set of policies satisfying both (i) and (ii).

The intuition for (9) is clear: The present value of government surpluses at date 0

must �nance the inherited debt burden. The intuition for (10) is analogous. But, while
�B�1 is historically given, Bt�1(t�1s) is free to be chosen for every t � 1 and every t�1s.

To see how this relates to the `degree' of market incompleteness, it helps �rst to derive

the analogue of Proposition 4 for the case of contingent debt.

B. Sustainable Policies under Complete Markets

Suppose now that the government could issue bonds with face value contingent on all

possible future states/events. Let dt;j(t+1sjts) be debt obligations issued at date-event

(t;t s) and paying only at date-event (t+ j;t+j s), and let qt;j(t+1sjts) be their price. The

budget constraint for (t;t s) is:

G(st) +
M�1X
j=0

X
t+js2ftsg�Sj

qt;j(t+jsjts)dt�1;j+1(t+jsjt�1s) �

� � t(ts)Yt(ts) +
MX
j=1

X
t+js2ftsg�Sj

qt;j(t+jsjts)dt;j(t+jsjts) (11)

And the intertemporal budget under complete markets at (t,ts) is:

PVt(ts) �
1X
n=0

X
t+ns

qt;n(t+nsjts)Rt(ts) �
M�1X
j=0

qt;j(t+jsjts)dt�1;j+1(t�1+jsjt�1s) (12)

In analogy to Proposition 4, we can thus characterize the set of sustainable policies

under complete markets as follows:

Proposition 5 (SPC) The tax policy � = f� t(:)g
1
t=0 is sustainable with contingent

debt, given initial debt23 �B�1 = [�b�1;j] 2 RM ; if and only if � satis�es (9), the equi-

librium intertemporal budget constraint at date 0. We then let SPC denote the set of

policies satisfying (9) and hence being sustainable under complete markets.

23Without loss of generality we set d�1;j(jsj�1s) = �b�1;j ;8 js 2 f0sg� Sj ;8j. This makes the initial
debt position the same under complete and incomplete markets.
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We observe that the set of sustainable policies under complete markets is character-

ized by a single sustainability constraint, the initial intertemporal budget (??).24 Given

the initial debt burden, this constraint is independent of M . An immediate corollary is

as Lucas & Stokey [1983] observed:

Corollary 1 With state-contingent debt, the set of sustainable policies is independent

of M , and the maturity structure is underdetermined i� M > 1.

Next, compare the set of sustainable policies under contingent debt (SPC) with that

under non-contingent bonds (SPI). The initial intertemporal budget constraint (9) is

common to the two cases, but the lack of contingent debt imposes (10) for all (t;t�1 s) as

additional restrictions. The series of these constraints, or property (ii) of Proposition 4, is

therefore what fundamentally distinguishes the incomplete-markets case. The maturity

structure may now matter and Corollary 1 may now break down. But, how exactly does

a richer maturity structure (a higher M) a�ect the set of sustainable policies when debt

is non-contingent?

C. The Maturity Structure, Substituting for Contingent Debt

To get a �rst taste, consider the case that M = 1; meaning that debt is only in one-

period risk-free bonds. (10) then becomes: PVt(t�s; st) = bt�1;1(t�1s) 8 st 2 S. That is,

given history t�1s; there must be some bt�1;1(:) that matches the expected present value

of surpluses PVt(:; st) for all current states st 2 S: This amounts to a set of S equations,

one for each state st 2 S. But, bt�1;1(t�1s) itself is free, meaning one degree of freedom,

so that we are left with S� 1 independent constraints. Indeed, substituting away bt�1;1;

we restate (10) when M = 1 as PVt(:; st) = PVt(:; s
0
t) 8 st; s

0
t 2 S, meaning that present-

value surpluses must be equated across all current states. The latter highlights two facts:

First, the volume of debt works just as an auxiliary variable � at any (t;t�1 s) what

really matters is the cyclical behavior of Pt and PVt; the term structure and the present-

value surpluses, as induced in equilibrium by the underlying tax policy. Second, and

related, what the lack of contingent debt fundamentally does is to impose restrictions

on present-value surpluses across di�erent states, but not across time. That is, market

incompleteness restricts possibilities for cross-state insurance.

To further illuminate, let the state space be S =
�
�1; �2; :::; �S

	
. Now, �x a date

t � 1 and a past history t�1s: De�ne then Qt(t�1s) = [pt;j(t�1s; st)]
j=0;:::;M�1
st2S

as the S�M

24When this constraint is expressed in terms of equilibrium allocations fCt(:); Lt(:)g1t=0, it is com-

monly referred to as the �implementability constraint� � see, e.g., Chari & Kehoe (1999).
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matrix formed by setting its (i; j + 1)-th element to be the maturity-j price at date t

and event ts = (t�1s; �
i):

Qt(t�1s) =

2
66664

1 pt;1(t�1s; �
1) ::: pt;M�1(t�1s; �

1)

1 pt;1(t�1s; �
2) ::: pt;M�1(t�1s; �

2)
...

...
. . .

...

1 pt;1(t�1s; �
S) ::: pt;M�1(t�1s; �

S)

3
77775 #st (13)

Next, let Vt(t�1s) = [PVt(t�1s; st)]st2S be the S � 1 vector formed by the present-value

surpluses across all states st 2 S:

Vt(t�1s) =

2
64 PVt(t�1s; �

1)
...

PVt(t�1s; �
S)

3
75 #st (14)

The above are based on evaluating all pt;j(:) and PVt(:) at the equilibrium induced

by the underlying tax policy. Last, observe that Bt�1(t�1s) = [bt�1;j�1(t�1s)]j=1;::;M ;

the maturity structure issued at date-event (t � 1;t�1 s); is an M � 1 vector. With

Q = Qt(t�1s) and V = Vt(t�1s) so de�ned, we have:

Lemma 2 Property (ii) in Proposition 4 is equivalent to the following:

(ii) For all t � 1,t�1s 2 fs0g � St�1; V = Vt(t�1s) is spanned by Q = Qt(t�1s):

Vt(t�1s) 2 Span [Qt(t�1s)] (15)

Proof: (10) yields V � QB, but we ignore slackness without loss of generality: Resources may not be

wasted and V = QB de�nes the e�cient boundary of SPI. Then, V = QB for some B if and

only if V is a linear combination of the columns of Q, meaning V 2 Span[Q]. QED

Observe, in the light of Propositions 1 and 2, that any given f� t(:)g
1
t=0 maps to a

unique combination of V = Vt(t�1s) and Q = Qt(t�1s) for every (t,t�1s): And according

to Lemma 2, for the given f� t(:)g
1
t=0 to be sustainable, it is necessary and su�cient that

the induced V always be spanned by the contemporaneous Q: That is, the equilibrium

term structure of interest rates should �uctuate over the business cycle in such a way

that it can `support' the variation in contemporaneous present-value surpluses.

But, what exactly is the nature of the restrictions embodied in (15), and when does

the sustainability property (ii) bite? With S being the number of states, V is always

a vector in RS : With M being the number of maturities, Q is an S �M matrix, and

its span is necessarily a subspace of RS . So, pick a policy that is sustainable under
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complete markets, f� t(:)g
1
t=0 2 SPC. If it turns out that Vt(t�1s) =2 Span[Qt(t�1s)]

at some (t,t�1s), then f� t(:)g
1
t=0 =2 SPI , meaning that this particular policy is not

sustainable with non-contingent debt.

If rank [Q] = S; Span [Q] = RS and then V necessarily falls in Span[Q]. But if

rank[Q] < S, Span[Q] is always a proper subset of RS and we can then �nd a policy

inducing V =2 Span[Q]: The latter means SPI 6= SPC and is necessarily the case if the

maturity structure is shorter than the number of continuation states:

Lemma 3 (a) For any M and S, SPC includes SPI.

(b) If M < S, then SPI is a proper subset of SPC.

(c) If M < S, then SPI is not dense in SPC:

M < S ) Closure[SPI] $ SPC = Closure[SPC]

(d) For M � S; SPI is increasing in M , and:
~M < M � S ) Closure[SPI( ~M)] $ SPI(M)

Notice that part (b) above establishes that there are tax policies that are sustainable

with contingent debt but not with non-contingent debt whenever the maturity structure

falls short of the number of possible states. However, part (c) is more important because

it further excludes the possibility that the two sets SPC and SPI are `almost' equal. If

it were instead the case that SPI 6= SPC but Closure[SPI ] = SPC, then any policy in

SPC not belonging to SPI could still be approximated by some other arbitrarily close

policy in SPI . Part (c) excludes exactly this possibility whenever M < S. Finally, part

(d) means that a richer maturity structure expands the set of sustainable policies, in a

non-trivial sense, which in turn implies that the government can do better with a richer

maturity as long as M < S:

But, what if M � S; meaning that the maturity structure is as rich as the state

space? In this case we establish the converse to (c) above:

Lemma 4 If M � S, then SPI is dense in SPC:

M � S ) Closure[SPI] = SPC = Closure[SPC]

Proof: AssumeM � S � 2 (S = 1 is the trivial deterministic case) and take any � = f� t(:)g1t=0 2 SPC.
Form fVt(:); Qt(:)g1t=0 as in (14) and (13), evaluated in the equilibrium induced by � . Recall

that Qt(t�1s) is an S �M matrix: With M � S, we can have either (a) rank[Qt(t�1s)] = S for

all t � 1, t�1s 2 fs0g � St�1, or (b) rank[Qt(t�1s)] < S for some t � 1, t�1s 2 fs0g � St�1:
Consider �rst case (a): � In lieu of Lemma 2, � 2 SPC satis�es both sustainability properties

(i) and (ii) of Proposition 4 and thus belongs to SPI. � Next, consider case (b). � Let

Q = Qt(t�1s); V = Vt(t�1s), and Span[Q] $ RS at some (t;t�1 s). If still V 2 Span[Q]; we
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are just �ne, and � 2SPI . But, if V =2 Span[Q], then � =2SPI. Yet, in that case, for any

small " > 0; we can �nd �̂ = f�̂ t(:)g1t=0 2 SPI such that jj�̂ � � jj� < ". Here we choose

the distance induced by the norm jjxjj� � supt
�

1
St=2 jjxtjj

	
; with which we endow the space

of sequences x = fxtg1t=0 ; xt 2 RS
t

, for jjxtjj �
p
x0txt being the usual Euclidean norm. The

way to perturb � and construct �̂ is as follows: For the given � = f� t(:)g1t=0 2 SPC and the

corresponding fVt(:); Qt(:)g1t=0, we start to ascend the date-event tree until we �nd a (t;t�1 s)

such that rank[Qt(t�1s)] < S. For 1 � i � S and 1 � j �M � 1, consider the (i; j + 1) element

of Q = Qt(t�1s): By (7), this is pt;j(t�1s; �
i) = p�j

�
� t(t�1s; �

i); � t+j(:jt�1s; �i); �i
�
. Consider

now perturbing � t+j(:jt�1s; �i) slightly to some �̂ t+j(:jt�1s; �i) for only the particular (i; j; �i)

and the given (t,t�1s) � let in particular j� t+j(t+js) � �̂ t+j(t+js)j < " 8t+js 2 ft�1s; �ig�Sj :
This perturbation a�ects as of date t only the particular price pt;j(t�1s; �

i); or the particular

(i; j + 1) element of the matrix Q = Qt(t�1s) for the particular (t;t�1 s); and no other element

of this Q. It a�ects prices at t + j as well, but not any prices before the particular t: Thus,

� t+j(:jt�1s; �i) is an instrument with which we can control the corresponding pt;j(t�1s; �
i); or

the (i; j + 1) element in matrix Q = Qt(t�1s); for the particular t;t�1s; �
i; i;j, with no other

contemporaneous or past e�ect. But then, we can easily break any linear dependence in Q.

Having ensured full rank for Q = Qt(t�1s) up to the particular t; we next proceed ascending the

date-event tree until we hit another situation where V =2 Span[Q], and we then make an analogous

perturbation to restore full rank. Proceeding this way for t!1; we ensure that the perturbed

policy �̂ = f�̂ t(:)g1t=0 2 SPC has rank[Q̂t(t�1s)] = S; implying V̂t(t�1s) 2 Span[Q̂t(t�1s)]; at

all (t;t�1 s): And that means �̂ 2 SPI . What is more, by construction, j� t(ts) � �̂ t(ts)j < " at

all (t;t s); implying jj� t(:) � �̂ t(:)jj =
qP

ts
[� t(ts)� �̂ t(ts)]2 <

p
St" = St=2" at all t; and thus

jj� � �̂ jj� �supt
�

1
St=2 jj� t(:)� �̂ t(:)jj

	
< supt

�
1

St=2S
t=2"

	
= ": That is, the perturbation may be

arbitrarily small. � QED

The last lemma is quite strong: It tells us that, if the maturity structure is su�ciently

rich, in that M � S, then the set of sustainable policies with non-contingent debt

is essentially identical to that under complete markets! It means that any generic

policy from SPC falls into SPI as well, and any non-generic policy from SPC can be

approximated arbitrarily well by some policy in SPI .

This is so because, when M � S; non-contingent bonds generically complete the

markets and the lack of contingent debt then imposes no constraint whatsoever. And in

non-generic situations, the government can do with non-contingent debt almost as well

as with contingent debt, because it can manipulate the term structure of bond prices

and break the linear dependence across di�erent states by a small perturbation in the
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underlying tax policy.25 In manipulating pt;j(ts); the price of a bond of maturity j at

any date-event (t;t s), we have to use as an instrument not the contemporaneous tax

rate, but rather � t+j(:jts) � f� t+j(t+js)g
t+js2ftsg�Sj , the structure of taxes expected to

prevail at the maturity date.

In conclusion, combining Lemmas 3 and 4:

Theorem 1 (SPI and SPC) Consider an economy E without capital, and let S � 1

be the number of possible states and M � 1 the length of the maturity structure. Let

SPC denote the set of policies sustainable with contingent debt and SPI that with non-

contingent debt. Then:

� If M � S; then and only then SPI is equal to SPC up to a set of measure zero. That

is, any policy that is sustainable with contingent debt, either is sustainable itself with

non-contingent debt, or can be approximated arbitrarily well.

� If instead M < S; then and only then SPI is not dense in SPC. That is, there are

policies that are sustainable under complete markets but are remote from any policy that

is sustainable under incomplete markets. Further, SPI is then increasing in M .

The result may appear odd because it relies on comparing M , which is in time

units, with S; which is in state units: How can the state and the time domain be

comparable? A re�ection on the Arrow-Debreu complete-markets world provides the

resolution, because there time and states are utterly indistinguishable. All we have is an

abstract economy with many di�erent goods, one for every date and every event � in

that context, dates and events make no sense other than providing an arbitrary indexing

of goods. The ability then to make debt obligations contingent on both time and states

allows the government to `move' and transfer budget funds across both the time and

the state domain under no constraint other than the single initial intertemporal budget

constraint (9). So, the question is what happens when we deviate from the Arrow-Debreu

world to an incomplete-markets situation. What the lack of contingent debt does is to

restrict the ways the government can transfer funds across the state domain � these

cross-state constraints are embodied in sustainability property (ii) of Proposition 4 or

Lemma 2. We then showed that introducing a richer maturity structure relaxes the

restrictions over the state domain, and established that all the cross-state constraints

are generically redundant when M � S:26

25It is precisely the latter point, showing a generic perturbation in the equilibrium allocation to make

Q non-singular, which establishes the former point, that any generic equilibrium has a full-rank Q:
26As regards dynamic security trading, our result may relate to Harrison & Kreps [1979], Du�e &

Huang [1985], etc. But, to quote the latter [p.1339], �in all [that] literature, the takeo� point is a given
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When the maturity structure is rather short (M < S), the gap between S and M

is a rough index for market incompleteness: S �M are the non-redundant constraints.

However, how important economically the di�erence S �M can be, this is an empirical

question. The example in the next section suggests that, while no cross-state insurance

is possible with only risk-free short-term debt (M = 1), quite a lot can be attained by

just adding long-term debt (M = 2). We thus conjecture that even a short maturity

structure (smallM) may do pretty well. In the same spirit, our �nite state space should

be viewed as a reasonable approximation.27 In other words, a �nite maturity structure

can do just as well as a �nite set of state-contingent debt instruments. What is a `good'

approximation is an empirical question � an interesting one but beyond the focus of

this paper.28

Finally, recall our discussion in Section III.D about the indeterminacy of the matu-

rity structure.29 We then conjectured that part of the indeterminacy is removed in a

stochastic economy because di�erent maturities provide di�erent hedging opportunities.

Here is the con�rmation:

Proposition 6 (The Maturity Structure) The maturity structure is uniquely deter-

mined for a generic policy in SPI, if and only if M � S: If instead M > S, it is

underdetermined, with generically M � S redundancy degrees. If M = S and the policy

is generic, the corresponding maturity structure is:

Bt(ts) = Qt+1(ts)
�1Vt+1(ts) 8 t � 0; ts 2 fs0g � St (16)

D. An Example for the Business Cycle

We now treat in detail the example we �rst encountered in the Introduction. We consider

an economy that faces two states only � this is intended to capture the basic intuition

about taxation and debt management over the business cycle. Let the state space be

S = f�g; �bg. The `good' state, �g, or a peak, is identi�ed as the one where productivity,

set of security price processes,� which are presumed to span the continuation state space. Our result

instead exploits the very endogeneity of bond returns, and may be of independent interest to the �nance

literature, in that a given set of assets, the set of non-contingent bonds, completes the markets for any

generic equilibrium.
27Technically, any continuum-state economy can be approximated arbitrarily well by a discrete-state

economy.
28Simulations could help further evaluate the last points, but that is beyond our scope here.
29The indeterminacy discussed here should not be confused with that discussed in, say, Zhu [1992]

and Chari & Kehoe [1999]. There, debt is contingent and an indeterminacy arises because of the ex-post

lump-sum nature of state-dependent capital taxation.
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wages and pro�ts are all relatively high, and government expenditure relatively low. We

thus specify: F (:; �g) > F (:; �b), FL(:; �
g) > FL(:; �

b), and G(�g) < G(�b): To simplify,

the Markov state process is assumed symmetric and the shocks i.i.d., implying no per-

sistence � this means �(s0js) = 1
2
8s0; s 2 S: Preferences are separable and isoelastic in

C, so that Uc(C; 1� L) = C�� for � > 0.

We have not thus far de�ned or characterized an `optimal' tax policy, but it is

most natural to assume that it smoothes tax distortions and consumption both across

time and across states.30 It follows that output and consumption are relatively high in

good times, coupled with high tax revenues. With spending lower in peaks as well, the

government runs a countercyclical de�cit:31 Rt(t�1s; �
g) > Rt(t�1s; �

b) 8 t,t�1s. This in

turn implies a procyclical present value of surpluses:

PVt(t�1s; �
g) > PVt(t�1s; �

b) 8 t,t�1s (17)

Finally, given that consumption is relatively high in peaks, expected consumption growth

and hence interest rates are relatively low, meaning procyclical bond prices:32

pt;1(t�1s; �
g) > pt;1(t�1s; �

b) 8 t,t�1s (18)

The rationale for (17) should be clear: The government would like to insure across

states by transferring funds from peaks to recessions. This smoothing may or may not

be feasible � it depends on the debt instruments the government has access to. If

contingent debt were available, it would be easy: Just sell at t�1 contingent obligations

dt�1;1(t�1s; �
g) = PVt(t�1s; �

g) and dt�1;1(t�1s; �
b) = PVt(t�1s; �

b): If this were done, as

soon as period t arrives, the government would have to pay just dt�1;1(:; �
b) if it is a

boom, and as much as d1;t�1(:; �
g) if it is a recession. But, what if contingent debt is

not available?

For whatever M; we have Vt(t�1s) =
�
PVt(t�1s;�g)
PVt(t�1s;�b)

�
. If there were only one-period risk-

free debt (M = 1), then Qt(t�1s) =
�
1
1

�
and B = bt�1;1(t�1s) 2 R. The sustainability

constraint, V = QB; would then require PVt(:; �
g) = PVt(:; �

b) = bt�1;1(:). Just as we

had discussed earlier, M = 1 imposes a rigid constraint on �scal management and tax

smoothing: In each period, the present value of surpluses has to be equated across all

states. But, this contradicts a procyclical present value of surpluses, as in (17), which

characterizes the Ramsey optimum or any policy with enough smoothing. Thus, the

30In fact, whatever we assume here is consistent with the complete-markets Ramsey optimal policy.

This draws on Lucas & Stokey [1983], Chari & Kehoe [1999], and our Theorem 2.
31Besides, depending on the elasticity of labor supply, the tax rate may be countercyclical, so as to

encourage employment in recessions.
32For the proof of both (18) and (17) above, see Appendix. We may also show pt;2(:; �

g) > pt;2(:; �
b):
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desirable policy would not be sustainable with non-contingent debt of only one-period

maturity.

Let us now enrich the maturity structure to M = S = 2; allowing for both short-

term (j = 1) and long-term (j = 2) bonds. Then, the matrix of bond prices becomes

Q = Qt(t�1s) =
�1 pt;1(t�1s;�g)

1 pt;1(t�1s;�b)

�
: For this, (18) implies det(Q) = pt;1(:; �

b) � pt;1(:; �
g) <

0 (6= 0); so that it has full rank: rank[Q] = S = 2. The latter ensures that any vector

of present-value surpluses V = Vt(t�1s) 2 R2 falls into the span of Q = Qt(t�1s), and

Theorem 1 applies in all its beauty: The complete-markets Ramsey optimal policy is

generic and sustainable with non-contingent debt.

We can then apply Proposition 6 and compute the optimal maturity structure as:"
bt�1;1(:)

bt�1;2(:)

#
= 1

pt;1(:;�b)�pt;1(:;�g)

�
pt;1(:; �

b)PVt(:; �
g)� pt;1(:; �

g)PVt(:; �
b)

PVt(:; �b)� PVt(:; �g)

�
(19)

Given that prices and surpluses are procyclical, as in (18) and (17), (19) implies:

bt�1;1(t�1s) < 0 < bt�1;2(t�1s) 8 t,ts (20)

In words, the government lends in risk-free short-term bonds and borrows in risky long-

term bonds. To examine the rational behind this structure, consider what happens in

the period following the issue of this debt. At date t, short-term bonds (j = 1) issued at

t�1 are expiring and the government is receiving a certain revenue �bt�1;1(t�1s) > 0, an

amount independent of the date-t state st. This is essentially a countercyclical budget

revenue, because, compared to tax revenues and government spending, it is relatively

higher in recessions. On the other hand, long-term bonds (j = 2) issued at t � 1 have

one period to maturity as of date t, and may be traded at price pt;1(:; st). So, the gov-

ernment budget incurs an outlay �pt;1(t�1s; st)bt�1;2(t�1s) < 0; an amount endogenously

contingent on the date-t state, st; via short-term bond prices, pt;1. (18) and (20) imply

in particular �pt;1(:; �
g)bt�1;2(:) < �pt;1(:; �

b)bt�1;2(:) < 0; that is, a procyclical budget

outlay.33;34 In total, the proposed maturity structure induces a procyclical debt burden.

33An alternative rational for lending in short-term bonds, bt�1;1(:) < 0; is that it allows us to take

an even shorter position in the long-term market, inducing an even higher variation in the outlay

pt(:; st)bt�1;2(:) along the cycle.
34Procyclical short-term bond prices, meaning countercyclical short-term interest rates, might be

contradicted empirically. But we are comfortable with that, for two reasons: First, the example predicts

countercyclical interest rates because the state space is very coarse, so that on average there is reversion

rather than persistency in the state. If we had more than two states, or introduced capital, and

imposed some persistency over the business cycle, we could generate procyclical interest rates, and even

calibrate the cyclical behavior of the term structure. Second, if short-term bond prices were instead

countercyclical, we would simply reverse the optimal maturity structure, and lend rather than borrow

in long-term debt.
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And that is exactly the nature of desirable insurance along the business cycle.

V. The Optimal Policy with Non-Contingent Debt

So far we have examined the sets of sustainable policies, with contingent or non-contingent

debt, but we made no reference whatsoever to the objectives of the government. We

now turn to the optimal design of tax policy and debt management, assuming that the

government is benevolent and can credibly commit to its optimal plan.

A. Optimal Fiscal Policy: The Second and the Third Best

The social planner's problem consists of choosing, among the set of tax policies that

are sustainable under the particular market structure, the one that maximizes social

welfare. Thus, evaluating the equilibrium welfare induced by a policy � = f� t(:)g
1
t=0 as

E0U(�) =
P1

t=0

P
st2S

�(stjst�1)u
� (� t(ts); st) ; the second-best or Ramsey optimal

policy, under complete markets, is the argmax� fE0U(�) j � 2 SPCg : We similarly

de�ne the third-best policy, under incomplete markets and non-contingent debt, as

the argmax� fE0U(� ) j � 2 SPCg :
35 Observe that, while the second-best or Ramsey

optimal policy is subject only to the initial intertemporal budget constraint (9), the

third best faces in addition the spanning constraints (15) at all dates and events.

For the complete-markets case, Lucas & Stokey [1983] did not provide an existence

result. Nonetheless:

Proposition 7 (Ramsey Policy with Contingent Debt) Consider an economy E

without capital, under complete markets. Provided that the initial debt �B�1 is not too

high, a su�cient condition for the Ramsey optimal policy to exist is that the tax rate is

bounded above by some ~� < 1; or that lim�!1
@
@�

[U�
c (� ; :)R

�(� ; :)] <1.

What about the incomplete-markets case? Unfortunately, even with the tax rate

bounded below 1; the set SPI of sustainable policies with non-contingent debt may fail

to be compact.36 And if SPI is not compact, a �xed-point existence argument does

not apply. Nonetheless, if the second best both exists itself and is generic, and if the

35The quali�cation �second best� is due to the presence of distortionary (non-lump-sum) taxation.

The quali�cation �third best� re�ects the additional distortion introduced by market incompleteness

(the luck of contingent debt).
36In particular, if we take a convergent sequence of policies in SPI , their limit may fall out of SPI,

meaning that SPI need not be closed. Technically, this might be the case because the rank of the

matrix Q of bond prices may collapse as we take the limit of a sequence of policies in SPI .
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maturity structure is long enough (M � S), existence of the third best is a fortiori

ensured by Theorem 1, for then the second and the third best simply coincide:37

Corollary 2 Consider an economy E without capital, and suppose the second-best Ram-

sey policy exists. If the maturity structure is su�ciently rich, then with non-contingent

we can do almost equally well:

M � S ) sup� fE0U j � 2 SPIg = max� fE0U j � 2 SPCg

If further the Ramsey policy itself is generic, then the third best exists and coincides with

the second best.

So, either the complete-markets Ramsey policy is itself sustainable with non-contingent

debt, or it can be approximated arbitrarily well by some other policy in SPI . The lat-

ter is indeed ensured by the government's ability to manipulate equilibrium allocations,

thereby MRS's, and thereby equilibrium interest rates.

The importance of this result should be quite obvious: The literature on optimal

�scal policy has relied heavily on the assumption of contingent debt, an assumption

leaving an uneasy gap between theory and reality. The resolution we provide, however,

is quite reassuring. All the same can be achieved with non-contingent debt by appropri-

ately managing the maturity structure and if necessary manipulating the term structure.

What is critical about the alternative situation examined by Marcet, Sargent & Seppala

[1999] is that they do not allow for long-term debt (M = 1). In that case, there is no

possibility whatsoever for cross-state insurance. But, as soon as we introduce long-term

debt (M � 2), insurance opportunities expand, and this can help the government attain

the Ramsey outcome.

An interesting result is then the monotonicity between third-best welfare and market

completeness. It is well known that introducing new assets in an incomplete-markets

economy does not always increase equilibrium welfare � it depends critically on the

equilibrium response of prices. For a �xed �scal policy, the ambiguity still prevails. If,

however, the government optimally adjusts its policy to the new asset structure, the

prices respond in such a way that monotonicity is ensured:

Corollary 3 The third-best welfare, sup� fE0U j � 2 SPIg ; is non-decreasing in M; the

richness of the maturity structure.

B. The Optimal Maturity Structure: Time and State Invariance

37On the other hand, the characterization of the third-best whenM < S is an open question. Marcet,

Sargent & Seppala [1999] made the �rst step examining the case of M = 1, and our Propositions 1 &

4 and Lemma 2 may help formulate the problem for the more general case of 1 �M < S:
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The question that arises naturally is what is the maturity structure that implements

the Ramsey optimum with non-contingent debt, and how it should be managed over the

business cycle. A strong property of the Ramsey optimum is that the optimal tax rate

and the corresponding equilibrium allocation depend only on the contemporaneous state

and not on past history. So do the equilibrium interest rates and government surpluses,

implying in turn that the optimal maturity structure is invariant across all states and

dates:

Theorem 2 (Optimal Maturity Structure) Let f� t(:)g
1
t=0 be the Ramsey optimal

policy. Then, there are stationary mappings �� ; �C; �L; �pj; �R;PV : S ! R such that,

for all t � 1, t�1s 2 fs0g � St�1; and ts 2 S, the equilibrium has: � t(t�1s; st) =

��(st); Ct(t�1s; st) = �C(st); Lt(t�1s; st) = �L(st); Rt(t�1s; st) = �R(st); PVt(t�1s; st) =

PV (st); and pt;j(t�1s; st) = �pj(st) 8j � 1. Further, Vt(t�1s) = �V and Qt(t�1s) = �Q

for some �xed M � 1 vector �V and M � S matrix �Q. Finally, if M = S and if the

Ramsey optimal policy is generic, then the optimal maturity structure is time- and state-

invariant, given by:38

Bt(ts) = �B � �Q�1 �V 8 t � 0, ts 2 fs0g � St

Martingale models of taxation and debt à la Barro [1979], Bohn [1990], Hansen,

Roberds & Sargent [1991], etc., predict that the level of debt should be both persistent

and countercyclical � and common wisdom holds it so. But, this conviction is sharply

contradicted by our result above. It is indeed striking, and counterintuitive at �rst

glance, that the level of debt issued in any period should not correlate per se with the

level of debt inherited, and that the optimal maturity structure should be invariant over

the business cycle.39 But, what is the underlying rational?

In both peaks and recessions, independently of the current state or past history, we

issue the same amount of short-term and long-term debt. All the required cross-state

insurance is then attained via the cyclical variation in the e�ective debt burden, thanks

to the equilibrium �uctuation of the term structure. There is thus no need to introduce

any persistence in tax policy, nor in debt management. The optimal maturity structure

in a given date-event is designed with the focus not on contemporaneous budgetary

needs, but rather on the next-period cyclical variation in interest rates and present-

38This result requires that the Ramsey policy be generic, so that �Q has full rank. We conjecture the

Ramsey policy to be generic for generic economies.
39Observe, however, that primary de�cits and net borrowing, �Rt(t�1s; st) = � �R(st); may well be

countercyclical.
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value surpluses � that is, Bt is designed to match Qt+1 and Vt+1. With the latter being

stationary, the maturity structure is invariant along the business cycle.40

On the other hand, as regards comparative statics, the optimal structure �B � �Q�1 �V

is dependent on s0 and B�1; the state prevailing and the debt inherited at the time that

the optimal plan is �rst designed, as well as on the underlying stochastic process for

government spending and productivity. For instance, it is a safe conjecture that a higher

initial debt, B�1, or an increase in the expected stream of government expenditure,

captured by an upward shift in G(:); implies a higher level of optimal debt, Bt(ts) = �B;

along all the optimal plan. Similarly, the optimal tax rule, ��(:), may shift upwards with

an increase in B�1 or G(:).

The last observation relates to what we said before about martingale models of tax-

ation and debt: When we set the optimal policy plan, we anticipate that government

expenditures and tax revenues will �uctuate over the business cycle, and we design the

optimal maturity structure so as to smooth out these �uctuations. That is, any vari-

ation in revenues and expenditures is automatically absorbed by the counterbalancing

variation in the e�ective debt burden. Taxes and debt thus do not follow a martin-

gale, but rather inherit the persistence properties of the exogenous state process of the

economy.41 It is only a change in the fundamentals, a sudden shift in the underlying

shock-generating processes, that brings a permanent shift in policy � and the latter

would be reminiscent of the �random-walk� result. Thus, if a war is an unanticipated

event, it should be �nanced with unusually large de�cits and should induce a shift in

the policy plan, but an ordinary recession may not justify higher debt issues.

40If we introduce capital, Theorem 2 has to be modi�ed as follows: At the Ramsey optimum, tax

rates and equilibrium allocations and prices are contingent on (s; k); the contemporaneous state and

the capital stock. And then V and Q depend on k but not on s: V = �V (k) and Q = �Q(k); implying an

optimal maturity structure �B(k) = �Q(k)�1 �V (k). Conditional on investment k; this is again invariant

over the cycle. A immediate question is then whether �B(k) is monotonic: Bond prices should be

increasing as an economy grows, so that �Q(k)�1 �falls� with k: Because MRS's fall due to diminishing

returns, for given budget surpluses, the present value �V (k) should also fall, making �B(k) to fall with

k. On the other hand, a richer economy is expected to raise higher surpluses in the future, which may

drive up �V (k) and hence �B(k). Therefore, it is not clear how debt issues should behave over the cycle,

or as the economy grows. We conjecture that, if diminishing returns are weak, then �B(k) is increasing

in k and thus debt issues are procyclical � in an Ak economy, e.g., �B(k) has to be homogenous in

k: In any case, even in a capital economy, the basic rationale is the same: The current state does not

matter per se � if it matters, it matters only through expectations about future interest rates and

future present-value surpluses.
41This last point has been emphasized by Chari, Christiano, and Kehoe.
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Finally, as regards the nature of the optimal maturity structure, a taste was given

by the example of Section IV.D: It pays to borrow in the maturities with countercyclical

returns and lend in the ones with procyclical returns. How big a position should be

taken in each maturity will critically depend on the nature of uncertainty. To give an

example, suppose that `good times' are more probable than `bad times'. It then pays

to take a big position in both the short-term and the long-term market. This way,

the government essentially rolls over the same debt burden as long as the times are

good. When times turn bad, however, bond prices fall, and the large inherited stock of

long-term obligations implies a large drop in the debt burden.

At a more sophisticated level, it is quite interesting to run calibration exercises: The

complete-markets Ramsey equilibrium could �rst be simulated along the lines of Chari

& Kehoe [1999], and then our formula (16) could be used to `translate' the outcome to

a non-contingent-debt world and simulate the optimal maturity structure. This is left

as a future project.

C. Optimality and Time Consistency

So far we have assumed that the date-0 government can credibly commit to the optimal

policy plan. If, however, the government can set and reset tax policies sequentially, we

run into the standard time-inconsistency problems raised by Kydland & Prescott [1977,

1980].42;43

Reputation o�ers the typical resolution both for default or capital levies, and for tax

policies.44 We point out that, as in Theorem 2, the optimal tax scheme is stationary:

��(:) is a simple time-invariant function of the contemporaneous state. In particular, a

�xed progressive tax system may be close to the optimal scheme. This means that a

42Lucas & Stokey [1983] partly resolved this problem through the maturity structure but thanks to

state-contingent consoles. The latter are not available in our (theoretical or real) world, and thus their

argument does not apply. Besides, neither Lucas & Stokey o�ered a complete resolution to the time-

inconsistency issues that are intrinsic to �scal policy. After all, they also had to preclude debt default

or capital levies a priori � thanks to some unmodeled commitment mechanism.
43The relevant externality (incentive incompatibility) works precisely through the term structure:

The government at t issues debt in bonds whose prices, Pt; depend on both the current tax rate � t and

the next-period tax rate, � t+1. In assessing the optimal � t+1; the period-t government would internalize

the e�ect of � t+1 on Pt. The government at t + 1; however, may ignore the e�ect of � t+1 on past

realized Pt. Nonetheless, a possibility of mitigating the problem arises when M > S : We then have

M � S degrees of indeterminacy in debt issues which can help realign incentives across di�erent dates

and states.
44The relevant literature includes Stokey [1989, 1991], Chari, Kehoe & Prescott [1989], Chari & Kehoe

[1990, 1993], Marcet & Marimon [1993], and Benhabib, Rustichini & Velasco [1999].

26



deviation from the optimal rule may be easily detectable, the implicit `social contract' is

simple to `write', and thus reputation enforcement may work pretty well. Other explicit

commitment devices (like constitutional constraints, time delays in implementing tax

changes, etc.) may also help.

Besides, our main result (Theorem 1) is about the set of feasible policies: Any

policy that is sustainable with state-contingent debt can be sustained as well with non-

contingent debt, provided an appropriate maturity structure � in this, commitment

is irrelevant. Whether and how a society resolves time-inconsistency problems is a

compelling question, but it is clearly beyond the scope of this paper.

VI. Concluding Remarks � Discussion

A. Empirical Implications

As regards the empirical implications of our analysis, we distinguish two relevant ques-

tions: The �rst refers to testing our main result (Theorem 1), namely the possibility

of substituting for contingent debt through the maturity structure and potentially at-

taining the Ramsey optimum. The second is to test whether the observed policy is the

Ramsey optimal one.

In answering the �rst question, we need to explore the cyclical properties of the term

structure of bond prices and test how they are a�ected by government policies. If we get

empirical counterparts for S and rank(Q); and observed time series suggest rank(Q) =

S, then historically there has been a potential for substantial cross-state smoothing. But

even if this test fails, nothing rules out that there was room for manipulating the term

structure so as to attain the desired cyclical behavior in bond prices.

The second question asks whether the theoretical optimal policy accords with the

observed one, assuming that the maturity structure has been rich enough. In the light

of Theorem 2, our analysis provides a new test for that old question: Test whether debt

issues at any given maturity have been acyclical and uncorrelated. If we generalize to

allow for capital, the relevant implication is that all variation in debt should be explained

by the variation in capital investment. Controlling for the latter, debt issues should be

invariant.

Another study could assess the relation between e�ciency in smoothing tax distor-

tions and richness of maturity structure in a panel of countries: Economies with a richer

maturity structure should ceteris paribus be more stable.
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Testing these empirical implications is left for future research.45 It was not the point

of our paper, after all, to test the complete-markets paradigm empirically.

B. Robustness, Scope, and Applicability

Our model economy is a standard closed neoclassical economy without capital, and the

set-up of optimal taxation is fairly standard as well. There is a single in�nite-horizon rep-

resentative private agent, so that we can abstract from both intra- and inter-generation

redistribution issues. The government is benevolent and all politicoeconomic consider-

ations are set aside. In this, we follow Lucas & Stokey [1983], with the fundamental

modi�cation that we do not allow for state-contingent debt.

Our theoretical economy was closed. Consider instead the other extreme, of a small

open economy with free access to an international asset market and perfect capital mobil-

ity: Such an economy faces completely exogenous interest rates, and the term structure

is independent of domestic �scal policies.46 Many open economies, however, are su�-

ciently near the closed-economy paradigm, because the government can a�ect domestic

interest rates via, say, tax policies or capital controls. In addition, big economies like

the US or the EU could possibly manipulate even international prices.47 Either way,

openness can help smooth consumption through external aggregate insurance, but our

own argument will be valid to the extent that the government can manipulate domestic

interest rates.

Government expenditure was taken as exogenous, but our analysis can be readily

extended to incorporate endogenous government spending over the business cycle.

Our economy, just like that of Lucas & Stokey [1983], had no capital. The extension

of Lucas & Stokey's analysis to a complete-markets economy with capital has been well

explored.48 Regarding now our own argument, what we need is that the government can

45Another related test is whether the term structure of bond prices can reveal, or predict, the con-

temporaneous government spending. However, a failure of this test does not necessarily contradict

our argument: The term structure depends on the contemporaneous state, but, as long as the state

combines government expenditure with other (observed or non-measurable) disturbances, bond prices

will be a noisy only statistic for government expenditure. It is of independent interest, nonetheless, to

investigate how well the term structure predicts government spending and productivity in the economy.
46In terms of our model, the matrix Q = Qt�1(t�1s) is exogenous, and will fail to have full rank if

the country faces idiosyncratic risk.
47Work in progress explores the idea that a big country could get rid of its idiosyncratic risk by

manipulating international bond prices, with no need for contingent bonds.
48See Zhu [1992], Chari, Christiano & Kehoe [1991, 1994, 1995], and Chari & Kehoe [1999]. The

results about the taxation of capital are reminiscent of Chamley [1986], Judd [1987], and Jones, Manuelli

& Rossi [1993, 1997].
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manipulate the allocation of resources and thereby the intertemporal MRS's � through

tax or other policies. The rationale seems to apply even when there is capital, and we

thus expect our main results to be robust to such an extension.

The equilibrium pricing of bonds is along the lines of standard general-equilibrium

asset pricing and the CAPM literature that built on Lucas [1978]. To the extent, then,

that the government can manipulate competitive allocations by use of some policy in-

struments, it can also manipulate the term structure of interest rates.

Finally, as regards time-consistency considerations, we repeat that Theorem 1 is

not dependent on the availability of a commitment technology. The same reasoning

suggests that our result is equally robust to redistribution or politicoeconomic concerns:

The latter refer mostly to the objectives of the government, not to the set of feasible

policies.

In conclusion, the two critical elements in our argument are, �rst, that interests

rates are endogenous in a CAPM-like way and, second, that the government has some

instruments with which it can manipulate marginal rates of intertemporal substitution.

Provided so, the government can attain through an appropriate maturity structure as

much insurance as that o�ered by a complete set of Arrow securities and thereby sustain

the complete-markets Ramsey policy with only non-contingent debt.

So, a main lesson from this paper � and this is quite reassuring for the pertinent

literature � is that the complete-markets paradigm of optimal �scal policy is quite

relevant for a world with non-contingent debt. The other striking result � and this

contradicts common wisdom and martingale models of debt � is the optimality of a

state-invariant maturity structure, meaning acyclical and uncorrelated debt issues.

Harvard University
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Appendix: Proofs

Proof of Proposition 1: Consider the non-linear system Ul

Uc
(C; 1� L) = [1 � � ]FL(L) and

C +G = F (L) in x = (C;L) 2 R+ � (0; 1); and let x(� ) be the set of solutions, for given � 2 [0; 1): The

�rst best would be x(0); the point(s) where an indi�erence curve is tangent to the production frontier,

meaning Ul

Uc
= FL: For � > 0; x(� ) is simply the point(s) on the trasformation frontier whereby the

indi�erence curve crosses with Ul

Uc
= [1�� ]FL:With preferences being convex and smooth and satisfying

the Inada conditions, x(:) is non-empty-valued, convex-valued, and upper hemicontinuous. It may yet

fail to be single-valued. However, for any generic U or F; the points in x(� ) have to be isolated. Together

with convexity, this implies that x(� ) is a singleton. Thus, for any generic economy, we solve (5) and (1)

for Ct(ts) and Lt(ts) as single-valued functions of st and � t(ts) alone: De�ne C
�; L� : [0; 1)�S !R such

that: Ul

Uc
(C�(� ; s); 1� L�(� ; s)) = [1 � � ]FL(L

�(� ; s); s) and C�(� ; s) + G(s) = F (L�(� ; s); s) 8(� ; s):
By the IFT (implicit function theorem), assuming U and F smooth, it follows that C�(:) and L�(:) are

continuously di�erentiable in � , with:�
@C�=@�
@L�=@�

�
=

"
UcUcl�UlUcc

U2
c

�UcUll+UlUcl�(1��)FLLU
2
c

U2
c

1 �FL

#�1 �
�FL
0

�
= ::: = D � �F 2

L
FL

�
where 1=D � det

"
UcUcl�UlUcc

U2
c

�UcUll+UlUcl�(1��)FLLU
2
c

U2
c

1 �FL

#
:

Next, notice that:
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U3
c =D = Uc[UcUll � UlUcl + (1� � )FLLU

2
c ]� UcFL[UcUcl � UlUcc]

� Uc[UcUll � UlUcl]� UcFL[UcUcl � UlUcc] since FLL � 0 < Uc

� Uc[UcUll � UlUcl]� (1� � )FLUc[UcUcl � UlUcc] since 1� � � 1

= Uc[UcUll � UlUcl]� Ul[UcUcl � UlUcc] since Ul=Uc = (1� �)FL

= U2
cUll + U2

l Ucc � 2UcUlUcl < 0 by strict quasiconcavity of U(:)

Hence, D < 0; implying
�
@C�=@�
@L�=@�

�
= DFL

�
FL
1

�
< 0 . Also, L�(1; s) = C�(1; s) = 08s: We next de�ne

u� by u�(� ; s) � U (C�(� ; s); 1� L�(� ; s)) : It follows that u� is continuously di�erentiable in � ; with

@u�

@� =
�
Uc

�Ul

�0�@C�=@�
@L�=@�

�
= ... = (�DFL)(Ul � UcFL). Since D < 0 as shown above, and since Ul �

(1 � � )FLUc = 0 by (5), we have � > 0 ) Ul � UcFL < Ul � (1 � � )FLUc = 0 ) @u�

@� < 0 while

� = 0 ) @u�

@� = 0. Further, lim�!1 c(� ; s) = 0; and then u�� (1; s) = �1 follows from the Inada

condition limC!0 Uc(C; 1�L) =1. Next, for the surplus R(ts) � � t(ts)Yt(ts)�G(st) we de�ne R
� as

R�(� ; s) � �F (L�(� ; s); s)�G(s): QED

Proof of Lemma 1: In equilibrium, Ct(ts) = C�(� t(ts); st) and Lt(ts) = L�(� t(ts); st), as in

Proposition (1). Letting U�
c (� ; s) � Uc (C

�(� ; s); 1� L�(� ; s)) and js = (s0; :::; sj); de�ne q
�
j (� ; �

0;j s) �
��j�(sj jsj�1):::�(s1js0)U

�

c (�
0;sj)

U�

c (�;s0)
: As in the main text, qt;j(t+jsjts) =

�j�(t+jsjts)Uc(Ct+j(t+js);1�Lt+j(t+js))
Uc(Ct(ts);1�Lt(ts))

:

Using �(t+jsjts) = �(st+j jst+j�1):::�(st+1jst) for all t+js 2 ftsg � Sj and �(t+jsjts) = 0 otherwise,

we hence get qt;j(t+jsjts) = q�j (� (ts); � (t+js); st; :::; st+j) for all t+js 2 ftsg � Sj and qt;j(t+jsjts) = 0

otherwise. Next,
@q�j (�;�

0;s0;:::;sj)

@� = � q�j (�;�
0;s0;:::;sj)

U�

c (�;s0)
� @U�

c (�;s0)
@� and

@q�j (�;�
0;s0;:::;sj)

@� 0 = +
q�j (�;�

0;s0;:::;sj)

U�

c (�
0;sj)

�
@U�

c (�
0;sj)

@� 0 : Bby de�nition of U�
c (� ; s);

@U�

c (�;s)
@� =

�
Ucc

�Ucl

�0�@C�=@�
@L�=@�

�
= DFL

�
Ucc

�Ucl

�0�FL
1

�
= DFL(FLUcc �

Ucl). Since D < 0 (see the proof of Proposition 1) and Ucc < 0; a su�cient condition for @U�
c (� ; s)=@� >

0 is that Ucl > FLUcc; meaning that consumption and leisure are either complements or not too-strong

substitutes. And then,
@q�j (�;�

0;:)

@� < 0 and
@q�j (�;�

0;:)

@� 0 > 0: That is, @Uc(t)
@� t

> 0 implying
@qt;j (t+jsjts)

@�t(ts)
< 0;

and @Uc(t+j)
@�t+j

> 0 implying
@qt;j (t+jsjts)
@�t+j(t+js)

> 0: Finally, lim�!1 q
�
j (� ; �

0; :) = 0 and lim� 0!1 q
�
j (� ; �

0; :) = +1
follow from the fact that lim�!1 C

�(� ; s) = 0 and the Inada condition limC!0 Uc(C; 1�L) = 0. QED

Proof of Proposition 2: It follows from Lemma 1 and (6), by de�ning p�j as p
�
j (� (s); �

0(:js); s)) �P
s02Sj qj(� (s); �

0(s; s0); s0): Recall that
@U�

c (�;s)
@� > 0 and thus

@pt;j (ts)
@� t(ts)

< 0 <
@pt;j (ts)

@� t+j(t+js)
hold if Ucl > 0;

or i� Ucl > AUcc. QED

Proof of Proposition 3: Follows immediately from Propositions 1 and 2. QED

Proof of Proposition 4: Letting Pt = (pt;1; :::; pt;M ) and Bt = (bt;1; :::; bt;M ); we can rewrite

the temporal budget (4) more compactly as Gt +
�
1
Pt

�0� I
o0

�
Bt�1 � � tYt + P 0

tBt; or Rt � � tYt � Gt �
P 0
tBt �

�
1
Pt

�0� I
o0

�
Bt�1 where a prime (0) denotes vector transpose, I is the M � M identity matrix,

and o0 a raw of M zeros. Also, given f� t(:)g1t=0 ; throughout this proof we let Rt(ts) = R�(� t(ts); st);

Uc(t;t s) = U�
c (� t(ts); st); qt(ts; st+1) = qt;1(ts; st+1jts) and 8j qt;j(t+jsjts) =

�j�(t+jsjjs)Uc(t+j;t+js)
Uc(t;ts)

=

q�j (� t(ts); � t+j(t+js); st; :::; st+j) ; at all t;t s: First suppose that f� t(:)g1t=0 is sustainable (in the sense

of De�nition 1) and let us prove it has to satisfy both (9) and (10): � For any t; n � 0, �x a node

(t+n;t+n s) and consider the temporal budget; from (4), Rt+n(ns) �
�

1
Pt+n(t+ns)

�0� I
o0

�
Bt+n�1(t+n�1s)�

Pt+n(ts)
0Bt+n(t+ns):With qt;0(:) � 1, multiply both sides with qt;n(t+nsjts) = �n�(t+nsjts)Uc(t+n;t+ns)

Uc(t;ts)
=
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Qt+n�1
j=t qj(js; sj+1); then for given ts = (t�1s; st) 2 ft�1sg � S and for �xed t + n sum up over all

t+ns 2 ftsg � Sn, to get:P
t+ns

qt;n(t+nsjts)Rt+n(t+ns) �
�P

t+ns
qt;n(t+nsjts)

n
�Pt+n(t+ns)0Bt+n(t+ns) +

�
1

Pt+n(t+ns)

�0� I
o0

�
Bt+n�1(t+n�1s)

o
for all (t + n;t+n s). Next sum up over all n 2 f0; 1; :::g; rearrange the right-hand side, and use the

arbitrage condition qt;n+1(t+ns; st+n+1jts) = qt;n(t+nsjts)qt+n(st+n; st+n+1), to get:P1
n=0

P
t+ns

qt;n(t+nsjts)Rt+n(t+ns) �
�P1

n=0

P
t+ns

qt;n(t+nsjts)
n�

1
Pt+n(t+ns)

�0� I
o0

�
Bt+n�1(t+n�1s)� Pt+n(t+ns)

0Bt+n(t+ns)
o

=

=
�

1
Pt(ts)

�0� I
o0

�
Bt�1(t�1s) +

P1
n=0

P
t+ns

fqt;n(t+nsjts)[�Pt+n(t+ns)0Bt+n(t+ns)+

+
P

st+n+1
qt+n(st+n; st+n+1)

�
1

Pt+n+1(t+n+1s)

�0� I
o0

�
Bt+n(t+ns)]g =

=
�

1
Pt(ts)

�0� I
o0

�
Bt�1(t�1s) +

P1
n=0

P
t+ns

qt;n(t+nsjts)�
�
n
�Pt(ts)0 +

P
st+1

qt(st; st+1)
�

1
Pt+1(t+1s)

�0� I
o0

�o
Bt+n(t+ns)

Above we used limt!1

P
ts
q0;t(tsj0s)Pt(ts)0Bt(ts) = 0, which is ensured by the no-Ponzi-game and

transversality conditions. Next, pt;j(ts) =
P

st+1
[qt(st; st+1)pt+1;j�1(ts; st+1)]; 8j; can be written more

compactly as Pt(ts)
0 =

P
st+1

qt(st; st+1)
�

1
Pt+1(t+1s)

�0� I
o0

�
. So, the last term above vanishes. Therefore:P1

n=0

P
t+ns

qt;n(t+nsjts)Rt+n(t+ns) �
�

1
Pt(ts)

�0� I
o0

�
Bt�1(t�1s) =

PM�1
j=0 pt;j(ts)bt�1;j+1(t�1s)

Given any t and t�1s; and thus given Bt�1(t�1s), the last condition should hold at all ts = (t�1s; st) 2
ft�1sg�S; this proves that any sustainable policy must satisfy (10) for all (t;t�1 s): Evaluating at t = 0

and B�1(�1s) = �B�1, we get (9) as well. � We hence proved that the series of temporal budgets (4)

implies the sustainability constraints (10) and (9). Now, the converse: � Given f� t(:)g1t=0 and thus

fRt(:)g1t=0 and fqt;j(:)g1t;j=0 satisfying (10) and (9), we just let the sequence fBt(:)g1t=�1 with initial

condition B�1(�1s) = �B�1 form the debt structures supporting the given tax policy. It is immediate

then that fRt(:); Bt(:)g1t=0 satis�es (4) for all (t;t s). Hence, that policy is sustainable. � QED

Proof of Proposition 5: This is a well-established result. For the comparison of the two

cases, however, it helps to provide a proof that relates to Proposition 4. The analogue of (10)

and (ii) here would state: �At any t � 1 and any t�1s 2 fs0g � St�1; there are some vectors

Dt�1(t�1s; st) =
�
[dt�1;j+1(t+jsjt�1s)]t+js2ft�1s;stg�Sj

�
j=0;:::;M�1

for st 2 S, such that the contin-

uation sequence f� t+n(:jt�1s)g1n=0 satis�es

PV � (st; f� t+n(:)g1n=0)| {z }
PVt(t�1s;st)

�
M�1P
j=0

P
t+js

q�j (� t(:); � t+j(:); :)| {z }
qt;j(t+jsjt�1s;st)

dt�1;j+1(t+jsjt�1s) (10.b)

for all st 2 S.� If we add this, then the proof here would be just a replica of that of Proposition 4.

However, imposing (10.b) puts no constraints whatsoever, because for every (t,t�1s) and every st we

can use a di�erent Dt�1(t�1s; st); contingent on the particular st; to support PVt(t�1s; st) above. For

instance, set dt�1;1(t�1s; stjt�1s) = PVt(t�1s; st) for all st and all t�1s; t, and dt;j(:) = 0 for j > 1:

Thus, (10.b) is redundant. QED

Proof of Lemma 2: In main text.
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Proof of Lemma 3: Part (a): � Obviously, SPI is always a weak subset of SPC, because any
element of SPC has to satisfy only sustainability property (i), while any element of SPI has to satisfy

both properties (i) and (ii). � Part (b): � That M < S ) SPI 6= SPC follows from our discussion in

the main text: Pick a V 2 RS and, with M < S, pick an M � S matrix Q such that V =2 Span[Q]. We

can always �nd some f� t(:)g1t=0 2 SPC such that the induced fVt(:); Qt(:)g1t=0 have Vt(t�1s) = V and

Qt(t�1s) = Q at some t and some t�1s. But then Vt(t�1s) =2 Span[Qt(t�1s)] and thus f� t(:)g1t=0 =2 SPI.
� Part (c): � Observe that the typical element of SPC or SPI is a sequence x = fxtg1t=0 where

xt 2 RSt

: Let us endow the space of such sequences with the norm jjxjj� = supt

n
1

St=2

p
x0txt

o
and the

induced distance � the choice of the particular norm is immaterial for our results. Now, pick some

policy � ; � 2 SPC but � =2 SPC: This means that, at some (t;t�1 s); we have V (� ) =2 Span[Q(�)]; where

V (� ) and Q(�) denote the Vt(t�1s) and Qt(t�1s) induced in equilibrium by policy � at the particular

(t;t�1 s): Now, for small " > 0; let N"(� ) be a radius-" ball around � and let then X = N"(� )\SPC6= ;.
Next, consider all �̂ 2 X and form the corresponding V (�̂ ) and Q(�̂ ): Let W � [�̂2XSpan[Q(�̂)];

and observe that each Span[Q(�̂)] is a subspace of dimension at most M; with M < S: Let then

� =distance(V (� );W ) > 0: The latter is ensured for " > 0 small enough by the continuity of bond

prices, and thus of Q(:); and by V (� ) =2 Span[Q(�)]. We can further pick " > 0 small enough so

that we also have distance(V (�̂ ); V (� )) < �=2 for all �̂ 2 X . This is now ensured by the continuity of

present-value surpluses, and thus of V (:): But then distance(V (�̂ );W ) � �=2, implying V (�̂ ) =2 W : Since

Span[Q(�̂)] � W by construction of W , we get V (�̂ ) =2Span[Q(�̂)], meaning �̂ =2 SPI. We therefore

conclude X\SPI = ;; which means Closure[SPI ]&SPC. � Next, that SPC = Closure[SPC] is
rather trivial: � Take any convergent sequence f�mg1m=1 with �m = f�mt (:)g1t=0 2 SPC for all m, and

let � = limm!1 �m. We have that �m 2 SPC if and only if �m satis�es the initial intertemporal

budget (9). But if �m satis�es (9) for all m; and � = limm!1 �m; then, by continuity, � satis�es (9)

as well, which means � 2 SPC. That is, SPC includes its limit points, and SPC = Closure[SPC]:
� Part (d): � Following our previous reasoning, if ~M < M � S; then we can �nd a (small) open

set X � SPI(M) such that X \ SPI( ~M) = ;: In particular, X � SPI( ~M) is picked so that � 2 X
implies V 2 Span[Q] but V =2 Span[ ~Q]; where V = Vt(t�1s) and Q = Qt(t�1s) are the induced ones

by the particular � and where ~Q is the S � ~M matrix formed by the �rst ~M out of the M columns

of Q: (Notice that V 2 Span[Q] and V =2 Span[ ~Q] can hold generically because we generically have

rank( ~Q) = ~M < M = rank(Q); the latter is established in Lemma 4.) In other words, there are as

many as S �M non-redundant independent constraints in sustainability property (ii), and these are

decreasing in M: � QED

Proof of Lemma 4: In main text.

Proof of Theorem 1: Just combining Lemmas 3 and 4. QED

Proof of Proposition 6:This is a straightforward linear-algebra exercise: Vt(:) = Qt(:)Bt�1(:);

or V = QB; is a system of S linear equations in M unknowns. Assume �rst M � S: � For any generic
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policy, Q has always full rank, rank(Q) = M � S: Thus, if the M � S system V = QB has a solution,

this has to be unique. Existence of some solution is ensured by � 2 SPI , as in sustainability property

(ii). Therefore, V = QB generically has a unique solution when M � S, meaning that B is uniquely

determined. � Now assume M > S: � In this case V = QB has more unknowns than equations,

so that B is necessarily underdetermined. The degrees of indeterminacy are just M � rank[Qt(t�1s)];

generically these are M � S. � Finally, for M = S: � Qt is now square. Generically it is non-singular,

and thus Vt = QtBt�1 )Bt�1 = Q�1
t Vt. Re-dating gives (16). � QED

Proof of Condition (18):Consider �rst the shadow prices of Arrow securities. With CRRA

preferences, Uc(:) = C��; and �(:j:) = 1
2 ; the equilibrium pricing for qt(:) gives qt(t�1s; st; st+1) =

1
2�

h
Ct(t�1s;st)

Ct+1(t�1s;st;st+1)

i�
8 t,ts; st+1: Since consumption is procyclical, Ct(t�1s; �

g) > Ct(t�1s; �
b); we

get qt(t�1s; �
g ; st+1) > qt(t�1s; �

b; st+1) 8 t,t�1s; st+1: It follows that, for all (t,t�1s): qt(t�1s; �
g; �g)+

qt(t�1s; �
g ; �b) > qt(t�1s; �

b; �g) + qt(t�1s; �
b; �b): Next, from bond-pricing rule (6): pt;1(t�1s; st) =

qt(t�1s; st; �
g) + qt(t�1s; st; �

b): Combining gives pt;1(t�1s; �
g) > pt;1(t�1s; �

b). QED

Proof of Condition (17): From Chari & Kehoe [1990] and our Theorem 2, there are stationary

functions �q; �R;PV such that, at the Ramsey optimum, qt(t�1s; st; st+1) = �q(st; st+1), Rt(t�1s; st) =

�R(st); and PVt(t�1s; st) = �R(st), for all t;t�1 s: Using this and the recursive form for PV 's, we get:

PV (�g) = R(�g) + q(�g; �g)PV (�g) + q(�g ; �b)PV (�b)

PV (�b) = R(�b) + q(�b; �g)PV (�g) + q(�b; �b)PV (�b)

As before, R(�g) > R(�b), q(�g ; �g) > q(�b; �g) and q(�g; �b) > q(�b; �b). Combining we conclude

PV (�g) > PV (�b). Then, by continuity, for any policy that is su�ciently close to the Ramsey optimal

we have PVt(t�1s; �
g) > PVt(t�1s; �

b) at all t,t�1s. QED

Proof of Proposition 7:W.l.o.g., assume the initial debt to be only in one-period bonds (d�1;j = 0

for j � 2): Then, the sustainability/implementability constraint (9) writes d�1;1 � PV0; or:

d�1;1 � PV �(� ; s0) �
P1

t=0

P
ts2fs0g�St q�t (� 0(s0); � t(ts); s0; :::; st)R

� (� t(ts); st)

SPC is just the set of all � =f� t(:)g1t=0 with � t(:) 2 [0; 1): that satisfy the above. Since both

q�t (� ; �
0; :) and R�(� ; :) are continuous in � ; � 0 2 [0; 1); the functional PV0 = PV �(� ; s0) is continu-

ous � = f� t(:)g1t=0 : Also, since u
�(� ; :) is both continuous in � 2 [0; 1) and bounded, the functional

E0U =
P1

t=0

P
ts2fs0g�St �

t�(tsjs0)u�(� t(ts); st) is continuous in � = f� t(:)g1t=0. Now, consider �rst

the case that we impose on the tax rate an exogenous upper bound �̂ = f�̂ t(:)g1t=0 s.t. �̂ t(:) 2 (0; 1)

8t. � If so, de�ne SPC� � f� = f� t(:)g1t=0 2 SPC j 0 � � t(:) � �̂ t(:)8t � 1g: Then, SPC� is

compact; it is also non-empty, provided d�1;1 small enough, or d�1;1 � sup� PV0. And E0U is contin-

uous over all SPC�. It then follows by the Maximum Theorem that argmax� fE0Uj� 2 SPC�g 6= ;.
� Now, suppose there is no exogenous bound, but lim� 0!1

@
@� 0 [U

�
c (�

0; :)R�(� 0; :)] < +1. � From

Proposition 1, lim� 0!1
@
@� 0u

�(� 0; :) = �1: Assuming that lim� 0!1
@
@� 0 [U

�
c (�

0; :)R�(� 0; :)] < +1; we

also get lim� 0!1
@
@� 0 [q

�
t (� ; �

0; :)R�(� 0; :)] < +1. Combining, and letting � 2 [0;+1) be the La-

Grange multiplier for (9) and L = L (� 0; f� t(:)g1t=1; �) = E0U + � [PV0 � d�1;1] the Lagrangian, we

get lim� 0!1
@
@� 0 [�

t�(:)u�(� 0; :) + �q�t (� ; �
0; :)R�(� 0; :)] = �1 and thus lim� t(ts)!1

@L
@� t(ts)

= �1 for all
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t � 1,ts. It follows that it never pays to let � t(ts) ! 1 for any t � 1 or any ts. Intuitively, as

� t(ts) ! 1, the welfare cost of taxation explodes, in that u� (� t(ts); st) ! �1: Letting � t(ts) ! 1

may increase the contemporaneous surplus, but lim� t(ts)!1
@
@� 0 [Uc(:)Rt(ts)] < +1 ensures that this

e�ect is bounded and dominated by the welfare loss. Thus, � t(ts) may be bounded away from 1; and

argmax� fE0Uj� 2 SPCg 6= ;. � QED

Proof of Corollary 2: From Theorem 1, SPI � SPC ) sup�2SPI E0U � max�2SPC E0U ,
8M ,S. Next, M � S ) ClosureSPI = SPC ) sup�2SPI E0U = max�2SPC E0U . Finally, if the

second best is generic and if M � S, then argmax�2SPC E0U2 SPI implying argmax�2SPI E0U =

argmax�2SPC E0U 6= ;. QED
Proof of Corollary 3: From part (d) of Lemma 3, in particular, M 0 < M ) SPI(M 0) �

SPI(M)) sup�2SPI(M 0)E0U � sup�2SPI(M) E0U . QED
Proof of Theorem 2: That the Ramsey policy for an economy with a Markov state process is

characterized by � t(ts) = ��(st) for all t � 1 and all ts; was �rst observed by Lucas & Stokey [1983].

See Chari & Kehoe [1999] for a more detailed treatment. Given this property, the rest characterization

follows immediately. We just have to de�ne:

�C(s) � C�(�� (s); s); �L(s) � L�(�� (s); s); �Uc(s) � Uc

�
�C(s); 1� �L(s)

�
;

�R(s) � R�(�� (s); s) � f��(s)[A(s)�L(s) + e(s)]�G(s)g; PV (s) �P1
j=0

P
js2fsg�Sj �qj(js) �R(sj);

�q1(s; s
0) � ��(s0js) �Uc(s

0)= �Uc(s) � q�1 (��(s); �� (s
0); s; s0) ;

�qj(s0; s1; :::; sj) � �q1(s0; s1):::�q1(sj�1; sj) � q�j (�� (s0); �� (s1); s0; :::; sj) ; 8j � 1; and

�pj(s) �
P

js2fsg�Sj �qj(js) � p�j (��(s); �� (:); s), 8j � 1:

And then: �V � �
PV (s)

�
s2S

and �Q � [�pj(s)]
j=0;:::;M�1
s2S .

Next, provided M = S and assuming that the Ramsey optimal is generic so that �Q is non-singular, we

let �B � �Q�1 �V and apply Proposition 6 to complete the proof. QED
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