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Abstract

Growth-inequality relationship is reexamined in a neo-classical growth model with
discrete occupational choice and incomplete markets for human capital. In our model a
fiscal redistributive tax program directly impacts the steady state distribution of human
capital by influencing the occupational choice of the agents. Growth and income-
inequality are endogenously driven by the evolution of the proportion of innovators in the
economy and the redistributive tax rate.   The correlation between growth and factor
shares depends crucially on the interaction between the redistributive tax policy and the
initial distribution of human capital. The model predicts that the growth rate and income-
inequality are positively related across countries with different redistributive tax regimes.
On the other hand, countries with different redistributive tax regimes as well as different
initial distribution of human capital do not show any robust correlation between growth
and inequality. The correlation depends on the skill intensity of the production
technology and the degree of institutional barriers to knowledge diffusion. The lesson for
the cross-country growth-inequality regression is that it is necessary to adequately control
for the differences in initial distribution of human capital, and technology, as well as
differences in redistributive tax regimes.
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1. Introduction

Whether inequality retards or promotes growth is a long-standing theoretical and

empirical issue. Recent pioneering work of Torsten Persson and Guido Tabellini (1994)

report a strong negative relationship between growth and inequality.  They rationalize this

relationship as a politico-economic equilibrium outcome of a model economy.  Although

Persson and Tabellini's theoretical model provides important insight about the link

between distribution and growth, their empirical cross-country growth-inequality

regression has sparked further debate.  Kristin Forbes (2000) argues that there is an

omitted variable bias in Persson and Tabellini's cross country regressions.  After

correcting for this bias, she finds a positive association between growth and inequality.

In fact, finding an empirical relation between growth and inequality over a cross section

of countries is problematic when countries differ widely in terms of structural

characteristics. Until now there is no clear consensus about the empirical relationship

between growth and inequality.

     Even at a theoretical level, economists differ about the relationship between growth

and inequality.  Woojn Lee and John. E. Roemer (1998) report in terms of their model

that the relationship between private investment and inequality does not necessarily show

a monotonic negative relationship. They argue, in terms of a theoretical model, that the

relationship between inequality and private investment is not necessarily monotonic.

Chien Chou and Gabriel Talmain (1996) consider the effect of distribution of wealth on

endogenous rate of growth.  They argue that the relationship between inequality and

growth depends on the curvature of the labor Engel curve.  Peter Orazem and Leigh

Testfastion (1997) develop a model where income redistribution can result in sub-optimal

choices that offset the beneficial effects of income transfer. However, because of the

assumption of diminishing returns, their model has steady state in level and thus does not

provide insight about long-run growth.

       Most of these growth models dealing with fiscal redistributive policy, however, focus

mainly on the effect of redistributive policy on either growth or inequality.  Little efforts

have been directed towards understanding how a redistributive tax policy could interact

with the growth-inequality relationship.  Understanding the endogenous dynamics of
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growth, distribution and fiscal policy is a major challenge facing the growth theorists

nowadays, as emphasized by the following quote from Persson and Tabellini (1992):

"....Future theoretical research should try to study the joint dynamics of growth, income

distribution and policy. "

A few recent papers take this issue of endogeneity of growth-inequality relationship

seriously. For example, Mervyn King (1992) attempts a synthesis of the models

developed by Persson and Tabellini (1994) and Phillipe Aghion and Patrick Bolton

(1992).  While Aghion and Bolton (1992) focus on the link from growth to distribution,

Persson and Tabellini (1994) stress more on the link from distribution to growth.

However, none of these models explicitly focus on the two-way link between growth and

income-inequality in terms of a redistributive fiscal policy. The issue is important

because the nature of the relationship between growth and inequality might depend in an

important way on the type of redistributive policy chosen by the government.

       In this paper we explore the link between income distribution and growth when the

fiscal authority is involved in redistributive taxation of capital income.   We propose a

theoretical framework here to deal with this issue. As in Glenn Loury (1981), we invoke

the extreme form of capital market incompleteness in the sense that the credit market is

absent.  Human capital is the only device for consumption smoothing and the sole engine

of growth.   This incompleteness of the credit market is crucial in preserving the dynastic

heterogeneity in our model.  Although individuals are ex-ante identical in terms of

preference over dated consumption, due to past investment in human capital, they differ

in terms of the endowment of human capital which evolves endogenously in the model.

As a result, income inequality arises as an equilibrium outcome and it persists across

generations.  This happens without bringing any element of uncertainty in the production

technology as in  Abhijit Banerjee and Andrew Newman (1991). 2

     Our model also involves the externalities associated with human capital similar to

Robert E. Lucas, Jr (1988) and abstract knowledge as in Paul M. Romer (1990).

However, unlike Romer (1990), the total factor productivity in our model depends on the

intensity of innovative activity represented by the proportion of innovators (who we call
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managers) in the economy.  The fraction of people choosing a managerial occupation is

the driving force behind innovation in our model.3

      Why is the proportion of innovators an important component of the total factor

productivity? It is well known that growth is significantly determined by total factor

productivity.  Recent literature on endogenous growth models following Lucas (1988)

and Romer (1990) stress the importance of non-rival knowledge in determining total

factor productivity.  In a recent paper, Edward Prescott (1998) argues that it is the extent

of non-rival knowledge that a country exploits rather than the available stock of

knowledge itself that accounts for the cross country disparity in income.4  How much

available knowledge would be exploited in the economy depends on the intensity of

innovations, which is traced back in the model to the proportion of innovators or

managers in the economy.

    In our model, a redistributive capital income taxation impacts the long-run growth

through two distinct channels.  First, it directly influences the steady state rate of

investment by impacting the post tax return to capital. Second, it indirectly influences

growth by impacting a fundamental state variable in our model, which is the occupational

distribution.  A change in the redistributive tax rate, by altering the steady state

proportion of managers, may influence growth as well as the post-tax shares of human

capital in output.  The relationship between growth and income inequality is thus

endogenous in our model.  It is driven in this model by the interaction between the initial

distribution of human capital and the redistributive tax rate chosen by the government.

     The model generates various steady state relationships between growth and income

inequality depending on the interaction between initial distribution of human capital and

the redistributive tax rate across countries.  If countries differ widely in terms of their

fiscal redistributive taxation, the model predicts a robust positive association between

                                                                                                                                           
2 In a similar spirit, Scott Freeman (1996) develops a discrete occupational choice model and demonstrates
that income inequality persists across generations.  Freeman (1996), however, does not address the issue of
growth-inequality relationship in the context of redistributive taxation.
3 Our model is an extension of Debasis Bandyopadhyay (1993). In our model the educated elite choose a
managerial occupation and undertake all the investment in human capital. The motivation for including the
proportion of managers in the total factor productivity function stems from the study of Bandyopadhyay
(1997) who finds that the proportion of educated people significantly explains cross country disparity in
growth rates.
4 In a similar vein Oded Galor and Danile Tsiddon (1997) highlight the importance of high-ability
individuals in determining economic growth.
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growth and income inequality as in  Forbes (2000). A higher redistributive capital income

tax rate lowers the steady state growth rate through the usual distortionary effect of

driving a wedge between the marginal product of capital and return to capital. As the

redistributive tax rate increases, the steady state post tax factor share goes in favor of the

worker thus making growth and inequality correlate positively.

    On the other hand, if we compare countries that are heterogeneous in initial

distribution of skills, correlation between growth and income inequality does not show

any robust pattern. A calibration exercise with model's steady state property indicates that

the correlation between growth and inequality depends critically on technology

parameters involving the skill intensity and the degree of institutional barriers to

knowledge.

    The model thus suggests that the cross-country correlation between growth and income

inequality depends on the complex interaction between the tax policy environment, initial

distribution of human capital and the economy-wide technology.  Different countries may

be in different steady states because of different redistributive tax regimes, different

initial history of human capital distribution and different technology.  The choice of the

sample of countries may, therefore, make a crucial difference in determining the

correlation between growth and income inequality. An econometrician, without

controlling for these structural differences across countries, may bias a cross-country

regression of growth on income inequality.

       The rest of the paper is organized as follows.  In the following section, we lay out the

model and its comparative statics.  Section 3 derives the steady state properties of the

model. Section 4 examines the growth-inequality relationship under alternative

environments regarding tax policy and initial distribution of human capital and reports

some calibration results regarding the growth-inequality correlation. Section 5 ends with

concluding comments.

2.  The Model

     Consider an environment with variable human capital, labor, and a single perishable

consumption good.  An agent lives two periods, one as a child being attached to an adult

and one as an adult when she receives a child of her own.  There is a continuum of
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dynasties with measure one and at each date t, a typical dynasty consists of an adult and a

child.  The adult has one unit of labor and h units of human capital.  She earns her income

by choosing between the occupations of manager and worker and then divides her income

between current consumption and investment in her child’s education.  Investment in

human capital is the only means of transferring consumption in our model. We assume

incomplete markets for human capital because human capital cannot be used as collateral

for loans and there is no separate tangible capital in the economy.  This rules out a viable

credit market in the model, which is crucial in terms of preserving dynastic heterogeneity.

    Preferences display intergenerational altruism, and so the adult maximizes the present

discounted value of consumption of her dynasty.  Dynasties differ only in terms of the

adult’s endowment of human capital at date 0.  At date t, Ψt denotes the cumulative

distribution of human capital among the date t adults.  The history specifies the initial

distribution Ψ0.  For simplicity, we consider a two-point distribution for Ψ0, where h can

take two possible values, 0 and h0, such that

(1) Ψ0 (0) = 1-m=Ψ0 (h0).

In other words, initially a fraction m of adults are skilled adults possessing nonzero units

of human capital and a fraction 1-m of adults have no skill, or equivalently, have zero

units of human capital.

     Groups of adults carry out production.  Each group consists of a manager and one or

more workers.  The output q of a group depends on the manager’s human capital h, the

number nd of workers she employs and the total factor productivity level A > 0 such that

q Ah na d a= −1 ( ) , where 0 < a < 1 measures the output elasticity of a worker.  We

assume that the total factor productivity A depends, following Lucas (1988), on a

knowledge spillover process that increases with the quality of labor, measured by the

economy’s average human capital stock H.   Following Romer (1990), we assume that

the total factor productivity depends as well on the stock A0 of non-rival knowledge.
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     In contrast with Lucas (1988) and Romer (1990), total factor productivity A also

depends on the intensity of the innovative activity in our model.  It is proxied by the

proportion of managers, m.  Two countries may have the same average human capital but

experience different growth patterns because of different m.  The knowledge spillover

increases with the intensity of innovative activities in the economy, which is measured by

the proportion m of adults who are managers. In particular, we assume that

,HmAA bθ= 0  where b > 0 is a parameter measuring the degree of externality and θ ≥  0

is a parameter.

      A few additional clarifications about the specification of total factor productivity

involving the parameter θ are in order.  Notice that for a given θ, a higher intensity of

innovations (in the form of a higher proportion of managers, m) enhances the total factor

productivity A.  On the other hand, for a given m, a higher value of θ lowers the total

factor productivity.  The parameter θ thus measures the degree of institutional barriers to

spillover of knowledge.  If θ equals 0, there is no such barrier which means 100% of the

stock of knowledge, H is exploited5. In such a case, the production function reduces to

the Lucas-Romer technology. To summarize, at each date t ≥ 0  the output qt of a

manager is given by

(2) ad
t

aa
tttmt

d
t nhHmAmHnhq )(),;,( 1

0
−= θ , t=0, 1, 2....

Since our central interest in this paper is to understand the interaction between tax policy,

growth and distribution, we assume that b=a.  This assumption makes the aggregate

production function linear in the reproducible input H, thus implying endogenous

growth.6  Observe that there are m firms per capita in this economy, each being run by

one manager.  On average, there are (1-m)/m workers per firm.  Note that θ > 0 implies

that the total factor productivity in the economy decreases as number of workers per

                                               
5 These institutional barriers may be of the form of patent laws that prevent instant diffusion of new
technology or knowledge from one firm to another.
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manager increases.  At any given point in time, manager’s human capital is given.  Also,

an increase in the number of workers per manager gives rise to overcrowding and results

in diseconomies of scale.

     At each date t ≥ 0  given the wage rate wt , and the two external factors Hmt and mt, a

manager with h units of human capital employs nt
d  number of workers so as to

 (3) ( ) d
tt

d
ttt

dn

nwh,n,m,HqMaximize −
>0

t=0, 1, 2....

The first order condition of (3) yields 11
0

−−θ= ad
t

a
t

a
tt )n(hmHaAw , or, equivalently, the

optimal number ntd(h) of workers employed by a manager with h units of human capital

is

(4) h
w

Ham
)h(n

a

t

a
ttd

t
−θ














=

1

1

, t=0, 1, 2....

By (3) and (4), at each date t, the indirect profit of a manager is proportional to her

human capital stock h and is given by rt h, where,

(5) rt=
)a/(a

t
a
mtt

a
tt )w/HmaA(HmA)a( −θθ− 1

001 , t=0,1, 2,....

The Government

The government in this economy undertakes a redistributive tax-subsidy program. At

each date, the government levies a constant proportional tax (τ1) on the income of the

managers and lump sum transfer of zt units to each worker.7 In addition, the managers

                                                                                                                                           
6 To see this, note that in a steady state the distribution of human capital coincides with the initial
distribution laid out in (1). This means the workers stay as workers and managers stay as managers. In a
steady state equilibrium described in section 4, workers do not invest in human capital meaning Ht =Hmt,

which means the production function becomes linear in H making the production function "Ak" type à la
Rebelo (1991).  The details of the steady state property of the model are discussed in Section 3.
7 In the steady state, the level of tax on workers grows over time at a balanced rate and hence, in the steady
state, a lump-sum tax is equivalent to taxing worker's income proportionally.
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receive as an educational subsidy, or equivalently, as a reimbursement for their

educational expenses incurred by their parents.  The amount of subsidy for acquired

education is, however, in constant proportion (τ2) to the manager’s income level.8  The

budget constraint of the government can thus be written as:

(5)                      mttttmtt Hrz)m(Hr 12 1 ττ =−+

Defining =τ
21 ττ −  as the effective tax rate for the managers such that the budget

constraint (6) can be rewritten as:

(6) (( ))tm
mtHtr

tz
−−

==
1

τ

Note that in principle we do not impose any restriction on the sign of the effective

redistributive tax rate τ, meaning τ may as well be negative, in which case we have an

effective investment tax credit or an educational subsidy financed by taxing worker's

income.  The sign of τ depends on the equilibrium property of the model.

The Breakeven Skill Level

     At each date t, xt denotes the level of breakeven skill such that an adult with xt units of

human capital earns an equal amount either as a manager or as a worker.  By (5), xt

satisfies

(8) ttt xrw = , t=0, 1, 2,…

where tw = tztw ++   is the post subsidy wage and tr = tr)1( τ−−  is the after-tax rate of

return on human capital.  The adult’s occupation nt(.) is an indicator function such that if

                                               
8 Notice that in the present setting, the educational subsidy is proportional to the level of rental income.
The implication is that adults with higher rental income from human capital receive greater subsidy.  The
net subsidy determined by the fraction τ is financed by wage income taxation. Rogerson and Fernandez
(1995) find that a similar pattern of financing educational subsidy is an equilibrium outcome in a median
voter setting.
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she is a worker, nt(.) = 1, otherwise, if she is a manager, nt(.) = 0.  At each date t ≥  0, her

occupational choice nt(.) and the  resulting income yt (. )  as functions h ≥  0 are

(9) 1),( ==τhtn , if h xt< ;   0),( ==τhtn   if h xt> ;

nt(h,τ) = 1  or 0,     if h xt= ,

(10) hrhnwhnhy ttttt

−−

⋅−+⋅= )),(1(),(),( τττ .

Figure 1 illustrates how the breakeven skill level divides the adults into two occupational

groups, workers and managers, according to their individual stock of human capital.

<Figure 1 comes here>

     An adult’s human capital ht+1 at date t+1 is positively related to her parent’s human

capital ht and the investment st in her schooling made by her parent at date t.  In

particular,

(11) 10,)1(1 <<+−=+ δδ ttt shh t=0, 1, 2, ..

The above formulation presumes a positive externality δ < 1 associated with family

upbringing in the tradition of Benabou (1996).  It also assumes δ > 0 such that without a

positive investment in schooling the current generation can transfer only a fraction (1-δ)

of existing knowledge to the future generation.  Consequently, knowledge is maintained

or accumulated only if a generation acquires them through investment in schooling.  This

feature is similar to Mankiw et al. (1992).

     Following Barro (1974) we assume intergenerational altruism.  At each date t, the

utility vt of the adult is a function of her family’s consumption ct and her child’s utility

vt+1 as a grown-up adult.  In other words,
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(12) v V c v u c vt t t t t= = ++ +( , ) ( )1 1β , t=0, 1, 2, ...

We assume that u(.) is strictly concave, bounded above, u(0)=-∞, u'(0)=∞, 0<β<1, such

that v u ct

t
t0

0
= ∑

=

∞
β ( ) .

   The adult with h units of human capital chooses a suitable occupation nt(h) following

(9) and divides her income yt(h), given by (10), between consumption ct and investment

st such that

(13) ),( τhtytstc ≤≤++ t=0, 1, 2,…

At t = 0 the optimization problem of the adult with h ≥ 0  units of human capital is to

choose a sequence ( ) ( ) ( ){ } ......2,1,0}1,0{,,0,,0, =∈≥≥ tttt hnhshc τττ , so as to

(14) Maximize ∑
∞

0=t

t )( tcuβ  subject to (9)-(11) and (13).    t=0, 1, 2,....

Characteristics of Equilibrium

     The set of sequences {(ct(h, τ), st(h,τ), nt(h, τ), ntd(h, τ) : h ≥ 0 ;xt, rt, mt, Hmt,

 wt,τ }t=0,1,2,..and the initial distribution Ψ0 describe the model’s equilibrium such that

at each t ≥ 0 , the labor demand ntd(.) satisfies (3), the implicit rental price rt of human

capital satisfies (5), the breakeven skill xt satisfies (8), the sequence {(ct(h, τ), st(h,τ),

nt(h,τ)}t=0,1,2,.., satisfies (14), and {Hmt, mt}t ≥ 0 coincides with the same generated by

the optimal sequence {st(h,τ), nt(h,τ)}t=0,1,2,.., such that

(15) ),(
}0),(:{

τ
τ
Ψ h

hnh
tdtm

t

∫∫
==

== ,
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(16) ( ) ( ) ( ) ( )τττδ ,hd,hs,hhdH tttt,m Ψ∫+Ψ∫−=+ 11 , ),(00 τhhdH ∫ Ψ= ,

and the labor market clears such that at each date t=0, 1, 2,…,

(17) tmh
hnh

tdtmmtHtwhd
tn

t

−−==∫∫
==

1),(
}0),(:{

),;,( τ
τ

Ψ  

Notice that the labor demand function does not depend on the redistributive tax rate

because the tax is based on indirect profit and not on the output of the firms.  On the other

hand, the labor supply or equivalently occupational choice as characterized in (8) and (9)

depends on the after tax wage rate.  Nevertheless, the market clearing wage does not

depend on τ because the profit maximizing firm equates the before tax real wage to the

marginal product of labor.  Figure 2 illustrates the labor market equilibrium in a situation

where subsidy zt is negative.  Note that because of the discrete occupational choice, the

labor supply curve (called Ls schedule) is a step function.  At 
−

w t=0, the breakeven skill,

xt equals zero which means Ls equals zero, because everybody chooses to be a manager.

At tw
−

* which is the post tax wage when xt=h0, an adult is indifferent between the two

occupations.  This explains horizontal segment BC of the labor supply function over the

range 1-m 1≤≤ sL .  The labor market equilibrium condition (17) holds at the point where

the MPL schedule intersects the labor supply schedule corresponding to Ls=1-mt as

shown in (17).

<Figure 2 comes here>

The goods market clears such that at each date t=0, 1, 2..,

(18) =Ψ+∫
≥0h

ttt ),h(d)),h(s),h(c( τττ ),(
}0),(:{

),);(,( th
hnh

tdtmmtHhd
tnhtq

t

τ
τ

Ψ∫∫
==

.
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     The above definition yields a sequence {mt, Hmt }t≥0 .. of state variables that

characterize the equilibrium, where Hmt denotes the total human capital of managers such

that

(19) ∫
=

Ψ=
}),h(n:h{

tmt

t

),h(hdH
0τ

τ             for t=0, 1, 2,….

By (4), (15) and (17), the equilibrium wage rate wt is given by

(20) 1
0 1 −θ −= a

tttt )m(HmaAw t=0, 1, 2,…

By (20) the wage rate of workers increases with the economy’s average human capital, Ht

and the relative proportion of managers, mt.  The former positively influences the

productivity of workers through an external effect, while the latter augments the relative

scarcity of workers.  By (5) and (20) the implicit rental rt price of human capital is given

by

(21) a
ttt mmAar )1()1( 0 −−= θ t=0, 1, 2,…

By (21) the price rt of human capital and hence the gross rate of return rt + −1 δ  from the

investment in schooling is an inverted-U shaped function of mt.  A new manager

generates an external benefit to other managers with her innovative activities.  She,

however, adds to the relative scarcity of workers and hence boosts the wage rate or,

equivalently, the cost of production for all managers.  For a low value of mt, additional

benefits are higher than additional costs and, therefore, returns to schooling increases

with additional managers in the economy.  A high value of mt, however, turns the balance

in the opposite direction.  At mt = θ /(θ+a), the return to schooling reaches its maximum.

By (8), (20) and (21) we obtain the following expression for the breakeven skill.
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(22)  
)1)(1)(1(

1)1)(1(

τ

τ

−−−−−−

−−−−−−++
==

tma

a
tHa

mtHtmataH
tx t=0, 1, 2,…

3. Steady State

    Our primary concern in this paper is to understand the steady state relationship

between growth and income inequality.   For this reason, we shall abstract from any issue

relating to the transitional dynamics of the model and only characterize the steady state

equilibrium of the model's environment. We shall restrict our attention to a class of

steady state equilibria in which the distribution of human capital is time invariant

meaning mt in (15) remains constant over time. In such a steady state, workers and

managers do not switch their respective occupations. At any date t, workers with zero

human capital thus stay as workers and managers with ht units of human capital continue

as managers by investing in their children’s education. Because of manager’s investment

in human capital growth occurs endogenously in this environment preserving two distinct

dynasties: workers and managers. By (19) in such a steady state, the average human

capital grows at a constant balanced growth rate (call it γ) starting from its initial state

mh0.

        In order to characterize such a dynastic steady state, it is important to understand

what incentive compatibility conditions will guarantee such a steady state equilibrium. To

answer this question we need to analyze the property of the optimal investment function

of the managers in steady state.  We have the following proposition:

Proposition 1: If the utility function is of the constant relative risk aversion class

meaning U (Ct) = Ct
1-λ/ (1-λ), in the steady state, a manager invests a constant fraction

i(m,τ) of her human capital in her child’s education such that )m(r)(),m(i τ−<τ≤δ 1 .

The steady state growth rate is given by:

(23) δττγ −= ),(),( mim

where
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(24) i(m,τ) = (β[ )m(r)( τ−1  +1-δ])1/λ –1+δ

Proof: Appendix.

     Notice that the balanced growth rate γ is directly related to the steady state rate of

investment, which in turn depends positively on the after tax return on schooling.  Since

return on schooling reaches its maximum at m* = θ /(θ+a), for a given τ, the balanced

growth rate γ also attains its maximum at the same m*.  In Figure 3, we have illustrated

this by drawing i (m,τ) and δ schedules.  The steady state growth rate is the vertical

difference between i (m,τ) and δ, which reaches its maximum at m*.

<Figure 3 comes here>

Note that by there are two roots  )(mL τ1 >0 and )(mL τ2 >0 that solve the equation

i(m,τ)=δ for any given 0<τ<1.  It follows, therefore, from Figure 3 that we can ensure a

non-negative balanced growth state in this model if and only if )(mm)(m LL ττ 21 ≤≤ .

We are now ready to characterize the incentive compatibility condition for the

managers to invest in human capital.  Managers find it incentive compatible to invest in

human capital if the indirect lifetime utility for being a manger exceeds the indirect

lifetime utility for being a worker.  In other words, the incentive compatibility condition

for being a manger is:

(25)        )())),()()1((
00

tt
t

t
t

t

t zwUhmimrU +≥−− ∑∑
∞

=

∞

=

βττβ

Since in the steady state there is balanced growth, meaning ht, wt and zt all grow at the

same rate, it is straightforward to verify that (25) holds if

(26)     h0 ≥  h*(m,τ,h0)

where
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 (27)

( )
.

),()()1(

1
.),(

),,(*
00

0 ττ

τ
τ

mimr

h
m

m
mrhmw

hmh
−−









−
+

=

and w(m,h0) is the market clearing wage rate at date 0.  Given an initial distribution of

human capital, parameterized by (h0, m), and a tax rate τ, h* defines the minimum level of

human capital that a manager must possess to attain the same consumption as the worker

at the steady state.  In other words, if the initial human capital h0 is just equal to h*, all the

managers are marginal managers in the sense that they are indifferent as to whether they

will invest in human capital or not.

     Our next task is to characterize the range of m over which the equilibrium describes a

steady state, or equivalently, a balanced growth path. In others words, we need to know

the admissible range of m over which neither managers nor workers switch their

occupations.  To obtain such an admissible range, it is necessary to characterize the

properties of ( )0
* ,, hmh τ .  Using (27) it is straightforward to verify that h*(m,τ,h0) is

linear and homogenous in h0. Therefore,

(28)       h*(m,τ,h0) = ξ(m,τ)h0

where

(29)    ξ(m,τ)=   
),()()1(

1

)(

)1( 1
0

1

ττ

τθ

mimr

m

mmr

m

Aam
a

−−
−

+
− −

+

Using (26) through (29), it is straightforward to check the following lemma:

Lemma 1: An adult manager will invest in human capital if

(30)  ξ(m,τ) ≤  1
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    Next we consider the incentive compatibility condition for workers not to invest in

human capital.  Along a balanced growth path, at date t an adult worker may become a

manager if and only if she invests ht units in human capital.  A worker will not undertake

such an investment decision if the opportunity cost exceeds the future return.This means

that

(31)     U'(wt+zt-ht) >  β U' (Ct+1) ((1-τ)rm +1-δ).

Next we have the following lemma:

Lemma 2:  If the utility function is of the constant relative risk aversion class meaning

U(Ct) = Ct
1-λ/ (1-λ), inequality (30) is sufficient to guarantee (31).

Proof:    Appendix

      Proposition 1 together with Lemmas 1 and 2 have the following implication.  If we

consider economies experiencing a balanced growth with γ>0, the rate of investment,

i(m,τ), must be positive.  This requires that the managers must find it incentive

compatible to invest a positive amount in the steady state.  In such a case, from Lemma 2,

it follows that workers do not find it incentive compatible to invest in education.  The

immediate implication is, therefore, that along a steady state path only managers invest in

education and workers do not.  Therefore, in the steady state Ht=Hmt.
9

     We are now ready to characterize the admissible range of m over which the

equilibrium is a steady state.  Notice that if the inequality (30) holds, it is incentive

compatible for the managers to invest in human capital and stay as managers and workers

not to invest in human capital and thus stay as workers.  Inequality (30) thus defines the

range of m over which a steady state equilibrium exists.

                                               
9 Plugging this steady state condition, Ht= Hmt into (22) comparing with (27), it is straightforward to verify
that h* > x if the investment rate i(m.τ)>0, which will necessarily be the case in a steady state with non-
negative growth as per proposition 2.     
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    For analytical tractability, henceforth we consider a logarithmic utility function for

which λ=1.  In case of a logarithmic utility function, ξ(m,τ) in (30) can be written as:

     (32)                                  [ ]1)m(r)1)(1()1)(1(

m1

m

)m1)(a1(

am

),m(
−−−+−−









−

+
−−

=
δβτβ

τ

τξ

We have now the following lemma characterizing the property of ξ(m,τ) :

Lemma 3: For a given τ, ξ(m,τ) is monotonically increasing in m.

Proof:  Appendix.

    Our next task is to characterize the restrictions on the space of the initial distributions

of human capital, )( 00Ψ  defined in (1) that also makes it a steady state distribution.  We

have the following lemma:   

    

Lemma 4: For a sufficiently high value of the discount factor β and for any given τ,

there exists a unique mc(τ) as a function of τ such that for all mL
1< m cm≤ (τ), the

equilibrium with the initial distribution, 0Ψ with m)( −= 100Ψ , describes a balanced

growth state with a non-negative rate of growth.

Proof: Appendix.

     Figure 4 illustrates the restrictions set forth in Lemma 4 on the space of the initial

distribution of human capital for which it is also a steady state distribution. Notice that

mc(τ) is the level of m at which ξ(m,τ) schedule intersects the unit line once because of

the monotonicity of the ξ(m,τ) with respect to m as shown in Lemma 3.  The set of initial

distributions of human capital, 0Ψ  which satisfies the steady state restrictions is,

therefore, given by the set, mL
1<m ≤  mc(τ).  In other words, under these restrictions on the

space of m, the steady state equilibrium preserves the initial inequality in the distribution

of human capital.  In this sense, the steady state equilibrium is path dependent.
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<Figure 4 comes here>

Next, we have the following proposition regarding the properties of the steady state

proportion of managers:

Proposition 2:: For a given τ, in an economy with a non-negative steady state growth,

either ≤τ)(1
Lm  m< min{mc(τ), )(2 τLm } or ≤τ)(1

Lm m=min {mc(τ), )(2 τLm }.

Proof:  Appendix.

Notice that the set of steady state proportion of managers has an upper bound mc(τ) which

is a function of the redistributive tax rate τ.  By changing τ the fiscal authority can alter

the set of admissible proportions of managers in the steady state and thus alter the growth

and steady state factor shares.   In order to analyze the growth-inequality relationship, it is

therefore, necessary to analyze the comparative static property of )(τcm .  We have the

following lemma:

Lemma 5:       
τ∂

τ∂ )(cm
  <0.

Proof: Appendix.

4. Growth-Inequality Relationship

Growth and income inequality are endogenous in the present setting and are

determined by the interaction between two fundamental state variables, the redistributive

tax rate (τ), and the distribution of human capital parameterized by the proportion of

managers (m).  A change in the redistributive tax rate (τ) has a direct effect on the steady

state growth rate and factor share via its effect on the post tax return to capital.  On the

other hand, it also has an indirect effect on growth and income inequality via its effect on

the steady state occupational distribution, as demonstrated in Proposition 2 and Lemma 5.
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    To see it clearly, denote the post tax factor share as ω(m), which is the measure of

income inequality in the present context.  Note that ω(m) is the steady state ratio of the

income of managers to the income of workers.  In other words,

(33) ω(m,τ) = 
00

01

zw

h)m(r)(

+
−τ

Notice that ω(m,τ) is nothing but the relative income of the mangers, which can as well

be interpreted as the post tax proportional skill premium for the managers. One can easily

verify that the incentive compatibility condition (25) for positive investment is sufficient

to ensure that ω(m,τ) in (33) exceeds unity.10

   

    Next plugging  (7), (20), (21) one obtains the following expression for the steady state

factor share:

(34)     ω(m,τ) = ( )maa

ma

)1(

)1)(1)(1(

−+
−−−

τ
τ

    Based on this factor share the Gini coefficient of the income distribution (call it Gini)

is given by:

(35)  Gini  =  (1-a)(1-τ) - m

 The appendix provides a derivation of the Gini coefficient. Notice that the model's

income Gini coefficient is state dependent.  It depends on the country's initial distribution

of human capital parameterized by m and the redistributive tax regime measured by τ.11

Everything else remaining the same, a country with a higher initial inequality in the

distribution of human capital (meaning lower m) will end up with greater income

                                               
10 To check this note that (25) and (26) require that [(1-τ)r(m)-i(m,τ)]h0/ [w0+z0] ≥  1. If i(m,τ)>0, it means
ω(m,τ)>1
11 It is straightforward to verify that as long as ω(m,τ)>1, the Gini coefficient is positive.
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inequality.  Steady state growth (equation 23) and inequality (equation 35) experiences

differ across countries because of difference in m and τ.

Two Special Cases

(i) Case of Positive Growth-Gini correlation: We next investigate how, everything else

equal, only a difference in τ across countries may give rise to a positive cross-country

correlation between growth and inequality. As per proposition 2 the economy has

multiple steady state equilibria depending on m and τ. Although various steady state

cases are possible, take a simple case when ≤τ)(1
Lm  m< mc(τ) < )(mL τ2 . In this case, a

change in the redistributive tax rate only alters the upper bound of the set of admissible

steady state distribution of managers. It does not have any effect on the steady state

proportion of managers, m.  Although τ is neutral in its effect on m, it has a direct effect

on the steady state growth rate and income inequality ratios. One may easily verify this

by observing that the growth rate, γ(m,τ) in (23) declines and the Gini coefficient in (35)

declines as well when τ increases.  Thus, growth and inequality correlate positively

across countries differing in terms of τ. 12

   One thus gets a positive correlation between growth and income inequality as found by

Forbes (2000). Given m, the correlation between growth and inequality is positive as one

expects in any neoclassical model such as Judd (1985), Chamely (1986) or Atkinson,

Chari and Kehoe (1999) for the following reason: The workers consume their income

and, therefore, do not accumulate any capital input while the managers do. By taxing the

workers, to finance an investment tax credit for the managers, this would increase

inequality and the rate of growth. Thus suggesting a positive correlation between growth

and inequality.

                                               
12 Two other cases are possible: (i) ≤τ)(1

Lm  m=mc(τ)<m* ,  (ii) ≤τ)(1
Lm m*< m=mc(τ).  From Lemma 5,

we know that when τ is higher mc(τ) is lower. The growth rate unambiguously falls in case (i) when τ is
higher although the effect on the Gini coefficient in (35) is ambiguous because of opposing effects of m and
τ. In case (ii), the effect on growth is also ambiguous because there are two opposing effects on growth
when τ increases. We have extensively simulated the growth and inequality for wide range of parameter
values and find that the growth and Gini are always positively correlated in both these cases. The details of
these results are available from the authors upon request.
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(ii) Case of Negative Growth-Gini Correlation: Next consider another special case where

the countries have the same redistributive tax rate, τ but differ among themselves in terms

of the initial distribution of human capital parameterized by m. Using proposition 2,

consider the case where ≤τ)(1
Lm  m< mc(τ) < m*.  Here it is straightforward to verify

from (23) that given τ, as m increases the steady state growth rate increases. On the other

hand, from (35) it follows that income Gini coefficient decreases because a higher m

raises the relative scarcity of worker’s and thus lowers the proportional skill premium

ω(m,τ) in (34).  The growth rate and the inequality ratio thus negatively correlate as in

Persson and Tabellini (1994) for countries with the same tax regime, τ but with different

distribution of human capital, m.

    These theoretical special cases highlight the role of initial inequality in the distribution

of human capital and the tax policy in determining the nature of the cross-country

correlation between growth and income-inequality. In reality, countries indeed differ

widely in terms of fiscal regimes, the initial distribution of human capital as well as the

production technology.  Enrique Mendoza, Assaf Razin and Linda L. Tesar (1994) find

that even major OECD countries with similar infrastructure differ widely in terms of the

effective tax rates on capital income.  Robert J. Barro and J. Lee (1985) document that the

proportion of educated people differs widely across countries. A natural question then

arises: what does the model predict about the growth-inequality relationship for the

countries that may structurally differ in terms of these three characteristics. To answer

this question effectively, we resort to a calibration experiment with the model.

4.1 Calibration

    In order to calibrate the model’s growth-inequality correlation with the actual growth-

inequality correlation, one encounters an immediate difficulty.  To the best of our

knowledge there is no available series for the redistributive effective tax rates across

countries that comes close to our model's τ.   Regarding the initial distribution of human

capital, the closest available series is the proportion of people with secondary and higher

than secondary education constructed by Barro and Lee (1993).   We used this series as a

proxy for the proportion m of managers in the economy.
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      In the absence of any available series for redistributive tax rate, we used the model’s

steady state property to generate a series for τ using the following strategy.  We picked

countries only with positive growth rates to be consistent with the steady state property of

the model as per proposition 2.  Using their observed m values, we next generated a series

for the effective redistributive tax rate, τ by imposing the steady state restriction m=mc(τ)

.  The underlying assumption here is that the countries may differ in terms of the initial

distribution of human capital, m because of the difference in the effective tax rates.13

Next we calculate the effective redistributive tax rate τ for each country with a given m

by solving the equation ξ(m,τ)=1 using  (32).  The τ thus obtained is the effective

redistributive tax rate such that a given country’s initial distribution of human capital can

be identified as a steady state of the model.

      Evidently, given any arbitrary m, the resulting τ that solves m=mc(τ) may not

necessarily sustain the observed m as a steady state.  Sustainability requires that τ must

satisfy the following three restrictions:

(i) τ must not exceed unity because in that case, the manager’s after tax rental

income becomes negative and she stops investing;

(ii) τ>-a/(1-a) because otherwise the after tax wage income becomes negative making

worker’s consumption negative as evident from (34);

(iii) τ must be such that the proportional skill premium of the managers, ω(m,τ) in (34)

does not fall short of unity.14

Only a subset of countries in the data set created by Barro and Lee (1993) satisfies all

three steady state restrictions. Moreover, the subset changes when we alter the parameter

values.   For plausible parameter values, at most 28 countries in the sample satisfy the

aforementioned steady state restrictions.  Figure 5 plots the relationship between the

                                               
13 Evidently this is a bit restrictive specification of the steady state because proposition 2 indicates that the

set of admissible steady state equilibria includes m )(τcm≤ .  Nevertheless, we restrict our attention to

this set of steady state equilibria for two reasons. First, we are interested in understanding the interaction
between the tax policy and the distribution of human capital. Second, we do not have any available series
for the redistributive tax rate, τ.
14 Notice that τ can very well be negative indicating proportional educational subsidy or investment tax
credit. In fact, in our sample, in a majority of the cases, the observed value of m warrants a negative
redistributive tax rate, τ.
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actual proportion of educated people and the implied effective tax rate. Notice that as

expected from the model, the implied effective tax rate is lower for countries that have

higher historically observed m and the effective tax rate becomes negative for higher

value of m. 15

<Figure 5 comes here>

     In the final step, using the observed m and the corresponding simulated redistributive

tax rates τ, we calculated the growth rate using (23) and the model's Gini using (35).

Since there is no clear benchmark estimates for any of the parameters in the model

(particularly a and θ), we searched for values in the parameter space, which reproduced  a

world per capita growth rate around 2.5%, based on World Bank Development Indicators.

From the Gini data set generated by Forbes (2000) and using the corresponding per capita

growth rate series from the World Bank development indicators we ended up with 33

countries with positive growth rates.  For these 33 countries, we find that the observed

correlation coefficient between growth and the Gini coefficient is 0.15.  The model comes

close to this observed value of the growth-inequality for a=0.45.

Table 1: Growth-Gini Correlation for Various a values

a=.3 a=.35 a=.4 a=.45 a=.5 a=.55

Growth-Gini Correlation -.26 -.25 -.06 .12 .008 .37

Average Growth Rate 3.17% 2.87% 2.25% 1.78% 1.57% 1.14%

Note: The other parameter values are θ=.7, A0=.3, δ=.04, β=.96

                                               
15 The issue arises whether a negative τ is socially optimal in our model.  Bandyopadhyay and Basu (1999)
finds that for the restricted subset of steady states considered here, the optimal τ is negative for all
admissible range of m values.    
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       There are two noteworthy features of the simulated numbers in Table 1.  First,

countries with a more unskilled labor-intensive technology (a higher a) experience lower

growth.  Second, the correlation coefficient is highly sensitive to a change in the value of

the output elasticity parameter a.  Notice that there is a non-linear association between a

and the growth-gini correlation coefficient. The correlation coefficient reverses sign once

a crosses a threshold value of  0.4.  Countries with a more skilled labor-intensive

technology (low a) display negative correlation between growth and inequality while the

pattern is reversed for countries with more unskilled labor intensive technology.

Everything else equal, a low value of the parameter a lowers the steady state proportion

of managers in the economy.16  On the other hand, a low value of a also raises the growth

maximizing proportion of managers, m* (see Figure 3).  The economy will be, therefore,

operating in the segment where m<m* where growth and inequality are inversely related,

discussed as a special case in the previous section.

     Table 2 reports the growth-inequality correlation from the model for different θ

values.  Notice that  countries with higher  θ tend to have a negative growth inequality

correlation and a lower average growth rate.  Recall from (2) that a larger value of θ

means a greater degree of institutional barrier to knowledge-diffusion.  Everything else

equal, a larger θ raises the growth maximizing proportion of managers m* thus expanding

the range m<m* where countries tend to have negative correlation between growth and

inequality.

      Table 2: Growth-Gini Correlation for Various θ Values

θ=.5 θ=.6 θ=.7 θ=.8

Growth-Gini Correlation .15 .006 -.06 -.21

Average Growth Rate 3.22% 2.64% 2.24% 2.13%

Note: The other parameter values are a=.4, A0=.3, δ=.04, β=.96
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     One may thus summarize the findings of the calibration experiment as follows. First,

countries sharing the same technology may have different growth and income inequality

experiences because of the difference in the redistributive tax regimes and the initial

distribution of human capital.   These differences in tax regimes and initial distribution of

human capital may give rise to a cross-country correlation between growth and income

inequality.  Second, countries may differ in terms of the production technology.

Depending on the technology parameters one may get widely different correlation

coefficients between the growth and income Lorenz ratio.

Lessons for Cross-Country Growth-Inequality Relationship

   These steady state growth-inequality calculations help us understand what could

possibly drive the association between growth and income inequality across countries. It

also provides the following caveat while interpreting a cross-country regression of growth

on inequality. Because of the state dependent nature of the relationship between growth

and inequality, no robust correlation between growth and income inequality can be

obtained when countries widely differ in terms of structural characteristics in the sense

described in the model.

    It is difficult to undertake a precise test of the diversity of the growth-Gini correlation

coefficients across countries because a long time series for Gini data for individual

countries is not available.  Using the Forbes' income-Gini data over the sample period

1965-90, we calculated the growth-inequality correlation for a selected sample of

countries over 6 sub- periods.  Figure 6 reports the growth-Gini correlation for a list of 10

countries for which growth and Gini data for all 6 sub-periods are available. Notice that

the correlation coefficient differs widely across these countries although the majority of

the countries have a positive growth-inequality correlation. These differences in

correlation do not necessarily validate the predictions of our model.  However, it at least

makes us cautious that structural differences among countries in terms of technology, tax

policy and initial distribution of human capital may make a difference in the pattern of

growth-inequality correlation across countries.

                                                                                                                                           
16 This can be immediately verified from (32). ξ(m,τ) is monotonically decreasing in a which means the
ξ(m,τ) schedule shifts upward when a is lower making  mc(t) decrease.
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<Figure 6 comes here>

6. Conclusion

     In this paper, we address the long-standing debate about the growth-inequality

relationship.  We attempt to answer the following question.  What drives the cross-

country correlation between growth and income inequality? The theoretical and

calibration results highlight the role of redistributive tax policy and its interaction with

the steady state distribution of human capital in determining the correlation between

growth and income inequality.  Countries with widely different initial distribution of

human capital and fiscal redistributive tax structure may show either a positive or

negative correlation between growth and income inequality depending on the production

technology.

    The punchline of our model is that one is unlikely to find a systematic monotonic

relationship between growth and inequality if countries differ widely in the intensity of

innovations, fiscal structure as well as production technology in the sense described in the

model. One, therefore, needs to use caution while interpreting a regression of the cross-

country growth-inequality relationship. If the regression method does not suitably control

for the intensity of innovations, the differences in tax regimes and the differences in

production technology across countries, the regression estimates are likely to be biased.
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Appendix

Proof of Proposition 1:  Define it = st/ht.  Using equation (11), the law of motion for

human capital, along a balanced growth path,

(A.0) ht+1/ht = (1+γ)  ⇔  1+it-δ=1+γ.

It immediately follows that it is a constant i such that

(A.1)     γ = i – δ.

Next note that, by (21), if mt = m then rt = r(m).  Next, use the first order condition for
(14) to obtain

(A.2)     Ct+1/Ct = β1/λ[ δτ −+− 1)()1( mr ]1/λ.

On the balanced growth path, Ct+1/Ct = 1 + γ.  It follows, therefore, that the balanced

growth rate, γ is given by:

(A.3)   1 + γ = (β[ δτ −+− 1)()1( mr ]) 1/λ,

which proves (23) and (24).  From (A.1) note that for γ ≥  0, it must be that i ≥  δ which

establishes the lower bound for i.  Using (13), next verify that the budget constraint for

the manager is:

(A.4)        ct + st =  (1–τ)r(m) ht .

Dividing through by ht , one can immediately check that i < (1-τ)r(m). �

Proof of Lemma 2: If ( )
λ

λ

−
=

−

1

1
t

t

C
CU , inequality (31) can be rewritten as:
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(A.5)     
( )

( )[ ]
( ) ( ) ( )[ ] λλλ ττ

δτβ

1,1

1)(11

+−−
−+−

>
−+ tttt hmimr

mr

hzw
.

Note that along a balanced growth path, ( )t
t hh γ+= 10 .

Next using (7) and the steady state balanced growth condition, we can write

(A.6)     ( )t
t zz γ+= 10 ,

where based on (7) and the steady state condition,

(A.7) 
( )

( )m

mhmr
z

−
⋅⋅

=
1

0
0

τ
.

Using (20) and the balanced growth condition we can write

(A.8) ( )t
t hmww γ+= 1),( 00 ,

where

(A.9)   
( ) 01

1
0

0
1

h
m

maA
w

a−

+

−
=

θ

 = w(m)h0 .

Using (A.6) through (A.9), and also using the balanced growth condition, (A.0), the

inequality (A.5) can be rewritten as:

(A.10)  ( )
( ) ( )[ ]

( ) ( ) ( )[ ]( )γττ
δτβ

τ

λλ

+−−
−+−

>


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m
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.

Next note from (A. 3) that along a balanced growth path
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(A.11)    ( ) ( )[ ]λλ δτβγ
11

11 −+−= mr –1,

which means (A.10) reduces to

(A.12)    
( ) ( )

( ) ( ) ( )[ ] 1
1

1
10

<
−−
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


 −

−
⋅+

ττ

τ

,mimr
m

m
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Using the definition ( )τξ ,m , the above inequality can be rewritten as:

(A.13) ( ) ( ) ( ) ( ) 1
,1

1
, <

−−
−

ττ
τξ

mimr
m .

Next since i(m,τ) < (1 – τ)r(m), the inequality (A.13) holds if ( ) 1, <τξ m . �

Proof of Lemma  3: Taking logarithm on both sides of (32):

(A.14)
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Differentiating ξ  with respect to m, and using from (21) the fact that

)m(m

am)m(

)m(r

)m('r

−
−−

=
1

1θ
, we get the partial derivative, mξ  as follows:

 (A.15)      
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
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Note that since 0 < a < 1 and 0 < m < 1, the second term in the square bracket is less

than unity.  Since  10,0,0 <<>> maθ , 0)( >mr  and 0)( >mξ  it follows that 0>mξ .

�
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Proof of Lemma 4: Note from (32) that 0),(lim
0

=
→

τξ m
m

 and applying L’Hopital’s rule,

∞=
→

),(lim
1

τξ m
m

. Since by Lemma 3, ξ(m,τ) is monotonic in m, there exists a unique

mc(τ), at which ξ(m,τ) = 1 holds.  Note also from (32) that a higher value of β implies a

higher value of ξ(m,τ) and hence a lower value of mc(τ) but a higher value of mL
2(τ) (see

Figure 3).  We only focus on the set of steady states with sufficiently high values of the

discount rate β such that mc(τ) < mL
2(τ).  It follows that the equilibrium with the initial

distribution characterized by the constant m that belongs to the interval

)()(1 ττ cL mmm ≤≤  yields a non-negative rate of growth.  This immediately proves that

for all 0 < mL(τ) ≤≤  m ≤≤  mc(τ), a steady state equilibrium with non-negative growth exists.

�

Proof of Proposition 2: From Figure 4 as well as Lemma 1 and 2, it follows that that

when )(1 τLm ≤  m < min (mc(τ), )(2 τLm ), all members of the dynasties of managers

continue to invest in education at the rate i(m,τ) while the members of the dynasties of

workers do not invest in education and stay as workers.  Since  )(1 τLm ≤  m )(2 τ≤ Lm , we

have non-negative growth in this environment.

     If m > mc(τ),  from Lemma 1 and Figure 4, it follows that it is not incentive

compatible for managers to undertake positive investment because ),( τξ m >1.  The

question is whether workers may find it incentive compatible to invest in education.

Notice that if ),( τξ m >1, for some range of m values the inequality (A.13) may get

reversed in which case it is possible for the workers to find it incentive compatible to

invest in children’s education. Thus we may have a situation where existing managers do

not invest in education while all workers turn into managers by investing in their

children’s education in which case m approaches unity. However, this cannot be

sustained in a steady state with non-negative growth because if m approaches unity the

implicit rental price, r(m) in (21) approaches zero making the steady state growth rate a

negative number. This proves that for non-negative steady state growth rate, m cannot

exceed mc(τ). �
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Proof of Lemma 5: It is straightforward to verify from (32) that ξ(m,τ) is monotonically

increasing in τ, meaning that
τ

τξ
∂

∂ ),(m
 > 0.  In other words, the ξ(m,τ) function in Figure

4 shifts upward when τ rises.  The immediate implication is that mc(τ) is monotonically

decreasing  in τ.  One can formally show this by implicitly differentiating )),(( ττξ cm

with respect to τ to obtain

    (A.16)         
m

c )(m

ξ
ξ−

=
τ∂

τ∂ τ ,

where τξ  is the partial derivative of ξ  with respect to τ.  Since τξ > 0  and mξ > 0, it

follows that 
τ

τ
∂

∂ )(cm
 < 0. �

Derivation of equation (35), Gini coefficient: Define a as the worker’s steady state post

tax share in income.  In other words,

(A.17) a = 
mhmrzwm

zwm

000

00

)()1())(1(

))(1(

τ−++−
+−

 ,

which upon the use of (34), reduces to

(A.18) a  = 
),()1(1

1
1 τω mmm −−+

.

Next, note that in the steady state, the initial distribution of human capital (1) is

preserved, which means (1 – m) fraction of the population have a  fraction of total

income.  and m fraction the population  have (1 – a ) fraction of total income.  The

Lorenz ratio for income (Gini) is therefore given by:
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(A.19)  Gini = 1–
−

a  – m,

which after simplification yields (35). �



33

References

Atkinson, Andrew. , Chari, V. , Kehoe, P. (1999), Taxing Capital Income: A Bad Idea.
Federal Reserve Bank of Minneapolis, Quarterly Review, Summer 1999.

Aghion, Phillipe. and Bolton, Patrick. (1992), Distribution and Growth in Models of
Imperfect Capital Markets. European Economic Review. Vol. 36 (2-3). p 603-11.

Benabou, Roland (1996). Unequal Societies. Centre for Economic Policy Research
Discussion Paper: 1419, p 44

Bandyopadhyay, Debasis (1993), Distribution of Human Capital, Income Inequality and
the Rate of Growth,  Ph.D thesis, University of Minnesota.

Bandyopadhyay, Debasis (1997). Distribution of Human Capital and Economic Growth.
Department of Economics Working paper Series, the University of Auckland.

Bandyopadhyay, Debasis and Basu Parantap (1997), Optimal Redistributive Tax in a
Growth Model with Discrete Occupational Choice, Department of Economics
Working paper Series, the University of Auckland.

Banerjee, Abhijit, V and  Newman, Andrew F. (1994). Poverty, Incentives, and
Development. American Economic Review,  Vol, 84 (2),  p 211-15.

Barro, Robert. J. (1974). Are Government Bonds Net Wealth? Journal of Political
Economy 82, p 1095–1117.

Barro, R. J. and J. Lee, (1993), International Comparisons of Educational Attainment,
Journal of Monetary Economics 32, 363-94.

Chamley, Christophe (1986). Optimal Taxation of Capital Income in General Equilibrium
with Infinite Lives. Econometrica. Vol. 54 (3), p 607-22.

Chou, Chien. , Talmain, Gabriel. (1996), "Redistribution and Growth: Pareto
 Improvements," Journal of Economic Growth, Vol 1(4), p 505-23, Dec 1996.

Freeman, Scott (1996), "Equilibrium Income Inequality among Identical Agents,"
Journal of Political Economy, 104, 5,  1047-1064.

Forbes, Kristin. (2000), A Reassessment of the Relationship between Inequality and
Growth,  American Economic Review, Forthcoming.

Galor, Oded and Danile Tsiddon (1997).  Technical Progress, Mobility, and Economic
Growth, American Economic Review, 87, 3, p. 363-381.



34

Judd, Kenneth.L (1985), Redistributive Taxation in a Simple Perfect Foresight Model,
Journal of Public Economics, 28, p. 59-83.

King, M (1992), Growth and Distribution, European Economic Review, 36, 585-592.

Lee, W and J. E. Roemer  (1998),  Income Distribution, Redistributive Politics and
Economic Growth, Journal of Economic Growth, 3(3), 217-240.

Loury, Glenn. (1981), Intergenerational Transfers and the Distribution of Earnings,
 Econometrica. Vol. 49 (4). p 843-67.

Lucas, Robert.  E., (1988), On the Mechanics of Economic Development. Journal of
Monetary Economics 22, p 3-42.

Mankiw, N. Gregory., Romer, David. and Weil, D. N., (1992). A Contribution to the
Empirics of Economic Growth.  Quarterly Journal of Economics, 107, p 407-37.

Mendoza, Enrique. G, A. Razin, and L.L. Tesar, (1994), Effective Tax Rates in
Macroeconomics: Cross Country Estimates of Tax Rates on Factor Incomes and
Consumption, Journal of Monetary Economics, 34, 297-323.

Orazem, Peter.  and Tesfatsion, Leigh. (1997) Macrodynamic Implications of Income
-Transfer Policies for Human Capital Investment and School Effort. Journal of
Economic Growth. Vol. 2 (3). p 305-29.

Persson, T. and G. Tabellini (1994), Is Inequality Harmful for Growth?, American
 Economic Review 84, 600-621.

Persson, T. and G. Tabellini (1992), Growth, Distribution and Politics, European
Economic Review, 36, 593-602.

Prescott, E.C. (1998), Needed: A Theory of Total Factor Productivity, International
Economic Review, 39, 3, 525-551.

Rogerson, R and R. Fernandez (1995). On the Political Economy of Education
Subsidy,  Review of Economic Studies, 62,  249-262.

Rebelo, Sergio J. (1991) Long -Run Policy Analysis and Long-Run Growth, Journal of
 Political Economy,  94, 5, p. 500-521.

Romer, Paul., (1990). Endogenous Technological Change. Journal of Political Economy,
98, p. 71-102.



35

LS



36

ξξ(m,t)



37

Figure 5: Model's Calibration of Implicit Tax Rates for 
the Observed Proportions of Skilled Labor in 

Countries
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Figure 6: Growth-Gini Correlations for Selected 
Countries.
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