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Abstract

The paper studies the problem of volatility modeling and estimation of high-frequency
data under continuous record asymptotics. The approach decomposes the observed data into
price diffusion and stationary components. The diffusion component may be identified as
the “true” value of the underlying asset. The stationary component, termed as the high-
frequency “noise” (HFN), accommodates pertinent market microstructure features. A simple
condition, characterizing the HFN component on which conventional volatility estimators on
the basis of noisy observations will be consistent for diffusion volatility, is derived, and is
applied to Reuters FXFX data. It is shown that conventional volatility estimators lead to
substantial spurious volatility in high-frequency returns. The failure of conventional estima-
tors in providing consistent estimates is due to the higher irregularities of the HFN sample
path, which is induced, at least in part, by trader heterogeneity. In addition, the optimal
sampling frequency is acquired which justifies the appropriateness of the use of the 10- to 15-
minute sampling intervals - the benchmark noise filter used in many recent empirical studies
dealing with high-frequency foreign exchange data.
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Recent availability of high-frequency data offers empirical researchers the opportunity of ad-

dressing problems that are difficult to resolve with daily data or data collected at lower frequencies.

On the other hand, modeling and analyzing near-continuous records of data pose new challenges.

The extent to which either the empirical findings or the theoretical concepts developed in daily

or weekly data are applicable in the high-frequency domain is not apparent and needs to be ex-

plored. For example, several recent studies have raised questions about the usefulness of standard

volatility models in high-frequency data analysis. The autoregressive conditional heteroskedastic

(ARCH) model and its various extensions have enjoyed considerable success in modeling dynam-

ics of volatility for daily and weekly data across different asset classes and institutional settings

(Bollerslev et al. (1992, 1994)). It has been well-known that under some regularity conditions, if

one can observe a continuous record of data the volatility of the underlying asset can be modeled

by the ARCH family and estimated consistently even if mis-specified volatility models are used.

This robustness phenomenon of volatility modeling has important implications both in theory and

in practice. The theoretical implication is that there is only one true variance of any continuously

observable process and all investors should agree on it without debate. Nelson (1992) provided
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formal analysis of the robustness of volatility estimates to certain types of model mis-specification

and he termed this phenomenon of the uniqueness of volatility as “getting the right variance with

the wrong model.” From a practical point of view, it implies that the volatility could be esti-

mated at any desired accuracy as long as one collects data at finer intervals. Unfortunately, such

continuous record asymptotics will ultimately break down. In practice, sampling cannot be done

continuously. The more problematic feature of this asymptotic notion is that some insidious side

effects, so called high-frequency noise (HFN), such as those related to market microstructures,

may arise. As a consequence, dynamic properties of the observed process may be distorted and

often lead to puzzling results. In fact, as was pointed out by Merton (1980) and will be shown in

this paper, the benefit of a shorter sampling interval will be swamped long before the continuous

time limit is reached. In this respect, the continuous record asymptotics of volatility estimation

may never be realized in practice.

Volatility plays a central role in many areas such as portfolio management, risk management

and option pricing. A better understanding on how the micro-behavior of volatility differs with

respect to different sampling rules would certainly be an important step in the use of high-frequency

data in modeling and analyzing volatility dynamics. In this paper, we study the problem of

high-frequency volatility modeling and estimation when prices follow a diffusion process which

is contaminated by a random noise. Rather than seeking to model specified types of HFN, we

presume that we are observing a discrete-time sample of a stochastic process which is a summation

of the underlying “true” price diffusion (the signal) and stationary transitory noise, which is a

combination of several sources related to market microstructure effects.1 It is of intrinsic interest

to study the behavior of conventional volatility estimators (commonly used in analyzing daily

data or data with lower frequencies) under the continuous record asymptotics. We show that

if the HFN component is “smooth enough” conventional volatility estimates can still provide a

consistent estimate of volatility of the diffusion. However, conventional volatility estimates cannot,

in general, serve as consistent volatility estimators. Their failure is due to the high irregularities

of the sample path of the HFN component.

The multiple components interpretation of market volatility as resulting from the proposed

structural model applies equally well across most financial markets and instruments. However,

1There is voluminous literature on market microstructure and its impact on volatility modeling and estimation.
However, empirical findings have led to a certain fragmentation of the literature, with most studies focusing
predominately on one of various specified types of HFN: nonsynchronous trading (Lo and MacKinlay (1990)), the
bid-ask spread (Roll (1984), Glosten (1987), Kaul and Nimalendran (1990)), price discreteness (Hausman, Lo and
MacKinlay (1992)), et al. This is ultimately not satisfactory since interactions across these dimensions may produce
illusory and misleading results.
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for concreteness the empirical analysis in this paper is focused on the foreign exchange market,

and one-year tick-by-tick Deutschemark-U.S. Dollar (DM/$) Reuters FXFX data. Our empirical

findings clearly point towards the existence of the HFN component in the Reuters FXFX series. By

analyzing data sampled at different frequencies, we are able to quantify the smoothness of the HFN

sample path and to provide evidence on the source of spurious volatility in high-frequency returns.

Our results reveal a clear picture on how “excessive volatility” is generated as one samples at finer

intervals; they also demonstrate the importance of the trade-off between increasing of sample size

and minimizing HFN biases.

We show that high HFN sample path irregularities are at least partially induced by trader

heterogeneity. The hypothesis of trader heterogeneity goes beyond the classical view of rational

agents by assuming that tick-by-tick price movement reflects traders’ specific characteristics which

are determined by factors such as inventories (Lyons (1995) and Froot at al. (1992)), information

asymmetry (Morris (1994)), and time horizon (Müller et al. (1997)).2 As will become clear,

heterogeneous behaviors of market participants govern the short-run price dynamics. It generates

high sample path irregularities of price series at the micro level and causes “excessive volatility”

in high-frequency returns. The results highlight the importance of the microstructure perspective

in understanding volatility dynamics in the foreign exchange market.

The remainder of the paper is organized as follows. Section 1 introduces the volatility model

and the estimation problem. Section 2 discusses sample path smoothness and explores sources of

high irregularities of the sample path of the HFN component. Estimating volatility is examined in

Section 3. An application involving high-frequency Reuters FXFX data is undertaken in Section

4. Section 5 is devoted to analysis of the optimal sampling frequency. Section 6 concludes.

1 High-frequency Data Modeling

1.1 The Model

In this section, we present a simple model for high-frequency data that provides a framework for

studying the potential impact of the HFN on volatility estimation. Let Xt, the asset price at time

2Traders may even rely on information that bears no relation at all to fundamentals and trade on perception;
see, for example, a new survey on United States foreign exchange traders by Cheung and Chinn (1999) and the
paper “Making book on the buck,” Wall Street Journal, September 23, 1988.
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t, satisfy the following diffusion process described by Itô stochastic differential equation3

dXt = µ(Xt)dt+ σ(Xt)dWt, 0 ≤ t ≤ T, (1)

where σ : R → R+ and Wt is a standard Wiener process. To ensure the existence and uniqueness

of a solution to (1), we require the usual Lipschitz and growth conditions:

A1. There exists some constant K > 0 such that the function µ and σ satisfy the following

conditions for all x and y in S ⊂ R:

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ K|x− y|,

and

µ2(x) + σ2(x) ≤ k2(1 + x2).

For the convenience, we further assume

A2. σ(.) is bounded over the state space of Xt.
4

Equation (1) is a representation of weak convergence results for sequences of stochastic differ-

ence equations such as ARCH models under the continuous-time limit (Nelson (1990)). The model

in (1) will serve as a benchmark model for the true return volatility. If prices are characterized

by the model in (1), the assumption A1 assures that their volatilities could in principle be esti-

mated without error for any given finite interval [0, T ], given that Xt can be observed continuously

throughout [0, T ].5

Now consider an alternative model that allows observed prices to contain errors due to HFN.

In particular, the following specification

Yt = Xt + Et, 0 ≤ t ≤ T. (2)

Xt and Et are called signal and (HFN) noise, respectively. The noise process satisfies the following

assumptions:

A3. Et is a stationary process with mean zero and a covariance function Γ(s, t) = γ(s − t).
We make three additional assumptions on the smoothness of γ: as h ↓ 0,

E(Et+h − Et)2 = O(hl),

3There is a substantial body of evidence that documents strong intra-daily seasonality in volatility. Much of this
intra-daily volatility pattern arises from the time-of-day phenomena which mainly depends upon the daily business
cycle. Seasonal effects are incorporated into the model by making the drift µ(.) in (1) time dependent. Note also
that the drift term is less important in the study of volatility using high-frequency data. We discuss this further
in Section 2.2.

4σ(.) is the conditional standard derivation per unit time of the differenced Xt. A2 is equivalent to the assump-
tion that the disturbance term of Xt is of type I (Chapter 3, Merton (1992)).

5See, for example, Karatzas and Shreve (1988).
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E(Et+h − Et)4 = O(h2l),

and

E[(Eh − E0)2(Et+h − Et)2] = O([t/h]−θh2l),

where l ≥ 0 and θ > 0.6

Finally, we assume

A4. Xt and Et are independent.7

The model (2) is a structural model. It is different from the ARMA-GARCH process used in

Baillie and Bollerslev (1990), Bollerslev and Domowitz (1993) and Bollerslev and Melvin (1994).

As an alternative model, the ARMA-GARCH tracks the temporal dependencies in the conditional

mean and variance of observed high-frequency returns but has no capability to model high HFN

sample path irregularities. As pointed out by Harvey et al. (1992), Baillie and Bollerslev’s model

may be viewed as the reduced form of models such as (2). In contrast to the ARMA-GARCH

process, the model (2) is set up in terms of components which have a direct interpretation.8

1.2 The Estimation Problem

To facilitate the study we focus on the quadratic variation and then extend the discussion to the

nonparametric kernel estimator considered in Florens-Zmirou (1993). Our choice of the quadratic

variation is determined by several considerations. First, since economic theory typically does not

provide much information about the functional form of the variance, it is appropriate to consider

estimators which require few assumptions on the data generating process. Asymptotic properties

of the quadratic variation assume only knowledge on the degree of smoothness of the diffusion

function in contrast to parametric cases in which the diffusion function is known up to the value of

some finite-dimensional parameters, such as models used by Wiggins (1987), Chesney and Scott

(1989), Scott (1989), and Melino and Turnbull (1990). Second, the primary interest in this study

is the estimation of the accumulated volatility on a given time interval, the quantity playing a

6Et need not be a Gaussian process. If the Gaussian assumption is added, the fourth-moment and mixing
conditions can be dropped.

7The independence assumption is not essential to our results. It can be relaxed by having assumptions on the
order of (Xt+h −Xt)(Et+h − Et)(Xs+h −Xs)(Es+h − Es) as h ↓ 0.

8Multiple components ARCH models have been proposed by Müller, et al. (1997) and Andersen and Bollerslev
(1997). Müller, et al. focused on the time horizon and the temporal resolution with which different traders are
viewing and influencing the market. Andersen and Bollerslev used a frequency domain approach to analyze the
long- and short-term volatility components. Our approach is based on the time domain, which is similar to that
in Zhou (1996) where a simple structural model of the random walk model plus a white noise process has been
examined.
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crucial role in option pricing models. The quadratic variation is an ideal vehicle for this purpose.9

Suppose that the process Yt is sampled on an equally spaced partition of [0, T ], T ≡ {0, h, 2h, ...,
nh = T}. To simplify notation, denote Yi as Yih for i = 0, 1, 2, ..., n. The quadratic variation based

on {Yi} is obtained by

σ̂2
n =

n∑
i=1

(∆hYi)
2, (3)

where ∆hYi = Yi − Yi−1.

In general, the diffusion term σ in (1) is stochastic. If σ2(Xτ ) 6= T−1
∫ T
0 σ2(Xt)dt alomost surely

for τ ∈ [0, T ], the quadratic variation, σ̂2
n, is not consistent for σ2(Xτ ). The estimation problem

based on σ̂2
n is naturally in the form of its accumulation on [0, T ], that is,

∫ T
0 σ2(Xt)dt.

10 The

estimation problem of σ2(Xτ ) will be considered when we discuss Florens-Zmirou’s nonparametric

estimator in Section 3.4.11

The consistency of an estimator σ̃2
n for

∫ T
0 σ2(Xt)dt is understood in the sense of convergence

in probability under the limit that h approaches zero as n increases without bound so as to keep

T ≡ hn fixed. More precisely, σ̃2
n is said to be a consistent estimator for signal volatility if for

fixed T , as h ↓ 0,

σ̃2
n −

∫ T

0
σ2(Xt)dt = o(1). (4)

When h ↓ 0, we obtain in the limit a continuous record of observations over a finite time span,

comparable to a conventional (T ↑ ∞) data recording. This type of asymptotics, the continuous

record asmptotics, is also different from those in other studies. For example, Bergstrom (1976),

Nelson (1992), and Foster and Nelson (1994) considered cases when T ↑ ∞ and, at the same time,

h ↓ 0 at an appropriate rate.

We view the continuous record asymptotics as a proper framework for the problem of volatility

modeling and estimation using high-frequency data. However, the notion of the continuous record

asymptotics may not be appropriate for studying the problem of estimating returns. This can

be seen clearly in the case that if Xt follows the geometric Brownian motion, the accuracy of

the maximum likelihood (ML) estimator for returns depends only upon the total length of the

observation period, regardless of what the sampling frequency is (Merton (1980)). Although

the conventional (T ↑ ∞) large sample is essential for the estimation consistency of returns,

9The quadratic variation has been used in several recent studies. For example, it has been examined by Andersen
and Bollerslev (1988b) in a study of volatility forecasting based on high-frequency intradaily data.

10The knowledge of the quantity
∫ T
0
σ2(Xt)dt is essential in pricing of various options with stochastic volatility;

see, for example, Hull and White (1987) and Stein and Stein (1991) for more details.
11To simplify terminology, we shall refer to σ2(Xτ ) and

∫ T
0
σ2(Xt)dt volatility, although it should be clear on

which of σ2(Xτ ) or
∫ T
0
σ2(Xt)dt we refer to from context.
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the asymptotic properties of return estimators do depend on whether data are available on the

entire sample path for general diffusion processes.12 Nevertheless, we use the continuous record

asymptotics for the future argument since the drift term µ in (1), which is in higher order, is less

important in the study of volatility using high-frequency data.

Without loss of generality, we assume that T ≡ 1 in the rest of discussion. Unless otherwise

indicated, the convergence is in probability as h ↓ 0 and all summation,
∑

, are from 1 to n.

2 Sample Path Regularities

Our approach relies on the analysis of the noise to signal ratio (which is defined below). It leads

to rather simple characterizations of necessary and sufficient conditions for the consistency of the

quadratic variation estimator in terms of the regularities of sample paths.

Let ∆hXt and ∆hEt be increments in the processes accrued over a time interval of length h.

Thus, ∆hXt = Xt+h −Xt and ∆hEt = Et+h − Et. The noise to signal ratio, ρ, defined by

ρ(h) ≡ E(∆hEt)2

E(∆hXt)2
, (5)

captures the relative changes of Xt and Et on [t, t+ h].

The diffusion process Xt has continuous sample paths but almost all sample paths have infinite

variation in any arbitrary small interval of time due to the diffusion part. The process Xt will not

have a smooth sample path no matter what smoothness conditions on σ(.) we make as long as

σ(.) does not vanish. The law of the iterated logarithm provides a previous statement about how

Xt given in (1) oscillates on a neighborhood of t: [t, t + h]. Under the assumption A1, for every

fixed t ∈ [0, 1],

lim sup
h↓0

|∆hXt|√
2hloglog1/h

= σ(Xt),

with probability 1 (see, for example, Theorem 7.2.5, Arnold (1974)). Subject to the existence of

the finite second moment of ∆hXt,

E[(∆hXt)
2|Xt = x] = σ2(x)h+ o(h) for t ∈ [0, 1].

Under the assumption A2,

E(∆hXt)
2 = O(h). (6)

12See, for example, Goldenberg and Schmidt (1996).
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Similarly, E(∆hEt)2 can be written as a function of h for sufficiently small h. Let Bhγ(t),

a difference operator, be defined as γ(t + h) − γ(t). Since E(∆hEt)2 = B−hBhγ(0), under the

assumption A3,

E(∆hEt)2 = O(hl) (7)

for some l ≥ 0.

Combining (6) and (7), we obtain the noise to signal ratio

ρ(h) ≡ E(∆hEt)2

E(∆hXt)2
= O(hl−1). (8)

As h ↓ 0, both E(∆hEt)2 and E(∆hXt)
2 decline but may have different declining rates. In general,

ρ(h) is a function of both h and l. It will therefore be useful to partition l according to the

outcomes of ρ(h):

lim
h↓0

ρ(h) =


0, l > 1,

O(1), l = 1,

∞, l < 1.

(9)

It becomes evident from (9) that asymptotic properties of σ̂2
n will depend critically upon the

level of l. The smoother the sample paths of Et has, the higher value of l and therefore, the more

likelihood of σ̂2
n to qualify as a consistent volatility estimator. Note thatE(∆hEt)2 = 2(γ(0)−γ(h)).

Hence, the behavior of ρ(h) near the origin depends on the convergence rate of γ(h) as h ↓ 0.

To develop a sense of the behavior of the autocovariance (or, equivalently autocorrelation)

function with l > 1, we compute autocorrelations for different h and various levels of l. From

(7), 2(γ(0) − γ(h)) = Chl + o(hl) for some constant C > 0. Hence, γ(h) ≈ γ(0) − C
2
hl and the

autocorrelation γ(h)
γ(0)

= 1 − C
2γ(0)

hl. For illustrative purpose, let the basic time unit be one hour.

That is, h = 1 for hourly data. Suppose that the hourly series has an autocorrelation 0.1. Then,
C

2γ(0)
will be 0.9 and autocorrelations for data sampled at different sampling frequencies are ready

to be calculated. For example, autocorrelations for data sampled at every 10 minute are 0.895

and 0.938 for l = 1.2 and 1.5, respectively. Autocorrelations for minute-by-minute data become

99.3 (for l = 1.2) and 99.8 (l = 1.5), which are essentially one.

In fact, if γ(h) changes very little near the origin, the noise component separated by a small

time interval effectively cancels out since their correlation is considerably high. Unfortunately, as

shown in Section 4, this is very unlikely to be satisfied in reality. In FXFX data, each bid and ask

quote pair is input by a single dealer and therefore, it reflects each dealer’s specific characteristics

mentioned at the beginning of the paper. Since FXFX data consist of quotes collected from
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heterogeneous agents it is rare to have an autocorrelation so close to 1 (as illustrated in the above

example) even if they are separated by tiny time intervals.

3 Estimating Volatility

3.1 The Characterization of Estimation Consistency

The main result in this section is that the quadratic variation of observable process Yt turns out

to be a consistent estimator of the signal volatility
∫ 1
0 σ

2(Xt)dt if and only if ρ(h) = o(1) as h ↓ 0.

Together with (9), the condition can be further formulated in terms of l.

Theorem 1 Under assumptions A1-A4, the quadratic variation σ̂2
n is consistent for

∫ 1
0 σ

2(Xt)dt
if and only if

ρ(h) = o(1) (10)

as h ↓ 0. If B−hBhγ(0) = O(hl) as h ↓ 0, the condition (10) is equivalent to l > 1. Furthermore,

σ̂2
n =


∫ 1
0 σ

2(Xt)dt+ o(1) if l > 1∫ 1
0 σ

2(Xt)dt+ limh↓0 h
−1B−hBhγ(0) + o(1) if l = 1

∞ if l < 1
(11)

The proof of the theorem is outlined in the Appendix. We provide an informal discussion here.

The basic message of Theorem 1 is that if Et is “smoother” than Xt (i.e., the case in which l > 1)

the variability of Et on [t, t+ h] is in higher-order for sufficiently small h and hence, decays faster

than that of Xt as h ↓ 0. Therefore, the ratio ρ(h) decreases and ultimately approaches zero as we

collect and use more sample data. As a consequence, the variability calculated by σ̂2
n is attributed

by and large to the variability of Xt. In fact, σ̂2
n can be written as

σ̂2
n ≡

∑
(∆hYi)

2 =
∑

(∆hXi)
2 +

∑
2(∆hXi)(∆hEi) +

∑
(∆hEi)2. (12)

The first summation in (12) is the quadratic variation based on {Xi} and it converges to
∫ 1
0 σ

2(Xt)dt

in probability.13 If l > 1, the last two summations are o(1), which are in higher order than the

first summation. Therefore, we conclude that the condition l > 1 preserves the consistency of σ̂2
n.

In contrast to the case in which l > 1, if l < 1,
∑

(∆hEi)2 is in order of O(|h|l−1), which

dominates the first and the second summations in (12). As a consequence, the variability of Xt

on [t, t + h] is in higher-order and the estimator σ̂2 is made up mainly by those tiny variability

of Et. The sum
∑

(∆hEi)2 is unbounded above and hence, σ̂2
n grows without bound and fails to

converge to
∫ 1
0 σ

2(Xt)dt as h ↓ 0.

13See, for example, Goldstein (1969).
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The condition that l = 1 separates the two extreme cases (l > 1 and l < 1). If l = 1,

decay rates of Xt and Et are in the same order. The ratio ρ(h) stays at a constant level as the

sampling frequency changes. The estimator σ̂2
n will have a limit but provides a biased estimate

for
∫ 1
0 σ

2(Xt)dt.

Although
∑

(∆hEi)2 is unbounded for l < 1, the scaled h1−l ∑(∆hEi)2 has a limit as h ↓ 0.

Similarly, the second cross summation in (12) scaled by the same factor, h1−l, is in the order o(1).

Therefore, the scaled sum h1−lσ̂2
n has a limit. This result comes directly from the proof of Theorem

1. Because of its importance in understanding dynamics of the HFN as h ↓ 0 (see Section 4), we

state the result as a theorem.

Theorem 2 Under the assumptions A1-A4, if l < 1,

h1−lσ̂2
n −

B−hBhγ(0)

hl
= o(1). (13)

3.2 The Diffusion with Jumps

Because the quadratic variation shares some similar properties when applied to a mixed diffusion-

jump process, a few remarks are in order before we discuss several examples of noise processes in

the next section. A number of studies have investigated a model in which stock prices follow a

mixed diffusion-jump process (see, for example, Merton (1976)). Although almost all sample paths

of diffusion are continuous, the introduction of a jump component allows for simple sample-path

discontinuities. Similar to the mixed diffusion-stationary processes, the fluctuation of the diffusion

is overestimated if a model without jumps is used in a situation where jumps do occur. However,

unlike the mixed diffusion-stationary process specified in Section 1.2, estimators which account

for jump components can be derived in some simple cases. For example, consider a diffusion with

Poisson jumps:

dXt = µXtdt+ σXtdWt +Xtdηt, (14)

where ηt is a compound Poisson process

ηt =
Nt∑
i=1

at,

Here Nt is a Poisson process while the ats are independent identically distributed (i.i.d.) random

variables. Equation (14) yields a unique solution which is given by

Xt = x0e
(µ−1/2)t+σWt+

∑Nt
i=1

log(1−ai).
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It follows that as h ↓ 0,

h(
n∑
i=1

(∆hlogXi)
2 −

∑
s≤h

(∆hRs)
2) = σ2 + o(1)

in probability, where Rt = log(Xt) (Sørensen (1991)). The Poisson process is not a stationary

process and, as a result, the previous section does not apply directly. However, the analysis may

be generalized for processes with jumps in Xt. Although such an exercise is certainly interesting,

it is mathematically intimidating and is beyond the scope of this paper.

3.3 More on Noise Processes

An important example of the noise process is the Gaussian process with a general exponential

covariance function

γ(h) = ce−αh
l

, (15)

with c and α > 0. It can be proved that (15) is a covariance function for 0 < l ≤ 2. (15) is

necessarily a correlation function if 0 < l ≤ 1 by Pòlya (1949) and if 1 < l ≤ 2 by Lèvy (1925). It

is also known that (15) can not be a correlation function if l > 2 (Yaglom (1987)). In the case in

which 0 < l ≤ 2, it is easy to verify that as h ↓ 0,

B−hBhγ(0) = 2cαhl + o(hl).

Therefore, we have
B−hBhγ(0)

hl
− 2cα = o(1). (16)

In the case where l > 1, the variability of Et on any tiny time interval [t, t + h], E(∆hEt)2,

collapses to zero at a fast (faster than those of diffusion processes) rate. Because E(∆hEt)2

dies down quickly, σ̂2
n is consistent for

∫ 1
0 σ

2(Xt)dt. In fact, considerable short-range dependence

characterized by an autocovariance function γ(h) varying very little near the origin is crucial for

consistency of high-frequency volatility estimators.

If l = 1, (15) leads to the first-order autoregressive (the Ornstein-Uhlenbeck) process. Applying

results of Theorem 1 as well as (16), we have

σ̂2
n − (

∫ 1

0
σ2(Xt)dt+ 2cα) = o(1). (17)

Since 2cα > 0, the volatility of Xt is overestimated. It is also important to notice that the

estimation bias, 2cα, depends not only on the variance of Et but on the parameter α as well.
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The case where 0 < l < 1 is more interesting and appears more empirically relevant (see

empirical results for FXFX data in Section 4). If l < 1, since h1−lσ̂2
n converges to h−lB−hBhγ(0)

in probability by Theorem 2, the shape of h−1B−hBhγ(0), or 2cαhl−1, approximates the un-scaled

quadratic variation σ̂2
n. For all l < 1, 2cαhl−1 or σ̂2

n explodes as h ↓ 0. However, they differ

dramatically in terms of the explosion rate. The curve with a smaller l value grows more quickly

than the one with a larger l value.

An alternative specification of autocovariance is that γ has a spike at h = 0. That is,

γ(h) =

 c0, h = 0

ce−αh
k
, otherwise

(18)

with c and α > 0, and k > 0. If c0 6= c,

B−hBhγ(0) = O(1)

as h ↓ 0. Then it follws from Theorem 1 for l = 0 that the estimate of
∫ 1
0 σ

2(Xt)dt given by σ̂2
n is

inconsistent and the bias explodes as fast as h−1.

If allowing c = 0, it follows that the autocovariance function has the form

γ(0) =

 c0, h = 0

0, otherwise.
(19)

Although such a continuous “white noise” process does not exist, except in a highly degenerate

sense, its discrete version has been widely used in modeling financial assets. For example, Merville

and Pieptea (1989) considered the mean-reverting diffusion with white noise process:

dYt = (µ− kYt)dt+ σdWt + δdZt (20)

with dZt drawing from i.i.d. N(0, 1), independent from dWt. The instantaneous variance of Yt is

given by

var(∆Yt) = σ2h+ δ2.

When h increases, so does var(∆hYt) at a rate σ2. As h decreases, var(∆hYt) decreases at the

same rate. However, as h ↓ 0, var(∆hYt) does not converge to zero but rather to the noise-related

variance δ2.

Note that the stationary process with a covariance function defined either by (15) or (18)

exhibits very slow (hyperbolic) decay rate near the origin. However, both autocovariance functions
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in (15) and (18) decline exponentially as h ↑ ∞, implying that they will not possess the long-

memory property under the jargon of the conventional asymptotics, which focuses on the behavior

of autocovariance (or autocorrelation) function at infinity.14

Andersen and Bollerslev (1997, 1998a) and Chambers (1998) studied the persistence of long-

memory property under temporal aggregation. Their studies suggested that by interpreting the

volatility as a mixture of numerous heterogeneous short-run information arrivals, the observed

volatility process may exhibit long-run dependence. If the long-memory dependence in low-

frequency volatility is the direct consequence of the short-run component, the process with the

autocovariance function (15) or (18) is clearly inappropriate. Nevertheless, the question of whether

the process with the autocovariance function given in (15) or (18) is an appropriate approximation

of the statistical distribution of the HFN may not be crucial for the statistical aspects of volatility

study of high-frequency data – after all, our analysis based on the continuous record asymptotics

only requires knowledge of the dependence property of the HFN near the origin. However, the

behavior of the autocovariance function of the HFN at the infinite is central to the interpretation

of the origination of the long-memory property of low-frequency data. Since the present study is

focused exclusively on analysis in the high-frequency domain we shall not pursue this issue any

further here.15

3.4 The Florens-Zmirou Estimator

Florens-Zmirou (1993) proposed the following nonparametric volatility estimator

ŝ2
n(τ) =

1

2nξn

n−1∑
i=1

1|τ−i/n|<ξn(∆hXi)
2, (21)

where τ ∈ [0, 1] and ξn is a nonstochastic sequence converging to zero at an appropriate rate as

h ↓ 0. The estimator ŝ2
n(τ) is a kernel estimator. Unlike the quadratic variation, ŝ2

n(τ) is consistent

for σ2(Xτ ). The following result on ŝ2
n(τ) is an adaptation of the results in Theorem 2.3 of Corradi

and White (1999).

Theorem 3 Under the assumption A1, as h ↓ 0, h−1ξn ↑ ∞ and h−1ξ3
n ↓ 0,

ŝ2
n(τ)− σ2(Xτ ) = o(1)

14A process is usually called to have a long memory property if the absolute value of its autocovariance function
declines hyperbolically when h ↑ ∞ (i.e., |γ(h)| = O(|h|−k) as h ↑ ∞ for some k > 0).

15Note that since the class of all stationary correlation functions coincides with the class of positive definite
functions (see, for example, Yaglom (1987)), it is easy to find a stationary process with desired statistical short-
and long-run properties. For example, a simple form which adds long- and short-memory components may be
appropriate. See Barndorff-Nielsen and Shephard (1998) for such examples. See also Baillie (1996) for more
discussion on the fractional Gaussian noise.
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pointwise in τ ∈ [0, 1] in probability.

Although ŝ2
n(τ) and σ̂2

n are designed with different purposes in mind, they will have similar

properties when applied to data contaminated by a random noise. Results derived for σ̂2
n hold,

at least qualitatively, for ŝ2
n(τ). We illustrate this by considering a simple case when σ(.) is a

constant, σ0 (0 < σ0 <∞).

In the constant volatility case (σ2(.) ≡ σ2
0), the two estimators are asymptotically equivalent.

In fact, Corradi and White (1999) showed that

{diag(
√

2σ̂2
n)}−1(nξn)

1/2((ŝ2
n(τ1)− σ̂2

n, (ŝ
2
n(τ2)− σ̂2

n, ..., (ŝ
2
n(τm)− σ̂2

n))
′ ∼ N(0, Im). (22)

The following results, establishing the condition for the consistency of ŝ2
n(τ) for σ2

0, can be obtained

by applying (22) and results in Theorem 1.

Theorem 4 Under assumptions A1-A4, if σ(.) ≡ σ0 with 0 < σ0 <∞,

ŝ2
n(τ)− σ2

0 = o(1)

in probability if and only if
ρ(h) = o(1)

as h ↓ 0, h−1ξn ↑ ∞ and h−1ξ3
n ↓ 0.

4 Empirical Results for the DM/$ Exchange Rate

4.1 Spurious Volatility in High-frequency Returns

As an empirical application, we analyze the high-frequency DM/$ in the framework proposed

in this paper. The raw data were recorded from the Reuters foreign exchange FXFX page and

contain Greenwich Mean Time (GMT) at which quotes are recorded, bid and ask prices, and

information on quote origination. These Reuters FXFX quotes are from more than 592 banks

who are a part of the spot market. We will work on the mid-point of the logarithms of the bid

and the ask prices as in most previous studies. We focus on one year time span from October

1, 1992 to September 30, 1993. For the almost continuously recorded quotes over the one-year

period, there are total 1, 472, 241 ticks, which yield about 4034 ticks per day and relatively higher

numbers (5598) for weekdays because the market was usually quiet during weekends. We exclude

weekends for which the absence of quotes may produce unreliable results.

14



Most existing empirical literature on FX market microstructure uses these indicative quote data

derived from Reuters FXFX screens16 or other competitors such as Knight Ridder and Telerate.17

As the only information source available to all market participants, these quotes indicate the

current foreign exchange rates. It is well-known that such high-frequency quotes, recorded on a

second-by-second basis, are very “noisy” (see, for example, Goodhart and O’Hara (1997)). To

keep the noise low, most current empirical research based on high-frequency FXFX data does

not use full data but a sub-sample obtained by sampling data at some regular time intervals.

The most popular sampling frequencies are 10- or 15-minutes (for example, see Guillaume at al.

(1997), Andersen and Bollerslev (1997), and Melvin and Peiers (1997) among others).

By sampling data at 10- or 15-minutes, the HFN impact declines dramatically from that at

the tick-by-tick level. Table 1 presents estimation results of daily volatilities using the quadratic

variation for the DM/$ series with different sampling frequencies. As can be seen, as the sampling

frequency increases, the estimates do not converge but rather inflate. This suggests that rapid

quote arrivals are consisted with rapid noise arrivals. The evidence in Table 1 also suggests that

the noise is less “smoother” than the diffusion at ultra-high sampling frequencies. For relatively

low sampling frequencies, the general level of the process changes little, with most variation coming

from the diffusion. As the sampling frequency increases, however, the general level of volatility

changes, the variation due to the noise component becomes significant in relation to the variation

of diffusion. At the ultra-high frequency, diffusion becomes less important and noise takes over.

By increasing sampling frequency enough, we should see only the variation from the noise. See

Sections 4.2 and 5 for further discussion.

The evidence that the HFN induces an upward bias in volatility estimation shown in Table

1 may be well as expected. However, the magnitude of the bias is striking.18 Recall that the

consistency of volatility estimation depends on the degree of smoothness of the autocovariance

function γ(h) around 0. If the sample path of the HFN is not smoother than that of the diffusion,

the noise component separated by a small time interval effectively can not cancel out and tends

to dominate the estimates obtained by the quadratic variation. Although each of (∆hEi)2 is tiny

16FXFX is the older version of the currently used EFX page. The EFX data, however, have similar shortcomings
as those in the FXFX data. Like the old FXFX system, the EFX page provides only indicative quotes that are not
binding commitments. It also does not contain information on traded currency volumes.

17According to Reuters, about 60% of transactions in the interbank market take place through the Reuters FXFX
system (Evans (1998)).

18In fact, the HFN bias may be more serious than those reported here in empirical analysis using other similar
data sets. As pointed out in Evan (1998), the FXFX indicative quotes cannot arrive faster than every 5 seconds
(due to technical constraints in the Reuters system). At active times like the London afternoon, this constraint is
often binding and only a small fraction of the quotes has been posted.
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Table 1: Volatility Estimates based on the Quadratic Variation. Daily volatility estimates for
DM/$ from October 1, 1992 to September 30, 1993. Data are sampled at various frequencies
indicated.

Every Every Every Every
Tick-by-tick One Minute Five Mintues Ten Minutes Fifteen Minutes

Monday 2.935e-04 9.036e-05 5.810e-05 5.671e-05 5.264e-05
Tuesday 3.351e-04 1.022e-04 6.259e-05 5.995e-05 5.674e-05

Wednesday 3.505e-04 1.040e-04 6.303e-05 5.857e-05 5.421e-05
Thursday 3.810e-04 1.207e-04 7.660e-05 6.983e-05 6.758e-05

Friday 3.597e-04 1.106e-04 7.850e-05 7.302e-05 6.776e-05

Overall Mean 3.440e-04 1.056e-04 6.776e-05 6.362e-05 5.979e-05

when h is infinitesimally small, the HFN bias, approximated by
∑

(∆hEi)2, may not be negligible

if the number of terms in the summation is sufficiently large.

4.2 High Irregularities of the HFN Sample Path

To develop further intuition for these results, we use the result from Theorem 2 to estimate the

smooth parameter of the noise component, l. The evidence reported in Table 1 suggests that the

decay rate of γ, l, is less than 1 for the noise process. Recall that, for l < 1, the scaled quadratic

variation has a finite limit. Taking the logarithm of (13) leads to the approximate equation

ln σ̂2
n ≈ ln(limh→0

B−hBhγ(0)

hl
) + (l − 1) ln(h). (23)

The relationship between ln σ̂2
n and ln(h) is linear. The coefficients, ln(limh→0

B−hBhγ(0)
hl

) and l,

are estimated using the regression technique. For each day of the one year period examined, we

estimate (23) based on 50 observations obtained using different sampling frequencies ranging from

every 5 seconds up to every 25 minutes.19

Table 2 reports the estimation results. Results vary from Mondays to Fridays. However, the

evidence that the estimated l is well less than one is consistent across different days of the week.

The average estimated l for weekdays is about 0.323. The smallest average estimated l, 0.278, is

on Thursdays.

The overall average estimated ln(limh→0
B−hBhγ(0)

hl
) is -14.11. Since E(∆hEt)2 ≈ B−hBhγ(0),

we may have an estimate of E(∆hEt)2 based on ln(limh→0
B−hBhγ(0)

hl
). The biases due to the HFN,

19Note that (23) is an asymptotic equation. To reduce potential estimation bias due to assuming that it holds
for all h, we use only sampling frequencies up to 25 minutes.
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Table 2: Irregularities of the HFN Sample Path. Daily volatility estimates for DM/$ from
October 1, 1992 to September 30, 1993. Estimates are based on (22). Standard errors are given
in parentheses.

l ln(limh→0
B−hBhγ(0)

hl
)

Monday 0.364 (0.250) -13.93 (2.41)
Tuesday 0.291 (0.194) -14.32 (1.08)

Wednesday 0.314 (0.361) -14.22 (1.92)
Thursday 0.278 (0.184) -14.48 (1.29)

Friday 0.367 (0.273) -13.62 (2.25)

Overall Mean 0.323 -14.11

Table 3: HFN Biases. The estimate is based on
∑

(∆hEi)2 ≈ n1−lB−hBhγ(0) with l and
B−hBhγ(0) given in Table 2.

n
∑

(∆hEi)2
∑

(∆hEi)2
σ̂2
n

Monday 5415 2.11e-04 72%
Tuesday 6008 2.88e-04 86%

Wednesday 5934 2.61e-04 75%
Thursday 5707 2.65e-04 70%

Friday 4926 2.64e-04 74%

Overall Mean 5598 2.57e-04 75%
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which are dominated by
∑

(∆hEi)2 (see (12)), can also be calculated. Results are reported in Table

3. To evaluate the proportion of variability due to the HFN, we also provide the ratio
∑

(∆hEi)2
σ̂2
n

.

It becomes evident in Table 3 that more than 70% of measured daily return variances from σ̂2
n

can be induced by the HFN. This proportion may be as high as 86% (as on Tuesdays during the

examined sample period).

4.3 First-order Autocorrelation in High-frequency Returns

It is well-known that there is a substantial negative first-order autocorrelation in the FXFX data.

As quotes are sampled less frequently, the autocorrelation becomes less significant and usually

diminishes at frequencies exceed 5 minutes. The model introduced in this paper provides an

explanation on why and how this happens. According to (2), the first-order autocovariance of the

observed return series ∆hYt induced by the HFN is 2γ(h)− γ(0)− γ(2h). As a consequence, the

autocorrelation induced by the HFN, denoted by ϑ, is [2γ(h) − γ(0) − γ(2h)]/[2(γ(0) − γ(h)) +

O(h)]. By a first order Taylor series expansion on γ(h) near h = 0, ϑ equals approximately

[(2l− 2)hl]/[2hl +O(h)]. For l < 1, [(2l− 2)hl]/[2hl +O(h)] is negative for sufficiently small h and

approaches (2l−1− 1) as h ↓ 0. As quotes are sampled less frequently, the autocorrelation induced

by the HFN becomes less negative due to the increasing importance of the diffusion component

and eventually will diminish, becoming statistically insignificant.20

5 The Optimal Sampling Frequency

The empirical analysis in the previous section provides distinct evidence for the existence of mul-

tiple volatility components at the high intradaily frequencies. In particular, while the volatility

dynamics at relatively low frequencies are governed primarily by the persistent diffusion compo-

nent, it is dominated by a much more short-run component (the HFN) as data are sampled at

ultra-high frequencies. These findings suggest that there may exist an optimal sampling frequency

at which one has a large number of observations to insure the consistency of the estimation while

the biases inherent in high-frequency data are controlled at an appropriate level.

In this section, we show via Monte Carlo simulations that for Reuters FXFX data, 10- to

15-minute sampling intervals are optimal based on mean square error (MSE) type of criteria. The

20Note that if Et is uncorrelated (the case discussed by Merville and Pieptea (1989)), [2γ(h) − γ(0) −
γ(2h)]/[2(γ(0) − γ(h)) + O(h)] ≈ [−γ(0)]/[2γ(0) + O(h)], which is bounded below by −1/2 and approaches −1/2
as h ↓ 0.
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simulation is based on the following model:

Yt = Xt + Et, t ∈ [0, T ], (24)

where Xt is assumed to be a lognormal stochastic volatility (SV) model

dXt = σtdWt (25)

dlnσt = (α− βlnσt)dt+ γdW ∗
t . (26)

Wt and W ∗
t are two independent standard Wiener processes. We choose values of the parameters

(α, β, γ) that yield an average 0.7% daily standard deviation of returns of the Xt process. The

HFN, Et, is a stationary Gaussian process with the following model specification:

dEt = aεEtdt+ σεdW
l
t , (27)

where W l
t is a fractional Brownian motion with order l = 0.323, independent of both Wt and

W ∗
t . The parameters aε and σε are chosen to generate a proper noise level, namely, 75% of total

variability of returns of Yt are from {Et} at the tick-by-tick level.

The SV model is chosen because of the growing consensus in recent studies that volatilities

do change over time. The use of fractional Brownian motion is primarily due to its special

autocorrelation structures, which make it an ideal vehicle to generate a stationary component

with properties uncovered in Reuters FXFX data in Section 4. More specifically, the process Et
with l < 1 has a sample path which is less “smoother” than that of Xt defined by (25) and (26).21

To visualize the variability change of Xt relative to that of Et as the sampling frequency

changes, Figure 1 reports several simulated series based on (24)-(27) with parameters chosen to

21The solution of (27) can be written as (Comte and Renault (1996)):

Et =
∫ t

0

eaε(t−s)σεdW
l
s

and the covariance function γ(h) of Et is given by

γ(h) =
1

Γ((l + 1)/2)

∫ ∞
0

(x+ h)(l−1)/2x(l−1)/2a(x+ h)a(x)dx

where a(x) is defined as

a(x) = σεx
(l−1)/2 d

dx

∫ x

0

eaεu(x− u)(l−1)/2du.

Under some regularity conditions, γ(h) = γ(0) + cγh
l + o(hl) for some constant cγ (Comte (1994)) and hence,

B−hBhγ(0) = O(hl), where γ(h) is the covariance function of Et.
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generate required volatility levels, as mentioned above. One hundred observations for returns of

Xt and Et as well as Yt are generated for each of the three sampling frequencies: daily, hourly,

and tick-by-tick (i.e., 5600 observations per day according to the results in Table 3). The results

show that daily returns of Yt are governed by the signal process Xt and the noise component Et
is negligible (Figure 1 (a)). From Figure 1 (b), it can be seen that hourly returns are essentially

dominated by the signal process but the impact of the noise component becomes clearly visible.

At the tick-by-tick frequency, however, the observed returns are a good mixture of signal and noise

and are driven mainly by the noise component (Figure 1 (c)).
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(c) Tick-by-tick Return
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Figure 1. Simulated sample paths.

To find the optimal sampling frequency, the quadratic variation (3) is applied to simulated
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Table 4: SRMSEa

Sampling Interval
1 Hour 30 Min. 20 Min. 15 Min. 10 Min. 5 Min. 1 Min. Tick-by-tickb

SRMSE (×104) 2.156 1.158 1.060 0.962 0.964 1.366 3.768 9.570

a. The simulation is based on 3,000 replications.
b. Based on 5600 observations per day.

series to estimate daily volatility. Since the time span [0, T ] is fixed as one day, we take T = 1.

Hence, the relationship between the sample size n and the length of sampling interval h, is nh =

T ≡ 1. For example, n = 1440 and h = 1/1440 for data sampled every minute; while n = 144 and

h = 1/144 for data collected every ten minutes.

The square root of MSE (SRMSE) for various levels of sampling frequencies are reported in

Table 4. The results show that as the sampling frequency increases, the SRMSE first decreases

and then increases. The optimal sampling frequency is about 10 to 15 minutes. The SRMSE

of tick-by-tick data (9.57 × 10−4) is about 10 times higher than the optima (0.96 × 10−4). The

U-shape curve of SRMSE clearly demonstrates the importance of the trade-off between increasing

of sample size and minimizing HFN biases.

6 Conclusion

We focus two research questions which are important in high-frequency data analysis. First, what

are conditions characterizing the HFN component on which conventional volatility estimators will

provide consistent volatility estimates? We have established such conditions under the framework

of continuous record asymptotics. A tentative conclusion from this study is that more frequent

samplings need not provide better volatility estimates. More specifically, conventional volatility

estimators, commonly used in daily and weekly data analysis, may not create consistent continu-

ously filtered volatility estimates under certain circumstances. We illustrate our findings with the

widely used HFDF93 high-frequency Reuters FXFX DM/$ data released from Olsen and Asso-

ciates in 1993. We found that the HFN leads to substantial spurious volatility in high-frequency

quotation series; about 75 % of measured daily return variances can be induced by the HFN

component with high irregularities in the sample path. We have argued that trader heterogeneity

helps explain these empirical findings. If all traders are homogeneous, the correlation between con-

secutive price quotes should be nearly one and as a consequence, one observes a “very smooth”

HFN sample path. If traders are heterogeneous, however, the correlation between consecutive
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price quotes may not be nearly one. Therefore, one observes high irregularities of the HFN sample

path, which gives rise to “excessive volatility” in high-frequency returns.22

A second, and related, question is how much impact does the HFN component have on the

price series dynamics, especially, on the behavior of volatility as the sampling frequency changes?

When analyzing volatility for data sampled at ultra-high frequencies, the HFN component tends

to dominate the estimates obtained with conventional methods, whereas properties of data sam-

pled less frequently are mainly driven by the diffusion component. For example, we shown that

the HFN is a potential source of some short-lived dynamics in return series such as the appar-

ent negative first-order autocorrelation in returns based on samples collected at 5 minute time

intervals or less. Our results also provided a justification for the appropriateness of the use of the

10- to 15-minute sampling intervals. Data sampled at these frequencies are the ideal compromise,

yielding a large number of observations while minimizing the biases inherent in high-frequency

data.

Appendix
Proof of Theorem 1: Let n = h−1 be the number of intervals in the partition of [0, 1]. Under

the assumption A3, the sequence 1
n

∑
(∆hEi)2 converges to E(∆hEt)2 = O(hl) by the law of large

number, and therefore
∑

(∆hEt)2 = O(hl−1) as h ↓ 0. Since Xt is a diffusion process, its quadratic

variation
∑

(∆hXi)
2 converges to

∫ 1
0 σ

2(Xt)dt. Finally, by Hőlder’s inequality together with A2-

A5, the quadratic covariance
∑

∆hXi∆hEi is O(hl/2). So the quadratic variation σ̂2
n is consistent

for
∫ 1
0 σ

2(Xt)dt if and only if l > 1, and the result in (12) follows.
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