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Abstract

This article uses unobserved components time series models to capture
the underlying trends in the quarterly deciles of US hourly wages. Tests
of stability and divergence are suggested as a means of assessing changes
in inequality. The decrease in the wage gender gap is examined and the
impact of changes in the minimum wage is assessed.
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1. Introduction

The growth of economic inequality has been a major concern of economists and
policy makers. In the US a substantial literature has emerged examining the
increased dispersion in the distributions of wages, incomes, and wealth; see Katz
and Autor (1999) for a recent review of wage inequality and Mishel et al, (1999,
Chapters 1 and 5) for a review of recent work on income and wealth inequality.
Since the largest component of income for most (non-elderly) families derives from



their earnings, much analysis has focused on the increase in earnings inequality.’
To distinguish the impact of changes in the variability of hours worked from those
of hourly wages, labor economists have often focused on the dispersion of the
latter. This approach has theoretical justification as well, since the microeconomic
theory of wage determination is usually cast in terms of the hourly wage. In US
labor markets, virtually all of the evidence has been presented in terms of annual
wage trends. A typical approach uses annual data from the Current Population
Survey (CPS) to calculate various indicators of wage inequality. For example,
Katz and Autor (1999) use data from the March CPS to calculate the annual
growth in the log difference between the 90th and 10th percentile wages. While
this approach has been informative, the relatively small number of observations
for annual percentile time series has apparently limited the scope for applying
statistical modelling techniques to extract underlying trends and to examine the
relationship between them. For the same reason, the literature is quiet on what
represents a statistically meaningful increase in measures of inequality.

This study uses a newly constructed quarterly data set on hourly wage deciles.
However, while yielding more information, quarterly data also introduce some new
measurement challenges. Seasonal effects may be present and the observations
will tend to be more ‘noisy’ because irregularities and survey errors have not been
averaged out over the year. What is needed is a method which efficiently extracts
the underlying trend from such components. Structural time series models are
set up precisely to accomplish this task. Univariate models provide an excellent
means of displaying the stylized facts surrounding movements in wage inequality,
while multivariate models suggest a framework for a more rigorous analysis based
on recent ideas on nonstationarity, common factors and co-integration. Although
this theory is now well established, it has not, to our knowledge, been applied to
percentile time series, nor have the tests we propose been used in this context.
Our experience with these methods may therefore be useful to other researchers
working with time series data on the distributions of economic variables.

The structure of the paper is as follows. The data are described in section
2. This is followed, in section 3, by a description of how univariate structural
(unobserved component) time series models can be used to extract underlying
trends from seasonal series. Section 4 then fits the model to the data on deciles
of male wages. Section 5 looks at how inequality can be captured by various

! According to the Committee on Ways and Means, 1992, earnings comprised 76% of total
family income from all sources for families in the middle quintile of the income distribution in
1989.



‘contrasts’ such as the difference between, or ratio of, two deciles. Tests of stability
and divergence (or convergence) are proposed and applied to the data. These tests
may yield information which would not be apparent from simply ‘eyeballing’ the
unadjusted data. Multivariate models are introduced in section 6 and the link
with common factors and co-integration is explored in some detail. A general
statistical test for wage dispersion, based on eight contrasts, is given and the
results of fitting multivariate models to wage deciles are reported.

Section 7 explores the changing relationship between male and female wages,
while section 8 goes on to look at the impact of minimum wage legislation. The
conclusions are presented in section 9.

2. The Data

The quarterly hourly wage data are derived from the Current Population Survey, a
monthly survey conducted by the US Bureau of the Census. Each month, approx-
imately 50,000 households are interviewed regarding their labor market status in
the middle week of the month. Since 1979, one-quarter of the sample, called the
outgoing rotation groups (ORG), are asked questions about their earnings that
week.?2 The survey also collects demographic information on these workers and
provides a weighting factor to make the ORG sample nationally representative.
Our sample includes only 18 to 64 year olds, in order to exclude those whose youth
or age might preclude steady labor force attachment. The earnings questions are
asked of wage and salaried workers (excluding the self-employed) in both the pri-
vate and pubic sectors. Respondents are also asked whether they are paid by the
hour in some other format.® For hourly workers, we simply take the hourly wage;
for others, we divide their weekly earnings by their usual weekly hours. More
detail on the construction of the wage variable can be found in the data appendix
of Mishel et al (1999). A fairly extensive revision of these earnings variables was

2The CPS survey is administered as a ”rolling panel.” Households entering the survey are
interviewed for four consecutive months, leave the survey for eight months and are then back
in for four months (the same calendar months as the first four). The earnings questions are
asked only to those households either in their fourth or eighth month in the survey. Since these
households are leaving the rotation, either temporarily (for those in the fourth month in survey)
or permanently (for those in their eighth survey month), the earnings sample is referred to as
the outgoing rotation group.

3Prior to 1994, respondents had to either report an hourly wage or weekly earnings. From
1994 forward, pay periods other than weekly were introduced. See Polivka (1998) and Bernstein
and Mishel (1997) for a discussion of the impact of these changes on measured wage trends.



introduced in 1994. Bureau of Labor Statistics (BLS) statisticians, in particular
Polivka (1998), provide detailed analysis of the impact of the change in measured
earnings. This work, along with the analysis in Bernstein and Mishel (1997), sug-
gests that the impact of the revisions does not create a significant inconsistency
in the series. The CPS earnings data are top-coded to preserve confidentiality,
and in other work with these data, such as Mishel et al (1999) various adjust-
ments are made for this problem. However, the current analysis examines hourly
wage values up to, but not above, the 90th percentile of the gender-specific wage
distribution. Since topcoded cases are well above this cutoff (typically above the
97th percentile), this does not affect our analysis. In order to control for obvious
outliers, we exclude hourly wages below $0.50 and above $100 in 1989 dollars.
The data are deflated using the CPI-U-X1, an experimental BLS deflator which
corrects the overstating of price growth in the more commonly used CPI-U series
in the late 1970s and early 1980s (the US Census Bureau also uses the X1 in
deflating their income series). Although the X1 series is also susceptible to recent
critiques of the CPI, our interest here is in the gap between wages at different
deciles, and the magnitude of the gap is unaffected by the deflator. As noted
in West (undated) and Polivka (1998), wage quantiles derived from survey data
tend to ”clump” around commonly reported values, such as (in the case of hourly
wages), $0.50 and $1.00 intervals. Over time, these spikes in the wage distribution
tend to persist for a number of periods before jumping to the next spike. Thus,
a particular wage quantile computed from the raw data might be $7.00 for a few
consecutive quarters before eventually jumping to $7.50. Analysts of movements
in wage quantiles need a method to control for this aspect of reporting bias. We
use an interpolation method recommended by West and used by the US BLS in
their work; see Mishel et al (1999, Appendix B) for a detailed explanation.
Figure 1 shows some of these interpolated hourly wage deciles, in logged real
1998 dollars, for all workers, from 1979q1 to 1999q3. In order to avoid clutter,
the figure shows the 10th, 30th, 50th, 70th, and 90th percentiles; logarithms are
commonly used in this type of analysis since they make the gaps more equal and
focus attention on relative differences. While the figure combines male and female
wages, we follow the more common practice of examining wage trends by gender
in much of what follows. The gender-specific trends are influenced by changes
in labor supply that were much greater for women over this period, as well as
occupational segregation, which actually diminished slightly. Putting aside for
a moment the question of growing inequality, which is somewhat obscured by
the magnitude of the scale, the trends in figure 1 appear flat or falling slightly



for the middle three series, falling more steeply for the first decile and drifting
upwards for the ninth decile. Starting around 1996, tight labor markets in the
US began to generate fairly broad based wage growth. The series have numerous
spikes and dips, but the structural time series models enable us to filter out
seasonal and irregular effects, to test whether apparent movements in inequality
are statistically significant and to pinpoint the impact of changes in the minimum
wage.

3. Univariate models for trend extraction

This section sets out the statistical models used in the analysis and reviews how
to test against the presence of nonstationary unobserved components.

3.1. Stochastic trends

The local level model is

Yo =y + €, €~ NID (0,0?), t=1,..,T (3.1)

My = M1 + Ui My ~ NID(O, 0-37)’ (32)

where the irregular and level disturbances, ¢, and 7, respectively, are mutually
independent and the notation NID (0,0?) denotes normally and independently
distributed with mean zero and variance o2. When 0727 is zero, the level is constant.

The local linear trend model is more general in that the trend component, p,,
has a stochastic slope, 3,.Thus

fe = Myt Biq TItNN‘[D(O:O-?Qy);
By = B+ CtNNID(OaUg);

where the irregular, level and slope disturbances, ¢, 1, and (, respectively, are

mutually independent. When ag = 0 the slope is fixed and the trend reduces to
a random walk with drift

(3.3)

py = py_y + B+ (3'4)

Setting 0727 to zero gives an integrated random walk trend, which when esti-
mated tends to be relatively smooth. In fact it is equivalent to a cubic spline; see



Wecker and Ansley (1983). The model is often referred to as the ‘smooth trend’
model. The signal-noise ratio, g = ag /o?, determines the degree of smoothness.

Trend components are extracted by the Kalman filter and smoother (KFS).
This yields the optimal estimator of the trend in all time periods, together with
its RMSE. The estimator of the trend can be regarded as a weighted average of
adjacent observations, that is

ﬁt\T = ij,tyt+j, t=1,..,T.

J

The weights, w;,, are asymmetric near the beginning and end of the series, but
near the centre of a large sample they are symmetric and independent of t. Harvey
and Koopman (1999) examine the weights assigned to observations to extract
various trends and compare them with the kernels typically used in nonparametric
trend extraction. Figure 2 shows the implicit symmetric kernels, that is the time
invariant weights, for the smooth trend model with four different signal-noise
ratios.

Prior to extracting trends, maximum likelihood (ML) estimates of the para-
meters, that is variances such as Ug and o2, are computed by putting the model
in state space form (SSF) and applying the Kalman filter; see Harvey (1989).
all the calculations reported here were carried out using the STAMP package of
Koopman et al (1995).

3.2. Serial correlation

Incorporating a serially correlated component, such as a stochastic cycle, into the
model can yield a trend which can be more appealing insofar as it changes more
slowly. Harvey and Jaeger (1993) fit such a model to real US GNP in order to
extract the long-run trend. In the present context a cycle may not correspond
to the business cycle, but may pick up other variations. A simple first-order
autoregressive, AR(1), model may also be useful in this respect.

Serial correlation may also be induced by the rotating sample design. In a
given quarter, a little less than half of those asked about earnings will have been
asked in the same quarter of the previous year ( the proportion will be less than
one-half because of attrition). This will induce correlation at lag four, which
could perhaps be modelled by a fourth-order moving average, MA(4), with gaps
at the non-seasonal lags. However, unlike the measurement of employment status,
where the implied error process can be deduced, as in Pfeffermann (1991), it seems



difficult to determine the moving-average coefficient. While an MA(4) could be
added to the model and the parameter estimated along with the others, it seems
unlikely that omitting it will distort the trend in any significant way and we found
no evidence of significant fourth-order autocorrelation in the residuals. We have
not, therefore, attempted to incorporate this feature in our model.

3.3. Stationarity tests

In the Gaussian random walk plus noise model, (3.1) and (3.2), the locally best
invariant (LBI) test of the null hypothesis that 0727 = 0, against the alternative
that 0727 > 0, can be formulated as

n="T"> Z [Z et] /s* > ¢, (3.5)

i=1 [{=1

where ¢, = y; — 7, > = T~'3._,(y: — §)? and ¢ is a critical value; see Nyblom
and Mikeldinen (1983). The test can also be interpreted as a one-sided Lagrange
multiplier (LM) test. The asymptotic distribution of the statistic is Cramér-von
Mises, for which the 5% critical value is 0.461.
If the trend is a random walk plus drift, as in (3.4), it becomes deterministic
when o7 = 0. Thus
Y = Wy + Bt + €4, t=1,..T. (3.6)

The test statistic, 1, is as in (3.5) except that it is formed from the OLS residuals
from a regression on a constant and time. The asymptotic distribution is a second
level Cramér-von Mises distribution for which the 5% critical value is 0.149.

If ¢; is any indeterministic stationary process, rather than white noise, the
asymptotic distribution of the test statistic under the null hypothesis remains
the same if s? is replaced by a consistent estimator of the long-run variance.
Kwiatkowski et al (1992) construct such an estimator nonparametrically. Serial
correlation can also be handled parametrically by using the parameters obtained
from an unrestricted model to construct a test statistic from the innovations or
‘smoothing errors’ obtained from running the Kalman filter with 072] set to zero;
see Harvey and Streibel (1997).

A different test is obtained when the alternative is a smooth trend and the
null is 0f = 0. Nyblom and Harvey (2000a) derive this test but then go on to
show that it has no more power than 7,.



Note that unit root tests, such as augmented Dickey-Fuller are inappropriate
here as the null of stationarity is the hypothesis to be tested. In any case an
autoregressive approximation may not be very satisfactory.

3.4. Seasonality

The basic structural model consists of trend, seasonal and irregular components,
that is

o= ten  t=1,..T (3.7)
The trigonometric form of stochastic seasonality has proved effective in modelling

a wide variety of seasonal movements; see Harvey (1989, ch 2). The specification
is

v o= Sy, (3.8)

where s is the number of seasons and each v, is generated by

Vi cos; sin\; Vit Wit j=1,...,[s/2],
= 4 ,
Vit —sin\; cos Vi1 Wi t=1,...,T,
(3.9)

where \; = 2mj/s is frequency, in radians, and w;; and wj, are two mutually
uncorrelated white noise disturbances with zero means and common variance o2,
which is the same for all j. For s even [s/2] = s/2, while for s odd, [s/2] =
(s —1)/2. For s even, the component at j = s/2 collapses to
Vit = Vjt1C0S A+ wjy, j=s/2. (3.10)
If the seasonal pattern is of interest in itself it may be extracted by the KFS.
It evolves over time, unless o2 = 0in which case it is deterministic. Canova and
Hansen (1995) show how a test of this hypothesis may be carried out along similar
lines to the tests against stochastic trends. However, whether the seasonal pattern
evolves over time is a secondary issue in the present context. * The essential point
is that it can handled within the overall model so that attention can be focused
on the trend.

41t could be argued that some of the seasonality comes from the deflator. However, the
deflator we used, the CPI-U-X1, appears to have no significant seasonal component.



4. Decile trends

We now use the techniques of the previous section to present the stylized facts
of the movements in the wage distribution. At this stage we confine ourselves
to males, firstly because the lower deciles appear to be little affected by mini-
mum wage legislation and secondly because the female distribution partly reflects
increased female participation in the labor force.

Let D;(j) and di(j), j = 1,...,9 denote the j — th decile and its logarithm
at time t = 1,...,T. Using logarithms focuses attention on relative, rather than
absolute, inequality. However over the period covered by our data there are no
big increases in the real wage and so there is little difference in fit between levels
and logarithms. In any case having fitted a model in logarithms we can always
take antilogarithms of an extracted component. The implications for testing are
discussed in sub-section 5.3.

Fitting the BSM, that is (3.7) with the unrestricted trend as in (3.3), to
the median, d;(5), gave the summary statistics shown in table 1. The standard
deviation of the one-step ahead prediction errors is denoted ‘s.e.” while log L
is the maximized log-likelihood. The diagnostics are r(1), first-order residual
autocorrelation, and Q(P, f), the Box-Ljung statistic based on the first P residual
autocorrelations and assumed to have a X? distribution in a correctly specified
model. Further details are in the STAMP manual. There is no indication of any
misspecification. The only problem is that the extracted trend is not particularly
smooth. When the trend is restricted to be a random walk plus drift (RWD), the
fit is almost as good, as indeed it is if the drift is omitted (RW), but again the
trend is not smooth.?

Setting the level variance, 0727, to zero gives an integrated random walk trend
(IRW). The fit is slightly worse, with r(1) large, though the Box-Ljung statistic is
still satisfactory. Theoretically the hypothesis that 072] is zero could be rejected as
the LR statistic is 4.30 while the 5% critical value is 2.71 for a parameter on the
boundary of the parameter space; see Harvey (1989, p 248-9). The compensating
advantage is that the trend is smooth and gives a clear indication of the movements
in the series. Overall this is our preferred model for the study at hand. In what
follows it will be referred to as the smooth trend BSM. Figure 3 shows the trend,
together with the slope (the quarterly growth rate), the irregular and the seasonal.

®Note that log L for RW is not directly comparable with the other log L’s as the state vector
has one nonstationary element fewer.



The seasonal variance, o2, is zero® indicating that the seasonal pattern is constant.
The slight first-order serial correlation can be removed by replacing the irregular
by an AR(1). This gives a likelihood almost exactly equal to that of the BSM
but it has one more parameter. The AR coefficient is only 0.3 and the difference
in the trend is difficult to detect by eye.

Other deciles give similar results, sometimes with a relatively better fit for the
smooth trend specification. An AR(1) or cycle can make a difference, but overall
our preference is to fit the BSM and constrain the trend to be smooth. Table 2
shows the results of fitting smooth trend BSMs to the odd deciles 1,3,5,7,9. The
parameter estimates, goodness of fit statistics and diagnostics are close to each
other with the possible exception of the 7 — th decile.

The seasonal variance was estimated as zero for all deciles. Although the
seasonal patterns are relatively small they are highly significant. The smallest
value of the joint test statistic, asymptotically distributed as x3 under the null of
no seasonality, is 16.03, for which the probability value is 0.0011. Table 3 shows
the percentage deviations from underlying level. These are never more than 1%.
The pattern for the first decile is slightly different to the others but not by a great
deal.

5. Changing inequality

The contrasts between different deciles point to various aspects of inequality. We
will define a contrast as a linear combination of deciles, that is

9
Cy = Z Oé]dt(]) = a/dt (51)
j=1

Changing inequality may be captured by modeling contrasts and extracting
the trend. The model specification is the same as for deciles. Indeed if two deciles
can each be modelled by a BSM, the contrast is a BSM and the parameters
can be deduced from the individual parameters and the covariances between the
disturbances in the two series. Section 6 shows how this result generalises to more
than two series and to several contrasts.

0Initial estimation actually gives it a small positive value, but re-estimating with it fixed
increases the likelihood.

10



The simplest contrasts involve only two deciles. Of particular interest are the
logarithms of ratios of each decile to the median, that is

Tt(j) = dt(]) - dt(5) = log{Dt(j)/Dt(5)} = IOg{R(j)}, ] = 1’ ©y 4’ 67 © 9; (52)
see, for example, Cowell (1995, p29). Of course, the price deflator is now irrelevant.
Figure 4 shows the trend extracted from 7,(1) for males using a smooth trend
BSM. The antilogarithm has been taken so it is in ratio form, in other words an
estimate of R;(1). It can be seen that the increasing inequality up to 1987 is
reversed thereafter, albeit with a slight blip in the early 90s. The fit provided
by the smooth trend BSM was relatively better for the decile ratios as compared
with the raw deciles. The serial correlation was lower and in many cases the
smooth trend constraint, 0727 = 0, could not be rejected with a LR test. The
seasonal component usually came out as time-varying but very small with the
X3 test at the end of the sample being statistically insignificant at conventional
levels. However when it was dropped the serial correlation increased at lags 2 and
4 and so it seems better to retain it. Table 4 shows the diagnostic and goodness of
fit statistics corresponding to those in table 2. Note that the g, ratios are almost
identical; the implied weighting pattern essentially corresponds to that in panel
(ii) of figure 2.

The decile ratios, or equivalently the deciles themselves, could be combined as
follows to give an overall measure of inequality

L=) (i)=Y i) =) (i) =D dj). (5.3)
j>5 j<5 j>5 j<5
If the distribution is diverging this contrast will be increasing over time. It can be

re-arranged in various ways which contrast deciles above and below the median.
For example,

I, = {dt(g) - dt(l)} + {dt(8) - dt(2)} + {dt(7) - dt(3)} + {dt(G) — dt(4)}.
For some purposes it may be useful to look at the contrasts above and below the
median, that is the two parts of (5.3). It may also be useful to compare the deciles

near the median with the highest and lowest deciles, for example by contrasting
r(1) with r,(4).

5.1. Stability tests

Suppose we wish to test whether a particular contrast is stable. This then amounts
to testing the null hypothesis that, apart from a possibly evolving seasonal compo-
nent, the contrast series is stationary, with no time trend, against the alternative

11



that it contains a nonstationary trend component. Thus the relevant test statistic
is 1, not 7,. With the deciles themselves following non-stationary processes this
means that we are testing whether a is a co-integrating vector.

An example of the stability test is provided by r;(1), which was plotted in figure
4. The test against a random walk component, modified to allow for seasonality”,
is 1.79 which shows a clear rejection as the 5% critical value is 0.46.

Section 6 considers joint tests of several contrasts, including a test of the
stability of the whole distribution.

5.2. Divergence and convergence tests

If the contrast is not stable we may wish to put a confidence interval around the
underlying change which has taken place. This requires we find the root mean
square error (RMSE) of the estimator of p,— p; with particular interest on the
case of t = T. ( The RMSE of an estimator of a stochastic quantity is the same as
the variance of the estimation error). We will call combinations involving different
time periods ‘temporal (level) contrasts’.

A temporal level contrast may be estimated by adding it to the state vector.
For a model containing a general stochastic trend of the form (3.3), let pf = p, — 4
and add the following transition equation

=y 1+ By + My t=2,..,T. (5.4)

The initial value is pj = 0 with a MSE of zero. The contrast is then tracked by
the Kalman filter so its evolution can be studied. The estimate of p}., together
with its RMSE, is obtained when all the observations have been processed. A
test, possibly one-sided, may then be carried out on the level contrast statistic,

ji./ RMSE(ji}), (5.5)

based on the standard normal distribution. Of course contrasts can be computed
over shorter periods by starting (5.4) in a later time period.

If the series is relatively long, the test statistic (5.5) can be computed from
the KFS without adding the extra transition equation. We have

fp = fip — ﬁuTa

"The test was carried out on the seasonally adjusted series obtained by fitting an unrestricted
BSM; see Harvey and Streibel (1997) for a justification.

12



where fiyp is the smoothed estimator of 41, and, since the correlation between
the estimators of y; and p; will be negligible,

MSE (i) ~ MSE (i) + MSE (fiy ) = 2MSE (fiy) (5.6)

A nonparametric test, constructed to have power against the alternative of a
deterministic but monotonically increasing (decreasing) trend, was suggested by
Brillinger (1989). He considers the linear combination ¥w,y; where

{0

The weighting pattern means that it strongly contrasts the beginning and end
levels of the data. The test statistic

T = Suwgy,/ {5250} (5.7)
where 02 is an estimator of the long-run variance as used in the KPSS test, has a
standard normal distribution when the level is constant. The test is one-sided on
the positive (negative) tail. The test will, of course, have power in any situation
where the beginning and end of the series are at a different level.

Continuing the example of r,(1) at the end of the last sub-section, the STAMP
output shows that the level at the end of the series is -0.707 with a RMSE of
0.007. The level at the beginning is -0.699 so fi;- = 0.008. This is not significantly
different from zero since the RMSE computed from (5.6) is .010 leading to a level
contrast statistic, (5.5) of 0.8. On the other hand the level in 87ql is -0.823
and the difference between this and the level at the end is 0.116 which is clearly
significant.

5.3. To log or not to log?

From the point of view of estimating trends, the decision as to whether to take
logarithms depends primarily on goodness of fit and diagnostic criteria. If a model
is fitted in logarithms, antilogarithms may be taken to convert to levels or ratios,
as was done in figure 4. However, taking logarithms does have implications for
tests of stability and divergence. If there are upward or downward movements in
the deciles, a constant decile ratio does not imply a constant absolute difference.
Thus Dy(j) — Dy(5) could be increasing while D;(j)/D;(5),and hence 7(j), is

13



constant. As a result we may wish to test hypotheses regarding the absolute
differences as well as, or instead of, ratios.

Logarithms also have implications for forecasting. However, the extrapolation
of current trends in the present context is particularly hazardous, and the models
were not fitted with this in mind. The aim is simply to extract information con-
cerning past movements and the direction in which various deciles and contrasts
appear to be heading in the short term. Indeed long-run predictions would be
nonsense since, with different slopes, the deciles would eventually cross. If one re-
ally wanted to make coherent long-run predictions it would be necessary to look at
variables like the logarithm of the (positive) difference in two deciles, since taking
antilogarithms would then give a lower bound of zero.

6. Multivariate models

The local linear trend model can be generalised to the multivariate case straight-
forwardly simply by writing

Y = Mt—i—Et, Ey NID(O,ZE), t= 1,...,T, (61)
e = My +Beq + My, n, ~ NID(0, 277)7
Bi = Bia+C, &~ NIDO,X,), (6.2)

where y; is an N x 1 vector and X, ¥, and X, are N x N covariance matrices.
Seasonals can be added to give a multivariate BSM.

With nine series of deciles there are 45 parameters to estimate in each covari-
ance matrix. The covariance matrices may be restricted in various ways which
may lead to statistical gains and/or yield an interpretation. Possibilities include
the following.

(i) Correlations decreasing as deciles are further apart. For example, one would
expect the first and second deciles to move more closely together than the first
and ninth.

(ii) Variances (diagonals) the same.

(iii) Matrices proportional, that is 3, = ¢X. and X, = ¢,X.. This is known
as homogeneity. Such models are very easy to estimate; see Harvey (1989, ch 8).

(iv) The matrices 3, and X being of reduced rank. In particular if the wage
distribution were stable over time, there would be a single common trend and the

14



model could be written:
yi= i+ pte, (6.3)

where p, is a univariate stochastic trend and g is a vector of constants, one of
which is set to zero for reasons of identifiability ( unless p, is set to zero). It
is possible that part of the distribution is stable over time so there are several
common trends associated with groups of deciles. Estimating the full model and
conducting a principal components analysis on the estimate of 3, and 3 may
give an indication of possible structures.

A multivariate model may enable trends to be estimated more efficiently. The
gain depends on the relationship between the covariance matrices X., X, and
3. For example if they are proportional ( homogeneity) there is no reduction in
the MSE of the estimated trend, though the precision with which the common
signal-noise ratios may be estimated increases.

If the observations are modelled by a multivariate BSM, then any set of linear
combinations will satisfy a model of the same form. If A is an R x N matrix, the
covariance matrices in the multivariate BSM for Ay, will be of the form AXA'.
Note that a homogeneous model will remain homogeneous.

6.1. Multivariate stationarity tests

In the multivariate local level model, that is (6.1) without the slope, a test of
the null hypothesis that 3,= 0 is a test against the alternative that there is
nonstationarity in the system. Nyblom and Harvey (2000b) show that an LBI
test can be developed against the homogeneous alternative 3,=¢3.. The test
has the rejection region

n(N) = tr [S7'C] > ¢, (6.4)

where

T i i ! T
C=T7)" [Z et] [Z et] and S=T"") ee,. (6.5)
i=1 [t=1 =1 t=1
where e; = y; —¥. Under the null hypothesis, the limiting distribution of (6.4) is
the Cramér-von Mises distribution with N degrees of freedom, denoted CvM (N).
Although the test maximizes the power against homogeneous alternatives, it is
consistent against all nonnull X s. This follows from the result that 7-'n(N) has
a nondegenerate limiting distribution. In fact the limiting distribution depends
only on the rank of X,. This result suggests that an indication of the number of
common trends can be obtained, without estimating a model, simply by looking
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at the eigenvalues of ST'C. A formal test of the null hypothesis that there is a
specific number of common trends, that is

Hy :rank(3,) =K  against H;:rank(3,) > K, K <N,

can be based on the sum of the N — K smallest eigenvalues of S™'C; see Nyblom
and Harvey (2000Db).

6.2. A test of stability

If the distribution is stable over time, as in (6.3), there are eight co-integrating
vectors. Thus we need to choose eight contrasts with the property that Ai =0
and test whether they are jointly stationary. As noted earlier a standard way of
setting up contrasts is with respect to the median as in (5.2). In this case A has
R = (N — 1) rows each with minus one in the fifth position and one in position j
for j # 5.

The test of stability is carried out by applying the test of (6.4) to y; = Ad,.
As observed in sub-section 5.1, time trends would not normally be present under
the null and this is also apparent from (6.3). The test statistic

n(N —1;A) =tr [(ASA") 'ACA’] (6.6)

is therefore formed from deviations from the means. Its limiting distribution under
the null hypothesis is CoM (N — 1).

Other choices of A are possible since if the original A is pre-multiplied by a
non-singular R X R matrix the test statistic is unchanged. Note that in general
the R x N matrix A must be of rank R.

Several contrasts could be tested separately. For example we may wish to test
if there is partial stability among the decile ratios, in other words a common trend
for some of them.

Note that a homogeneous model cannot have common stochastic trends, so it
cannot have stable contrasts.

6.3. Results

Attempting to fit all nine series was not satisfactory and in fact a higher likelihood
was achieved by imposing the homogeneity constraint. For a better comparison
we fitted the odd deciles only. The program converged and the model gave a
satisfactory fit. Figure 5 plots the trends indexed to zero in 1979ql so they are
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all on the same scale as the first decile. The homogeneous model just failed to be
rejected on a likelihood ratio test at the 5% level of significance. The test statistic
was 22.84, while the 5% critical value for a x? with N(N +1)/2 — 1 = 14 degrees
of freedom is 23.69. The summary statistics for the five deciles are similar to those
given for the univariate models in table 2. The (common) estimate of g, was 0.25.
The five estimates for the irregular variance, o2, are (when multiplied by 10°) 6.4,
6.1, 6.3, 5.4, 7.7. One would probably be reluctant to impose a constraint that
they are all the same.

Table 4 shows the correlations implied by the homogeneous covariance matri-
ces. The correlation tends to be higher for deciles close together.

The four decile ratios, r:(j),j = 1,3,7,9 were estimated successfully by an
unrestricted smooth trend BSM. The antilogs of the trends are shown in figure
6. The trend in panel (i) is the same as in figure 4 and it can be seen that
the stochastic movements in the other trends are of a similar order of magnitude
- it will be remembered that the hypothesis of a constant level for r, (1) was
overwhelmingly rejected. It can be seen that before 1985 inequality was increasing
all round in that the lower decile ratios, r,(1) and 7,(3) were moving downwards
while the upper ones were moving upwards. In the late 1980s all the ratios were
moving up. This pattern continues again after the early 90s. Thus the lower
deciles are getting closer to the median while the higher ones are moving further
away. We discuss some analytic implications of this shift in the pattern of wage
inequality in the conclusion.

In view of the results in table 4, it is not surprising that the homogeneous
model cannot be rejected at the 5% level of significance though it can be at the
10%; the LR statistic is 16.33.

7. Male and female wages

Figure 7, top panel, shows the ratio of female to male median wage obtained by
fitting a smooth trend model to the logarithm of the ratio and taking antiloga-
rithms. A cyclical component was included, rather than just working with the
BSM. This gave a smoother trend, the salient feature of which is the steady rela-
tive increase in female wages up to 1993, after which it levels off. Examining the
trends of the two variables comprising the contrast, we find that the 13.7% decline
in the trend of the real male median wage between 1979q1 and 1993q1 underlies
the relative gains of females; the trend in their real wage grew by 5.9% over this
period. Since 1993ql, the trend in the gender wage gap has been quite flat, with
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the trend growth of both male and female real median wages being about 4%.
These findings are confirmed formally by the temporal level contrast statistics as
applied to the logarithm of the trend, which at the of the period was -0.250 with a
RMSE of 0.0088. Formula (5.6) gives RMSE(1) as 0.012 and over the full period
(5.5) is 17.9 which is highly significant. The flatness of the gender gap towards the
end is confirmed by noting that in mid-1993 the trend was -0.257. Even though
(5.6) may be a less satisfactory approximation in this case, it is clear that there
is no significant change.

The short-term movements in the cycle, shown in the lower panel of figure 7,
are somewhat irregular in period and amplitude, although there is some evidence
of spikes at five year intervals. These intervals do not, however, correspond to any
of the cyclical indicators, such as gender-specific unemployment rates, which might
be expected to play a role in the gender gap. There are many other non-cyclical
factors that might be called upon to explain the compressing of the gender gap
throughout the 1980s. As documented by Blau (1998), women made consistent
progress over this period on some key wage determinants, primarily labor market
experience and occupational upgrading. Variables like the average experience
level of the female workforce or the share of female white-collar workers could be
brought into the BSM. This could help shed light on the role of these factors in
both the closing of the gender gap in the 1980s and its subsequent (and as yet,
unexplained) deceleration in the 1990s.

8. Minimum wage

The US Federal minimum wage is a binding wage floor on the wage distribution,
covering about 90% of the wage and salary workforce.® It is typically argued that
the minimum wage plays an important wage setting role for low-wage workers in
the US; see, for example, Spriggs and Klien (1994). Others, such as DiNardo
et al. (1996), have emphasized the role of the long-term decline in the real mini-
mum wage in explaining the increase in wage inequality over the 1980s, when the
minimum fell 30% in real terms.

Figure 8 shows the lowest three female real wage deciles, together with the
real minimum wage. (We prefer to work here in actual real values rather than

8This share refers to those workers subject to the Fair Labor Standards Act Minimum, Wage
Provisions (U.S. DOL, 1998). States can set their minimums above or below the federal level,
but they cannot pay covered workers less than the federal minimum. In 1999, nine states had
minimum wages above the federal level.
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logarithms for the purposes of interpretation). At the beginning of the series the
first decile, Fi(1), is below the minimum wage and the increase in the minimum
wage in 81ql leads to a corresponding large and instantaneous increase in the
series. (The rise in 80ql has very little impact).” The minimum wage and Fj(1)
stay close for a few years and then in the mid-eighties, the minimum wage starts
to fall way below Fi(1) until at the beginning of the nineties the gap is about 85
cents. The increase in the minimum wage in 90q2 has minimal impact, serving
only to bring it back in line with F;(1). Similarly the minimum wage rises of
1996q4 and 1997q4 have little effect on F;(1), since the increase in Fj(1) in the
second half of the nineties is also to be found in F;(3) which, as we establish
shortly, is unaffected by minimum wage increases. These findings are consistent
with those of Card (1992), who shows that the impact of a minimum wage increase
is greater when it has more ”bite,” in other words it affects a larger share of the
low-wage workforce.

Fitting the smooth trend BSM to F;(1) gives a Bowman-Shenton normality
test statistic equal to 556.1; the 5% critical value is a mere 5.99. This is a reflection
of the enormous jump in response to the minimum wage increase of 81ql. Putting
in a level dummy variable!” at this point reduces the normality statistic to 6.61,
which, although significant at the 5% level, is quite tolerable; see table 6. The
dummy is highly significant with a ‘t-statistic’ of 13.14 and the model as a whole
fits well with diagnostics, such as Box-Ljung, being perfectly acceptable and the
trend, shown in figure 9, providing a good indication of the underlying movements
in the series. The dummy is incorporated into the trend, so the level increases in
81ql by the dummy’s coefficient of 0.52. Table 6 also shows results of fitting the
same model to other deciles. As can be seen, there is a minimum wage spillover
effect onto F;(2), where the increase in 81ql is 0.23. However, the third decile is
apparently unaffected, as is the first male decile, M;(1).

9. Conclusion

This article has shown how unobserved components time series models may be
used to exhibit the stylized facts of time series of wage percentiles. In particular
the trends in various measures of inequality based on combinations of percentiles

9This may be due to the fact that inflation was quite a bit higher than it was a year later;
thus, the 80ql real increase was 3.6% while the 81ql real increase was 5.3%.

This is done by adding Aw; to the first equation in (3.3), with w; = 1 in 81¢1 and zero
thereafter. The level shift is then incorporated into the trend.
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may be tracked over time. Tests of stability and divergence (or convergence)
are derived using recently established time series theory on co-integration and
common trends. Multivariate models can be fitted to groups of percentiles and
the correlations of the various components across groups studied.

The methods were applied to a newly constructed data set of quarterly wage
deciles derived from the outgoing rotation groups of the Current Population Sur-
vey. The main substantive conclusions are that the character of hourly wage
inequality shifted in the mid-1980s, from one of generalized divergence through-
out the wage scale, to one where the top deciles pulled away from those in the
middle and bottom of the wage scale (this shift occurred toward the end of the
1980s for female workers). Thus, r;(9)-the logarithm of the 9th decile minus the
that of the median—grew consistently throughout the full period for both sexes
while that of (1) flattened and even increased (implying less inequality) in the
1990s.

These facts need to be addressed by those who propose explanations for the
increase in US wage inequality. For example, one of the more popular explana-
tions argues that skill-biased technological change (SBTC), brought about by the
increased use of computers in the workplace, is a primary cause of growing wage
differentials. Yet, the trends shown above raise the question as to what type
of technological process would generate this observed pattern, differentiating the
deciles throughout the wage scale in one period, and only those at the top of the
wage scale in another period. Is it plausible that SBTC has persistently lifted
the relative wages of high wage workers, but only did so for middle-wage workers
through the mid-1980s? Further research which accounts for these nuances in
the pattern of wage inequality is necessary.

Similarly, the trend in the so-called gender gap, which we measure as the
difference between female and male median wages, levelled off in the 1990s, after
steadily closing throughout the 1980s. Here too more research is needed to
identify the factors that explain the trend’s flattening in the 1990s. One approach
would be to add explanatory variables, such as the average level of female labor
market experience or occupational upgrading (e.g., the share of female white collar
workers), to the BSM of the gender wage gap and examine whether either these
variables themselves or their relative returns diminished in the 1990s.

As regards the minimum wage, the only increase which had a measurable
impact on the lowest female decile was the one in 81ql. This happened because
the minimum wage was actually higher than the lowest female decile at the time.
Its effect spread over into the second decile but not the third. The male deciles
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were apparently unaffected. Later increases in the minimum wage have little
impact on the first female decile as they are some way below its level.
ACKNOWLEDGMENTS
We would like to thank Paul Kattuman, Melvyn Weeks, Ron Martin and John
Schmitt for helpful comments on a preliminary draft. Danielle Gao helped prepare
the data set. Of course we are responsible for any errors.

21



Table 1 Estimated models for the logarithm of median male wages

Trend Specification
Unrestricted RWD RW IRW

s.e. 0109 0106 .0107  .0111
Q(6) 5.60 727 769 746
r(1) -.00 03 -.03 14

log L 343.66 343.90 349.54* 341.51

Table 2. Univariate smooth trend models for logs of male deciles
Deciles
Statistic 1 3 5 7 9
@ 22 .29 28 A3 .26
SE .0111 .0107 .0111 .0099 .0121
Q(8,6) 6.02 9.83 7.46 2546 9.69
r(1) .06 15 14 22 A2

Table 3. Seasonal patterns for male deciles

Deciles
Quarter 1 3 5 7 9
1 23 64 .71 .55 .86
2 -15 -11 -11 -13 -.21
3 -49 -83 -8 .69 -.89
4 42 31 21 -2 .23
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Table 4. Univariate smooth trend models for decile ratios
Contrasts

1 3 7 9

@ 26 .25 26 .26
SE 0140 .0098 .0094 .0142
Q(8,6) 7.73 833 524 1253
r(1) .05 .08 .14 .09

Table 5. Correlations between deciles in homogeneous model for
male log deciles
Decile
Decile 1 3 5) 7 9
1 1 49 22 .12 .16

3 1 .62 .38 .23
) 1 .61 .21
7 1 41
9 1

Table 6. Models for lower male and female deciles with level dummy
at 1981ql.

Decile Dummy t—ratio N  Q(8,6) qc

F(1) 52 1314 662 729 .70
F(2) .23 482 921 365 .29
F(3) -.04 70 4360 921 24
M(1) .05 90 61 513 .22
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