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Abstract

In this paper, we focus on how to test for long-range dependence when the process

may have a one-time mean change and how to estimate the change point when data

may be long-range dependent. We �rst analyzed why traditional long-memory tests have

serious size distortions when data have short memory with breaks. In order to overcome

this problem, a local Whittle method is proposed. Simulation results con�rm that our

change-point estimator is well behaved even when data are long-range dependent, and

that our test for long memory maintains proper size when a change is present. These

results indicate that our method is practically useful and has a much wider applicability.

In order to assess the empirical relevance of our procedure, we applied it to analyze

monthly G7 ination rates.

Keywords: change point, local Whittle estimation, long memory, R=S statistic, spu-

rious change



1 Introduction

In recent years, increasing interest has been devoted to the research of long-range de-

pendence (long memory) in economic and �nancial variables. To detect long-range

dependence, Hurst (1951) suggested the normalized rescaled range (R=S) test. Mandel-

brot and Wallis (1969), Mandelbrot (1975), and Mandelbrot and Taqqu (1979) further

showed that the R=S test is robust to non-Gaussian distributions or distributions with

in�nite variance. Lo (1991) modi�ed the R=S statistic to accommodate short-range de-

pendence; see also Beran (1994) for a more detailed survey. In addition to the R=S test,

Geweke and Porter-Hudak (1983) and Robinson (1995a) suggested a frequency-domain

approach which is based on regressing the logarithm of the periodogram on trigono-

metric function at low frequencies. The estimated slope coe�cient is an estimate of

the long-memory parameter d. As the normalized slope coe�cient is asymptotically

normally distributed, it can be used to test for long-range dependence.

On the other hand, numerous empirical studies suggest that many economic and

�nancial data exhibit changing mean or changing variance. In Kuan and Hsu (1998) we

�nd that least-squares estimation of the change point may suggest a spurious change

when data have long-range dependence. When data have structural changes, the afore-

mentioned tests are unable to detect long-range dependence; see e.g., Kleme�s (1974)

and Teverovsky and Taqqu (1997). In this paper, we �rst show that, when data are

weakly dependent with a mean change, existing tests have serious size distortions in

�nite samples so that the null hypothesis of short memory is rejected far too often even

when it is true. These results suggest that to estimate a change point, one should know

whether data are long-range dependent, and that to test for long-range dependence, one

must know if a change exists. This creates a dilemma in practice.

In this paper, we propose a semi-parametric method for jointly estimating the change

point and long-memory parameter d. Our simulation results indicate that the normal-

ized estimate of d is asymptotically normally distributed, from which a test for long-

range dependence can be constructed. As this method takes both structural change and

long-range dependence into account, the resulting change-point estimator does not have

the \spurious change" problem observed in Kuan and Hsu (1998), and the proposed test

does not su�er size distortions when a change is present. This method thus enables us to

distinguish between long-memory series and short-memory series with a mean change.

Our procedure is also applied to analyze monthly ination rates in G7 countries.
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This paper is organized as the following. In Section 2, we show by simulations and

analytically that the existing tests are inappropriate to detect long-range dependence

when there is a structural change. The proposed method is discussed in Section 3.

Monte Carlo simulation results are reported in Section 4. An empirical study of the G7

ination rates is included in Section 5. Section 6 concludes.

2 Tests for Long-Range Dependence

In this section, we discuss traditional tests for long-range dependence and analyze their

behavior when data are weakly dependent with a mean change. Consider a time series

yt = �+ "t; t = 1; 2 : : : ; (1)

where � = E(yt), and "t are random variables with mean zero. We impose the following

condition on "t.

[A] f"tg is a strong-mixing sequence with mixing coe�cients �j such that for some

� > 2,
P

1

j=1
�
1�(2=�)

j <1 and suptEj"tj� <1.

Let Y (t) =
Pt

i=1
yi denote the partial sum of t observations. Then the classical

rescaled range (R=S) statistic is proposed by Hurst (1951)

Q(T ) =
1

sT

�
max
1�t�T

�
Y (t)� t

T
Y (T )

�
� min

1�t�T

�
Y (t)� t

T
Y (T )

��
; (2)

where

sT =

"
1

T

TX
t=1

y2t �
1

T 2
Y (T )2

#1=2
; (3)

is the sample standard deviation.

Lo (1991) pointed out that the classical R=S statistic is sensitive to the presence of

short-range dependence. He modi�ed the R=S statistic (2) by incorporating short-range

dependence into the statistic. Speci�cally, let

�2 = lim
T!1

1

T
E

 
TX
t=1

"t

!2

:

When "t are serially uncorrelated (i.e., no short-range dependence),

�2 = lim
T!1

1

T
E

 
TX
t=1

"2t

!
� �2" ;
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but they are not the same otherwise. Lo (1991) suggested using a serial-correlation-

consistent estimator for �2 to replace the standard variance estimator s2T . For a given

truncation lag (q), the estimator for � is

~sT (q) =

2
4 qX
j=�q

!q(j)̂(j)

3
5
1=2

; (4)

where ̂(j) represent the usual estimators for autocovariances and the weights !q(j) are

determined by some kernels; see e.g., Newey and West (1987) and Andrews (1991). Let

Q(T; q) denote the modi�ed R=S statistic. When q = 0, Q(T; 0) = Q(T ), the classical

R=S statistic. Under the null hypothesis of short memory, Lo (1991) showed that

V (T; q) =
1p
T
Q(T; q)) range(B0);

where ) denotes weak convergence (of associated probability measures), and B0 is a

standard Brownian bridge on the unit interval. In what follows, we also denote !p as

convergence in probability, and !d as convergence in distribution.

When fytg is a long-range dependent process, the spectral density of yt at zero

frequency is unbounded:

fy(0) =

kX
j=0

(j) = O(k2d);

for 0 < d < 0:5.1 The parameter d is known as the fractionally di�erencing parameter,

which measures the intensity of memory. Mandelbrot (1975) also proved that if yt are

long-range dependent, then

E[Q(T )] � Cd T
0:5+d;

where Cd is a positive and �nite constant. In practice, d may be estimated as follows.

First partition data into m blocks, each starts at mi = (iT=m)+1, i = 1; 2; : : :, and has

n observations, where mi+n � T . For each i, we use the observations from mi through

n to compute the R=S statistic Qi(n), where n = 1; 2; : : :. By regressing logQi(n)

on log n, the estimated slope is an estimate of d + 1=2, which should tend to 1=2 for

short-memory data.

1For �0:5 < d < 0, fy(0) = 0 so that the sum of all covariances is zero. For d = 0, yt is a stationary

process with bounded spectral density.
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Geweke and Porter-Hudak (1983) (henceforth GPH) introduced a frequency-domain

method to estimate d. Let I(�j) be the periodogram of yt evaluated at di�erent spectral

ordinates �j = 2�j=T , j = 1; : : : ; [T c] < [T=2], where c is a constant determining the

truncation of higher ordinates. The parameter d is then estimated from the following

regression:

logfI(�j)g = a� d logf4 sin2(�j=2)g + �j:

Consistency and asymptotic normality of this estimator were established in Robin-

son (1995a). In practice, the GPH method uses only lower ordinates of the periodogram,

for example, c = 0:5, in the regression above. Robinson (1995a) also suggested to trun-

cate the beginning ordinates, so as to prevent biases.

To understand the performance of the R=S and GPH tests, we simulate these tests

based on six di�erent data generating processes (DGPs). Let ut be a Gaussian white

noise and L denote the back-shift operator. The DGPs are:

DGP (1): yt = 1 + "t; "t = ut.

DGP (2): yt = 1 + "t; "t = 0:5"t�1
+ ut.

DGP (3): yt =

(
1 + "t; t = 1; : : : ; [T=2];

2 + "t; t = [T=2] + 1; : : : ; T;
"t = ut.

DGP (4): yt =

(
1 + "t; t = 1; : : : ; [T=2];

2 + "t; t = [T=2] + 1; : : : ; T;
"t = 0:5"t�1

+ ut.

DGP (5): yt = 1 + "t; (1� L)0:3"t = ut.

DGP (6): yt = 1 + "t; (1� 0:5L)(1 � L)0:3"t = ut.

Here, (1) and (2) are data with short memory; (3) and (4) are data with short memory

and an one-time change in the middle of sample; (5) and (6) are data with long memory.

We follow the methods suggested by McLeod and Hipel (1978), Hosking (1984), and

Chung (1994) to generate long memory data.

The modi�ed R=S statistic are computed with q = 0; 10; 20, and q�, where q� is

chosen by the data-dependent formula of Andrews (1991). For the GPH approach, low

frequencies used in the regression start from [T 0:1], and di�erent upper truncations are

considered at [T c] with c = 0:4; 0:5; 0:6. For each experiment, the number of replications

is 5; 000, T = 512, and the nominal level is 5%. The results are summarized in Table 1.
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Table 1: Finite sample performance of long memory tests

R=S Test GPH Test

DGPs V (T; 0) V (T; 10) V (T; 20) V (T; q�) c = 0:4 c = 0:5 c = 0:6

(1) 3.1 2.3 1.4 3.1 5.4 4.6 4.3

(2) 66.5 3.6 1.4 3.4 6.0 5.9 13.2

(3) 100 100 100 100 76.9 84.0 84.4

(4) 100 99.3 96.3 98.8 55.9 59.3 69.9

(5) 96.2 44.2 20.1 51.2 38.8 59.0 83.6

(6) 99.9 45.5 18.5 11.4 41.0 66.6 93.5

From Table 1, we can see that the modi�ed R=S test does not su�er much size

distortion when data are weakly dependent (DGP (2)), but it is not very powerful

against long-memory data (DGP (5) and (6)). The GPH test, on the other hand, is

more robust to weak dependence in data and relatively more powerful than the modi�ed

R=S test. These two tests, however, reject the null hypothesis of short memory with

high probabilities when data are short memory with a mean change (DGP (3) and

(4)). These results suggest that the R=S and GPH tests may reject the null hypothesis

because of either long-range dependence or a structural change. As such, these tests

could yield very misleading inferences.

To understand why such size distortions occur, we analyze the asymptotic behavior

of the R=S statistic when yt are weakly dependent with mean changes. Consider the

following time-varying behavior of �t:

�t = �
0
+ T�� (t=T ); (5)

where  (�), � = t=T , is a real-valued function of bounded variation on � 2 [0; 1] and

� = 0 or 1=2. Note that  (�) can represent a wide variety of structural changes,

e.g., multiple structural changes or continuous parameter changes. When � = 0, (5)

is a global alternative to the constant mean; when � = 1=2, (5) is a sequence of local

alternatives.

Theorem 2.1 Given (1) and (5), suppose that condition [A] is satis�ed.
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1. If � = 1=2, then

V (T; q)
D�! range

0���1

�
B0(�) +

1

�
	(�)

�
;

where for a process f , range(f) = max(f) �min(f), B0 is the Brownian bridge,

and 	(�) =
R �
0
 (z)dz � �

R
1

0
 (z)dz.

2. If � = 0, and ~s2T (q) is Op(1), then

V (T; q)!p 1:

In Theorem 2.1, the �rst result indicates that the modi�ed R=S statistic has non-

trivial local power and the second result shows that for the global alternative �t =

�
0
+ (t=T ), the modi�ed R=S statistic diverges in probability so that it will reject the

null hypothesis with probability approaching one. This explains why the R=S statistic

rejects the null hypothesis of short memory far too often when data are generated

according to DGP (3) and (4). Although this is a result for the R=S statistic, one can

see from Table 1 that the GPH test must have a similar problem.

3 The Local Whittle Method

Kuan and Hsu (1998) shows that the estimated change point could also be a spurious

one when data are long-range dependent. On the other hand, the preceding section

shows that traditional tests for long-range dependence could be misleading when a

structural change is present. These results suggest that the change-point estimation

must take potential long-range dependence into account and that tests for long-range

dependence should also consider potential structural changes. In this section, we propose

a method for jointly estimating the change point and long-memory parameter, so that

aforementioned di�culties are avoided. This method will also be referred to as the local

Whittle method.

When yt is an ARFIMA(p; d; q) process, Sowell (1992) suggested to estimate the

parameters by the method of maximum likelihood. The log-likelihood function is

LT (y;�;�) = �
T

2
log 2� � 1

2
log j
(�)j � 1

2
(y � �)0
�1(�)(y � �);
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where y = (y
1
; : : : ; yT )

0, f
gij = ji�jj, � = E(yt), � is a vector of parameters includ-

ing d, ARMA coe�cients, and unconditional variance. As the autocovariances of an

ARFIMA process are complex functions of �, calculating maximum the exact likeli-

hood estimators (MLEs) are computationally quite demanding.

Based on the approximation proposed inWhittle (1953), maximizing the log-likelihood

function is equivalent to minimizing the spectral likelihood function:

LW
T (�) =

[T=2]X
j=1

�
I(�j)

f(�j ;�)
+ log f(�j;�)

�
; (6)

where f(�j;�) is the spectral density of yt and

I(�j) =
1

2�T

�����
TX
t=1

(yt � �)eit�j

�����
2

;

see e.g., Beran (1994). The resulting minimizer is therefore an approximate to the MLE

and is known as the Whittle estimator. A novel feature of LW
T (�) is that it does not

depend on the unknown mean �. Moreover, LW
T (�) is a simpler function of �, and the

resulting Whittle estimator is therefore easier to compute. The simulation results of

Cheung and Diebold (1994) also demonstrate that the Whittle estimation is e�cient

relative to the exact MLE. A disadvantage of the Whittle estimator is that a parametric

form of f(�;�) must be speci�ed a priori.

As far as the estimation of the fractionally di�erencing parameter d is concerned,

K�unsch (1987) and Robinson (1995b) suggested a local Whittle estimator. Robinson

(1995b) showed that this method has many advantages. Importantly, it does not im-

pose the Gaussian assumption nor does it require a correct speci�cation of the spectral

density, f(�j ;�). This method is also asymptotically more e�cient than the Whittle

estimator. Observe that the spectral density of a long memory process is essentially

f(�) � Gj�j�2d; (7)

as � ! 0, where G 2 (0;1) and d 2 (�0:5; 0:5). Note that this characterization focuses

only on the spectral density in the neighborhood of frequency zero and ignores short-run

dependence. Replacing f(�;�) with G��2d, we can obtain a \local" version of LW
T (�)

which depends only on G and d but not on ARMA coe�cients.

The local analogue of LW
T in (6) is then

R(G; d) = 1

m

mX
j=1

 
I(�j)�

2d
j

G
+ logG��2d

j

!
:
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As G can be consistently estimated by

Ĝ(d) =
1

m

mX
j=1

I(�j)�
2d
j :

The local Whittle estimator for d is then obtained by minimizing

LW(d) = R(Ĝ; d)� 1

= log

0
@ 1

m

mX
j=1

I(�j)�
2d
j

1
A� 2d

m

mX
j=1

log �j : (8)

The bandwidth parameter m is an integer less than [T=2], but it should tend to in�nity

at a rate slower than T . Robinson (1995b) assumed that the bandwidth satis�es

1

m
+
m

T
! 0;

as T ! 1. Henry and Robinson (1996) also discussed how to choose the optimal

bandwidth for this semiparametric analysis of long-range dependence.

When yt have a mean change:

yt =

(
�
1
+ �t t = 1; : : : ; k

0
;

�
2
+ �t t = k

0
+ 1; : : : ; T;

(9)

where k
0
is the unknown change point. The relative location of k

0
is �

0
= k

0
=T . For

each hypothetical change point � , we can estimate �
1
and �

2
use, respectively, the pre-

and post-change observations:

�̂
1
([T� ]) =

1

[T� ]

[T� ]X
t=1

yt; �̂
2
([T� ]) =

1

T � [T� ]

TX
t=[T� ]+1

yt:

Given [T� ], the residuals are

�̂t(�) =

(
yt � �̂

1
([T� ]); t � [T� ];

yt � �̂
2
([T� ]); t > [T� ]:

The corresponding periodogram of �̂t is then

I(�j ; �) =
1

2�T

�����
TX
t=1

�̂t(�)e
it�j

�����
2

:
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It follows from (8) that for each hypothetical change point � , we can estimate d by

minimizing

LW(d; �) = log

0
@ 1

m

mX
j=1

I(�j ; �)�
2d
j

1
A� 2d

m

mX
j=1

log �j;

and obtain the local Whittle estimator ~d(�). The change-point estimator ~� is then

~� = argmin�2[� ;� ] LW( ~d(�); �);

where [� ; � ] � (0; 1), and the estimator for d is now ~d(~� ). A novel feature of the proposed

estimation method is that structural change and long-range dependent are both taken

into account.

In Kuan and Hsu (1998), we have shown that the quasi-maximum likelihood esti-

mator of the change point, �̂ , is consistent for fractionally integrated data, i.e.,

Pr(j�̂ � �
0
j > �)! 0:

Recall that the spectral likelihood function is invariant with respect to the mean and

that the (local) Whittle method is the frequency-domain counterpart of the maximum

likelihood method. It is then reasonable to believe that the consistency of �̂ carries over

to the present case. Robinson (1995b) proved that, for the normalized local Whittle

estimator d̂,

Ĥ = 2m1=2(d̂� d
0
)!d N(0; 1):

Our simulation also con�rm that asymptotic normality of d̂ carries over to ~d(~�). Thus,

~H = 2m1=2( ~d(~�)� d
0
) (10)

can be used as a test statistic for long-range dependence with the asymptotic standard

normal distribution. This method is also readily generalized to allow for multiple breaks.

In contrast with the graphical method proposed by Teverovsky and Taqqu (1997),

our method can test long-range dependence and estimate the possible change point.

When the change point is properly estimated, the model can be modi�ed to �t the

data and generate more accurate forecasts. Although Teverovsky and Taqqu (1997)

considered the case of multiple jumps, their graphical method needs very long data

series to plot the variances on a log-log plot and obtain the estimate of d. Our method

are applicable in relatively small samples.
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~d

d
0
= 0:45d

0
= 0:0

Figure 1: Compare empirical distributions of ~d with normal distributions.

4 Simulations

In this section we investigate the �nite sample performance of the proposed estimators

for d and � . We �rst use the density smoothing technique to demonstrate asymptotic

normality of ~d(~� ). A changing mean DGP is speci�ed according to (9) with �
1
= 1,

�
2
= 2, and �

0
= 0:5. Figure 1 graphs the densities of ~d(~�) for short memory (d

0
= 0)

and long memory (d
0
= 0:45) data with T = 1; 028, m = T=4, and 100 replications.

For short-memory data, f�tg is a standard normal white noise; for long-memory data,

f�tg is an ARFIMA(0; d; 0) process. The smoothed densities were calculated using a

Gaussian kernel with the bandwidth h = 0:15; see Silverman (1986, pp. 61{65). We

also graph the corresponding normal densities (dashed lines) with mean equal to the

true value of d and variance equal to the simulated variance of ~d(~�).2 Note that the

�nite-sample distributions of ~d(~�) is very close to the normal distributions for both

short- and long-memory data.

Table 2 presents the bias3 of ~d(~� ) and empirical sizes of the ~H test under the null

2The sample standard deviation (0:033) for the local Whittle estimator is quite close to the theoretical

value of
p
1=(4m) = 0:031.

3Here we de�ne bias = 1

J

P
J

j=1

~
dj(~�)� d0, where ~

dj(~�) is the estimator ~
d(~�) in the jth replication,
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Table 2: Empirical size of the modi�ed local Whittle method

�
0
= 0:5

Signi�cance T = 128 T = 256

Level m = T=8 m = T=4 m = T=3 m = T=8 m = T=4 m = T=3

Size 1%-Test 0.9 0.5 0.7 0.5 0.5 0.6

Size 2.5%-Test 1.3 1.3 1.0 1.4 0.9 1.3

Size 5%-Test 2.1 2.0 2.1 2.5 2.2 2.1

Size 10%-Test 3.0 3.9 3.4 4.1 4.2 4.4

Bias �0.330 �0.142 �0.107 �0.138 �0.067 �0.050
�
0
= 0:3

Size 1%-Test 1.0 0.4 0.5 0.6 0.8 0.3

Size 2.5%-Test 1.8 0.9 0.8 1.1 1.2 0.7

Size 5%-Test 2.3 1.4 2.0 1.8 2.3 1.8

Size 10%-Test 3.3 3.0 3.4 3.3 4.6 4.2

Bias �0.330 �0.136 �0.104 �0.138 �0.064 �0.049

hypothesis of short memory (d = 0) with an one-time break, i.e., (9) with �
1
= 1,

�
2
= 2, and �

0
= 0:5. In this simulation we chose two di�erent sample sizes, T = 128

and T = 256, and for each sample, three values of m were considered: T=8, T=4, and

T=3. The number of replications for each experiment is 1; 000. Unlike the R=S and

GPH tests, Table 2 shows that the empirical sizes of the ~H test are lower than the

nominal size in all cases considered. This low size may be explained by the negative

bias which may be resulted from the bandwidth chosen or the change-point estimate.

If we increase the number of observations and choose an appropriate bandwidth, the

negative bias becomes smaller. For �
0
= 0:3, ~H has similar empirical sizes and biases,

as shown in Table 2.

Table 3 reports the power of the local Whittle ~H test against the alternative of long-

range dependence with a change point at �
0
= 0:5. We follow McLeod and Hipel (1978)

and Hosking (1984) to generate �t as I(d) series in (9). For sample size T = 256 and

m = T=8, the power of the ~H test increases from 22% for d = 0:15 to about 91%

for d = 0:45. If we change the bandwidth to m = T=4, the power improves from

and J is the number of replications.
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Table 3: Empirical power of the modi�ed local Whittle method

Power 5%-Test d = 0:15 d = 0:25 d = 0:35 d = 0:45

(T = 256)

m = T=8 22.0 48.5 73.1 90.5

Bias �0.118 �0.114 �0.112 �0.106
m = T=4 45.5 83.8 98.2 99.8

Bias �0.062 �0.065 �0.055 �0.054

approximately 46% for d = 0:15 to about 100% for d = 0:45. These simulation results

show that the power of the ~H test increases with d. As an additional result, we consider

the case that the DGP has long memory (d = 0:35) and contains no change, we �nd

that the power of our approach is about 97:3% under T = 256 and m = T=4. This

shows that the ~H test does have good power against long-range dependence.

For change-point estimation, we consider the DGP (9) with �
1
= 1, �

2
= 2, �

0
= 0:5,

and f�tg is an I(d) series with d = 0:35. In our simulations, T = 128, the bandwidth

m = T=4, and the number of replications is 5; 000. Figure 2(a) shows the empirical

distribution of ~k (~� = ~k=T ) on the interval [ [0:1 � T ]; [0:9 � T ] ]. It is clear that ~k is

concentrated at the true change point. If we increase the sample size (e.g., T = 256), the

precision of ~k also improves. When there is no change so that �
1
= �

2
= 1, the empirical

distribution of ~k is presented in Figure 2(b). It can be seen that ~k are more concentrated

at two end points ([0:1 � T ] and [0:9 � T ]). In fact, this can also be interpreted as a

consistency result. In contrast with Kuan and Hsu (1998), our estimator can locate

the change point correctly even when data have long memory. Unlike the least-squares

estimator of the change point, there is no \spurious change" problem with the local

Whittle estimator.

Figure 2(c) and (d) contain the histograms of ~k for d = 0 when there is an one-time

change or none, respectively. The proposed estimator still works in the short memory

case. The relative frequency at ~k = k
0
is close to that for the least-squares estimator

in Kuan and Hsu (1998). To summarize, our method is quite successful in handling

long-range dependence and structural change.
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I. d
0
= 0:35

(a) �
0
= 0:5

~k

(b) no change

~k

II. d
0
= 0

(c) �
0
= 0:5

~k

(d) no change

~k

Figure 2: Empirical distributions of ~k.
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5 Empirical Studies of G7 Ination Rates

An important issue in macroeconomics is how aggregate prices respond to monetary

and energy shocks. Hassler and Wolters (1995) and Baillie, Chung, and Tieslau (1996)

suggested that ination rates are better described by ARFIMA processes rather than

unit-root processes for most G7 countries. However, in Section 2 we have shown that

most long memory tests may reject the null hypothesis of short memory too often when

a structural change is present. This is closely related to the problem that a trend-

stationary series with a break may be characterized as a unit-root process, as noted

in Perron (1989). Hence, one should be careful to explain the persistent behavior of

ination rates. Bos, Franses, and Ooms (1999) examined the impact of mean shifts on

the estimates of ARFIMA parameters. However, they assumed the break dates are �xed

exogenously at two oil shocks. The purpose of our empirical studies is to investigate

the sensitivity of long memory tests to exogeneity assumption concerning break dates.

In this section, we apply the local Whittle method to study monthly ination rates

in G7 countries from January 1957 through December 1998, which contain a total of

504 observations. The dataset of the Consumer Price Indices (CPI, pt) of G7 countries

are taken from the International Financial Statistics (IFS). Ination rates are computed

from the price indices by taking �t = 100 � log(pt=pt�1
). For each series, we eliminate

the seasonal e�ect by dummy variables. Figure 3 shows the raw data with seasonal

adjustment. As the ination rates exhibit rather erratic behavior in the �rst years

of the sample, we only use the data starting in 1958. Most sample autocorrelations

of �t exhibit the clear pattern of slow decay and are quite large even after long lags

(not reported). We �rst consider the traditional long memory tests as a benchmark

to compare with the proposed test. Table 4 gives the results of R=S and GPH tests.

The R=S tests with di�erent q suggest that the ination rates in all G7 countries have

long memory at conventional 5% level. Similarly, the GPH test also shows that d̂ is

signi�cantly di�erent from zero. Hence, these results suggest that the ination rates

may have long memory and strong persistence.

We also use the conditional sum of squares (CSS) method, proposed by Baillie,

Chung, and Tieslau (1996), to estimate an array of ARFIMA(p; d; q) models with dif-

ferent p and q;

�(B)(1�B)d(�t � �) = �(B)vt:

The ARFIMA(1,d,0) model appears to capture the correlation behavior of ination

14



Figure 3: G7 ination rates: 1957{1998 (seasonally adjusted).

15



Table 4: Long-memory tests for monthly G7 ination rates: 1958{1998.

R=S test

V (T; q) Canada France Germany Italy Japan UK USA

q = 0 6:040 6:404 3:824 7:415 4:114 5:600 6:317

q = 10 2:629 2:627 2:317 2:761 2:328 2:429 2:420

q = 20 1:980 1:981 1:829 2:088 1:828 1:874 1:839

2:738 2:289 2:612 2:231 2:864 2:347 2:005
q�

(9) (14) (6) (17) (5) (11) (16)

GPH test

d̂ Canada France Germany Italy Japan UK USA

0.731 0.637 0.497 0.665 0.687 0.513 0.884
c = 0:55

(5.701) (3.260) (4.135) (5.083) (5.783) (3.320) (6.147)

0.443 0.343 0.222 0.572 0.406 0.552 0.533
c = 0:65

(4.633) (2.656) (2.389) (6.149) (4.286) (5.113) (4.841)

0.336 0.332 0.281 0.479 0.275 0.381 0.421
c = 0:75

(4.892) (4.005) (3.749) (7.284) (3.749) (4.993) (5.900)

0.227 0.316 0.225 0.412 0.192 0.335 0.446
m = [T=2]

(4.651) (6.161) (4.477) (8.198) (3.890) (6.216) (8.559)

Note: 1%, 5%, and 10% critical value for the R=S test is 2.001, 1.747, and 1.620, respectively.

t-values are in parentheses for the GPH test.
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Table 5: Estimated ARFIMA model for ination rates in G7 countries.

ARFIMA(1,d,0)

Parameter Canada France Germany Italy Japan UK USA

�̂ �0.052 �0.221 �0.014 �0.175 0.009 �0.106 �0.086
(�0.448) (�1.366) (�0.265) (�0.622) (0.077) (�0.540) (�0.524)

d̂ 0.391 0.415 0.245 0.495 0.285 0.391 0.497

(10.05) (9.151) (4.735) (11.41) (6.711) (8.828) (10.53)

�̂
1

�0.221 �0.022 �0.026 �0.150 �0.181 �0.107 �2.186
(�4.016) (�0.343) (�0.388) (�2.544) (�3.115) (�1.767) (15.68)

�̂2v 0.093 0.082 0.083 0.135 0.342 0.218 0.044

(26.71) (32.96) (35.59) (21.61) (19.82) (29.15) (27.54)

logL �113.4 �81.82 �85.66 �205.2 �434.1 �322.9 70.43

Note: t-values are in parentheses.

rates quite well. In Table 5 the estimated fractionally di�erencing parameters are in the

range of 0 < d < 0:5 for all countries. Like the estimates obtained by GPH method, the

parametric approach also provide strong evidence of long memory in ination. Although

these �ndings are in accordance with the results of Hassler and Wolters (1995) and

Baillie, Chung, and Tieslau (1996), the traditional tests do not take into account the

inuence of regime switch on ination. Therefore, we must apply the proposed ~H test

instead of traditional tests for long memory.

In Table 6, the results of the local Whittle estimation are presented. We �rst consider

the case that there is only a one-time change. For the proposed method, the estimates

of ~d with m = T=4 are still signi�cant at the 5% level. That is, the long-memory e�ect

on ination is robust to a one-time change. Comparing with the results of the GPH and

ARFIMA estimation, the estimates of ~d are quite small in Germany and Japan after a

level shift is allowed. On the other hand, our method suggests that the break date is in

the period of oil crisis for Germany, Italy, Japan, and USA.

The second panel of Table 6 concerns the case of two breaks. It can be seen that

allowing for two breaks has a huge e�ect on the estimates of fractional integration. For

Germany and Japan, the long-range dependence on ination is no longer signi�cant. The
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Table 6: The proposed test for monthly G7 ination rates: 1958{1998.

One Break

Canada France Germany Italy Japan UK USA

[T ~� ] 1991:02 1959:02 1982:07 1973:10 1981:05 1967:09 1982:07

~d 0.348 0.416 0.191 0.473 0.092 0.308 0.462

~H 7:716� 9:230� 4:227� 10:49� 2:092� 6:828� 10:25�

Two Breaks

Canada France Germany Italy Japan UK USA

[T ~�
1
] 1972:11 1973:03 1969:10 1973:10 1973:01 1973:08 1973:01

[T ~�
2
] 1982:06 1985:05 1982:07 1984:03 1974:11 1981:05 1981:09

~d 0.180 0.179 0.086 0.313 0.015 0.167 0.316

~H 3:985� 3:966� 1.914 6:940� 0.337 3:700� 6:998�

Note: � indicates signi�cant at the 5% level.

estimates of ~d for most G7 countries are less than 0.2 except for Italy and USA. Hence,

the persistence on ination may be overestimated if we do not account for structural

changes. In the meantime, change-point estimates can correctly locate on dates of two

oil shocks for most G7 countries. In contrast with Bos, Franses, and Ooms (1999), our

break dates are estimated by data and the estimates of ~d are smaller than theirs.

6 Conclusions

In this paper we focus on how to test for long-range dependence when the process has

an one-time mean change and how to estimate the change point when data are long-

range dependent. We �rst pointed out that traditional long-memory tests have serious

size distortions when the data are short memory with changes. In order to overcome

this shortcoming and the spurious change problem discussed in Kuan and Hsu (1998),

a local Whittle method is discussed. Simulation results con�rm that our change-point

estimator is well behaved even when data are long-range dependent, and that our test

for long memory maintains proper size when a change is present. These results indicate

that our method is practically useful and has a much wider applicability.

There are two directions for future research. First, our method may also be ap-
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propriate for multiple breaks by estimating break dates simultaneously; cf. Bai and

Perron (1997). Second, it is interesting to develop a procedure for testing the structural

change in a long-memory environment. Intuitively, we can modify the method proposed

by Hidalgo and Robinson (1996), using the change-point estimate instead of a known

change. These issues are currently under study.
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Appendix

Proof of Theorem 2.1: When � = 1=2, substitute (1) and (5) into V (T; q), we have

1

~sT (q)
p
T

�
Y (t)� t

T
Y (T )

�

=
1

~sT (q)
p
T

 
tX

i=1
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t

T

TX
i=1

"i

!
+

1

~sT (q)T

 
tX

i=1

 (
i

T
)� t

T

TX
i=1

 (
i

T
)

!
: (11)

Given the condition [A], the functional central limit theorem ensures that0
@ 1

~sT (q)
p
T

[T� ]X
i=1

"i; 0 � � � 1

1
A)

�
B

0
(�); 0 � � � 1

�
;

where [T� ] denotes the integer part of T� and B
0
is the standard Brownian motion.

Hence the �rst term weakly converges to the Brownian bridge,0
@ 1

~sT (q)
p
T

0
@[T� ]X

i=1

"i �
[T� ]

T

TX
i=1

"i

1
A ; 0 � � � 1

1
A)

�
B0(�); 0 � � � 1

�
:

Also,

1

T

[T� ]X
i=1

 (
i

T
)!

Z �

0

 (z)dz;

uniformly in � . It follows from the continuous mapping theorem that

1
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p
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�
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Similarly,

1
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p
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Consequently,
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:
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For � = 0, ~s2T (q) is not a consistent estimator of �2; the limit of ~s2T (q) depends on the

change function  . Using the fact that
P[T� ]

i=1
"t = Op(T

1=2) and the assumption ~s2T (q)

is Op(1),

T�1=2V (T; q) = range
0���1

�
1

~sT (q)

�Z �

0

 (z)dz � �

Z
1

0

 (z)dz

�
+ op(1)

�
;

which is Op(1). This implies V (T; q) diverges in probability. 2
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