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1. Introduction

Since the pioneering work of Akerlof (1970) many economists have studied the market

failures due to asymmetric information in an otherwise perfectly competitive market.

The standard model studies a static market with atomistic agents whose valuations

depend on quality and a standard result is that only low quality goods are traded (if at

all) even if the buyers are willing to pay more than the reservation price of sellers for

each individual quality (see also, Wilson, 1979, 1980).  This so-called lemons problem

affects a large spectrum of markets, including insurance markets.  In many cases,

including the classic second-hand car market, the good under consideration is a durable

good.

Durability introduces two complicating factors in the used goods markets: goods

not traded in any period can be offered for sale in the future and, in addition, new

cohorts of potential sellers may enter the market over time.  Janssen and Roy (1999a,

1999b) have investigated some of the issues that arise when durability is explicitly

taken into account in a dynamic model.  Janssen and Roy (1999a) address the issue

whether a given stock of goods can be traded over time.  They show that in any

dynamic competitive equilibrium all goods eventually will be traded.  The main idea

behind this result is that low quality sellers have less incentives to wait (before selling)

compared to high quality sellers.  Once certain (low) qualities are sold, only relatively

high qualities remain in the market.  Consumers can predict that sellers of different

qualities will sort themselves into different time periods and, hence, they are willing to

pay higher prices in later periods.  The equilibrium is thus one in which higher

qualities are sold in later periods at higher prices.

Janssen and Roy (1999b) address the same issue in the context of markets where

identical cohorts of goods with uniformly distributed quality enter the market over time.

In such markets, the infinite repetition of the static equilibrium under adverse selection

is an equilibrium in the dynamic model.  In fact, it is the unique stationary equilibrium

and also the only equilibrium where prices and average quality traded are (weakly)

monotonic over time.  They show that there exists at least one other equilibrium,

however, where all goods are traded within finite time after they have entered the
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market.  These equilibria are cyclical in prices and quantities in the sense that once all

goods are traded, prices (and quantities) will fall.  Up to the moment all goods are sold,

however, the dynamic process of prices and quantities is monotonically increasing.

In this paper we extend the analysis of Janssen and Roy (1999b) in a number of

ways.  First, we relax the assumption that in every period a cohort of uniformly

distributed qualities enters the market.  Instead, we allow for any arbitrary distribution,

which satisfies some mild regularity condition.  Second, our results are stronger in the

sense that we show the existence of an infinite number of equilibria, where all goods are

traded within finite time after they have entered the market.  Finally, we show the

extent to which the uniform distribution is special.  It turns out that for a set of values

of the model's parameters and a set of distributions, which have relatively little

probability mass in the neighborhood of the static equilibrium, it is impossible to

construct a dynamic equilibrium with monotonically increasing prices and quantities

up to the moment everything is sold.  We provide an example  where this is the case.

Hence, the equilibrium construction for the uniform distribution does not extend

naturally to the class of all distributions.

Other existing literature1 on adverse selection has focused on various processes

(such as signaling and screening) through which the difficulties of trading under

asymmetric information may be resolved and has emphasized the role of non-market

institutions in this context (such as certification intermediaries and leasing).  This

paper, in contrast, is motivated by a more basic issue which also underlies the original

Akerlof paper viz., the functioning of the price mechanism in a perfectly competitive

market when traders have private information.  It is important to understand the nature

of market failures due to adverse selection before analyzing the role of institutions in

mitigating these failures.

Our specific model is as follows.  We consider a competitive market for a

perfectly durable good where potential sellers are privately informed about the quality

of the goods they own.  Each period, a cohort of sellers of equal size and with an

identical, but arbitrary, distribution of quality enters the market.  The demand side is
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modeled in the following simple way.  Buyers are identical, have unit demand and for

any given quality, a buyer’s willingness to pay exceeds the reservation price of a seller

for that quality.  As buyers do not know the quality, their willingness to pay in a period

equals the expected valuation of goods traded in that period.  Moreover, there are more

buyers than sellers in each period so that in equilibrium, prices equal the expected

valuation.  Once traded, goods are not re-sold in the same market.2

The Akerlof-Wilson model can be considered the static version of our model.  The

adverse selection problem implies that in equilibrium only a certain range of low

qualities is traded.  The infinitely repeated version of a static equilibrium outcome is

also an equilibrium in our dynamic model.  Hence, the issue of existence of dynamic

equilibria is easily resolved.  In this dynamic equilibrium high quality goods remain

unsold forever.

We concentrate on the existence of other equilibria with more interesting

properties - where prices and average quality traded fluctuate over time.  We provide a

characterization result saying that in all such equilibria the range of quality, which is

eventually traded in the market, exceeds that in the stationary (static) outcome.

Moreover, sellers of different qualities within each cohort of entrants separate

themselves out over time.  As the use value of low quality goods is lower than that of

high quality goods, low quality sellers sell earlier than high quality sellers, the owner

of a good with lower quality trades earlier, owners of higher quality goods wait longer.

In order to highlight the waiting aspect of the adverse selection problem and also to

make clear the sharp contrast between the properties of equilibria of our model with

those of the static model, the main part of the analysis is devoted to proving the

existence of an infinite number of equilibrium where every potential seller entering the

market trades within a certain finite number of periods after entering the market.

The results obtained in the paper provide a different perspective on the adverse

selection problem.  In the static Akerlof-Wilson model, the adverse selection problem

                                                                                                                                

1  See, for instance, Guha and Waldman (1997), Hendel and Lizzeri (1999a,b), Lizzeri (1999) and
Waldman, (1999).
2  Our analysis bears some resemblance to that by Sobel (1991) of a durable goods monopoly where new
cohorts of consumers enter the market over time.  Unlike our framework, there is no correlation between
the valuations of buyers and sellers in his model.
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manifests itself in the fact that relatively high quality goods cannot be traded despite

the potential gains from trade.  In the dynamic market for durable goods, the lemons

problem is not so much the impossibility of trading relatively high quality goods, but

rather that sellers with relatively high quality goods need to wait longer in order to

trade.3  So, the cost of waiting becomes an important factor in the welfare loss arising

due to asymmetric information.

There are three important intertemporal factors in the market which determine the

market dynamics in all the non-stationary equilibria of our model.  First, once a certain

range of quality is traded, only sellers of higher quality goods are left in the market,

which tends to improve the distribution of quality of potentially tradable goods in the

future.  Second, the entry of a new cohort of potential sellers with goods of all possible

quality dilutes the average quality of potentially tradable goods - as they cannot be

distinguished by buyers from higher quality sellers left over from the past.  Finally, as

time progresses and stocks of untraded goods accumulate from the past, the new cohort

of traders entering the market in any period becomes increasingly less significant in

determining the distribution of quality of tradable goods.4

The paper is organized as follows.  Section 2 sets out the model, the equilibrium

concept and some preliminary results.  Section 3 provides a characterization result.

The main result of the paper relating to the existence of an infinite number of equilibria

where all goods are traded within finite time after entry into the market are outlined in

section 4.  Section 5 concludes.  Proofs are contained in the Appendix.

                                               
3  There are certain situations in which the fact that a seller has waited for a long time might indicate low
rather than high quality.  This would be true, for example, when the buyers can inspect quality - high
valuation buyers are more likely to inspect and select the relatively high quality houses - leaving unsold
goods of relatively low quality for later periods (Taylor, 1998).  A paper with a similar spirit is that of
Vettas (1997).  As stated earlier, our model is designed to understand the nature of the lemons problem
and so we do not allow for any technology which can directly modify the information structure.
4  If there is no entry of sellers after the initial period, or equivalently, if buyers can distinguish the
period of entry of sellers in the market, then only the first factor is relevant.  In that case, it has been
shown earlier for fairly general distributions of quality (see, Janssen and Roy (1998)) that in every
equilibrium all goods are traded in finite time.  Vincent (1990) analyzes a dynamic auction game with
similar features.
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2. Model.

Consider a Walrasian market for a perfectly durable good whose quality, denoted by

θ , varies between θ  and θ , where ∞<<< θθ0 .  Time is discrete and is indexed by

∞= K,2,1t .  Each time period t  a set of sellers tI  enters the market, I  is the set of all

sellers, U
∞

=
=

1t
tII  and it  is the period of entry of seller Ii ∈ .  Each seller is endowed

with one unit of the durable good of quality iθ .  Let the total Lebesgue measure of

sellers from the set tI  who own a good of quality less than or equal to θ  be a function

{ }( ) ( )θµθθµ ≡≤∈ itIii , , which is independent of t .  We assume that ( )θµ  is strictly

increasing and absolutely continuous with respect to the Lebesgue measure.

The measure of all sellers who enter the market in each period is strictly positive,

so ( ) 0>θµ .  Each seller i  knows the quality iθ  of the good he is endowed with and

derives flow utility from ownership of the good until he sells it.  Therefore, the seller's

reservation price is the discounted sum of gross surplus due to ownership and we

assume that it is exactly equal to iθ .  So, the per period gross surplus is ( ) iθδ−1 .

Each time period t  a set of buyers, with measure larger than ( )θµ , enters the

market.  All buyers are identical and have unit demand.  A buyer's valuation of quality

θ  is equal to θv , where 1>v .  Thus, under full information, a buyer's valuation

exceeds the seller's.  All buyers know the ex ante distribution of the sellers with respect

to qualities but do not know the quality of the good offered by a particular seller.

When a buyer buys a good he leaves the market forever.  All players discount the

future with common discount factor δ, 10 << δ .  They are risk neutral and rational

agents.

We will denote expected quality of the good from seller i  conditional on the fact

that he belongs to a certain subset II ⊂′  as { }( )I′η , this value is defined for all II ⊂′

such that { }( ) 0>′Iµ  and it follows that

( ) ( ) ( )Id
I

I
Ii

i ′
′≡′ ∫

′∈

µθ
µ

η 1 .
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In order to have an adverse selection problem in the static model we assume

( ) θθ <vE , where ( )θE  is the unconditional expected quality of all goods,

( ) { }( ) { }( )IIE t ηηθ == .  This implies that the static Akerlof-Wilson version of this

model has a largest equilibrium quality, which we will denote by ( )θθθ ,∈S :

[ ]{ }( ){ }θθθθηθθ
θ

=∈∈= ,,max iS Iiiv .

To simplify our analysis we make the following two assumptions.  Throughout

this paper, we assume that these assumptions hold.  Basically assumptions 2.1 and 2.2

assure that the distribution of quality is sufficiently well-behaved for some left-

neighborhood of Sθ .

Assumption 2.1.  Let ( )θµ  be a strictly increasing and absolutely continuous with

respect to Lebesgue measure on [ ]θεθ µ ,−S  for some 0>µε .  Moreover let µµ Mm ,∃

such that for any θθ ′′′, , θθθεθ µ ≤′′<′≤−S : 
( ) ( )
( ) µµ θθ

θµθµ Mm <′−′′
′−′′<<0 .

Assumption 2.2.  The measure function ( )θµ  is a differentiable function at Sθθ =  and

( )( ) 0>≥= µθ
θ
θµ mf

d
d

s .

Given a sequence of market prices { }∞
== 1ttpp  each seller i  chooses whether or not to

sell and if he chooses to sell, the time period in which to sell.  If he chooses not to sell

his gross surplus is equal to iθ  and therefore his net surplus equals to zero, while if he

decides to sell in period itt ≥  his gross surplus is

( ) ( ) ( ) ( ) t
tttt

it
tt

tt

it
tt

t

t

t
i ppp iii

i
i

i

i −−−
−

−
−

=

− +−=+
−

−−=+−∑ δδθδ
δ

δθδδδθδ
τ

τ 1
1

111
1

,

and, therefore, his net surplus equals

( ) ( ) iii tt
itit

tttt
ii pps −−− −=−+−= δθθδδθ 1 .

The set of time periods in which it is optimal to sell for a seller i  is given by

( ) { } ( ) ( ){ }0maxarg0maxarg ≥−−=≥≡ −

≥≥
it

tt
it

tt
ii

tt
i ppssT i

ii

θδθp .
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If 0<− itp θ  for all itt ≥  then ( ) ∅=piT .

Each potential seller i  chooses a time period ii T∈τ  in which to sell.  Let

{ }Iii ∈= τt  be a set of all selling decisions.  We will denote a set of the sellers who

chose time period t  for trade as tJ , and it follows that { }tIiJ it =∈≡ τ .  This

generates a certain distribution of qualities over all time periods and the expected

quality of the goods offered for sale in time period t  is { }( )tt Jηη =  when { }( ) 0>tJµ .

In the sections that follow we will use the following notation:

a) ( ) ( ) ( )11, −− −= ττττ θµθµθθµ , so that for all ∞<≤≤− − ττµ θθεθ 1S  ( )ττ θθµ ,1−  is

the measure of sellers from tI  whose goods are of quality from the range

[ ]ττ θθ ,1− : ( ) [ ]{ }( )ττττ θθθµθθµ ,,, 11 −− ∈∈= itIii  and ( ) ( )ττττ θθµθθµ ,, 11 −− −= ;

b) ( ) ( )










=

≠∫
=

−−

−
−

−
−

11

1
1

1

 if ,

 if ,
,

1

, 1

τττ

ττ

θ

θττ
ττ

θθθ

θθµθ
θθµθθη

τ

τ

d
,

so that for all θθθεθ ττµ ≤≤≤− − 1S , ( )ττ θθη ,1−  is the expected quality of goods

from sellers who belong to tI  whose goods are of quality from the range [ ]ττ θθ ,1− :

( ) [ ]{ }( )ττττ θθθηθθη ,,, 11 −− ∈∈= itIii , and ( ) ( )ττττ θθηθθη ,, 11 −− = .

The following lemma states the continuity of ( )ττ θθη ,1− .

Lemma 2.1.  For all θθθεθ ττµ ≤≤≤− − 1S  the function ( )ττ θθη ,1−  is a strictly

increasing continuous function.  Moreover, ηη Mm ,∃ , such that

( ) ( )
( ) η

ττ

ττττ
η θθ

θθηθθη Mm <
−
−<<

−

−−−

1

111 ,,0 .

On the equilibrium path, buyers' expectations of quality in a period where a

strictly positive measure of goods is offered for sale must equal the expected quality in

that time period.  As all buyers are identical, we assume that their expectations of

quality in period t  are symmetric and denoted by tE .
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A dynamic equilibrium is an equilibrium where all players rationally maximize

their objectives, expectations are fulfilled and markets clear in every period.

Definition 2.1.  A dynamic equilibrium is described in terms of: a sequence of prices

{ }∞
== 1ttpp , a set of selling decision { }Iii ∈= τt  and a sequence of buyers' quality

expectations { }∞
== 1ttEE  such that:

a) Seller maximize: ( )pii T∈τ  for all Ii∈ , i.e., seller i  chooses time period iτ  to

trade optimally.

b) Buyers maximize and market clear: If { }( ) 0>tJµ  then tt vEp = , i.e., if there is

a strictly positive amount of trade in time period t , then each buyer earns zero net

surplus so that he is indifferent between buying and not buying and market clears.

If { }( ) 0=tJµ  then tt vEp ≥ , i.e., if zero measure of trade occurs in time period t

then each buyer can earn at most zero net surplus.  Hence, not buying is optimal

for him in that period.

c) Expectations are fulfilled when trade occurs: If { }( ) 0>tJµ  then ttE η= .

d) Expectations are reasonable even if no trade occurs: For all t  θ≥tE .

Given the set-up described above, conditions (a)-(c) are quite standard, condition

(d) says that even in periods in which (at most) zero measure of seller intends to sell,

buyers' beliefs should be reasonable.  This condition assures that autarky, i.e., no trade

in any period, cannot be sustained in an equilibrium of the dynamic model.  Given the

condition, the willingness to pay, hence the price in any period, is restricted from

below by θv  and sellers with low enough qualities prefer to sell against this price

rather than not sell.

3. Characterization of equilibrium.

We start the analysis characterizing the properties of any dynamic equilibrium.  In the

Proposition 3.1 below we first argue that if a good of certain quality sells in period t ,

then all goods with lower qualities that have entered the market in and before period t
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will also sell in that period.  This fact allows us to define for each period a marginal

seller tθ  as the seller of the highest quality in period t .  It also allows us to define ts  as

the surplus of the marginal seller in period t , i.e., ttt ps θ−= .  This part of the

Proposition 3.1 basically follows from the fact that the use value of low qualities is

lower than the use value of high qualities so that low qualities are more ready to sell.

The second part of the Proposition 3.1 argues that the marginal sellers in any

period make non-negative net surplus.  This implies that the other sellers make strictly

positive surplus.

The third part of the Proposition 3.1 argues that the marginal seller in period t  is

indifferent between selling in period t  and selling in the first future period in which a

quality larger than his own quality is sold.  Prices in that future period will be higher,

reflecting higher average quality, but the discounted surplus is such that the seller is

indifferent.

The last part of the Proposition 3.1 says that if it exists the highest quality that will

ever be sold in any dynamic equilibrium is either equal to θ  or it is such that the seller

makes zero surplus.  It is clear that if a seller makes zero net surplus, prices in all

future periods cannot be higher as this seller will have an incentive to wait and sell in

that future period.  The Proposition 3.1 argues that if the highest quality sold in a

dynamic equilibrium makes strictly positive surplus, then it must be equal to θ .

Proposition 3.1 (equilibrium characterization).  Any dynamic equilibrium has the

following properties.

a) For all t  [ ]θθθ ,∈∃ t  such that if θθ >t  then [ ]{ }ttiJ itit ≤∈= ,,θθθ , i.e., in every

period t  in which strictly positive amount of trade occurs the set of quality traded

is a range [ ]tθθ, , where tθ  is the marginal quality traded in period t .  All sellers

who are in the market by period t  and own goods of quality not larger than tθ

prefer to trade in this time period.

b) ttp θ≥ .
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c) Let ( ) { }tt
tt θθτ ττ

>=
>

min~ , i.e., ( )tt~  is the first period after t  where tθθτ > .  Then

( )
( )( )ttt

ttt
tt pp θδθ −=− −

~
~

, i.e., marginal seller in period t  is just indifferent

between selling in that period and in the first next period where marginal quality is

larger than his own quality.

d) If ( ) 


=
>

τ
τ

θ
t

tt maxargminˆ  then ( ) ( )( ) ( )( ) 0ˆˆˆ =−− ttttttp θθθ , i.e., if in period t̂  the

marginal quality is the first largest one for all subsequent periods then either this is

the highest possible quality θ  or the surplus of the corresponding marginal seller

is zero.

It is easily seen that the infinitely repeated outcome of the static model is a

dynamic equilibrium of our model.  Hence, existence of equilibrium is not really an

issue here.  We will show that in the dynamic model there are infinitely many other

equilibria, each one starting from a certain neighborhood of a static equilibrium

quality.

4. Equilibria Trading all Goods.

We will now show that for any measure function ( )θµ  which satisfies Assumptions

2.1-2.2 and for all generic values of the parameters v , δ, θ  and θ  there exist an

infinite number of dynamic equilibria covering all qualities up to θ .  As we already

know that our model has at least one equilibrium, a general existence proof is trivial.

That is why we use a constructive proof showing how to find an equilibrium sequence

of marginal qualities that is such that all qualities up to θ  are traded.  The fact that

there are infinitely many dynamic equilibria follows from the fact that if there exists a

dynamic equilibrium covering all qualities up to θ  starting from some Sθθ <1 , then

there also exists a dynamic equilibrium covering all qualities up to θ  starting from a

'
1θ , with Sθθθ << '

11 .
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Before we will go into the details of the analysis, we first introduce an important

parameter.  Assumption 2.2 allows us to define a parameter a , which describes the

relation between the distribution of quality over the range [ ]Sθθ,  and the marginal

distribution at Sθ  itself:

( )( ) ( )( ) ( )
( )S

S
sS

S

fv
d

dva
θµ
θθ

θ
θµθ

θµ
111 −=−≡ .

Obviously, a  is strictly positive.  We will now argue that generically, it must be

that 1<a .  To this end, consider the surplus of the marginal seller in the static model

as a function of θ :

( ) ( ) ( ) ( ) ( ) θθµθ
θµ

θθηθθθ
θ

θ

−=−=−≡ ∫dvvps 1 , and

( )( ) ( ) ( ) ( ) 111 −=−









= ∫ ad

d
dv

d
ds

SS θθµθ
θµθ

θ
θ
θ θ

θ

.

Thus, the surplus of the marginal seller can be written as

( ) ( ) ( )( )( ) ( ) ( )( ) ( )SSSSSS oao
d

dsss θθθθθθθθθ
θ
θθθ −+−−=−+−+≡ 1 . (1)

Suppose then that 1>a .5  This would imply that ( ) 0>θs  in some right

neighborhood of Sθ .  But this contradicts the assumption that Sθ  is the highest static

equilibrium quality.

In the uniform case, we have va 2
1= 6.  As in the uniform case adverse selection

implies that 21 << v , the uniform distribution is a special case of the case when

( )1,2
1∈a .  In subsection 4.1 we will start with this simplest case, which generalizes the

analysis in Janssen and Roy (1999b).  We show that one can construct a "monotonic"

sequence of marginal qualities tθ  that are strictly increasing over time until all goods

are sold.  The main reason why the case ( )1,2
1∈a  is to be distinguished from other

cases can be seen by looking at equation (1).  If we choose Sθθ =1 , then in the second

period, the measure of qualities just above Sθ  that are not yet sold is two times as high

                                               
5  The case where 1=a  is a non-generic case.
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as the original measure.  If ( )1,2
1∈a , the distribution of qualities in the second period is

such that a new "static" equilibrium emerges that is larger than Sθ .  As in the second

period we can write ( ) ( )( ) ( ) ( )( )( )SSSS oaas θθθθθθθθθ −−+−−−−= 12122 ,12  it

possible to choose 1θ  close enough to Sθ  such that 12 θθ >  and 02 >s .

If 2
1<a , it may not be possible to construct such a "monotonic" equilibrium and

we show this by example.  In subsection 4.2 we show that dynamic equilibria

nevertheless exist if ( )( )δaa ~,0∈ , where ( )δa~  is some decreasing function of δ.  The

kind of equilibrium we obtain is not monotonic, however, and marginal qualities tθ

strictly decrease for some initial time periods after which they strictly increase until all

goods are sold.  The general theorem is provided in subsection 4.3.  As the

construction here becomes quite complicated, subsections 4.1 and 4.2 are also provided

for didactical reasons.

The construction of equilibrium uses an "equilibrium sequence" which is defined

below.

Definition 4.1.  An equilibrium sequence ( )UTΘ  is a finite sequence of marginal

qualities tθ  as functions of 1θ , the latter being defined over some range ( )11,θθ=U ,

i.e., ( ) ( ){ }T
ttT U 11 ==Θ θθ , such that all equilibrium conditions in Definition 2.1 hold for

all 1,,1 −= Tt K .  Moreover, for all U∈1θ :

a) ( )1θθt  is continuous for all Tt ,,1K= ;

b) ( ) ( )11 θθθθ tT >  for all 1,,1 −= Tt K ;

c) ( )1θη ttt pvp == , the price in period t  is continuous and ( ) SStp θθ = ;

d) ( ) ( )11 θθθ ttp >  for all Tt ,,1K= , i.e., the price in period t  exceeds the marginal

quality in that period and ( ) 01 >θts ;

                                                                                                                                
6  This easily follows from the fact that θθ v

v
S −= 2  and ( ) ( )θθθµ −= SS f .
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e) for all 1,,1 −= Tt K  ( )( )
( )( )ttt

ttt
tt pp θδθ −=− −

~
~

, where ( ) { }tTt
tt θθτ ττ

>=
≤<

min~ , i.e.,

the marginal seller in period t  is just indifferent between selling in that period and

in the first next period where marginal quality is larger than his own quality.7

The above definition does not imply the existence of an equilibrium sequence.

However, it easy to see that there exists at least one equilibrium sequence, namely

( )( ) { }11 , θθεθ µ =−Θ SS , such that all mentioned above conditions are trivially satisfied.

The main property of an equilibrium sequence we use is that if there is a dynamic

equilibrium with marginal qualities { }∞
=1ττθ  such that for T,,1K=τ  it can be described

by a certain equilibrium sequence ( ) ( ){ }T
ttT U 11 ==Θ θθ , then there is only one

indifference equation, namely

( )( )
( )( )TTt

TTt
TT pp θδθ −=− −

~
~

, (2)

which relates prices τp  and marginal qualities τθ  for ∞+= K,1Tτ  to prices τp  and

marginal qualities τθ  for T,,1K=τ  (this follows from (b) above).  Intuitively, Tθ

summarizes all the relevant properties of the sequence of marginal qualities up to time

period T .  Our purpose, therefore, is to find an equilibrium sequence such that

( ) θθθ =1T  for some T  and 1θ .

4.1 The case where 2
1>a .

In this subsection we prove the existence of an increasing sequence T
tt 1}{ =θ , where

θθ =T  when 2
1>a .  As the uniform distribution is a special case, the result obtained in

this section show to what extent the results obtained in Janssen and Roy (1999b) can be

generalized to allow for other types of distribution functions.  The following theorem

contains a statement of the formal result.

                                               
7  That minimum always exists as at least one τθ  is above tθ , namely tT θθ > .
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Theorem 4.1.  For any ( )1,2
1∈a  and for any generic value of θ , there exist an infinite

number of dynamic equilibria such that all goods are sold in finite time after entering

the market.

The proof consists of three steps.  In Proposition 4.1 we prove that it is possible to

construct an equilibrium sequence of an arbitrary length where marginal qualities { }tθ

are strictly increasing and very close to the static equilibrium quality Sθ .  Under these

circumstances the main indifference equation (2) takes the following form:

( )tttt pp θδθ −=− + 1 . (3)

In other words, the marginal seller in period t  is just indifferent between selling in

that period and in the next period.  We will denote such monotonic equilibrium

sequences as ( )U1Θ  and call a dynamic equilibrium, which is based on them, as

"dynamic equilibrium of type I".

Proposition 4.1.  If ( )1,2
1∈a , then there exist an infinite number of ( )U1Θ .  Moreover,

γε∃ , 0T∃  such that for all 0Tt >  ( )( )St tU θθ ,0
1

0 =∃  and ( )01
tt UΘ∃  such that:

a) for all t,,1K=τ  ( )1θθτ  is differentiable at Sθθ =1  and ( ) SS θθθτ = ;

b) for all 0
1 tU∈θ  ( ) ( )1

1
10 θεθθθ δγ tSt s<−< .

Proposition 4.1 implies that if ( )1,2
1∈a , we can construct an equilibrium sequence

of an arbitrarily long length t  such that in period 1+t  there will be more sellers with

high quality ( Si θθ > ) goods than the number of sellers with low quality ( Si θθ < ).

This allows us to expand the equilibrium sequence tΘ  for some more periods.

Next, in Proposition 4.2, we prove that when we are able to construct an

equilibrium sequence of an arbitrary length where all marginal qualities belong to a

certain neighborhood of Sθ , then we can expand it in such a way that the surplus of the

last marginal quality tθ  could be made any value between 0 and ( ) tv θ1− .  More

precisely, given any equilibrium sequence tΘ  with ( ) ( )1
1

10 θεθθθ δγ tSt s<−<  we can

construct another sequence t′Θ , where tt >′ , such that tt ′Θ⊂Θ  and ( )1θtp  covers the
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whole interval ( ) ( )( )11 , θθθθ tt v .  The conditions under which the Proposition 4.2 holds

are the same as the conclusion reached in Proposition 4.1.  This is done as in later

subsections we will also make use of it.

Proposition 4.2.  If there exist 0>γε  and 0T  such that for all 0Tt >  ( )( )St tU θθ ,0
1

0 =∃

and ( )0
tt UΘ∃  such that for all 0

1 tU∈θ  ( ) ( )1
1

1 θεθθθ δγ tSt s<− , then for any 0>Sε  and

0>θε  ST∃  such that for all STt ≥  ( )( ) 0
1 , tS
SS

t UtU ⊂=∃ θθ  and ( )S
tt UΘ∃  such that:

a) for any S
tU∈1θ  ( ) θεθθθ <− St 1 ;

b) ( ) 0=Sts θ ;

c) ( ) ( ) ( ) S
S

t
S

t vs εθθθ −−> 11 1 .

Proposition 4.2 tells us that if we could trade goods for many time periods and,

therefore, accumulate "high quality sellers", then we can organize trade in such a way

that in the last time period of the equilibrium sequence "almost" all sellers who prefer

to sell in that period will have goods of quality very close to Sθ .

Finally, in Proposition 4.3 we prove that if we are able to trade goods along an

equilibrium path from a certain range of qualities such that the price in the last period

of the equilibrium sequence can be made any value between the marginal quality and

buyer's valuations of the marginal quality, then we can expand that equilibrium

sequence in such a way that wider range of qualities could be traded with the same

properties.  Doing so, after a finite number of iterations we generically can construct an

equilibrium sequence where θθ =t , i.e., all goods are traded by the period t .

Proposition 4.3.  If ( ) [ )θθθ ,S
k ∈∃  such that for any 0>Sε  and 0>θε  ( )k

ST∃  such that

for all ( )k
STt >  ( ) ( ) ( )( )ktktU k

t ,,, 11 θθ=∃ 8 and ( )( )k
tt UΘ∃  such that:

a) for all ( )k
tU∈1θ  ( ) ( )

θεθθθ <− k
t 1 ;

                                               
8  Here we don't make a distinction between 11 θθ <  and 11 θθ > .  All we need is ( )k

tU  to be a nonempty

open set while 1θ  and 1θ  are its boundary points.
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b) ( )( ) St kts εθ <≤ ,0 1 ;

c) ( )( ) ( ) ( )( ) Stt ktvkts εθθθ −−> ,1, 11 ;

then either

a) 0>∃ Sε  such that for any T  Tt >∃ , ( )t1
~θ∃  and ( )1

~θtΘ∃  such that ( ) θθθ =1
~

t  and

( ) Sts εθ >1
~

, or

b) for any 0>Sε  and 0>θε  ( ) ( )( ]θθθ ,ˆˆ 1 kk v∈∃ +  and ( )1+∃ k
ST  such that for all ( )1+> k

STt

( ) ( ) ( )[ ] ( )k
t

k
t UktktU ⊂++=∃ + 1,,1, 11

1 θθ  and ( )( )1+Θ∃ k
tt U  such that:

• for all ( )1
1

+∈ k
tUθ  ( ) ( )

θεθθθ <− + 1
1

k
t ;

• ( )( ) St kts εθ <+≤ 1,0 1 ;

• ( )( ) ( ) ( )( ) Stt ktvkts εθθθ −+−>+ 1,11, 11 .

Proposition 4.3 basically says that if we have constructed an equilibrium sequence

for a sufficiently large number of periods, then we can either make sure that after some

more time periods the next marginal quality can be chosen relatively far from the

present marginal quality and such that all desirable properties are kept (case (b)) or we

can reach θ  (case (a)).

Propositions 4.1, 4.2 and 4.3 taken together give us a large part of the proof of

Theorem 4.1.

4.2 The case of small a  and δ.

In this section, we construct an equilibrium sequence for the case when a and δ small.

We first provide an example showing why the analysis of the previous subsection does

not continue to be valid.  The example shows that when a and δ are small there does

not exist a 12 θθ >  such that 02 ≥s  and such that 1θ  is indifferent between selling in

period 1 and selling in period 2.
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Example 4.1 Let us take 2.1=v , 1.0=δ , 10=θ , 13=θ  and a measure function

( )θµ  such that ( ) 010 =µ  and

( )




<<
<<

=
θθ

θθ
θµ

θ 1,10 if      ,1
1.10 if  ,101

d
d .

The static equilibrium quality for this case is unique and equals 12.31 5.151 ≈=Sθ .

In any dynamic equilibrium we must have [ ]Sθθθ ,1 ∈  (otherwise we would have

01 <s ).  The following picture 4.1 shows the graph of functions ( )12 2 XX θ=  and

( )12 2 XsS =  where 11 θ=X .

-20

0

20

40

10 10,5 11 11,5 12
X1 

X
2,

S2

X2 S2 Static quality

Figure 4.1.

It is easy to see that for any value of 1θ  we get ( )12 θθ  above Sθ  and the surplus in

the second period is negative. //

We will now prove that if a is relatively small, particularly if ( )( )21,0 δ−∈a , then

we are still able to construct infinitely many dynamic equilibria such that all goods

from the range [ ]θθ,  are traded.  The equilibrium sequence is non-monotonic.  Note

that the parameter configuration analyzed here partially overlaps with the parameter

configuration analyzed in the previous subsection.  The result we will prove is formally

stated in Theorem 4.2 below.
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Theorem 4.2.  For any ( )2)1(,0 δ−∈a , and for any generic value of θ , there exist an

infinite number of dynamic equilibria such that all goods are sold in finite time after

entering the market.

In order to prove this theorem we only need to show that when ( )2)1(,0 δ−∈a  it

is also possible to construct an equilibrium sequence of an arbitrary large length t

where marginal qualities { }tθ  are very close to the static equilibrium quality Sθ .  We

will construct a sequence that is strictly decreasing for some time, ττ θθ <+ 1 , and only

the last marginal quality Tθ  exceeds all previous ones.  We denote such a sequence as

"equilibrium sequences of type II" and write ( )U2Θ .

In this case our indifference equation (2) becomes the following system:

( )τ
τ

ττ θδθ −=− −
t

t pp , t,,1K=τ . (4)

Proposition 4.4.  If ( )2)1(,0 δ−∈a , then there exist an infinite number of ( )U2Θ .

Moreover, γε∃ , 0T∃  such that for all 0Tt >  ( )( )St tU θθ ,0
1

0 =∃  and ( )02
tt UΘ∃  such that:

a) for all t,,1K=τ  ( )1θθτ  is differentiable at Sθθ =1  and ( ) SS θθθτ = ;

b) for all 0
1 tU∈θ  ( ) ( )1

1
10 θεθθθ δγ tSt s<−< .

Note that the conclusions reached in Proposition 4.4 are identical to the

conclusions reached in Proposition 4.1 so that we can make use of Propositions 4.2 and

4.3 to get the proof of Theorem 4.2.

4.3 The General case.

Finally, we prove that for any value of a , we are able to construct infinitely many

dynamic equilibria such that all goods in [ ]θθ,  are traded.  The structure of the

corresponding equilibrium sequences becomes a mixture of the equilibrium sequences

of type I and type II.
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Theorem 4.3.  For any generic value of θ , there exist an infinite number of dynamic

equilibria such that all goods are sold in finite time after entering the market.

Again, like in subsection 4.2, the only thing we need to prove is that it is possible

to construct an equilibrium sequence of an arbitrary large length where marginal

qualities { }tθ  are very close to the static equilibrium quality Sθ .  This is the content of

Proposition 4.5.

Proposition 4.5.  There exist an infinite number of ( )UΘ .  Moreover, there exist some

numbers γε , 0T  and 1≥mk  such that for all 0Tt >  ( )( )Smtk tkU
m

θθ ,10
1

0
1 +=∃ +  and

( )0
11 ++Θ∃

mm tktk U  such that:

a) for all 1,,1 += mtkKτ  ( )1θθτ  is differentiable at Sθθ =1  and ( ) SS θθθτ = ;

b) for all 0
11 +∈

mtkUθ  ( ) ( )11
1

110 θεθθθ δγ ++ <−<
mm tkStk s .

The main difference with related Propositions 4.1 and 4.4 is that here the

equilibrium sequence constructed around Sθ  is partly composed of increasing

subsequences and partly composed of decreasing subsequences.  Therefore, we need to

indices ( t  and mk ) to keep track of the whole equilibrium sequence.

Note that the conclusions reached in Proposition 4.5 are identical to the

conclusions reached in Proposition 4.1 so that we can make use of Propositions 4.2 and

4.3 to get the proof of Theorem 4.3.

5. Conclusions

In this paper, we have provided a different perspective on the way the adverse selection

problem may manifest itself in durable good markets, where entry takes place in the

same market.  In the static Akerlof-Wilson model, adverse selection results in high

quality goods not being able to trade despite the potential gains from trade.  The

infinite repetition of this static equilibrium is also an equilibrium in the dynamic model

where a durable good is traded in a competitive market.  Our main result in this paper,
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however, says that there are infinitely many other equilibria where all goods are sold

within finite time after entering the market.  In each of these dynamic equilibria, the

marginal quality that is sold in the first period lies in a small neighborhood of the static

equilibrium.  This result holds true for all generic values of the parameters governing

the behavior of buyers and sellers and the distribution of qualities in the population of

sellers.
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Appendix.

From now on we will use the following notation.

a) ( ) ( )
( )1

111 ,,

−

−−−

−
−=

ττ

ττττ
τ θθ

θθηθθηK ; (5)

b) ( )
( )1

1,

−

−

−
=

ττ

ττ
τ θθ

θθµF ; (6)

c) 1−−= τττ θθy ; (7)

d) 1−−= τττ yyz ; (8)

e) τδτγ s1= ;

f) ( )
( )( )

( )





=−=
≠−

=
→

−

S

S

ag

v
g

S

S

θθθ
θθθθηθ

θ
θθ

θθ

 if ,1lim

 if ,,1

; (9)

g) ( )
[ ]

( )θθ
θθθ

gg
S ,

max
∈

= ;

h) ( ) 111 1 −−− −−= ttt v γθϕ . (10)
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Proof of Lemma 2.1 is on request. ¦

Proof of Proposition 3.1.  We prove all statements of the proposition sequentially.

a) Let us take any period t  of positive amount of trade tJ  so that ( ) 0>tJµ  and take

any tJi ∈ .  By the definition of dynamic equilibrium we can write:

( ) ( ){ }0maxarg ≥−−∈ −

≥
i

t
i

t
ppt i

i

θδθ τ
τ

τ
τ

.

This implies ( ) ( ) ii t
i

tt
it pp −− −≥− τ

τ δθδθ  for all itt ≥>τ .  Now take any iθθ < :

( ) ( ) ( ) ( ) ( )( )
( )( ) .01 >−−≥

≥−−+−−−=−−−
−−

−−−−−

i

iiiii

ttt
i

tt
i

t
i

tt
it

ttt
t pppp

δδθθ
δδδθθδθδθδθδθ

τ

ττ
τ

τ
τ

So, for all sellers with a good of quality less then iθ  who are still in the market in

a certain period and have not yet traded it is optimal to trade in that period.  Thus,

we can define tθ  as { }ti
i

t Ji ∈= θθ sup  and then it is easy to see that

[ ]{ }ttiJ itit ≤∈= ,,θθθ .  Finally, if 0)( =tJµ  for some t , then we set θθ =t .

b) By the equilibrium definition, for all t  θ≥tE  and tt vEp ≥  so that θvpt ≥ .

Thus, if ( ) 0=tJµ , we have tt vp θθθ =>≥ .  If ( ) 0>tJµ , it is optimal for the

marginal seller tθ  to trade in period t  and a necessary condition is 0≥− ttp θ .

So, ttp θ≥  for all t .

c) Suppose ( )( ) 0~
~

>=−−− − σθδθ tt
tt

tt pp .  Then, we can find a seller i  of quality

σθθ 2
1+= ti  such that tit ~θθθ <<  and tti ≤ , i.e., he is in the market by period t .

By definition of { }tθ  he will trade in period t~ .  But it can be shown that this is not

optimal:

( ) ( )( ) ( ) ( )( ) ( )( )[ ] 01
~

2
1

2
1

2
1~

~
<−+−=+−−+− −−−− tttt

tt
tt

tt
tt iii pp δσσδσθδσθδ .

So, it is not possible that ( )( )
( )( )ttt

ttt
tt pp θδθ −>− −

~
~

.  A similar argument shows

that it is impossible to have ( )( )
( )( )ttt

ttt
tt pp θδθ −<− −

~
~

.

d) Suppose 0ˆ >=− σθθ t .  We will show that in this case 0ˆˆ =− ttp θ .  Suppose not.

Then it must be 0ˆˆ >=− εθttp .  Let us take a seller i  of quality
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{ }σεθθ ,min2
1

ˆ += ti  such that θθθ << it̂  and tti
ˆ= .  By definition of { }tθ  he will

never trade because for all itt ≥  { } ittttt θθθθ <=≤
≥ ˆˆ

max .  If he, however, traded in

period t̂  he would get

{ } { } 0,min,min 2
1

2
1

2
1

ˆˆˆ >≥−=−−=− εσεεσεθθ ttit pp , which is a contradiction.

So, it must be the case that ( ) ( )( ) ( )( ) 0ˆˆˆ =−− ttttttp θθθ . ¦

Proof of Proposition 4.1.  Using the fact that ( ) ( )111 θθθθ ττ −>  we express the expected

quality sold in period τ  in terms of ( )ττ θθµ ,1−  and ( )ττ θθη ,1− :

( ) ( ) ( ) ( ) ( )
( ) ( )11

1111
1 ,,

,,,,,
−−

−−−−
− +

+=
τττ

ττττττ
τττ θθµθθτµ

θθµθθηθθµθθτηθθη , 1≥τ , θθ ≡0 . (11)

Now we consider the indifference condition (3) with ττ ηvp = .  It can be written

for 2≥τ  as ( ) ( ) 1
1

1211 ,, −
−

−−−− =− τδ
δ

ττττττ θθηθθη sv . (12)

The main part of the proof is by induction.  At first we will prove that if all

conditions to be proved (except ( ) St θθθ >1 ) are true for some 2>t , then

( ) ( )111 θθθθ tt >∃ +  such that those conditions are also true for 1+t .  Next, we will show

that there exist 1θ  and 2θ  such that those conditions are satisfied.  Finally, we will

show that for some 0T  we get ( ) ST θθθ >10
 and, therefore, ( ) St θθθ >1  for all 0Tt >  and

all 00
1 0Tt UU ⊂∈θ .

Suppose that for some 2>t  ( )( )St tU θθ ,10
1

0
1 −=∃ − , ( ){ }1

11
−
=∃ t

ττ θθ , and ( ){ }1
11

−
=∃ tp ττ θ

such that for all 0
11 −∈ tUθ :

a) ( ) ( )111 θθθθ ττ −> , ( ) 01 >θτs ; ( ) SS θθθτ = , ( ) 0=Ss θτ ;

b) τθ  and τs  are continuous functions differentiable at Sθθ =1  so that we can write:

( )( ) ( )SSSS o
d
d θθθθθ
θ
θθθ τ

τ −+−+= 11
1

, and ( )( ) ( )SSS o
d
dss θθθθθ
θ

τ
τ −+−= 11

1

;

c) ( ) 0
1

<Sd
ds θ
θ
τ , ( ) 0

1

<Sd
dy θ
θ

τ , ( ) 0
1

<Sd
dz θ
θ

τ ;
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d) for all 2,,1 −= tKτ  ( )ττττ θδθ −=− + 1pp ;

e) for all 2,,1 −= tKτ  ( )( ) 0
1

1 ≤− −
Sd

ssd θ
θ
β ττ , where ( )

δ
δβ a

a
2

12 −−= .

We will prove that then ( )( ) 0
1

0
1

0 , −⊂=∃ tSt UtU θθ  such that for all 0
1 tU∈θ  equation

(12) determines a unique value of tθ  as a function of 1θ  and

a) ( ) ( )111 θθθθ −> tt , ( ) 01 >θts ; ( ) SSt θθθ = , ( ) 0=Sts θ ;

b) tθ  and ts  are continuous functions differentiable at Sθθ =1  so that we can write:

( )( ) ( )SSS
t

St o
d
d θθθθθ
θ
θθθ −+−+= 11

1

, and ( )( ) ( )SSS
t

t o
d
dss θθθθθ
θ

−+−= 11
1

;

c) ( ) 0
1

<S
t

d
ds θ
θ

, ( ) 0
1

<S
t

d
dy θ
θ

, ( ) 0
1

<S
t

d
dz θ
θ

;

d) ( )( ) 0
1

1 <− −
S

tt

d
ssd θ

θ
β , where ( )

δ
δβ a

a
2

12 −−= , and ( ) ( ) 12
2

11 −<− atSt s θθθθ .

Let us first consider the left-hand side of the equation (12) as a function

( ) ( ) ( )121121 ,,,, −−−−−− −≡ ttttttttttG θθηθθηθθθ .  It is easily seen that as θθθ ≥≥ −− 21 tt

evaluating ( )21,, −− ttttG θθθ  at 1−= tt θθ  yields ( ) 0,, 211 ≤−−− ttttG θθθ .  So,

( ) ( ) ( )( ) ( )11
1

121111 0,, θθθθθθθ δ
δ

−
−

−−− <≤ tvtttt sG  for any 0
11 −∈ tUθ .  Also, for any small

0>ε  such that θεθ <+S , ( ) ( )( ) 0,, 21 >+ −− StStStG θθθθεθ .  As

( ) ( )( ) ( ) 0,, 1
1

21 =>+ −
−

−− StvStStSt sG θθθθθεθ δ
δ  and as ( )1θtG  and ( )11 θ−ts  are both

continuous functions, there must exist a neighborhood ( )( ) 0
1

0
1

0 , −⊂= tSt UtU θθ  such that

for any 0
1 tU∈θ  ( ) ( )( ) ( )11

1
1211 ,, θθθθθεθ δ

δ
−

−
−− >+ tvttSt sG .  Finally, ( )21,, −− ttttG θθθ  is a

strictly increasing continuous function w.r.t. tθ .

Taking all these facts together and applying the intermediate point theorem we can

draw the following conclusion.  For all 0
1 tU∈θ  there exists a unique continuous

function ( )1θθt  such that ( ) ( ) εθθθθθ +<<− Stt 111 .  ( ) ( ) ttttt vs θθθηθ −= − ,11  is also

continuous function and ( ) SSt θθθ = , ( ) 0=Sts θ .
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To prove the rest of step (b) of our induction step, we will now show that ( )1θθt

and ( )1θts  both are differentiable functions at Sθθ =1 .  For all t,,2 K=τ  the

indifference condition (3) can be written as ( ) ( ) 1
1

121
1

1 ,, −
−

−−−− −= τδ
δ

τττδτττ θθθηθθη v .

Taking the first differentials of this identity w.r.t. 1θ  at Sθθ =1 , and using (11), we get:

( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,
,,1

,,,,1

,,
,,,,

1
1

212

2212121

11

1111

−
−

−−−

−−−−−−

−−

−−−−

−





+−
+−=

=





+
+

τδ
δ

τττ

ττττττ
δ

τττ

ττττττ

θ
θθµθθµτ

θθµθθηθθµθθητ

θθµθθτµ
θθµθθηθθµθθτη

SvS

S

dd

d

where 
S

ddS θθττ θθ ==
1

.  Taking the derivatives explicitly into account yields

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

.

,,1
21,

,,1
21

,,
,

,,

1
1

21
1

211

1111

−
−

−−
−

−−

−−−−

−

−





+−
−−−−

+−
−−−=

=
+

+−−
+

+−

τδ
δ

ττ
τ

ττ
δ

τττ
τ

τττ

θ

θθµθθµτ
θτθτθθη

θθµθθµτ
θτθτθ

θθµθθτµ
θθθτθθη

θθµθθτµ
θθθθθθτ

Sv

SSS

SS
SS

SSS

SS
S

SSS

SSS
SS

SSS

SSSSSS

d

ddfddf

fdfdfddfdfdf

Rewriting gives

( )( ) ( ) ( )( ) ( ) 1211 1211 −−−− −−−−−=−− τττττ θδθτθτθτθτδ SSSSS dddadda , and

( )( )( ) ( ) 2
1

1 211 −
−

− −−−−+= τ
δ

ττ θττδθθτδ SaSS ddd . (13)

So we can write ( ) ( )( ) ( ) ( )SS
a

S d
d

d
d

d
d θ

θ
θ

τδ
τθ

θ
θ

τδ
τδθ

θ
θ ττ

δ
τ

1

2

1

1
1

1

211 −−
− −−−−+= .  As, by

assumption, 1−tθ  and 2−tθ  both are differentiable at Sθθ =1  so is ( )1θθt .  Also, as

surplus is defined by ( ) ttttttt vps θθθηθ −=−= − 1, , ts  is also differentiable at Sθθ =1 .

Next, we prove part (c) of the induction argument.  To this end, we can rewrite

(13), using (7) and (8) in the following way:

( ) ( )( )
2

111
1 1 −

−−−
− −−−−= τ

δδ
ττ θδττδ Sa

a
aSS dydyd , and

( )( )( ) ( )( )
a

a
Sa

a
SS ydzdzd 121

2
121

1 3 −−
−

−−
− ++−= δ

τ
δ

ττ ττδ . (14)
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Using the induction assumptions, we have ( ) 0
1

2 <−
S

t

d
dy θ

θ
, ( ) 0

1

1 <−
S

t

d
dy θ

θ
 and

( ) 0
1

1 <−
S

t

d
dz θ

θ
 so it follows from (14) that ( ) 0

1

<S
t

d
dz θ
θ

, and

( ) ( ) ( ) 0
11

1

1

<+= −
S

t
S

t
S

t

d
dz

d
dy

d
dy θ

θ
θ

θ
θ

θ
.

Similarly, we can get the following expressions for the first differentials of the

surpluses tS sd :

( ) ( ) τττ θτ SSS daydasd −−−= 11 , and (15)

( ) ( ) ( )121 11 −+−=− −− aydazdssd SSS ττττ τ . (16)

Again, by our induction assumptions we have ( ) 0
1

1 <−
S

t

d
ds θ

θ
 and it follows that

( )( ) 0
1

1 <− −
S

tt

d
ssd θ

θ
, and ( ) ( ) ( )( ) 0

1

1

1

1

1

<−+= −−
S

tt
S

t
S

t

d
ssd

d
ds

d
ds θ

θ
θ

θ
θ

θ
.

The only parts of the induction argument we still have to prove are

( )( ) 0
1

1 <− −
S

tt

d
ssd θ

θ
β  and for all t  ( )( ) 00

1
0 , tSt UtU ∈=∃ θθ  such that for all 0

1 tU∈θ

( ) ( )111 θβθ −> tt ss , where ( )
δ

δβ a
a

2
12 −−= .

Subtracting (15) for 1−τ  from (15) for τ  we can write

( ) ( ) ( )( )111 121 −−− −−−−−−=− ττττττ θθττ SSSSSS ddaydaydasdsd , or

( ) ( ) 11 21 −− −−−=− ττττ ττ ydaydasdsd SSSS . (17)

We can write the indifference condition (3) as ( )11 −− −+= ττττ θθδδss , the first

differentials of which w.r.t. 1θ  at Sθθ =1  becomes τττ δδ sdsdyd SSS −= − 1 .  Substituting

it into (17) yields ( )( ) ( )( )1211 21 −−−− −−−−−=− ττττττ δτδτ sdsdasdsdasdsd SSSSSS .

Rewriting gives

( )( ) ( )( )( ) ( ) 21
11 211 −−

−− −−++−= ττ
δ

τ τδττδ sdsdsd SSa
a

S . (18)

We can express the above equation in terms of ( )1−− ττ βssdS  instead of τsdS ,

where ( )
δ

δβ a
a

2
12 −−= .  It can be shown that
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( ) ( ) ( ) ( )( ) ( ) ( )( )[ ]22
112

2
1

2
1

211 2 −
−−−−

−−− ++−−=− τδ
δδδ

ττττ δβτβτδ sdssdssd Sa
a

aaSS .

By our induction assumptions we have ( )( ) 0
1

21 ≤− −−
S

tt

d
ssd θ

θ
β , and ( ) 0

1

2 <−
S

t

d
ds θ

θ

so it follows that ( )( ) 0
1

1 <− −
S

tt

d
ssd θ

θ
β , and, therefore,

( ) ( ) ( ) ( ) 0
1

11

11

1

1

<≤≤≤≤< −−−
S

t
S

t
S

t
S

t

d
ds

d
ds

d
ds

d
ds θ

θ
βθ

θ
βθ

θ
βθ

θ
ττ LL . (19)

Now again let us consider the indifference equation (3) as ( ) ττττ δθθδ ss −=− −− 11 .

Summing it up from 2=τ  to t=τ  and rewriting gives

( ) ∑−+−+=
t

tt sss
2

1
1

1
1 τδ

δ
δθθ .

Taking the first differential w.r.t. 1θ  at Sθ  and using (19), we get:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( ).11

111111

111

1

1

1
12

1

1
12

1

1
12

12121

1
1

1

1
1

1

1
1

111

2 1

1

11

11

2 1

1

11

11

1

1

12

S
t

aS
t

aS
t

a
aa

S
t

S
t

S
ttt

t

S
tt

S
t

S
tt

t

SS
t

SS
t

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
ds

d
d

t

t

θ
θ

θ
θ

θ
θ

θ
θ

δθ
θ

δ

θ
θ

βδβ

θ
θ

βθ
θ

θ
θ

β

θ
θ

θ
θ

θ
θ

θ
θ
θ

δ
δ

β
β

δβ
β

δ
β

β
ββ

δ

τ
δ
δ

δ

τ
δ
δ

δ

−−−
+−−−

−−
−

−
−−−−

−−−−−

−

>+=+=

=−−+>−−+=

=−+−+=

=+



 −+>

>+



 −+=

−−

−

∑

∑

As tθ  and ts  are differentiable at Sθθ =1  they can be written as follows:

( ) ( ) ( ) ( ) ( ) ( )SSS
t

aS
t

taSt o
d
ds

d
ds θθθθθ

θ
θ

θ
θθθθθ −+−



 −=−− −− 11

1
12

2

1
112

2
1 .

The above inequality implies that ( )( ) 00
1

0 , tSt UtU ∈=∃ θθ  such that for all 0
1 tU∈θ

( ) ( ) ( )( ) ( ) 011
1

12
1

112
2

1 <−+−−<−− −− SSS
t

ataSt o
d
dss θθθθθ
θ

θθθθ , or

( ) ( )11 θεθθθ γ tSt s<− , where 12
1
−= aγε .

Now we will show that all induction assumptions are valid for 2,1=t .  Let us first

consider the function ( ) ( ) 111111 , θθθηθθ −=−= vps .  In terms of the function µ  it can
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be written as ( ) ( ) 1
1

11

1

,
θµθ

θθµ
θ

θ

θ

−= ∫dvs .  ( )11 θs  is a continuous function over

( )SSU θεθ µ ,0
0 −≡  and differentiable at Sθθ =1 .  From the definition of a  it follows

that ( ) ( )a
d
ds

S −−= 1
1

1 θ
θ

 and ( ) ( )( ) ( )SS oas θθθθθ −+−−−= 1111 1 .  Hence, there exists a

neighborhood, namely ( )( ) 0
0

0
1

0
1 ,1 UU S ⊂= θθ , such that for all 0

11 U∈θ  ( ) 011 >θs .

Obviously, 1θ  itself is continuous and differentiable at Sθθ =1 .  Then, using the

definitions of τy  and τz , we get ( ) ( ) ( )( ) 01 2
11

1

2

1

2 <−=−= −−
a

a
SS d

d
d
dy

δ
δθθ

θθθ , and

( ) ( )( ) 012
11

1

2 <−−= −−
a

a
Sd

dz
δ

δθθ .

Finally, using (13), (15) and (16) yields ( )( ) ( )( )( ) 02
1211

1

12 <−=− −−−
a

aa
Sd

ssd
δ

δθθ , and,

consequently, ( ) 0
1

2 <Sd
ds θθ  and ( )( ) 0

1

12 =−
Sd

ssd θθ
β .  That ends the proof of the

induction argument.

We finish the proof by showing that for some 0T  we must have ( ) ST θθθ >10
,

hence, for all 0Tt >  and all 00
1 0Tt UU ⊂∈θ : ( ) St θθθ >1 .  To see this consider the

sequence ( )
∞

=





11 τ

τ θθ
θ

Sd
d .  The first term of this sequence equals 1.  Moreover, the

sequence is decreasing with strictly negative increment as

( ) ( ) ( ) ( ) ( )( ) 02
11

1

2

11

1

1
<−=<=− −−−

a
a

SSSS d
dy

d
dy

d
d

d
d

δ
δτττ θθθθθθ

θθθ
θ .

Thus, there exists a first negative term of ( )
∞

=





11 τ

τ θθ
θ

Sd
d , which can be denoted by

( ) 0
1

0 <S
T

d
d

θθ
θ

, where ( )( ) 



 +≤ −− 111

2
0 a

aT δ
δ .  It implies that for all 0

1 0TU∈θ  ( )10
θθθ TS < . ¦
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Proof of Proposition 4.2.

In case when 1−> tt θθ  we have ττ =− 


 1~t  and our indifference equation (2) can be

written as (3), or ( ) 11
1

11
1

1 −−−−− +=−+= ττδττδττ θθθ spp .  Rewriting yields

( ) 11
1

1, −−− += ttttt sv θθθη δ .

Function ( )ttt θθη ,1−  strictly increases w.r.t. tθ  for all 1−tθ , so there exists an

inverse function which determines tθ  as a function of ( )11 θθ −t  and ( )11 θ−ts ,

( )1
1

1, −−= tttt sδθθθ .  This function is defined for all 1θ  as long as

( )( ) ( ) ( )1111
1

11 , θθθθθθη δ −−− +≥ tttt sv .  Using (11) we can write:

( ) ( ) ( ) ( )
( ) ( ) 11

11

1111

,,
,,,,

−−
−−

−−−− +=
+
+

tt
ttt

tttttt

t
tv θγ

θθµθθµ
θθµθθηθθµθθη , where tt sδγ 1= .

Then

( ) ( )( ) ( )
( )

( )( )



 −

−
−+=+− −

−

−−
−

−

−
−−− St

St

tt
t

t

tt

t
ttttt

v

y
t

vy θθ
θθ

θθηθγθθµ
θθµθγθθη 1

1

11
1

1

1
111

,
,

,, , and

( )( ) ( ) ( )( )( )Sttt
t

t
ttttt g

tF
vy θθθγθθµγθθθη −+=−− −−−

−
−−− 111

1
111

,, .

where g  and tF  were defined in (9) and (6) correspondingly.  Then we get:

( ) ( )( ) ( ) ( )( )( )Sttt
t

t
ttt

t

ttt
t g

tF
vy

y
vy θθθγθθµγθθθθη −+=−−+−

−−−
−

−−
−−

111
1

11
112 ,1, , and

( ) ( )( )( ) 0,
111

1
1

2 =−+−+ −−−
−

− Sttt
t

t
tttt g

tF
yKvy θθθγθθµϕ , (20)

where tK  and 1−tϕ  were defined in (5) and (10) correspondingly.

Now let us take any 0>Sε  and any ( ){ }( )Sθθεε γθ −∈ 2
1,min,0 .  Then we take a

small 0>ε  such that ( ) 







−
< −

θδ
δ ε

θθ
εε

3
1,

12
,1min1

v
S

v , a small 01 >ε  such that

( ){ }SS v θεε 1,min2
1

1 −< , and a large T  such that
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( ) ( ) ( ) ( )
( ) 











−
−−

+
> 22

11

4,1
4

,1max
,1

Sm
v

vM
m

g
T

θθ
θθθ

εδεε
θθµε

η

η

µ

γ .  By the assumption of the

Proposition 4.2 for that T  there exist corresponding ( )( )ST TU θθ ,0
1

0 =  and ( )0
TT UΘ .

Now let us take the subset ( )( ) 00
1

0 ,ˆˆ
TST UTU ⊂= θθ  such that for all 0

1 T̂U∈θ :

a) ( ) θδ εθθθ 3
1

11
1

1 <+− sS ;

b) θεθθ <− ST ;

c) ( ) ( )( )113
supmax 1

ˆ,,1 0
1 −−

<








∈= T
s

TUT δ
δεθ θ

τ
θτ K

;

d) ( ) 11 εθϕ >T  (it is always possible as ( ) ( ) 11 εθθϕ >−= SST v ).

Now we will prove that if for all 0
1 T̂U∈θ  and some 1+≥ Tt  ( ) 111 εθϕ >−t , then

there exist well-defined functions ( )1θθt  and ( )1θts  such that 1−−= ttty θθ  is

determined by (20) and ( ) ( ) 01
11 >−> − εθ δtt ss .

At first we prove the existence of ( )1θθt  showing that

( )( ) ( ) ( )1111
1

11 , θθθθθθη δ −−− +≥ tttt sv  if ( ) 011 ≥− θϕ t  and θεθθ +<− St 1 :

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ,0

,,
,

,,
,

,,
,,,,

,,,

11

2

4
1

11

2

1

1
11

1111

1111111
1

1

>
+

−−−>
+

−−−>

>



 −

+
+=

=−≥−+=+−

−−−−

−

−
−−

−−−−

−−−−−−−−

tt

S

tt

t

t
tt

tttt

ttttttttttt

t
mTm

v
t

mtm
v

t
tv

vvvsv

θθµθθµ
θθµθθθθ

θθµθθµ
θθµθθθθ

θ
θθµθθµ

θθµθθηθθµθθη

θθθηθϕθθηθθθη

µηµη

δ

thus there exist ( )1θθt  and ( )1θts  such that 1−−= ttty θθ  is determined by (20).

Using the fact that for 1+= Tt  ( ) 111 εθϕ >−t  we can solve (20) w.r.t. ty 9:

( ) ( )( )( )











−+++−= −−−

−

−−
Sttt

tt

tt

t

t
t g

tF
vK

vK
y θθθγ

ϕ
θθµϕ

1112
1

11 ,411
2

. (21)

                                               
9  Another solution is always negative and doesn't satisfy 1−> tt θθ .
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It can be shown that the expression under the square root above is positive and,

therefore, ty  is uniquely defined by (21).

Now we will show that ( )εδ −> −
1

1tt ss .  Using the well-known inequality that for

all 0>x  xx 2
111 +<+  we get:

( ) ( )( )( )

( ) ( )( )( ) ( )( ) ,1,,

,411
2

11
1

111
1

1

1112
1

11

−−−−−
−

−

−−−
−

−−

<+<−+<

<











−+++−=

ttSttt
tt

t

Sttt
tt

tt

t

t
t

g
Tm

g
tF

g
tF

vK
vK

y

δεγγε
ε
θθµθθθγ

ϕ
θθµ

θθθγ
ϕ

θθµϕ

γ
µ

and, therefore, ( )εε δδδ −=−>−= −−−−
1

111
1

1
1

tttttt sssyss .

Now we will prove that TTS >∃ , ( )( ) 0
1

ˆ, TSS
SS

T UTU
S

⊂=∃ θθ  and 
STΘ∃  such that for

all 1,,1 −+= STTt K  and for all S
TS

U∈1θ  ( ) 1
1

−−> tt ss εδ , 11 εϕ >−t  and ( ) 111 εθϕ =−
S

TS
.

Suppose not, then for all 1+≥ Tt  and for all 0
1 T̂U∈θ  ( ) 111 εθϕ >−t .  But in this

case we have an induction: for all 1+≥ Tt  ( ) ( )( )θθθθθ ,111 −∈∃ tt  and

( ) ( ) ( ) 011
1

1 >−>∃ − θεθ δ tt ss .  Let fix any 0
1 T̂U∈θ  and consider the following sequences

of numbers: { }∞
+= 1Tttθ  and { }∞

+= 1Ttts .  The former increases and is bounded, so

θθθ ≤=∃ ∞∞→ tt
lim .  The later also increases and + ∞=∃

∞→ tt
slim  as

( ) ( ) ( )( )( ) 1
11

1
11

1
1 1 −

−−
−

−
− +=−>−> tv

v
tvtt ssss δ

δ
δ
δ

δδ ε .

But if we take a limit of 1−tϕ  we get a contradiction:

( )( ) ( ) − ∞=−−=−−= −∞→∞−−∞→∞→ 1
1

1
1

1 lim11limlim ttttttt
svsv δδ θθϕ ,

as 11 εϕ >−t  for all 1+≥ Tt .

So, it must be the case that TTS >∃ , ( )S
SS

TS
U θθ ,1=∃  and 

STΘ∃  such that for all

1,,1 −+= STTt K  and for all S
TS

U∈1θ  ( ) 01
1 >−> −tt ss εδ , 11 εϕ >−t  and ( ) 111 εθϕ =−

S
TS

.

Now we will prove by induction that for all STt ≥  ( )( ) S
tS

SS
t UtU 11 , −⊂=∃ θθ  and

1−Θ⊃Θ∃ tt  such that ( )( ) 111 εθϕ =− tS
t  and ( ) ( ) ( )11

1
1 θεθ δ −−> tt ss  for all S

tU∈1θ .

Suppose that for some STt ≥  ( )( ) S
TS

SS
t S

UtU ⊂=∃ θθ ,1  and tΘ∃  such that for all



33

1,,1 −+= tT Kτ  and for all S
tU∈1θ  ( ) 111 εθϕτ >− , ( ) ( ) ( ) 011

1
1 >−> − θεθ τδτ ss  and

( )( ) 111 εθϕ =− tS
t .  It implies that

( ) ( )( ) ( )( ) ( )( ) ( ) ( )

( )( ) ( )

( ) .1

11

111

2
1

2
1

2
1

12
1

112
1

12
1

1

111111

SSSS

tSttStSt

ttttttt
S

t
S

t

vv

vvvvvvy

vyvyvytstv

εεεθεδε

θεδεϕθεδεεδγεε

γθγθθθθ

=+<−+<

<−+=−−+=+<+=

=+−−=−−−+=−−

−−−−

−−−−

So, ( ) ( ) ( ) S
S

t
S

t vs εθθθ −−> 11 1 .

Summing up the indifference equation (3) in a form ( ) ττττ δθθδ ss −=− −− 11  from

2=τ  to t=τ  we get ( ) ( ) ( )∑∑∑ === − −+−=−=− t
t

tt
t sssss

2122 11 1 τ ττ ττ τ δδθθδ , or

( ) ( )( )
( ) ( )( )
( )( ) { } ( ) ( )( )

( ) ( )( ) ( )
( )

( )( ) ( )

( ) ( )
( ) .11

11

11

11

1supmax11

11

1

3
1

3
2

3
2

13
2

113
2

1
1

3
2

1113
2

113
2

1

11
3
21

3
1

3
1

1
1

,,1

1
3
1

12
1

3
1

2
1

3
11

2
1

1
1

1

11

θθθθ
δ
δθ

δ
δ

δ
δθ

δ
δθδεδ

δε
θδεδ

δε
θ

ε
δ

δθτ
τ

δθ
δ

δθ

τ
τ

δττδθ

τ ττ τδθ

τ τδθδτ τδ
δ

δ

εεεδ
θδεεθεεθεε

ε
θεεϕθεγε

εεδεε

εδδε

δδε
δεθθθθ

δ

=+<−+=−
−+=−

−+<

<−
−+<−−+=+<

<


 −+=−−−++<

<


 −−−+−−+<

<−−+−+=
=−−+=−++−=−

−−−

−
−

−−−−−−−

−−
−

− ∞=
−

+=
−

=

+==

==
−

−∑
∑

∑∑
∑∑

v
v

vv

vv

sss

sssT

sss

sssss

vv

t
ttt

tt
t t

t

t
t

T

t
tt

t
t

T

T
t

t
t

t
SSt

K

So, θεθθ <− St  for all S
tU∈1θ .

Finally, let us consider ( )( )tS
t 1θϕ :

( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ,11

111

11

11
11

11
1

1

1
11

111
11

1

1
1

11
1

11

εγδδεγδεδε

δγδεγεγϕ

γθθθθθϕ

δδ
δ

δ

δδδ
δ

δ

δδ

=−−+<−−+<

<−−+−+<−+−+=

=−−−+=−−=

−
−

−

−−−
−

−

−−

tvt

ttttt

tttt
S

t
S

t
S

t

vv

vvy

yvytstvt

so ( )( ) 11 εθϕ <tS
t .  On the other hand ( ) ( ) 11 εθθϕ >−= SSt v  and ( )1θϕ t  is continuous, so

( ) ( )( )S
SS

t
S tUt θθθ ,1 11 =∈+∃  such that ( )( ) 11 1 εθϕ =+tS

t , that ends the induction.

But if ( )( ) 11 1 εθϕ =+tS
t  then we have ( )( ) ( ) ( )( ) S

S
t

S
t tvts εθθθ −+−>+ ++ 111 1111  as

was shown above, and let us take ( )( ) S
tS

SS
t UtU ⊂+=+ θθ ,111  so that θεθθ <−+ St 1  for all

S
tU 11 +∈θ , that ends the proof. ¦
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Proof of Proposition 4.3.

In all previous analysis we were considering tθ  as a function of 1θ , ( )1θθθ tt = .  Now

we will consider tθ  as a function of 1−tθ  and 1−tγ , ( )11, −−= tttt γθθθ , where

( )111 θγγ −− = tt  and ( )111 θθθ −− = tt .  We define the following limit function:

( ) ( )00001 ˆ,ˆlimˆ,ˆˆ γθθγθθ ττ→ ∞
= . (22)

In the same spirit as before we introduce functions ( ) ( ) 0001001
ˆˆ,ˆˆˆ,ˆˆ θγθθγθ −=y ,

( ) ( )0010001 ˆ,ˆˆˆˆ,ˆˆ γθγγθ ys −= , ( ) ( )001
1

001 ˆ,ˆˆˆ,ˆˆ γθγθγ δs= , ( ) ( ) 00000 ˆˆ1ˆ,ˆˆ γθγθϕ −−= v .

Taking the limit (22) explicitly10 yields that the limit actually exists for all

[ )εθθθ −∈ ,0̂ S  and ( )( )εθθθηεγ −−∈ 000
ˆ,ˆ,ˆ v  where 0>ε  is an arbitrarily small

number.  Convergence is uniform, hence ( )001 ˆ,ˆˆ γθθ  is continuous and it follows that

( ) ( )
( ) ( ) ( ) ( )




−−<≤−+=
−≤<=

εθθθηγθγθθθηγθθ
θγεθγθθ

00000010001

000
001 ˆ,ˆˆˆ1 if ,ˆˆˆ,ˆ:ˆ,ˆˆ

ˆ1ˆ if ,ˆ
ˆ,ˆˆ

vvv
v

.

Then we define ( )001 ˆ,ˆˆ γθθ  on a boundary where 00̂ =γ , ( ) 000
ˆ,ˆˆ θθθηγ −= v  or θθ =0̂

by taking corresponding limits of the function ( )001 ˆ,ˆˆ γθθ  when 0+→ε , that yields

( ) 001
ˆ0,ˆˆ θθθ = , ( )( ) θθθθηθθ =− 0001

ˆ,ˆ,ˆˆ v  and ( ) θγθθ =01 ˆ,ˆ 11.

Finally we define ( )001 ˆ,ˆˆ γθθ +t  for all 1>t  as follows.  If for some [ ]θθθ ,0̂ S∈ ,

[ ]0
1

0
ˆ,0ˆ θγ δ

−∈ v  and for all t,,0 K=τ  there exist functions ( )00 ˆ,ˆˆ γθθτ  and ( )00 ˆ,ˆˆ γθγτ  such

that ( ) τττ θθθηγ ˆ,ˆˆ0 −≤≤ v  and ( ) θγθθτ ≤00 ˆ,ˆˆ  then we take ( ) ( )ttt γθθγθθ ˆ,ˆˆˆ,ˆˆ
1001 =+ .

It can be easily seen that if ( ) τττ θθθηγ ˆ,ˆˆ0 −<< v  and ( ) θγθθτ <00 ˆ,ˆˆ  then

( )001 ˆ,ˆˆ γθθ +t  has the following limit representation12:

                                               

10  This can be done by considering two cases, namely 00̂ ≥ϕ  and 00̂ ≤ϕ .  The former yields 0
∞→

⇒
τ

τy

while the later does 011 ϕ̂
τ

ττ

∞→

++ ⇒yvK .  The final result then is straightforward.
11  The expression ( )01 ˆ,ˆ γθθ  is defined only if 00̂ ≥ϕ , i.e., ( ) 00

ˆ1ˆ θγ −≤ v .
12 If ( ) 0ˆ,ˆˆ 00 =γθγτ , ( ) ( )( ) ( )000000 ˆ,ˆˆ,ˆ,ˆˆˆ,ˆˆ γθθθγθθηγθγ τττ −= v  or ( ) θγθθτ =00 ˆ,ˆˆ  for some τ  the function

( )001 ˆ,ˆˆ γθθτ +  is not a limit function any more, but after all derivations have been made those functions will
never be evaluated at such points.
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( ) ( )( ) ( )( )( )00001001 ˆ,ˆ,ˆ,ˆlimˆ,ˆˆ γθγγθθθγθθ ττττ
KK tttt ++++∞→+ = .

The main use of that trick is to substitute complex functions

( )( ) ( )( )( )ttttt −−−−−− ττττττ γθγγθθθ ,,, 11 KK  by theirs limit analogs for very large t  when

the measure of "low quality goods" becomes negligible compare to the measure of

"high quality goods".  Limit functions ( )00 ˆ,ˆˆ γθθt  would have been exactly the same as

( )( ) ( )( )( )ttttt −−−−−− ττττττ γθγγθθθ ,,, 11 KK  if there had been no entry of new sellers13.

Now let us fix ( )kθθ =0̂  and take any ( )( )kv θγ δ
1

0 ,0ˆ −∈ .  If for some 0≥τ  we have

obtained the functions ( ) ( )000 ˆˆˆ,ˆˆ γθγθθ ττ =  and ( ) ( )000 ˆˆˆ,ˆˆ γγγθγ ττ = , and at the same time

( ) τττ θθθηγ ˆ,ˆˆ0 −≤< v  then there exists the next function, namely

( ) ( ) ( )( )00101 ˆˆ,ˆˆˆˆˆ γγγθθγθ τττ =+  such that ( ) [ ]θθγθ ττ ,ˆˆˆ
01 ∈+  for all ( )( )kv θγ δ

1
0 ,0ˆ −∈ .

We will show that 0ˆ≥∃t  and ( )( )kv θγ δ
1,0ˆ −∈∃  such that either ( ) 0ˆˆ̂ =γγt , or

( ) ( )( ) ( )γθθγθηγγ ˆˆ,ˆˆˆˆ ˆˆˆ ttt v −> .

Suppose not, that means that for any 0≥t  and any ( )( )kv θγ δ
1

0 ,0ˆ −∈  ( )0̂
ˆ γθt∃  and

( )0̂ˆ γγt∃  such that ( ) ttt v θθθηγ ˆ,ˆˆ0 −≤<  and ( ) θθθ ≤≤ t
k ˆ .  Let fix any ( )( )kv θγ δ

1,0ˆ −∈

and get infinite sequences ( ){ }∞=0ˆˆ
tt γθ  and ( ){ }∞

=0ˆˆ tt γγ .  The former is weakly increasing

and bounded so θθθ ≤=∃ ∞∞→
ˆˆlim tt

.  But this implies that the later has a limit either

( ){ } ( ) ( ) 0ˆ1ˆˆ,ˆˆˆ,̂limˆlim 1 >−=−=−= ∞∞∞∞+∞→∞→
θθθθηθθθηγ vvv tttttt

.  Taking a limit of the

indifference equation ( )tttt θθγγδ ˆˆˆˆ 11 −−= ++  gives rise to a contradiction:

( ) ( ){ } ( ) ∞∞→+∞→+∞→∞ −==−−==− θγθθγγδθδ ˆ1ˆlimˆˆˆlimˆlimˆ1 11 vv tttttttt
.

So, only two possibilities are left:

a) Case 1.  t̂∃  and ( )( )kv θγ δ
1,0ˆ −∈∃  such that for all 1ˆ,,1 −= tt K  and all ( )γγ ˆ,00̂ ∈

0ˆ >tγ , ( ) 111 ˆˆ,ˆ
−−− +≥ tttv γθθθη , 0ˆ̂ >tγ  while ( )( ) ( ) ( )γγγθθγθη ˆˆˆˆ,ˆˆ

1ˆ1ˆ1ˆ −−− +< tttv ; and

                                               
13  No entry case is described in Janssen and Roy (1999a).
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b) Case 2.  t̂∃  and ( )( )kv θγ δ
1,0ˆ −∈∃  such that for all tt ˆ,,1K=  and all ( )γγ ˆ,00̂ ∈

0ˆ >tγ  and ( ) 111 ˆˆ,ˆ
−−− +≥ tttv γθθθη  while ( ) 0ˆˆ̂ =γγt .

The detailed proof of the Cases is on request.  We prove that in the Case 1

0>∃ Sε  such that for any T  Tt >∃ , ( ) ( )SSt θεθθ µ ,
~
1 −∈∃  and ( )1

~θtΘ∃  such that

( ) θθθ =1
~

t  and ( ) Sts εθ >1
~

.  In other words in this case there exist infinite number

equilibrium sequences such that all goods are traded in the last period.

In the Case 2 we define ( )1+kθ  as ( ) ( )γθθ ˆˆ̂1
t

k =+ .  We show that ( ) ( )( ]θθθ ,1 kk v∈+ .

Then we prove that either we have the same result as in the Case 1, or for any 0>Sε

and 0>θε  ( ) ( )k
S

k
S TT >∃ + 1  such that for all ( )1+> k

STt

( ) ( ) ( )( ) ( )k
t

k
t UktktU ⊂++=∃ + 1,,1, 11

1 θθ  and ( )( )1+Θ∃ k
tt U  such that for all ( )1

1
+∈ k

tUθ

( ) ( )
θεθθθ <− + 1

1
k

t , ( ) Sts εθ <≤ 10  and ( ) ( ) ( ) Stt vs εθθθ −−> 11 1 . ¦

Proof of Theorem 4.1.

Consequently applying Propositions 4.1 and 4.2 we get the following result: for any

0>Sε  and 0>θε  ST∃  such that for all STt ≥  ( )( )S
SS

t tU θθ ,1=∃  and ( )S
tt UΘ∃  such

that for any S
tU∈1θ  ( ) ( )θεθθθθ +∈ SSt ,1  and ( ) ( ) ( ) S

S
t

S
t vs εθθθ −−> 11 1 .  Now we can

see that we are under the conditions of Proposition 4.3 if we take ( ) θθθ <= S
1 .  Here

we distinguish three cases.

a) Case 1.  For any ∞= K,1k  there exists ( ) ( )( )θθθ ,1 kk v∈+  such that for any 0>Sε

and 0>θε  ( )1+∃ k
ST  such that for all ( )1+> k

STt

( ) ( ) ( )[ ] ( )k
t

k
t UktktU ⊂++=∃ + 1,,1, 11

1 θθ  and ( )( )1+Θ∃ k
tt U  such that:

• for all ( )1
1

+∈ k
tUθ  ( ) ( )

θεθθθ <− + 1
1

k
t ;

• ( )( ) St kts εθ <+≤ 1,0 1 ;

• ( )( ) ( ) ( )( ) Stt ktvkts εθθθ −+−>+ 1,11, 11 .
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But in this case we get infinite sequence ( ){ }∞
=1k

kθ  where ( ) ( )kk vθθ >+ 1 , that

contradicts with ( ) θθ <k  as ( ) + ∞=
∞→

k

k
θlim .  So after some steps k̂  we must meet

either the Case 2 or Case 3.

b) Case 2.  There exists ( )k̂θ  such that there does not exist ( ) ( )( ]θθθ ,ˆˆ 1 kk v∈+ .  In

accordance with Proposition 4.3 we can make a conclusion: 0>∃ Sε  such that for

any T  Tt >∃ , ( )t1
~θ∃  and ( )1

~θtΘ∃  such that ( ) θθθ =1
~

t  and ( ) Sts εθ >1
~

.  In other

words there are infinite number of equilibrium sequences such that all goods are

sold in the last period and the last marginal surplus is strictly positive and

separated from zero, ( ) 0
~
1 >> Sts εθ .

In this case we can construct infinite number of dynamic equilibria by

concatenating equilibrium sequences, e.g. we take { }t
t 1==Θ ττθ  and let a dynamic

equilibrium be the following sequence of marginal sellers: { }∞=1ττθ  such that

ττ θθ =  if t≤τ  and t−= ττ θθ  if t>τ .

c) Case 3.  There exists ( )k̂θ  such that there exists ( ) θθ =+ 1ˆk .

Note here that ( )1ˆ +kθ  is determined in terms of the previous point ( )k̂θ , the measure

function ( )θµ  and parameters θ , v  and δ.  In other words

( ) ( ) ( )( )δθθµθθ ,,,,ˆˆ 1 vkk Ω=+ , where ( ) ( )( )δθθµθ ,,,,ˆ vkΩ  is some operator.

Therefore the case when ( ) ( )( ) θδθθµθ =Ω ,,,,ˆ vk  is non-generic. ¦

Proof of Proposition 4.4.

We begin with solving the system of indifference equations (4) w.r.t. τp :

( ) ( )
1

1
11 11 −

−
− −−=−− τ
τ

ττ δ
δθδθ

t
t pp , 1,,1 −= tKτ . (23)
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We will look for such a sequence of functions ( ){ }t
11 =ττ θθ  satisfying (4) that ττ θθ <+ 1

for all 2,,1 −= tKτ .  In this case we have ( ) ( )∫=
τθ

θτ
ττ µθ

θθµ
θ dvp

,
, and ( ) a

d
dp

S =θ
θτ

τ .

Substituting this into the first differential of (23) we get ( ) ( )
( )ττ

τ

δ
δ

δ
θ

θ
θ

−

−

− −−
−−= t

t

S a
a

d
d

1
11 1

1
1

.

Hence, we can write ( )1θθτ  and ( )1θτs as ( ) ( )( ) ( )SSSS o
d
d θθθθθ
θ
θθθθ τ

τ −+−−= 11
1

1

and ( ) ( ) ( )( ) ( )SSS o
d
das θθθθθ
θ
θθ τ

τ −+−−−= 11
1

1 1 .  Then

( )
( )

( )
( ) ( ) ( )

( )( )( )
( )( )( ) ( ).

11
111

1
11

1
11

111

1

11

1

11

1

1

SStt

t

SSt

t

t

t

o
aa

aa

o
a
a

a
a

θθθθ
δδδ

δδ

θθθθ
δ
δ

δδ
δ

δ
θθ

τττ

ττττττ

−+−
−−−−

−−−−−=

=−+−





−−
−−+

−−
−−−=−

−−−

−

−

−

−−−

−

+

It follows that if δ−<1a  then ( ) 1
1

>Sd
d θ
θ
θτ .  Thus there exists a neighborhood,

namely ( )( )St tU θθ ,10
1

0
1 −=− , such that for all 0

11 −∈ tUθ  Sθθτ <  and, therefore, ττ θθ <+ 1 ,

and 0>τs .  Therefore there exists a sequence of functions ( ){ }1
11

−
=

t
ττ θθ  such that all

conditions to be proved are satisfied except the last one and we only have to show that

if ( )( )δaa ~,0∈  then there exists ( )1θθt  and ( )( ) 0
1

0
1

0 , −∈= tSt UtU θθ such that for all

0
1 tU∈θ  ( ) ( )1

1
10 θεθθθ δγ tSt s<−< .

Given the structure of ( ){ }t
11 =ττ θθ  we can write:

( ) ( ) ( ) ( )( )
( ) ( )

( )( ) ( )( )∑
∑
−

=

−

=

−

∫−∫
== 1

1
11

1

1
112111

,,
,,,

11

t

t

t

ttt

t

ddt
vpp

t

τ
τ

τ

θθ

θ

θθ

θ

θθθµθθθµ

µθµθ
θθθθθθθ

τ

K ,

and, consequently,

( )
( )

.
1

1
1
11

1

1
1

1

1

1

1

1

11

1

1







−−
−−−=

=





−−
−−−=





 −=

∑

∑∑
−

=
−

−

−

=
−

−

−

−

=
t

t

t

StS

t

t

t

StS

t

StStS

a
adtda

a
adtdadtdapd

τ
τ

τ
τ

ττ
τ

τ

δ
δ

δ
δθθ

δ
δ

δ
θθθθ

Substituting this into the first differential of (4) yields
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( ) 



 −

−−
−−= ∑

−

=
−

−

1
1

1 1

1
1

1

1

t

t

t

S
t

a
a

at
a

d
d

τ
τ

τ

δ
δ

δ
δθ

θ
θ ,

and, therefore,

( )( ) ( )SSS
t

St o
d
d θθθθθ
θ
θθθ −+−+= 11

1

.

This implies that there exists a neighborhood ( )( ) 0
1

0
1

0 , −∈= tSt UtU θθ , such that for

all 0
1 tU∈θ  St θθ >  as long as 1

1

1

1

<
−−∑

−

=

t

a
a

τ
τ

τ

δ
δ .  So the condition 1

11

≤
−−∑

∞

=τ
τ

τ

δ
δ
a

a

actually is a sufficient one.  Note here that

( )( )
( )

( )( ),
11

11

11111
2

1

1

11

δδ
δ

δδ
δδ

δ
δ

δ
δ

δ
δ

τ

τ

τ

τ

τ
τ

τ

−−−
−−+=

=
−−−

=
−−

=
−−

<
−− ∑∑∑

∞

=

−
∞

=

∞

=

a
a

a
a

a
a

a
a

a
a

so if ( )21 δ−≤a  then 1
11

<
−−∑

∞

=τ
τ

τ

δ
δ
a

a  and ( )21 δ−≤a  is a sufficient condition.

Then we check whether 0>ts :

( ) 1
1

1 11

1

1111 θ
δ

δθ τ δ
δ

τ

τ

S
t

at

t

tStStS da
at

adpdsd 




 −−−−−=−= ∑ −

= −−−

−

.

Hence, ( ) 




 −−−−< −

−

at
a

d
ds

t

t

S
t 111

1

1

1 δ
δθ

θ
 and it follows that ( ) 0

1

<S
t

d
ds θ
θ

 when at 1> .

So there exists [] 11
0 += aT  such that for all 0Tt >  ( ) 00

1
0 , tSt UtU ⊂


=∃ θθ  and




Θ∃ 02
tt U  such that for all 0

1 tU∈θ  ( ) St θθθ >1 , ( ) 01 >θts .  ( ) SS θθθτ =  and ( ) 0=Ss θτ

for all t,,1K=τ  by construction.

Finally we will prove that if t  is taken sufficiently large than 0>∃ γε  such that

( ) ( )1
1

10 θεθθθ δγ tSt s<−< .
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Let us consider the ratio ( )
( ) St

ts
θθθ

θ
−1

1 .  It can be written as

( )
( )

( )( ) ( )
( )( ) ( )

( )( ) 1
1 1

1 1

0
1

11

11

1

1

1

1 −
−

−+=
−+−
−+−

=
− ∑ −

= −−

t

a

S

SSSd
d

SSSd
ds

St

t

a
oat

o

os
t

t

τ δ
δ

θ
θ
θ

τ

τ

θθ
θθθθθ
θθθθθ

θθθ
θ .  Therefore

( )
( ) + ∞=−

−
=








− ∑ −
= −−

∞→−→∞→
1

1
limlimlim 1

1 11

1

01
t

a
t

St

t

t a
ats

S
τ δ

δθθ
τ

τθθθ
θ .

This implies that we actually can take any 0>γε  such that 00 TT >∃  such that for

all 0Tt >  ( )( )St tU θθ ,0
1

0 =∃  and ( )02
tt UΘ∃  such that ( ) ( )1

1
10 θεθθθ δγ tSt s<−< . ¦

Proof of Proposition 4.5.

Suppose we have obtained an equilibrium sequence ( )0
11 kk UΘ , where ( )( )Sk kU θθ ,1

0
1

0
1
=

such that for all 1,,1 kK=τ  τθ  and τs  can be represented as

( )( ) ( )SSSS o
d
d θθθθθ
θ
θθθ τ

τ −+−+= 11
1

, and ( )( ) ( )SSS o
d
dss θθθθθ
θ

τ
τ −+−= 11

1

 where

( ) 0
1

<Sd
ds θ
θ

τ  and ( ) 0
1

1 >S
k

d
d

θ
θ
θ

, and for all 0
1 1kU∈θ  ( ) ( ) Sk θθθθθτ << 11 1

.

We introduce the following new variable:

( ) ( ) ( ) 0
1

1

1

11

1

1

1
>



−=−≡

−

S
k

S
k

S
k

k
k d

ds
d
d

d
ds

θ
θ

θ
θ
θ

θ
θ

α . (24)

In terms of 
1kα , surplus 

1ks  can be represented as ( ) ( ) ( )SkSkkk os θθθθαθ −+−=
1111 1 .

There exists at least one of such a sequence, namely { }1θ , where 11 =k .

Now we will construct a new equilibrium sequence ( )
1kt ΘΘ  in the following way.

We will repeat the whole structure of 
1kΘ  t  times.  In other words, for all

1,,1 −= tKτ  and for all 1,,1 1 −= kl K  we put ( ) ( ) ( ) ( )11111 11
θθθθ ττ lklk +−++− <  if

( ) ( )111 θθθθ ll <+  and vice versa.  Another rule is that for all t,,2 K=τ

( ) ( ) ( )111 11
θθθθ ττ kk −< .
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Having done this we can see that each of the sequences ( ){ }( )
1

1 111
kl

kll
τ
τθθ =

+−=  for all

t,,1K=τ  is an equilibrium sequence 
1kΘ .  Now we have to find ( )111

θθ +tk  such that

for all t,,1K=τ  ( ) ( )
11

1

11

1
1

1
ktk

tk
kk

k pp τττ
τ θδθδ −=− +

− , in other words, the seller of

quality 
1kτθ  must be indifferent between selling in time period 1kτ  and 11 +tk .  Loosely

speaking we try to construct a sort of equilibrium sequence of type II using 
1kΘ  as

single components instead of τθ .

We will show that if δα >
1k  and 
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1
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≤
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=
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+−

τ
τ

τ

δα
δ

k
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k

ak  then it can be done for

any t  and if 
1

1
ak

at −>  then 011
>+tks .  Applying the same procedure as in the proof of the

Proposition 4.4 we get the following indifference equations:
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k
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τ
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Taking the first differentials of (25) at Sθθτ =  and using definition of 
1kα  (24) we get:
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Using the fact that 
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δ
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θ
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.  Hence, we can write ( )11
θθτk  and ( )11
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It follows that for any t,,1K=τ  ( ) 1
1

1 ≥S
k

k

d
d

θ
θ
θτ  as long as δα >

1k
14.  Thus there

exists a neighborhood, namely ( )( ) 0
1

0
1

0
11

, kStk UtkU ⊂= θθ , such that for all 0
1 1tkU∈θ

Sk θθτ <
1

 and, therefore, ( ) 111 kk ττ θθ <+ , and 0
1
>ksτ .  Therefore there exists a system of

functions ( ){ } 1

11
tkl

ll
=
=θθ  which satisfies all the indifference equations (25) such that all

conditions of ( )
1kt ΘΘ  are satisfied except the last one and now we have to find

( ) ( )111 11
θθθθ τktk ≥+  such that ( ) 0111

>+ θtks .

Given the structure of ( ){ } 1

11
tkl
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=
=θθ  we can write:
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Substituting this into the first differential of (25) yields
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and, therefore,
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This implies that there exists a neighborhood ( )( ) 0
1

0
1

0
1 11

,1 tkStk UtkU ∈+=+ θθ , such

that Stk θθ >+ 11
 as long as 

( )
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1
11

11
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<
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=
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k
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τ
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τ
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δ .  So the condition 
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k
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actually is a sufficient one.  Now we will check whether 011
>+tks :

                                               
14  Note that this condition is trivially satisfied for 1=t .
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( )

( ) ( )
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1
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and, therefore,
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( ) ( ) ( )S
k

kt

kt
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S
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d
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ds

θ
θ
θ

δ
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θ
θ 11
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1
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1

1
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1
11 





+
−

−
−< +−
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+ .

It follows that ( ) 0
1

11 <+
S

tk

d
ds

θ
θ

 when 
1

1
ak

at −> .

Now we will construct the desired equilibrium sequence Θ  and our objective is to

get 
mkΘ  such that 

( )

( ) 1
1

11

11

≤
−∑

∞

=
+−

+−

τ
τ

τ

δα
δ

m

m

m

k
k

k

mak .  We start from 11 =k  and 11
Θ=Θ k .

Suppose that δα ≤
1k  and we cannot take 1>t .  In this case we take 1=t , in other

words we look for 
11 1 kk θθ >+ .  It follows that

( ) ( )
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1 111 >
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=
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δ
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δ
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θ
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θ
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d

d kk
S

k ,

and Sk θθ <+ 11
, hence 011

>+ks , in some left neighborhood of Sθ .  We take

( )
12 1 kk ΘΘ≡Θ , where 112 += kk , as an initial equilibrium sequence and repeat the

described procedure again.

Now we will prove that after some n  steps we get δα >
nk .  To do so we take a

lower limit of 
n

n

k

k

α
α

1+  with ∞→n .  In this case ∞→
∞→n

nk  as 11 +=+ nn kk  and we have:
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( )( )
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Suppose δα ≤
nk  for any n , then
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111limlim 1 >=
+

>
∞→∞→

+

δδα
α

δ
n

n
n

n

akkk

k

n
.

But this implies that + ∞=
∞→ nkn
αlim  that contradicts with δα ≤

nk .

Hence, there exists some number n  such that we get ( ){ } n

n

k
k

=
==Θ τ

ττ θθ 11  and

δα >
nk .

Then we check whether 
( )

( ) 1
1

11

11

1

≤
−∑

∞

=
+−

+−

τ
τ

τ

δα
δ

n

n

k
k

k
nak  or not.  If it is then we are done.  In

the case 
( )

( ) 1
1

11

11

1

>
−∑

∞

=
+−

+−

τ
τ

τ

δα
δ

n

n

k
k

k
nak  we will show that it is possible to find nτ  such that in

equilibrium sequence ( )
nnn kk ΘΘ=Θ

+ τ1
 we get Sk nn

θθτ <+ 1 .

We take 1=nτ  and if ( ) 01 >+
S

k

k

n

n

d
d

θ
θ
θ

 then ( )
nn kk ΘΘ=Θ

+ 11
 and Sk n

θθ <+ 1  in some

neighborhood of Sθ .  If ( ) 01 ≤+
S

k

tk

n

n

d
d

θ
θ

θ
 for some t , then it follows that
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On the other hand we have made an assumption that 
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In other words, Skkk nnnn
θθθθ τ <=< ++ 11

 and 011
>= ++ nnn kk ss τ , and we can continue with

( )
nnn kk ΘΘ=Θ

+ τ1
.
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Now we will show that at some stage m  we will get 
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Suppose not, that means that for all m  
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nk , and, therefore
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Then, it follows that 1lim ≠
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that contradicts with our assumption that for all m  
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So, 1lim ≠
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Using the inequality (26) we get:
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