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1. Introduction

Since the pioneering work of Akerlof (1970) many economists have studied the market
failures due to asymmetric information in an otherwise perfectly competitive market.
The standard model studies a static market with atomistic agents whose valuations
depend on quality and a standard result is that only low quality goods are traded (if at
all) even if the buyers are willing to pay more than the reservation price of sellers for
each individual quality (see aso, Wilson, 1979, 1980). This so-called lemons problem
affects a large spectrum of markets, including insurance markets. In many cases,
including the classic second-hand car market, the good under consideration is a durable
good.

Durability introduces two complicating factors in the used goods markets. goods
not traded in any period can be offered for sale in the future and, in addition, new
cohorts of potentia sellers may enter the market over time. Janssen and Roy (1999,
1999b) have investigated some of the issues that arise when durability is explicitly
taken into account in a dynamic model. Janssen and Roy (1999a) address the issue
whether a given stock of goods can be traded over time. They show that in any
dynamic competitive equilibrium al goods eventually will be traded. The main idea
behind this result is that low quality sellers have less incentives to wait (before selling)
compared to high quality sellers. Once certain (low) qualities are sold, only relatively
high qualities remain in the market. Consumers can predict that sellers of different
qualities will sort themselves into different time periods and, hence, they are willing to
pay higher prices in later periods. The equilibrium is thus one in which higher
gualities are sold in later periods at higher prices.

Janssen and Roy (1999b) address the same issue in the context of markets where
identical cohorts of goods with uniformly distributed quality enter the market over time.
In such markets, the infinite repetition of the static equilibrium under adverse selection
is an equilibrium in the dynamic model. In fact, it is the unique stationary equilibrium
and also the only equilibrium where prices and average quality traded are (weakly)
monotonic over time. They show that there exists at least one other equilibrium,

however, where all goods are traded within finite time after they have entered the
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market. These equilibria are cyclical in prices and quantities in the sense that once all
goods are traded, prices (and quantities) will fall. Up to the moment all goods are sold,
however, the dynamic process of prices and quantities is monotonically increasing.

In this paper we extend the analysis of Janssen and Roy (1999b) in a number of
ways. First, we relax the assumption that in every period a cohort of uniformly
distributed qualities enters the market. Instead, we alow for any arbitrary distribution,
which satisfies some mild regularity condition. Second, our results are stronger in the
sense that we show the existence of an infinite number of equilibria, where all goods are
traded within finite time after they have entered the market. Finally, we show the
extent to which the uniform distribution is special. It turns out that for a set of values
of the model's parameters and a set of distributions, which have relatively little
probability mass in the neighborhood of the static equilibrium, it is impossible to
construct a dynamic equilibrium with monotonically increasing prices and quantities
up to the moment everything is sold. We provide an example where this is the case.
Hence, the equilibrium construction for the uniform distribution does not extend
naturally to the class of al distributions.

Other existing literature' on adverse selection has focused on various processes
(such as signaling and screening) through which the difficulties of trading under
asymmetric information may be resolved and has emphasized the role of non-market
institutions in this context (such as certification intermediaries and leasing). This
paper, in contrast, is motivated by a more basic issue which also underlies the original
Akerlof paper viz., the functioning of the price mechanism in a perfectly competitive
market when traders have private information. It isimportant to understand the nature
of market failures due to adverse selection before analyzing the role of ingtitutions in
mitigating these failures.

Our specific model is as follows. We consider a competitive market for a
perfectly durable good where potential sellers are privately informed about the quality
of the goods they own. Each period, a cohort of sellers of equal size and with an

identical, but arbitrary, distribution of quality enters the market. The demand side is



modeled in the following simple way. Buyers are identical, have unit demand and for
any given quality, a buyer’s willingness to pay exceeds the reservation price of a seller
for that quality. Asbuyers do not know the quality, their willingness to pay in a period
equals the expected valuation of goods traded in that period. Moreover, there are more
buyers than sellers in each period so that in equilibrium, prices equal the expected
valuation. Once traded, goods are not re-sold in the same market.?

The Akerlof-Wilson model can be considered the static version of our model. The
adverse selection problem implies that in equilibrium only a certain range of low
qualities is traded. The infinitely repeated version of a static equilibrium outcome is
also an equilibrium in our dynamic model. Hence, the issue of existence of dynamic
equilibria is easily resolved. In this dynamic equilibrium high quality goods remain
unsold forever.

We concentrate on the existence of other equilibria with more interesting
properties - where prices and average quality traded fluctuate over time. We provide a
characterization result saying that in all such equilibria the range of quality, which is
eventually traded in the market, exceeds that in the stationary (static) outcome.
Moreover, sellers of different qualities within each cohort of entrants separate
themselves out over time. As the use value of low quality goods is lower than that of
high quality goods, low quality sellers sell earlier than high quality sellers, the owner
of a good with lower quality trades earlier, owners of higher quality goods wait longer.
In order to highlight the waiting aspect of the adverse selection problem and also to
make clear the sharp contrast between the properties of equilibria of our model with
those of the static model, the main part of the analysis is devoted to proving the
existence of an infinite number of equilibrium where every potential seller entering the
market trades within a certain finite number of periods after entering the market.

The results obtained in the paper provide a different perspective on the adverse

selection problem. In the static Akerlof-Wilson model, the adverse selection problem

1 See, for instance, Guha and Waldman (1997), Hendel and Lizzeri (1999a,b), Lizzeri (1999) and
Waldman, (1999).

2 Qur analysis bears some resemblance to that by Sobel (1991) of a durable goods monopoly where new
cohorts of consumers enter the market over time. Unlike our framework, there is no correlation between
the valuations of buyers and sellersin his model.
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manifests itself in the fact that relatively high quality goods cannot be traded despite
the potential gains from trade. In the dynamic market for durable goods, the lemons
problem is not so much the impossibility of trading relatively high quality goods, but
rather that sellers with relatively high quality goods need to wait longer in order to
trade®> So, the cost of waiting becomes an important factor in the welfare loss arising
due to asymmetric information.

There are three important intertemporal factors in the market which determine the
market dynamics in all the non-stationary equilibria of our model. First, once a certain
range of quality is traded, only sellers of higher quality goods are left in the market,
which tends to improve the distribution of quality of potentialy tradable goods in the
future. Second, the entry of a new cohort of potential sellers with goods of all possible
quality dilutes the average quality of potentially tradable goods - as they cannot be
distinguished by buyers from higher quality sellers left over from the past. Finally, as
time progresses and stocks of untraded goods accumulate from the past, the new cohort
of traders entering the market in any period becomes increasingly less significant in
determining the distribution of quality of tradable goods.*

The paper is organized as follows. Section 2 sets out the model, the equilibrium
concept and some preliminary results. Section 3 provides a characterization result.
The main result of the paper relating to the existence of an infinite number of equilibria
where all goods are traded within finite time after entry into the market are outlined in

section 4. Section 5 concludes. Proofs are contained in the Appendix.

% There are certain situations in which the fact that a seller has waited for a long time might indicate low
rather than high quality. This would be true, for example, when the buyers can inspect quality - high
valuation buyers are more likely to inspect and select the relatively high quality houses - leaving unsold
goods of relatively low quality for later periods (Taylor, 1998). A paper with a similar spirit is that of
Vettas (1997). As stated earlier, our model is designed to understand the nature of the lemons problem
and so we do not alow for any technology which can directly modify the information structure.

* If there is no entry of sellers after the initial period, or equivalently, if buyers can distinguish the
period of entry of sellers in the market, then only the first factor is relevant. In that case, it has been
shown earlier for fairly general distributions of quality (see, Janssen and Roy (1998)) that in every
equilibrium all goods are traded in finite time. Vincent (1990) analyzes a dynamic auction game with
similar features.
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2. Model.

Consider a Walrasian market for a perfectly durable good whose quality, denoted by
q , varies between q and g, where 0<q <q <¥ . Timeis discrete and is indexed by

t=12,...¥ . Eachtimeperiod t aset of sellers |, entersthe market, | isthe set of al

¥
sellers, | :UIt and t is the period of entry of seller i1 | . Each seller is endowed

t=1

with one unit of the durable good of quality g,. Let the total Lebesgue measure of
sellers from the set |, who own a good of quality less than or equal to g be a function
ml{ifi7 1,.q, £q})° m(g), which is independent of t. We assume that m(g) is strictly

increasing and absolutely continuous with respect to the Lebesgue measure.

The measure of al sellers who enter the market in each period is strictly positive,
S0 n(a)> 0. Each seller i knows the quality g, of the good he is endowed with and
derives flow utility from ownership of the good until he sellsit. Therefore, the seller's
reservation price is the discounted sum of gross surplus due to ownership and we

assume that it is exactly equal to g, . So, the per period gross surplusis (1- d )y .

Each time period t a set of buyers, with measure larger than n(a ) enters the
market. All buyers are identical and have unit demand. A buyer's valuation of quality
q isequa to vq, where v>1. Thus, under full information, a buyer's valuation
exceeds the seller's. All buyers know the ex ante distribution of the sellers with respect
to qualities but do not know the quality of the good offered by a particular seller.
When a buyer buys a good he leaves the market forever. All players discount the
future with common discount factor d, 0<d <1. They are risk neutral and rational
agents.

We will denote expected quality of the good from seller i conditional on the fact

that he belongs to a certain subset 1¢i | ash({1¢), this value is defined for all 1¢i |

such that m({1¢) >0 and it follows that

h(l«)oﬁ gam(19).
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In order to have an adverse selection problem in the static model we assume
VE(@)<q, where E(q) is the unconditional expected quality of al goods,

E@)=h({1})=h{1}). This implies that the static Akerlof-Wilson version of this

mode! has a largest equilibrium quality, which we will denote by g1 (ga)

0 = mfx{q‘m it 1.0 1f.all)=a}.

To simplify our analysis we make the following two assumptions. Throughout
this paper, we assume that these assumptions hold. Basically assumptions 2.1 and 2.2
assure that the distribution of quality is sufficiently well-behaved for some left-

neighborhood of qg.

Assumption 2.1. Let mlg) be a strictly increasing and absolutely continuous with

respect to Lebesgue measure on hs - em,aJ for some e, >0. Moreover let $m M

- n@9- ma9
such that for any q¢q¢, q5 - e, £q%<q®E£qg: 0<m_ < <M,.
y a49%, Os q%<q®Lq m, XL

Assumption 2.2. The measure function mlg) is a differentiable function at q =q and

dn@)
— =f3m_ >0.

Given a sequence of market prices p ={p}_, each seller i chooses whether or not to
sell and if he chooses to sdll, the time period in which to sell. If he chooses not to sell
his gross surplus is equal to g, and therefore his net surplus equals to zero, while if he
decides to sell in period t 3 t. hisgross surplus is

51 1-dvt
& (- dld" +d"p = (t- d)g, 7o +d i p =g fL- dV)+d g,
t=t, (1- d)
and, therefore, his net surplus equals
s =q{l-d"")+d" " p - g = (p,- g A
The set of time periods in which it is optimal to sell for aseller i isgiven by

T(p)° argmaxfss * o} =argma(p, - a " |(p - a)2 o}



If p,-q <O forall t3t thenT(p)=/E.

Each potential seller i chooses a time period t 1 T in which to sell. Let
t ={t,}., be aset of all selling decisions. We will denote a set of the sellers who
chose time period t for trade as J,, and it follows that J, ° {iT It =t}. This
generates a certain distribution of qualities over all time periods and the expected

quality of the goods offered for sale in time period t is h, =h({J,}) when m({J})>

In the sections that follow we will use the following notation:

8 mg,..q)=m)- mg,.,), so that for dl qs-e,£q,,£q, <¥ mg, .0 ) is

the measure of sellers from |, whose goods are of quality from the range

o 2.0 ] M a ) =m{{ifiT 1,07 o0 1) and mg, q,.,) =- M, ..a,);

i .

i (ﬂdm ifa *a.,
b) h(qt.l,qt =1 t v t e _ )

% G .. if 0 =0, 4

so that for al qs- e, £q, ,£0, £9, h(g,.,,9,) is the expected quality of goods
from sellers who belong to |, whose goods are of quality from the range [qt_ 10 ] :

h@..a)=h(iiT 107 .. l), adh(g 6..) =@ .q ).

The following lemma states the continuity of h(g, ,.,q, ).

Lemma 2.1. For dl g5-¢e,£q,.,£0q, £q the function h(qt_l,qt) is a grictly

increasing continuous function. Moreover, $m,, M, , such that

h(@..0)- h(G..9..)
O< < it -1t it -1t -1 <M
i @ -9.)

On the equilibrium path, buyers expectations of quality in a period where a
strictly positive measure of goods is offered for sale must equal the expected quality in
that time period. As al buyers are identical, we assume that their expectations of

quality in period t are symmetric and denoted by E, .



A dynamic equilibrium is an equilibrium where all players rationally maximize

their objectives, expectations are fulfilled and markets clear in every period.

Definition 2.1. A dynamic equilibrium is described in terms of: a sequence of prices

p={p}’,, aset of sdling decision t ={t };, and a sequence of buyers quality

expectations E ={E}", such that:

a) Seller maximize: t 1 T(p) for allil I, i.e., seller i chooses time period t; to

trade optimally.

b) Buyers maximize and market clear: If m({J,})>0 then p, =VE, i.e, if thereis
a strictly positive amount of trade in time period t, then each buyer earns zero net
surplus so that he is indifferent between buying and not buying and market clears.
If m{J,})=0 then p, 3 VE , i.e, if zero measure of trade occurs in time period t

then each buyer can earn at most zero net surplus. Hence, not buying is optimal

for himinthat period.

c) Expectations arefulfilled when trade occurs: If m{J,})>0 then E, =h,.

d) Expectationsarereasonable even if notradeoccurs: Foral t E 2 q.

Given the set-up described above, conditions (a)-(c) are quite standard, condition
(d) says that even in periods in which (at most) zero measure of seller intends to sell,
buyers' beliefs should be reasonable. This condition assures that autarky, i.e., no trade
in any period, cannot be sustained in an equilibrium of the dynamic model. Given the
condition, the willingness to pay, hence the price in any period, is restricted from
below by vy and sellers with low enough qualities prefer to sell against this price

rather than not sdll.

3. Characterization of equilibrium.

We start the analysis characterizing the properties of any dynamic equilibrium. In the
Proposition 3.1 below we first argue that if a good of certain quality sells in period t,

then all goods with lower qualities that have entered the market in and before period t
9



will also sell in that period. This fact alows us to define for each period a marginal
seller g, asthe seller of the highest quality in period t. It also allowsusto define s as
the surplus of the marginal seller in period t, i.e, s =p,-q,. This part of the
Proposition 3.1 basically follows from the fact that the use value of low qualities is
lower than the use value of high qualities so that low qualities are more ready to sell.

The second part of the Proposition 3.1 argues that the marginal sellers in any
period make non-negative net surplus. This implies that the other sellers make strictly
positive surplus.

The third part of the Proposition 3.1 argues that the marginal seller in period t is
indifferent between selling in period t and selling in the first future period in which a
quality larger than his own quality is sold. Prices in that future period will be higher,
reflecting higher average quality, but the discounted surplus is such that the seller is
indifferent.

The last part of the Proposition 3.1 says that if it exists the highest quality that will

ever be sold in any dynamic equilibrium is either equal to q or it is such that the seller
makes zero surplus. It is clear that if a seller makes zero net surplus, prices in all
future periods cannot be higher as this seller will have an incentive to wait and sell in

that future period. The Proposition 3.1 argues that if the highest quality sold in a

dynamic equilibrium makes strictly positive surplus, then it must be equal to a :

Proposition 3.1 (equilibrium characterization). Any dynamic equilibrium has the
following properties.
a Foralt $q,1 [g.q] suchthat if g, >q then J, ={ilg, T [a.a.]t £1}, i.e., in every

period t in which strictly positive amount of trade occurs the set of quality traded

isarange [q,q,], where g, is the marginal quality traded in period t. All sellers
who are in the market by period t and own goods of quality not larger than g,

prefer to trade in this time period.

b) p2a.
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0 Let f(t)=minft|g >q,}, i, T(t) isthefirst period after t where g, >q,. Then

t>t
pt-qt:df(t)‘t(pt—(t)-qt), i.e, margina seller in period t is just indifferent

between selling in that period and in the first next period where marginal quality is

larger than his own quality.

d) If f(t)=min§%\rgmaxqt g then (pf(t)- qf(t))(a- qf(t)):o, i.e., if in period f the

t>t

marginal quality is the first largest one for all subsequent periods then either thisis

the highest possible quality q or the surplus of the corresponding marginal seller

is zero.

It is easily seen that the infinitely repeated outcome of the static model is a
dynamic equilibrium of our model. Hence, existence of equilibrium is not really an
issue here. We will show that in the dynamic model there are infinitely many other
equilibria, each one starting from a certain neighborhood of a static equilibrium

quality.

4. Equilibria Trading all Goods.

We will now show that for any measure function mig) which satisfies Assumptions
2.1-2.2 and for all generic values of the parameters v, d, q and q there exist an

infinite number of dynamic equilibria covering al qualities up to q. As we already
know that our model has at least one equilibrium, a general existence proof is trivial.

That is why we use a constructive proof showing how to find an equilibrium sequence

of marginal qualities that is such that all qualities up to q are traded. The fact that

there are infinitely many dynamic equilibria follows from the fact that if there exists a
dynamic equilibrium covering all qualities up to q starting from some g, <Qs, then
there also exists a dynamic equilibrium covering al qualities up to q starting from a

g, with g, <q, <q;.
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Before we will go into the details of the analysis, we first introduce an important
parameter. Assumption 2.2 allows us to define a parameter a, which describes the

relation between the distribution of quality over the range [q,q;] and the marginal

distribution at q itself:

o 1 drr() (v- 2t
n(qs)( =gy )= mas)

Obvioudly, a is strictly positive. We will now argue that generically, it must be
that a<1. To this end, consider the surplus of the marginal seller in the static model

asafunctionof q :

sl)° pa)- a =vha)- g =V$qc‘§1dn(q)-q,and
)=y &yt 1=a- 1.

Thus, the surplus of the marginal seller can be written as

sa)e )+ S0 - 0.)+ola - )= (o Ya- o) robi-a). @

Suppose then that a>1.°> This would imply that slg)>0 in some right

neighborhood of q4. But this contradicts the assumption that ¢ is the highest static
equilibrium quality.

In the uniform case, we have a=1v® Asin the uniform case adverse selection
implies that 1<v <2, the uniform distribution is a special case of the case when
al (£1). Insubsection 4.1 we will start with this simplest case, which generalizes the
analysis in Janssen and Roy (1999b). We show that one can construct a "monotonic"

sequence of marginal qualities g, that are strictly increasing over time until al goods
are sold. The main reason why the case al (%,1) is to be distinguished from other

cases can be seen by looking at equation (1). If we choose g, =q, then in the second

period, the measure of qualities just above g that are not yet sold is two times as high

® The case where a =1 is anon-generic case.
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asthe original measure. If al (% ,1), the distribution of qualities in the second period is

such that a new "static" equilibrium emerges that is larger than q5. As in the second
period we can write s,(q)=(2a- 1)(a, - as)- ala, - as)+ol(@, - as).@. - as)) it

possible to choose g, close enoughto g4 suchthat g, >q, and s, >0.

If a<4, it may not be possible to construct such a "monotonic" equilibrium and
we show this by example. In subsection 4.2 we show that dynamic equilibria
nevertheless exist if al (0,a(d)), where a(d) is some decreasing function of d . The
kind of eguilibrium we obtain is not monotonic, however, and marginal qualities d,

strictly decrease for some initial time periods after which they strictly increase until all
goods are sold. The general theorem is provided in subsection 4.3. As the
construction here becomes quite complicated, subsections 4.1 and 4.2 are aso provided
for didactical reasons.

The construction of equilibrium uses an "equilibrium sequence" which is defined

below.

Definition 4.1. An equilibrium sequence Q,(U) is a finite sequence of marginal

qualities g, as functions of q,, the latter being defined over some range U = (qlq_l)

i.e, Q;(U)={a,(,)},, such that all equilibrium conditions in Definition 2.1 hold for

t=1"

al t=1...,T- 1. Moreover, for al g, U :

a q,(q,) iscontinuousfor all t=1,...,T;

b) 9,(@,)>q.) foral t=1..T-1;

¢) p =vh, =p(a,), thepricein period t is continuousand p,(qs)=9s;

d) plo,)>a,q,) foral t=1...,T, i.e, the price in period t exceeds the marginal

quality in that period and s (q,) > 0;

® This easily follows from the fact that g, =,-q and g, )= (g - q)-
13



e foral t=1...,T-1 p-q, :d(f(t)'t)(pt—(t)- q,), where f(t):trgig{t 4 >q. ie.

the marginal seller in period t isjust indifferent between selling in that period and

in the first next period where marginal quality is larger than his own quality.”

The above definition does not imply the existence of an equilibrium sequence.
However, it easy to see that there exists at least one equilibrium sequence, namely

Q. (s - €xas))={a.} . such that all mentioned above conditions are trivially satisfied.

The main property of an equilibrium sequence we use is that if there is a dynamic

equilibrium with marginal qualities {g, }’_, suchthat for t =1,...,T it can be described

T
t=1"

by a certain equilibrium sequence Q;(U)={g,(@,)}.,, then there is only one

indifference equation, namely

pr - Ay =d 0 py- ), @)
which relates prices p, and marginal qualities g, for t =T +1,....¥ to prices p and
marginal qualities ¢, for t =1,...,T (this follows from (b) above). Intuitively, g,

summarizes al the relevant properties of the sequence of marginal qualities up to time

period T. Our purpose, therefore, is to find an equilibrium sequence such that

9,(0,)=q forsome T and g, .

4.1 Thecasewhere a>1.

In this subsection we prove the existence of an increasing sequence {q,},_,, where

d; =q when a>1. Asthe uniform distribution is a special case, the result obtained in

this section show to what extent the results obtained in Janssen and Roy (1999b) can be
generalized to allow for other types of distribution functions. The following theorem

contains a statement of the formal result.

7 That minimum always exists as at least one g, isabove q,, namely ¢, >q, -
14



Theorem 4.1. For any al (%,1) and for any generic value of q, there exist an infinite

number of dynamic equilibria such that all goods are sold in finite time after entering

the market.

The proof consists of three steps. In Proposition 4.1 we prove that it is possible to
construct an equilibrium sequence of an arbitrary length where marginal qualities {q,}
are strictly increasing and very close to the static equilibrium quality q5. Under these
circumstances the main indifference equation (2) takes the following form:

P~ 0 =d (P, - G,). (3)

In other words, the marginal seller in period t is just indifferent between selling in

that period and in the next period. We will denote such monotonic equilibrium
sequences as QY(U) and call a dynamic equilibrium, which is based on them, as

"dynamic equilibrium of type I".

Proposition 4.1. If al (£.1), then there exist an infinite number of Q'(U). Moreover,

$e,, $T, suchthat for all t >T, $U° = (q(t).as) and $Q4(U?) such that:
a foralt =1...t q,(g,) isdifferentiable at q, =g and q, (0s) =0

b) foralq,i U 0<q,)-as<e,25()-

Proposition 4.1 implies that if al (% ,1), we can construct an equilibrium sequence
of an arbitrarily long length t such that in period t +1 there will be more sellers with
high quality (q, >qg) goods than the number of sellers with low quality (g; <ds).
This alows us to expand the equilibrium sequence Q, for some more periods.

Next, in Propostion 4.2, we prove that when we are able to construct an
equilibrium sequence of an arbitrary length where all marginal qualities belong to a

certain neighborhood of g, then we can expand it in such away that the surplus of the
last marginal quality g, could be made any value between 0 and (v- 1)g,. More
precisely, given any equilibrium sequence Q, with 0<q,(a,)- gs <e, 25(a,) we can

construct another sequence Q,,, where t¢>t, suchthat Q, 1 Q, and p,(q,) coversthe
15



whole interval (g, (a,),va,(@,)). The conditions under which the Proposition 4.2 holds

are the same as the conclusion reached in Proposition 4.1. This is done as in later

subsections we will also make use of it.

Proposition 4.2. If there exist e, >0 and T, such that for al t>T, $U° = (g (t).qs)
and $Q,(U°) such that for all q,T U® q,(a,)- gs <e, 2s(a,), then for any e, >0 and

e, >0 $T, suchthat for all t3 T, $US =(g5(t)qs)1 UL and $Q,(US) such that:
8 foranyq,T US fa,(a)- ag <ey;

b) s(as)=0;

9 sl°)>(v- hie)- e

Proposition 4.2 tells us that if we could trade goods for many time periods and,
therefore, accumulate "high quality sellers’, then we can organize trade in such a way
that in the last time period of the equilibrium sequence "almost” all sellers who prefer

to sell in that period will have goods of quality very closeto qs.

Finally, in Proposition 4.3 we prove that if we are able to trade goods aong an
equilibrium path from a certain range of qualities such that the price in the last period
of the equilibrium sequence can be made any value between the margina quality and
buyer's valuations of the marginal quality, then we can expand that equilibrium
sequence in such a way that wider range of qualities could be traded with the same

properties. Doing so, after a finite number of iterations we generically can construct an

equilibrium sequence where g, =q , i.e., al goods are traded by the period t.

Proposition 4.3. If $q®1 hsa) such that for any e; >0 and e, >0 $T) such that

forall t>T® $UM = (q,(t, k).x(t,k))® and $Q, (U*)) such that:

g forala,l U fg,(a)-a")<e,;

® Here we don't make a distinction between ¢, <q: and g, >q.. All we need is U to be anonempty
open set while g, and a 1 areits boundary points.
16



b) 0£s(a,tk)<es;

9 sltk)> (- bt k)- e

then either

8 $e,>0 suchthat forany T $t>T, $q,(t) and $Q.(g,) such that q.(;)=q and

sthl)>es , Or

b) forany e;>0 and e, >0 $q"“ 7 {vg),q| and $T¢* such that for all t >
s q S S
$U Y =], (t,k +1).qa(t.k+2)]i UY and $Q,(U) such tha:

<e,;

for all Q1T Ut(k+1) ht( 1)' q(k+l)

0£ 5(0,(t.k +1)) <eg;

s(al(t,k +1))> (v- 1ht(al(t,k +1))- e, .

Proposition 4.3 basically says that if we have constructed an equilibrium sequence
for a sufficiently large number of periods, then we can either make sure that after some
more time periods the next marginal quality can be chosen relatively far from the
present marginal quality and such that all desirable properties are kept (case (b)) or we
canreach q (case (a)).

Propositions 4.1, 4.2 and 4.3 taken together give us a large part of the proof of
Theorem 4.1.

4.2 Thecaseof small a and d .

In this section, we construct an equilibrium sequence for the case when a and d small.
We first provide an example showing why the analysis of the previous subsection does
not continue to be valid. The example shows that when a and d are small there does
not exist a g, >q, such that s,® 0 and such that g, is indifferent between selling in

period 1 and selling in period 2.

17



Example 4.1 Let us take v=12, d =0.1, q =10, q =13 and a measure function

mlg) such that m(10)=0 and

d 1101, if g <q <10.1
D fg)=g o hasasEe
dq 1L if101<q <q

The static equilibrium quality for this case is unique and equals g =+/151.5 »12.31.
In any dynamic equilibrium we must have q,T [a,q5] (otherwise we would have

s, <0). The following picture 4.1 shows the graph of functions X2 =q,(X1) and

S2=5,(X1) where X1=q,.

X2,82

10 10,5 11 11,5 12
—_— X2 S2 Static quality
Figure4.1.

It is easy to see that for any value of g, we get g,(q,) above g and the surplus in

the second period is negative. I

We will now prove that if a is relatively small, particularly if al (O, (1- d)z), then
we are still able to construct infinitely many dynamic equilibria such that all goods
from the range ba] are traded. The equilibrium sequence is non-monotonic. Note

that the parameter configuration analyzed here partially overlaps with the parameter
configuration analyzed in the previous subsection. The result we will prove is formally

stated in Theorem 4.2 below.
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Theorem 4.2. For any al (O, (1- d)z), and for any generic value of q, there exist an

infinite number of dynamic equilibria such that all goods are sold in finite time after

entering the market.

In order to prove this theorem we only need to show that when al (O, - d)z) it
is also possible to construct an equilibrium sequence of an arbitrary large length t

where marginal qualities {q,} are very close to the static equilibrium quality q.. We
will construct a sequence that is strictly decreasing for some time, q, ,, <q, , and only
the last marginal quality g, exceeds all previous ones. We denote such a sequence as
"equilibrium sequences of type I1" and write Q*(U).

In this case our indifference equation (2) becomes the following system:

R-a =d"(p-g)t=L..t. @
Proposition 4.4. If al (0, 1- d)z), then there exist an infinite number of Q2(U).
Moreover, $e,, $T, such that for all t >T, $U° = (q°(t).as) and $Q%(U?) such that:
a foralt =1...t q(g,) isdifferentiable at q, =q and g, (0s) =0
b) foralq,i U 0<qa,)-as<e,25()-

Note that the conclusions reached in Propostion 4.4 are identical to the
conclusions reached in Proposition 4.1 so that we can make use of Propositions 4.2 and

4.3 to get the proof of Theorem 4.2.

4.3 The General case.

Finally, we prove that for any value of a, we are able to construct infinitely many
dynamic equilibria such that all goods in ba] are traded. The dructure of the

corresponding equilibrium sequences becomes a mixture of the equilibrium sequences

of type | and typell.
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Theorem 4.3. For any generic value of q, there exist an infinite number of dynamic

equilibria such that all goods are sold in finite time after entering the market.

Again, like in subsection 4.2, the only thing we need to proveisthat it is possible
to construct an equilibrium sequence of an arbitrary large length where marginal

qualities {g,} are very close to the static equilibrium quality q5. This is the content of

Proposition 4.5.

Proposition 4.5. There exist an infinite number of Q(U). Moreover, there exist some

numbers e, T, and k, 2 1 such that for al t>T, $Ut‘,’<m+1:(ql°(tkm+1),qs) and

$thm+1(u;§m+1) such that:

a foralt =1...tk_+1q,(q,) isdifferentiable at q, =q and g, (9s) =0s;
b) for a“ qlT Ut(I)<m+1 O<qtkm+1( 1)_ qS <egdistkm+1( 1)'

The main difference with related Propositions 4.1 and 4.4 is that here the
equilibrium sequence constructed around ¢g is partly composed of increasing
subsequences and partly composed of decreasing subsequences. Therefore, we need to
indices (t and k) to keep track of the whole equilibrium sequence.

Note that the conclusions reached in Propostion 4.5 are identical to the

conclusions reached in Proposition 4.1 so that we can make use of Propositions 4.2 and

4.3 to get the proof of Theorem 4.3.

5. Conclusions

In this paper, we have provided a different perspective on the way the adverse selection
problem may manifest itself in durable good markets, where entry takes place in the
same market. In the static Akerlof-Wilson model, adverse selection results in high
quality goods not being able to trade despite the potential gains from trade. The
infinite repetition of this static equilibrium is also an equilibrium in the dynamic model

where a durable good is traded in a competitive market. Our main result in this paper,
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however, says that there are infinitely many other equilibria where all goods are sold
within finite time after entering the market. In each of these dynamic equilibria, the
marginal quality that is sold in the first period lies in a small neighborhood of the static
equilibrium. This result holds true for al generic values of the parameters governing
the behavior of buyers and sellers and the distribution of qualities in the population of
sellers.
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Appendix.

From now on we will use the following notation.

K :h(Qt-l’Qt )' h(Qt-l’qt-l)
t

a) P (5)
b) F=M ©)
O Y =G -G (7)
) z =y - Vi (8
& 0 =5§;

0 g(q)=il'q'lff(q'Vh_(q’q»’?fql_qs; ©)

i lim g(q)=1- a,if g =q;
9) é(q)=q§r[z>;]lg(q)l;
W Je=a0(v-1- gy (10)
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Proof of Lemma 2.1 is on request. |

Proof of Proposition 3.1. We prove al statements of the proposition sequentially.

a)

b)

d)

Let us take any period t of positive amount of trade J, so that m(J,)>0 and take

any il J,. By the definition of dynamic equilibrium we can write:
ti argmax{(n - q)d"*|(n - a)° o).

Thisimplies (p,- g )d" " 3 (p - g, )d" " foralt >t3t. Nowtakeany q <q,:

(p‘_ q)dt-ti ) (n B q)dt-ti :(pt - qi)dt-ti - (IQ - qi)dt-ti +(qi - Cl)(dt B dt)j-ti 3

@ -q)a-a e >0
So, for all sellers with a good of quality less then g, who are still in the market in
a certain period and have not yet traded it is optimal to trade in that period. Thus,

we can define q, as qt:sup{qi|iT Jt} and then it is easy to see that
3, ={ila,T [a.a]t £1}. Finally, if m(3,)=0 for some t, then we set g, =g .

By the equilibrium definition, for al t E 3q and p, 3 VE so that p,3\W.
Thus, if m(J,)=0, we have p,® vy >q =q,. If m(J,)>0, it is optimal for the
marginal seller g, to trade in period t and a necessary condition is p, - g, 3 0.

So, p, 2 q, foralt.

Suppose p, - g, - d(f")(pt - qt):s >0. Then, we can find a seller i of quality
g =Q, +is suchthat q, <q, <q; and t, £1, i.e., heisin the market by period t.
By definition of {g,} he will trade in period T . But it can be shown that this is not
optimal:

A (p, - @, +25)- d“p,- @ +2s)=d | s +2s - a9 <o.

So, it is not possible that p, - g, >d(f(t)'t)(p{(t) - qt). A similar argument shows

that it isimpossible to have p, - q, <d(t~(t)'t)(pt~(t) - qt)-

Suppose q - g; =s >0. Wewill show that inthiscase p; - g; =0. Suppose not.

Then it must be p;-g;=e>0. Let us take a sdler i of qualty
23



q, =q; +imin{e,s } suchthat g, <q, <q and t, =f. By definition of {g,} he will
never trade because for all t3t q, £ rrt\atlx{ J=q; <q,. If he, however, traded in
period £ he would get

p-G =P - - iminfe,s}=e- imin{e,s } 3 1e >0, whichisa contradiction.

So, it must be the case that (pf(t) - qf(t))(a - qf(t)): 0. |

Proof of Proposition 4.1. Using the fact that q, (q,) >0, _,(q,) we express the expected
quality sold in period t intermsof m(g, ,,q,) and h(g, ,.q, ):

_th(g,...a )r@..q)+h(@.q .)r(a.q,..)
hq_,q— it -1+t it -1+t t -1 tl,tsl, o] . 11
) trlo,.,.0, )+ ma.g, ) o4 )

Now we consider the indifference condition (3) with p, =vh, . It can be written

fort 3 2 aSht (qt-l’qt)- ht-l(qt-Z’qt-l):%a-l' (12)

The main part of the proof is by induction. At first we will prove that if all

conditions to be proved (except q,(0,)>qs) are true for some t>2, then
$0,.,(0,)>0,(0,) such that those conditions are also true for t +1. Next, we will show
that there exist g, and q, such that those conditions are satisfied. Finally, we will

show that for some T, we get g, (0,) >qs and, therefore, q,(q,)>qs for al t>T, and

al g,T U1 U7,

Suppose tht for some t>2 $U7, =(67(t- ). #a @) and @)1

such that for all g, T U2,:

a q(a)>a_,@) s@)>0:qs)=as. 5(s)=0;

b) q, and 5 are continuous functions differentiable at g, =q4 so that we can write:

d d
0 =0s + X (3 )@, - ds) + 0@, - ds), and § =—2 (9. )@, - 9s)+0(a, - qs);
da, da,

ds dy, dz :
- Ol _t Ol - 1
C) dql (qS)< dql( S)< dql (qS)<O
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d foralt=1..t-2 p-q =d(p,-q);

e foralt =1,...,t-2 W(qsﬁo,where b =2ld)

1

We will prove that then $U¢ = (q°(t).qs)1 U®, such that for al g,1 U equation

(12) determines a unique value of g, asafunction of ¢, and

a q0,)>a..0,) s@)>0;0,0s)=0s. slas)=0;

b) q, and 5 are continuous functions differentiable at g, =qg so that we can write:

d d
0, ZQS+i( s)(ch' QS)+O(Q1' QS)! and S :_S(QS)( 1° QS)+O( 1° QS);
da, da,

ds dy, dz,
0 E)<o La)<o, Eo)<o

d) d(sgj—qbstl)( )<O where b = andqt( 1) <St( l)%—l'
1

Let us first consider the left-hand side of the equation (12) as a function
G (G- 10 2) ° (0 2G)- Nes@20s) - 1t is easily seen thet as d,,°d,, %9
evauating G(0,.9,..9.,) a 0 =q., viedds G/, ,0..9,.,)EO. So,
G.@..@)a..@,)a ,@))E0<tis ,(q,) for any g, U?,. Also, for any small

e>0 such that qs+e<a, Gt(qs"'e’qt 1( )qt 2( )) 0. As

G(as +e.0,.,0s)a, .0s)> 4 5.,05) =0 and & Gla) and s.(0,) ae both

continuous functions, there must exist a neighborhood U_t0 b )I U?, such that

for any ,1 U? G(0s +e.0.,0.)0..0.))> £ 5.,@). Finally, G0,.0...4..) is a
strictly increasing continuous function w.r.t. g, .

Taking all these facts together and applying the intermediate point theorem we can
draw the following conclusion. For al q,1 U_t0 there exists a unique continuous
function q,(q,) such that q,,(,)<aq,(a,)<gs+e. sfa,)=vh,@.,.9,)-q, is dso
continuous function and q,(qs) =05, 5(0s) =
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To prove the rest of step (b) of our induction step, we will now show that q,(q,)
and s(g,) both are differentiable functions at q,=qs. For al t =2,...,t the
indifference condition (3) can be written as h, (qt.l,qt):dl (@20 )- S 0o

Taking the first differentials of this identity w.r.t. q, at q, =qg, and using (11), we get:

0 2N610)ma .0 ) +h@a)ma.6 )2

tn(qt lqt) n(qqt 1) ﬂ

_. . & -1h(. 0.0 9. ) +h@a.,)ma.g.,)0 0 14
“adsg € - O, 0 1)+ Mg ) 5% A

where dg, = ddq, ‘qlzqs . Taking the derivatives explicitly into account yields

t(qudsch - qudsch-l)"' qudSQt-l -h ( . s)t (fdsch - fdsch 1) fdsch 1

tn(qs gs) + ma.qs) tmgs.as)+ ma.gs)

;aafq dsch 1° ( 2)(jsqt-z - fh 1(q q )(t - 1)dsch-1 ( )dsch 29
&1 T Dmlgsas)mags) O Dmlgeas)+ Maas) 5
- %dsch-l-

Rewriting gives
da(tdsch - (t - 1)dsch-1):a((t - 1)dsch-1' (t - 2)dsqt-z)' (1' d)dsch-l’ and
tddsch :dsch-l((l"'d)(t - 1)' %)' (t - z)dsch-z- (13)

dg, ( S):(1+d)(t - 1)- %dqt-l( )_t - 2OIqt-2( ). As by

So we can write s
da, td dg, td dg,

assumption, g, , and q,, both are differentiable at g, =q5 o0 is q,(,). Also, as

surplusis defined by § = p, - g, =vh,(0,,0,.,)- q,. § isalso differentiable at q, =q.

Next, we prove part (c) of the induction argument. To this end, we can rewrite
(13), using (7) and (8) in the following way:
tddsyt =dSyt-1(t -1-d- %)' wdsch-z’ and

tddszt = dSZt -1& - 3+%32a-1))+ dSyt-Z (1-d)(za-1) . (14

a
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Using the induction assumptions, we have %(qsko, Cl}:;l(qs)<0 and
1 1

dz_, : dz,
0 it follows  from 14 that —t <0, and
aq, Gs)<0 (14) aq. )

Ay (o y Oy
o) = Bxfg,)+ ) <0

Similarly, we can get the following expressions for the first differentials of the

surpluses dgs:
d.s =af - 1)dgy, - (- a)dg, , and (15)
ds(§ B 5-1): dSzt (at B 1)+ dsyt-l(za' 1)- (16)

Again, by our induction assumptions we have Oclf'l(qs)<0 and it follows that
1

d(s - s..) ds (. \_ O, d(s - s..)
d = —=t -1/ 0.
dql (qS)<O’ an dql (qS) dql (qS)+ dql (qS)<

The only parts of the induction argument we still have to prove are

d(ﬁc‘iqbst-l)(qs)<0 and for al t $Ut0:( ()qs) U such that for al g,T U’
1

St(q1)> bSt_l( 1), where b =%aldgd).

Subtracting (15) for t - 1 from (15) for t we can write

d.§ - dog_, =af - 1)dgy, - aft - 2)d.y, , - (1- a)(dg, - dg, ), or

des - des_, =(at - 2)dyy, - aft - 2)dgy, ;. (17)

We can write the indifference condition (3) as §_, =ds +d(q, - q,_,), the first
differentials of whichw.r.t. g, a q, =gq5 becomes ddgy, =d.§ , - ddgs . Substituting
it into (17) yields d.§ - ds§_, =(at - 1)(dss ., - dds5 )- alt - 2)(ds5 ., - dds5 _,)-
Rewriting gives

tddgs =t - Ja+rd)+ &g - - 2)des - (18)

We can express the above equation in terms of d (5 - bs_,) instead of d.s |

where b = —) It can be shown that
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tdd (S bS [d bS-z)(d+(1é:))+(1-d)(2alld ss ]

2a 2ad

By our induction assumptions we have M(qS)E 0, and 33:2 (@s)<0

da, da,
o it follows that d(ﬁc_i—;)s*'l)(qs) <0, and, therefore,
1
ds ds., 1 d§ 1 ds
b £---£b7 — £---£b"T—2 0. 19
aq ) <P ) aq. ) aq, )< (19)

Now again let us consider the indifference equation (3) as d(g, - g, ,)=5_,- ds .
Summing it upfromt =2 tot =t and rewriting gives
t
=0, +3(s-s)+%as.
2

Taking the first differential w.r.t. q, at q5 and using (19), we get:

o ) gy 2 8 (). 98 )0 O
Olql(s) dgdql(qs) dql(q5)5+d6} [s)>

1 tldst d_st 9 ﬁg '(t't)d_st =
>1+dgb dql( s) dql (QS)E"' d az- b ( S)

0.
e d d
=1+ Bl d) - 1) 3 @) > 1 ¢ (0 a)- )
1 1
sast) d d d
=L () 3 00 =10 2t 3 0)> 2t g )

Asq, and 5 aredifferentiable at g, =q¢ they can be written as follows:

d 0
Qt( 1)'q ~ 2a- 1St Ch ) f—l_St(QS):iql'qs)"'o(l'qs)-
dch dql (%]

The above inequality impliesthat $U° = (q2(t).qs)T U? such that for all g, U?

d
q.(0,)- as- z2:50.) < %%(qs)(ql-qs)m(ql-qs)<0,0r

Qt( 1)'QS<egst( 1)’ 9_2:-11-1'

Now we will show that all induction assumptions are valid for t =1,2. Let usfirst

consider the function s,(g,)= p, - a, =vh(a.q,)- g,. Interms of the function it can
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A1

be written as s 1):H€:—q)c§1dm 0,- s@,) is a continuous function over
1/q

Ug° ( - em,qs) and differentiable at q, =q.. From the definition of a it follows

that g—§( s)=-(1- a) and s(q,)=- (1- a)g, - 9s)+0(g, - a5). Hence, there exists a

1
neighborhood, namely U?° = (1(),qs)i U?S, such that for al q,1 U s(g,)>0

Obvioudly, g, itself is continuous and differentiable at g, =qg5. Then, using the

o )= G2 0e)- 1= 4 <0,

definitions of y and z, we get da, da,

92 () =- Eaa _1<q.

2da

Finaly, using (13), (15) and (16) yields d(szd—q'sl)(qs):- Ldalzad) < g, and,
1

consequently, d—sz(qs)<0 and d(szd;qbsl)(qs):o. That ends the proof of the
1

da,

induction argument.

We finish the proof by showing that for some T, we must have q; (d,)>ds,

hence, for al t>T, and al q,T U’T U: q,(a,)>ds. To see this consider the

¥

sequence gg ( S)ﬁ . The first term of this sequence equals 1. Moreover, the
]

=1

sequence is decreasing with strictly negative increment as

dq ) dq, . dy, dy. (1-d)(- a)
9 (0))- %1g,) = % () « & q,)=- Lok <o,

¥

Thus, there exists a first negative term of ith( S)z , which can be denoted by
| 1

=1

ddy, (@s)<0, where T, £§_ﬂ_5+13' It impliesthat for al q,1 UL qs <q, (@,). !
dg, s a*ly 1 T, ds SUr, Ms I
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Proof of Proposition 4.2.
In case when g, >q, , we have t& - 2=t and our indifference equation (2) can be
written a (3), or p =q_,+(p.,-G.,)=%5,+q ,.  Rewriting yields
vh,(0,.100) = § 8.0 0,y

Function h,(q,.,,q,) strictly increases w.rt. g, for al g, ,, so there exists an
inverse function which determines g, as a function of q,_,(q,) and s_(a,).

9 =9,@.,25.,).  This function is defined for al q, as long as

Vht(qt-l( 1)’6)3 %3-1( 1)+Qt-1( 1)- Using (11) we can write:

6 a)r@.,a)+h g )raa.,)
tmlg.,.0,)+ ma...)

=0,., +d,.,, Where g, :dist'

Then
(020 (0 +o,0) = TGt B Gea W) g 18 g
A qthtgg da-ds g
Y
m(@.q..,)

9., + 9@ )@, - as).

Vi (Vh (qt-1’Qt)_ Q.- gt-l) = tF,

where g and F, were defined in (9) and (6) correspondingly. Then we get:

h
sl sy g, ) =T8N gl ) 0) e
t

WK+ Y - ”(%Fq )(9t1+9(t1)(qt1 qs)) =0, (20)

where K, and j , , were defined in (5) and (10) correspondingly.
Now let us take any eg >0 and any e, 1 (O mln{ %(q qs)}). Then we take a

) 1 e 1
small e>0 such that e<Xdmini S _ ~1e
v 1L2(v-1)q 3

|
e, < iminfeg,(v- 14}, and a large T such that

a smal e >0 such that

'CS‘_<~C
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T (1+ geg)rT(q,q)maX'l' 1 M, " (v- 1){149_@?3 By the assumption of the
m, Tdee e’ m@-9as/ b

Proposition 4.2 for that T there exist corresponding U2 = (g°(T),qs) and Q, (U2).
Now let us take the subset U2 = @O(T),qs)i U2 such that for all q,T U2:

8 0,-0s+is(a)<i

b) qT_qS<eq;

=1 .TA s
! I a,f U

d) j.()>e (itisawayspossbleas] ;(as)=(v- s >e,).

Now we will prove that if for all g, U2 and some t3 T+1 j _,(a,)>e,, then
there exist well-defined functions q,(g,) and s(g,) such that vy, =q,-q,, is
determined by (20) and 5(0,) >s_,(% - €)>0.

At firss we prove the existence of q,q,) showing that

vh,(010)0)° 35..0) +ac.0) if § 40,)2 0 and g, <, +e,:

(t 14 )' FE R t(qt-l’a)"'j t-1" Vqt-13 V(ht( t-1’a)' Qt-l):

2h 0, ,.q)ma, ,.q }+h(q,qt.1)n(q,qt.l)_

i tmig,.,.q )+ ma.q,.,) az”
o mm-a.f-G-ajaa) | iTmmfa-aof - G- a)raa)
g, .a)+ ma.q.,) g, 1.0 )+ ma.q,.) ’

thus there exist q,(g,) and s(q,) suchthat y, =q, - q,_, is determined by (20).

Using the fact that for t =T +1 | t_1( 1) >e, we can solve (20) w.r.t. vy, %

é 4avK u
y=doig s 1+M(gtl+g(u)(qtl 0o )i 1)
2vK t@ tth g

® Another solution is always negative and doesn't satisfy d, >0,
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It can be shown that the expression under the square root above is positive and,

therefore, y, isuniquely defined by (21).
Now we will show that s >s. (— - e) Using the well-known inequality that for

al x>0 v1+x<1+1x weget:

é 2 K u
Y R )

Mgy o o- 0)< "8 g b <ces,

tFtJ t-1 - - ) Trnmel

and, therefore, 5 =25.,- ¥, >25,- e5,=5,(2-€).

Now we will provethat $T, >T, $U; = @2(rs)as)i U2 and $Q;, such that for
al t=T+1...T;- Landforal q,f US §>(-e)s,. j.,>e and] Ts_l( NE

Suppose not, then for all t3 T +1 and for all q,T U j _,(q,)>e,. But in this
cae we have an induction: for al t:*T+1 $q,@,)1 (0..@.)q) ad
$s(a,)>(2- e)s.,(0,)>0. Letfixany g,7 U2 and consider the following sequences
of numbers: {q,}/,,, and {s}_,.,. The former increases and is bounded, so

$limq, =q, £q . Thelater also increases and $lims = +¥ as

§>(2-e)s, > (- £o)g, =+ beal

But if wetake alimit of j , , we get a contradiction:

“mjt_ ((V 1):]tl dst) (V 1):]¥'El“m§1 -F,

t® ¥ t® ¥

asj,,>e foral t3T+1.

So, it must be the case that $Tg>T, $U; :(qf,qs) and $Q;_ such that for all

t=T+1...T;- 1andfordl g, 1 U7 § >(1-e)s,>0,,,>€ and] Ts_l( f):e1

Now we will prove by induction that for all t3 T, $US=(gS(t)gs)i U2, and

$Q EQ,, suwch tha j,la°(t)=e and s(a)>(:-e)s, (@) for al g1 U,

Suppose thet for some t3 T, $US=(gS(t)as)i US and $Q, such that for al
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t =T+1..t-1 and for al q,7U° j,,@)>e, s@)>@-e)s.@)>0 ad
i 050)=e,. 1timplies that
(v- 205 0)- $@°0)= s+ v Hv-D- @ea- ¥)=(v- oy goi+wy =
=e +wy, <jes+vedg,, =jes+ved((v- b, .,)=Fes+ved(v- 1., <
<%es+ved(v' 1ﬁ<%es+%es:es-
So, St( 1S)>(V' 1ht( 18)' €
Summing up the indifference equation (3) inaform d(g, - q,_,)=§_,- d§ from

t=2tot =t wegetd(g,-q,)=Q,_,5.-da 5 =(s-s)+@-d)d, s or

s S8 - s =1e, +%(Sl- d)&'_s-s)=
T
=%eq +3@-d)4 s +@-d)4 s -s)<
<le, +3B- d)T- 1) maxfsups}+ (- A1, (8- ) ) s«
<%eq +i(%eq +(1 d)Sé.tt: ¥(di e)('t - Sl):%eq +dia1-é-'de))-1 - 1% <
. -1
<3 3% +1ddedegt 1:% +1-ge-}de((v_ 1ht-1'] t-1 <%eq +(31/i—_em<
_ _ d
-1 -1 a
<%eq +%%—?:%eq +€_‘£VV_ 1 :%eq +\]/_d__eg"<%eq +%eq =&-

So, q,- gs <e, foral g, 1 US.
Finally, let us consider j (a2(t)):
i 0°0)= (v- 20.020)- +s0°0)= @ea+ vv- D- 3onr- %)=
=)t v 1+3)- St <e +deg,,(v- 1+4)- 3g,(L- d)<

<e +(dve- (1- d))ig,,<e +(dvEe - (1- d))ig,, =6,

0 (a2(t))<e,. Ontheother hand j ,(gs)=(v- 1 >e and j (g,) is continuous, so

$q.°(t+1)1 US =(05(t).s) suchthat j (g2 (t +1))=e,, that ends the induction.

But if j (05t +1)=e, then we have s,,00°(t+1)>(v- 1., +1)- e5 as
was shown above, and let ustake US, = (qS(t +1)qs)1 US sothat q,,, - qs <e, for all

q,1 US,, that endsthe proof. !
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Proof of Proposition 4.3.

In all previous analysis we were considering g, as a function of q,, q, :qt( l). Now
we will consider g, as a function of q,_, and g¢,,, q,=9,0.,9.,), where
9..=9.,0,) andq, ,=q, ,(@,). We define the following limit function:

410,60 = lima, (. 6. (22)
In the same spirit as before we introduce functions 9160@0):@160,@0)- qu,
é160@0):@0 i 9160@0)’ glﬁo’go):dlélﬁo’go)’ jAoﬁo,Q0)=(v- 1)1Ao - Go-

Taking the limit (22) explicitly’® yields that the limit actualy exists for all
q,1 hsa e) and §,1 (e,vhﬁo,a)- q, - e) where e>0 is an arbitrarily small
number. Convergence is uniform, hence dlﬁo,go) is continuous and it follows that

1) ):: R cio,?fe<g0:€(v:1)io S

qu(qo,go):vh(qo,ql)zq0 +§,.if (v- 1, £, <vh(qo,q)- 0o - ©
Then we define dlﬁo,go) on a boundary where g, =0, g, :vhho,a)- qA0 or do =q
by taking corresponding limits of the function q]ﬁo,go) when e ® +0, that yields
d160,0)=cf0, dlﬁo,vh@),a)- qu)za and dl(a,éo)=6“-

Finally we define dt+1ﬁo,go) for al t>1 as follows. If for some g1 hsa]
g,1 [O,VquAO] and for all t =0,...,t there exist functions g, ﬁo,go) and g, ﬁo,go) such
that O£ g, £vh6t a) q, and g, ﬁo,go)ﬂ_] then wetakedﬁlﬁo,go):q]@gt).

It can be easly seen that if 0<g, <vhlg.q)-d ad q (4.G,)<q then

quﬁo,go) has the following limit representation'?:

1 This can be done by considering two cases, namely ;3 0and " £0. Theformer yields y, ‘f?f‘ 0
while the later does v,y .,'b ", Thefinal result thenis straightforward.

" The expression g, g,g, ) is defined only if j°, 2 0, i.e., g, £ (v- 1),

20 6 (00,G5)=0. 6 do.Go)= V(G (6.6, }a)- G (:60) O G, [doG,)=q for some t the function
o) +160,g0) is not alimit function any more, but after al derivations have been made those functions will

never be evaluated at such points.
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Qs =1ma b gl 0

The man wuse of that trick is to substitute complex functions

q @ _,(..@..9.))9..(..0@._.9._)) by theirs limit analogs for very large t when

the measure of "low quality goods' becomes negligible compare to the measure of
"high quality goods'. Limit functions dtﬁo,go) would have been exactly the same as

q @ _,(.-@..9.))9..(..@_,.0._,)) if there had been no entry of new sellers™.

Now let usfix g, =q*) and take any g, (0,%2q™). If for some t 3 0 we have
obtained the functions g, (||50,Qo):qAt (g,) and g, Qq“o,go)=gt (d,), and at the same time

O<Qt£vh@ a)th then there exists the next function, namely
G, 1(6) =06 6.6, (6.)) such thet 6., (G,)i i ] for alt 6,1 (0.520).

We will show that $£3 0 and $G1 (0,%:2q%) such that either g.(§)=0, or
6:(6)>vn G (@)a)- 4. 6)
Suppose not, that means that for any t3 0 and any g1 (O,qu(")) $th(@0) and
$4,(G,) such that 0<G, £vh(g,.q)- 4, and q¥ £4, £q. Let fix any g1 (0,%2q")
¥

and get infinite sequences {(it (Q)}t:o and {g,(G)},. The former is weakly increasing
and bounded so $!£@rgdt =q, £q. But this implies that the later has a limit either
limg, =!!@rg{vh(qt,qt+1)- aj=vhld, dy)- dy =(v- 1), >0. Taking a limit of the
indifference equation dg,,, =g, - (qu - th) givesrise to a contradiction:

d(v- 1), =limdg,., =limig, - (.. - d f =limg, = (v- 15,

S0, only two possibilities are left:

8 Casel $f and $g1 (0,%2q") suchthat for all t=1...,f- 1 andal g,1 (0.9)

G, >0, vhlg,,,0)° Aoy +G.., G >0 while vhig, ,(6)a)<d;,(6)+§..(g); ad

3 No entry case is described in Janssen and Roy (1999a).
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b) Case2 $f and $g1 (0,%2q") such that for all t=1,...,f and all g,1 (0,g)
6, >0 and vhig, ,q)° G, +G., while §;(6)=
The detailed proof of the Cases is on request. We prove that in the Case 1
$es >0 such that for any T $>T, $d1(f)T (qs- em,qs) and $Q{(Z) such that

q.0:)=0 and slg;)>es. In other words in this case there exist infinite number

equilibrium sequences such that all goods are traded in the last period.

A

=q;(§). We show that g1 (V (k),a].

(k+1)

In the Case 2 we define g as q
Then we prove that either we have the same result as in the Case 1, or for any e >0
ad g >0 $T ST such  that  for t > T

U/ = Lk +Dastk+)i UM and $Q U such that for al g,T U

ht( 1)' q(k+l)

<e,, 0£5(0,)<e; and s(q.)> (v- 2. la:)- e |

Proof of Theorem 4.1.

Consequently applying Propositions 4.1 and 4.2 we get the following result: for any
;>0 and e, >0 $T, such that for al t3 T, $US=(qS(t).as) and $Q,(US) such
that for any q,T US q,(a,)1 (@s.as+€,) and 5(0°)> (v- 1a,05)- es. Now we can
see that we are under the conditions of Proposition 4.3 if we take g =g, <q . Here

we distinguish three cases.

a) Casel. Forany k=1,...¥ there eX|stsq (k+1) (vq ,q) such that for any e_s>0

and e, >0 $T R such  tha  for  all t > T

q

$Ut(k+1) b (t k+1)C]1(t k+1)]| U ) and $Qt( k”) such that:

<(¥;

for all Q1T Ut(k+1) ht( 1)' q(k+l)

0£5(q,(t.k+1)<e

s (0:(t.k +2))> (v- 1), (. k +12))-
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But in this case we get infinite sequence {q (")}; where q**9 >vq®, that
contradicts with g <q as II(i@n;éq(") =+¥ . SO after some steps k we must meet
either the Case 2 or Case 3.

b) Case 2. There exists q¥) such that there does not exist q*¥i (vd ("),a]. In

accordance with Proposition 4.3 we can make a conclusion: $eg >0 such that for
any T $t>T, $d1(f) and $Q{(qZ) such that qi@):a and st((i)>e_s, In other

words there are infinite number of equilibrium sequences such that all goods are

sold in the last period and the last margina surplus is strictly positive and
separated from zero, st@)>e_S >0.
In this case we can construct infinite number of dynamic equilibria by

concatenating equilibrium sequences, e.g. we take Q, ={g, }\_, and let a dynamic
equilibrium be the following sequence of margina sellers: {C_]t }::1 such that
q. =q, if t £t andq. =q,_, if t >t.

) Case3. Thereexistsq ) suchthat there exists 4 =q .

Note here that ci (1) js determined in terms of the previous point q ) , the measure

function mlg) and parameters g, v and d. In other words

qk) =Wg® mg)av.d), whee WG®,mg)a,v.d) is some operator.

Therefore the case when Md(k),n(q ),q,v,d):a is non-generic. !
Proof of Proposition 4.4.

We begin with solving the system of indifference equations (4) w.r.t. p, :

B - q, (1_ dt-t): P.- qégl_l dt-l),t =1,...t-1. (23)
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We will look for such a sequence of functions {g, ()}, satisfying (4) that g, ,, <q,

foral t =1,...,t- 2. In this case we have g(t):ﬁq&dm, and j%(qs):a.
™t q It

t-1
Substituting this into the first differential of (23) we get 3% (g )= -1 (- a- dt_t).
da, d*L-a-d"')

th (

Hence, we can write qt( 1) and S( 1)aSQt( l)ZQS_ H QS)( s~ C11)"'0( 1° QS)
1

and § (ql):'( )%(QS)( 1” QS)+O(Q1' qs)- Then
o™ G :g di((l : dcittlz)-'-d}l((l 2 3:-3%:(% q1)+0( 17 qs):

d (i aa (Ztt lt)g%l da)( dv t) 1)( s~ th) + (@, - ds)

It follows that if a<1- d then 3&( s)>1. Thus there exists a neighborhood,

1

namely U2, =(q°(t - 1)), such that for all q,T U, q, <q and, therefore, q, ,, <, ,
and § >0. Therefore there exists a sequence of functions {g, (q,)} ; such that all

t=1

conditions to be proved are satisfied except the last one and we only have to show that

it al (0,3(d)) then there exists q,(g,) and U? =(q2(t).qs)1 U2, such that for all

qlT Uto O<qt( 1)' Us <eg dist( 1)'

Given the structure of {g, (q,)}; _, we can write:

Qt(QI) tél Gt (Q1)

t qgdm- g dm
q q

nfa.a,@)- & maa, @)

pt( 1) = pt(ql( 1)’q2( 1) ---- qt( 1)):V

and, consequently,

1 dt 1
aa?dsqt a dsqt avg%dsqr dscha A 4t 1((1 a-d- t%

adtltl dt O

- a =
dt  ZSl-a-d' g

= agtdsqt - dsql
Substituting this into the first differential of (4) yields
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dq, 1-a-d"te k! d 0
= a —_— - 1,
dg, @) atd"? g taz‘ll- a-d' 15

and, therefore,

d
Q; :qs+d_Qt( s)( 1° QS)+O( 1° qs)-
d,

This illlp|ies that there exists a neighborhood Ut0 = hlo(t),qs)T Uﬁl, such that for
al T U0 | tél—t 1. Soth diti g —t £1
g g, >Qgs aslong as a <l. e conaition a
1 t t s g ta:.ll_ -d ta:.ll_ 4t

actually is a sufficient one. Note here that

g ad" <5 ad' _ad gd”: ad _
Sl-a-d Gi1-a-d 1-a-do (1- a- d)1-d)
TS (1-d)
(1- a-d)@1-d)’

t

¥
soif a£(1- d)’ then ag T g <lad a£(1- d) isasufficient condition.
t=1+" -

Then we check whether 5 >0:

1' a- dt-l 1 t-1 t
dss =dsp, - dg, =- T?' pra aq, — )_:dsch'

Q Lo

_ _ t-1 "
Hence, 93 (q)<- 172978 10 404 it follows that 93 (g.)<0 when t>2.
da, d e alg da,

So there exists T, =[1|+1 such that for al t>T, $J=f=§f(t),qsg‘l u° and

$Q*02 such that for all o, T U7 q,(0,) >0, 5(0,)>0. a [4:) = and §(6c) =0

foralt =1,...,t by construction.

Finally we will prove that if t is taken sufficiently large than $e, >0 such that

0<q,(@)- as <&, 2say).
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Let us condsder the ratio & It can be written as

Qt(ql)' Qs .
sla) _ ggsl( )0~ o)+ ol - as) _ at+°£(?}l' q?)o)- 1. Therefore
a()-as G @) - as)+ola,-as) 1-a§ ¢
. €& . s(a) o_,. at _
limg lim —S=—g=lim g1 g T L=+

t®¥é11®q5-0qt(ql)- qSU t® ¥ 1- aat:]_

1-a-d'

Thisimplies that we actually can take any e, >0 such that $T, >'?0 such that for

al t>T, $U?° =(ql°(t),qs) and $Q2t(Ut0) such that 0<q,(q,)- 9s <€, 25(a,). !

Proof of Proposition 4.5.

Suppose we have obtained an equilibrium sequence Q, (U,?l) where U} = @o(k,).as)

such that for al t=1..,kk g ad § can be represented as

d d
Qt ZQS+d_2t( s)( 1° QS)+O( 1° QS)’ and S :ﬁ( s)(ch' QS)+O(Q1' QS) where
1 1
9 (4)<0 and 2 g,) >0, andfor all 0,1 U g, () <al, 6) <0l
dg, da,

We introduce the following new variable:

ds, gslg, (0 ds,
- )= )2 B )>0. 24
1 qul ( S) dql (qs)z dql ( S) ( )

In terms of a,, surplus s, can be represented as s, (a,)=a, (0, - gs)+ ol - as)-
There exists at least one of such a sequence, namely {g,}, where k, =1.

Now we will construct a new equilibrium sequence Q, (le) in the following way.
We will repeat the whole structure of Q, t times. In other words, for al
t=1..t-1 and for al 1=1...k-1 we put O .al)<Oeyq@) if
0,.,0@,)<a,) ad vice versa  Another rule is that for al t =2...t

thl( 1) <q(t -1)k1( 1)-
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Having done this we can see that each of the sequences {g (0, )} "y, ., for al

t =1...,t isan equilibrium sequence Q, . Now we have to find g, (0,) such that
for al t =1,....t d“‘l'l(pk qtk) tkl(ptk e qtk), in other words, the seller of
quality g,, must be indifferent between selling in time period tk, and tk; +1. Loosely
speaking we try to construct a sort of equilibrium sequence of typell using Q, as

single components instead of ¢, .

d(t 1)k, +1
We will show that if a, >d and akla:lﬁ(t—l)w£l then it can be done for

any t andif t>%2 2 then s, ., >0. Applying the same procedure as in the proof of the
Proposition 4.4 we get the following indifference equations:

dt% (- {L- gy )= p - @rdEeh (25)
Taking the first differentials of (25) at g, =qg and using definition of a, (24) we get:

dth( a,dg,, +d Mg, )=-a,da, +dC g,

(t- Dk +1

Using the fact that a, =a, yields (akl- ttk“1)dsqtk —d(t—lv dg, , O

dq 1 a, - d(t-l)k1+1 _
dqt:( s) d 1)ky akl _ d(t-t)k1+1 . Hence, we can write qtkl(ql) and Skl(ql) as,
dq dg
thl( 1)=qs - dqt: ( S)qukl1 (qs)(qs - q1)+0( 1° qs)’ and
da,, dqg,
Skl( 1)=atk1(qtk1 - qS)+0(qtk1 - QS) ak1 dq dq ( s)( 1° q$)+o( 1° q$)- Then
Ky 1

_ & dg g, dal, (\Oday, ] L
qt+1 qtkl _é qu ( s) qu1 ( S)Edch (qs)(qs q1)+0( 1 qs)_

. - d(t L)k +1 1-d“ dq
B gt (a(klkl_ d(t-t-l)kptl)g(ak1 _ ftklt k1+1) qul1 (qs)(qs B q1)+0( 1° qs)'
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day,

ky

It follows that for any t =1,...,t

(0s)? 1 aslong as a, >d ™. Thus there

exists a neighborhood, namely lT‘,il:(qf(th),qs)‘l U? , such that for al q,7 U
O, <ds and, therefore, gy .y < , and §, >0. Therefore there exists a system of
functions {g, (g, )}= which satisfies all the indifference equations (25) such that all

=1

conditions of Qt(le) are satisfied except the last one and now we have to find

qtk1+1( 1)3 thl( 1) such that Stk1+1( 1) >0.

Given the structure of {g, (g, )} we can write:

qtk1+1(Q1) é thl(’ih)
(t,+1) @dm- kg gdm
q t=1 4a

ptk1+1(qk1( Dhe e G (02) G 1)):V

(tk, + Dl .. (0) - kité; ma.a, @) |

and, consequently,

t m
0
dS Po 1 = ag;?tki + 1)dschk1+1 - k1é dschkl ;:
t=1

k1(ak1 _ d(t-l)k1+1)§

tk (t-l)k+l:
d™ @y - dt T

d {t -1k, +1 o)

= gﬂﬁ +1)dschk1+1 - dsclk1

Substituting thisinto the first differential of (25) yields

dg, . a -dtdut go o« t - Dk +1 o)
o +1 (@s)=— T ak g d—(t_l)ﬁ - 17,
da,, altk, +1)a % e

and, therefore,

day . dg
O =0s + d;k;l(qs)*qu: (), - as)+ola, - as)-

This implies that there exists a neighborhood Uy, ., =, (tk, +1),qS)T ug , such

d ak1 (t - Dy +2 o ¥ ak1d (t- 1)k, +1
that g, ., >qs aslongas g o gt an <1. So the condition g o . gt £1

t=1y, ~ t=18y

actualy is a sufficient one. Now we will check whether s, ., > 0:

14 Note that this condition is trivially satisfied for t =1.
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a. - d(t-l)k1+1a3 1 ® ¢ d(t-l)k1+l o o
d =k ¢ - 17+17dq,
S§k1+l d(t- l)k1+l ga.(tk1 +1) éa'kla_. akl _ d t.]_ik1+]_ B B qu1
and, therefore,
dstk1+1 (q )< ) a, - gt ket _ 1 qukl (q )
do, T dERT @ alt+1)gda,
d .
It follows that —a2 (as) <0 when t sia
d ak,

1

Now we will construct the desired equilibrium sequence Q and our objective isto

d {t - 1)k, +1

¥
get Q. such that akmé.—d(mﬁl. We dart from k =1 and Q, =Q,.

t=18
Suppose that a, £d and we cannot take t >1. In this case we take t =1, in other

words we look for g, ., >q, . It follows that

0y, ) k0 -3, +d _akd+(d-a,)
Tdg, 7 alk+d | alk+1d

and g, ., <ds, hence s ,,>0, in some left neighborhood of qs. We take

>0,

Q. ° Q(Qy ), where k, =k +1, as an initial equilibrium sequence and repesat the

described procedure again.

Now we will prove that after some n stepsweget a, >d. To do so we take a

a ne® ¥
lower limit of —L with n® ¥ . Inthiscase k., ® ¥ as k,, =k_+1 and we have:
a,

(;.;e _ ds<,.,+19 (je _ akn } d & 1 (@dakn _ 19+199
TS S S SN (ke R
ne¥ a, n®¥§akn da, ., T nexg ak d - a, +d -

da, 3 “ alk, +1 H
A & é (k, +1)d p
e 01-
1+ d 1%1 a
 [d-a, Ja- a)+aka, a, gk,
= lim 5 v = lim d
ko ® ¥ akn(aknd-ak +d) WO¥ -a,

Suppose a, £d for any n, then
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But thisimplies that Ii®m¥akn =+¥ that contradictswitha, £d.

Hence, there exists some number n such that we get Q, ={g, (@)} " and

a, >d.

¥ (t - 1)k, +1
Then we check whether § %ﬁ)ﬁ £1 or not. If it isthen we are done. In

t=1y

¥ {t - )k, +1
the case § ak—”dd(t—l)m >1 we will show that it is possible to find t, such that in
a - n

t=1 Ay,

equilibrium sequence Q. =Q, (Q, ) weget g, , .. <qs.

Wetaket =1 and if

dq k, +1
d

k

@s)>0 then Q. =Q,(Q,,) and q, ., <gs in some

n

d
neighborhood of qg. If qtk“*1(qs)£0 for some t, then it follows that

k

n

dqtkn+1( )_ a, - gtk 1 & akd (t - 1k, +1 o) & akd (t - Dk, +1
s

——\Ws) = a -17<0 or a <1.
-1k, + - 1)k, + = ! “D)k, +
qun a(tkn +1)j (t-2k 1§t :1a.kn - d(t ko ¥ g t:]_akn - dt Do+

¥ (t - 1)k, +1
On the other hand we have made an assumption that § % >1. Therefore

t=1 Ay

t,-1 (j- 1)k, +1 t, (i- ky+1
there exists t ,, such that 5_ %<1 while § %3 1, and we
S - J -

j=1

havefor Q, =Q, (Q.):

dd s, a -d" T e gl 0 Ak

da, (qs): a(t k. +1)j {ta- kel éjaz-lak" - gU ik 5 ait K +lj

1 @ -dbete g gedldet 60 0
= ¢k ak,Q " - Lt ak, T< <
alt k, +1)g  dte é " g iR " alt k, +1)

=8y a

In other words, g, <, =0 , ,w<qsand s =5, ., >0, and we can continue with

an+1 =Q . (an )



¥ ak d(t-l)km+1

Now we will show that at some stage m we will get a—d(m£1.

t=18

¥ ak d(t-l)km+1

Suppose not, that means that for al m gQ P g >1. Then we can evaluate

t=18

a,  =a,, ., takinginto account that a, >d:

a - d(tn'l)kn+1% n (j'l)kn+1 O
Bung) 2ot gé e (B S CH
L. dag _ d Calt .k, +1)&5a, - d 5 o
Knsg dsnknﬂ( ) a, - d oDk oy aknd(j-l)kn+1 19
dq, S a(t k +1)d(tn-1)kn+1§ja:-1ak j d(j-l)kn+1_ B
_ aft k. +1) at k.
_1+t5-1 akd(j-l)kn+1 akd(tn-l)kn+1 >1+ aknd(‘" 1)k, +1
ja:.lak I: d(j-l)kn+1 B 1+ak I: d(tn-l)kn+1 a, - d(tn-l)kn+1
oty - d(‘"'l)""*l) a, -d
=1+ gt Dkat1 >1+d(tn-1)kn+1 >1.

So, for al large n a, >1>d, and, therefore

tn(ak ) d(tn-l)kn+l) t (1_ d(tn-l)kn+1)+d(tn-1)kn+1
n > n

Kne1 =1+ d(tn-l)kn+l d(tn-l)kn+l >
P P L P B P L e e S
> d(tn-l)kn+1 - d(tn-l)kn+l >d(tn-l)kn+l

(26)

Then, it follows that limt ' 1 because otherwise we would have t /=1 for all

n® ¥
large n and, consequently,
e 01-
1+ d ) 1:1 a 1- 1- a
. a'k . a'k ﬂa‘kn . a.k 1
lim—= = [im d > [im n=—
ne¥ &) k0¥ g+ a ke¥ d d
ak,
and finally,
S (t - )k +1 R t-Dk+1 ¥
Iimé ak,.,d - £Iimé ak,.,d =lim ak,,,d éd(t-l)kn+| —
|®¥t:1akn+| -d n+ ¥ 7 a ., - d 1®¥ a, - d.5
da Ko
_ _ — a _
“iim 2l i M iy G gafim K 2
|® ¥ (akn+| - d)(]_- d n+l) I® ¥ laknﬂ - dj |®¥1_ d o¥a,
ak +
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éé a.k dt 1k, +1
that contradicts with our assumption that for all m g —(t—l)k—+ >1.
-d

t—l

1® ¥
So, limt ;1 1 and there exists a subsequence n suchthat n ® ¥ and t, 3 2
n® ¥
Taking an upper limit along that subsequence yields:
& gk dlUet 0 ey gldead __eeak d 6
limétq —= £I|m9ak+ ad o fimG o 8 gk o
G~ 4 _d(‘l)k atl+ 8 N+ -d=< ne¥ca, -d-2 =
e Ty @ 28, Ap &, 0= 2
&ak .d 0 __ ak.,d _—alt k +1
= lim&—"—x 1k T=lim—"— = lim (“ n )d
n®¥8a n|+1- d 1- d "'HB r]®¥akr1+1- d e akf]+1- d
Using the inequality (26) we get:
¥ gt Vaut 0 __a(tn i +1)j _ a(tn i 1)j
Ilm akn ad (t-ky .+l = lim — £ i . =
|®¥(} " La, -d matl - pey . -d neY 1 d
kn|+1 N +1 dtr'-]_kr' +1_

iy +
- fim 2k 1)d Z_adzﬁ( k, +1tn e =

Ky +2 nn
ne ¥ 1- gt 1k, eyt
ny

—adzllm(( )k +1)d k”'+ad2r!|(gr!ékld( Yo g
t, 32

£ ad? Ii 1k, +1 a4 ad? I|m k,d =ad?lim(x+1)d* =0.
-1)k,

X® ¥

Thus, we have proved the following statement: $m and, therefore $k_ 3 1, such

d(t 1)k, +1
that ak a —(—)—El But thisimplies that for any t:

t -1k, +1
t—l _d

dqtkm+1( )_ ak -d(t k41 & ¢ d(t'l)km+1 o)
S

—\ Teakna - 12<0,and
da, = aft, + TG g TR

Km ..
tl +1 0 1-8.
<0 aslongast>——.

dSkm +1 (
a(tkm +1) 5 ak _

daj,

CERB

s):<' dtlk +1

m

, = _é€l- al
So there exists T,= %uﬂ such  that for al t>
e mu

Sl

v =@, +2)a 21 U and $Q ] ,Q such that for all q,T Uy .,
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thm+1( 1)>qs’ Stkm+1( 1)>O- qt( s):qs and S( S):O for al t =1,...,tk, +1 by

construction.

Finally we will prove that if t is taken sufficiently large than $e, >0 such that

Stkm +1(q1)

. It can be
thm+1( 1)' Qs

Gy 2(01)- Os <€ 25, .(0,). Let us consider the ratio

written as follows:

dSk +1
m _ + -
Skmﬂ( 1) _ dql (qs)( 1 qs) 0( 1 qs) _ a(tkm+1)+o((((ql-) qs)o) )
. _ dq . ot dt-lkm+l ’
G, l( l) 9 dtgll(qs)(ql' qs)+0(q1' qs) 1- aj(mta:-l%_(jh-l)l%ﬂ
Therefore
lima lim Ll(%)ﬁznm aftk, +1) 1=+

t®¥éh®q5-0qtkm+l( 1)‘ dsg . g € DL

- maﬁ(t-—lm

t=1Ay
Thisimplies that we actually can take any e, >0 such that $T, >'?0 such that for
al t>T, $Ut?<m+1:(ql°(tkm+1),qs) and $thm+1(Ut‘ﬂm+l) such that for al q,1 Ug .,

1 1
O<qtkm+1_ qS<egEStkm+1' 1
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