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Abstract

In this paper, | develop an estimator for a semi-parametric logit model based on a kernel-
wieghted average of pairwise conditional logit terms. Then | demonstrate consistency, asymp-

totic normality, and consistent asymptotic covariance matrix estimation for this estimator
using results for sequencesfstatistic.
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1 Introduction

The logit model is one of the most widely used discrete choice models in econometrics for three
main reasons. First, it is easy to estimate due to the functional form of the logistic distribution.
Second, it can be motivated as a model of choice between alternatives with random utilities,
where the randomness comes from independent draws from an Weibull distribution (McFadden
1974, McFadden 1976). Third, it gives rise to a linear log-odds ratio which makes the interpre-
tation of the parameters very simple. In the present paper, | develop a method for estimating a
semi-parametric logit model in which the log-odds ratio is partially linear:

Pr(Y =1|X, 2)
1—Pr(Y = 11X, 2)

In = X'Bo+ g0(2). (1.2)
In this model, the5, parameters retain the same interpretation as in the conventional logit model.
Furthermore, this model could be derived from a random utilities model in which each of the
utilities was partially linear (with the same split between variables) plus a draw from an extreme
value distribution.

The method of estimation which | develop is based on eliminatingi¢h¢ function rather
than on simultaneously estimating it jointly with. The procedure is based on the following
observation. For any arbitrary pair of observatidong) with i # j, the logarithm of the proba-
blllty that ()/’m Y}) = (yi7 y]) given (Y; + Y}) = (yl + yj) and (le Xj? Zia ZJ) = (xiv Lj, Zi, Zj)
is:
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(1.2)

When([go(z;) — go(2;)] is small then the right-hand-side of (1.2) is approximately the same as:

exp((yi — yj) (@i — x;)" Bo] }lyi_yﬂ (1.3)
] : )

0
p (yi,y',ﬁﬁi,x' == {
5T T) = T expl(yn — u) (@ — 4, o

which is familiar as a contribution to the conditional likelihood function used to eliminate fixed-
effects in the fixed-effect panel data logit model (Chamberlain 1980). The estimator | propose
for this semi-parametric logit model is based on maximizing a weighted sum of the logarithms
of these approximate conditional likelihood terms where the average is over all distinct pairs:

—1 n

Bn = argmax (2) an(zi,zg‘) Ny — ;|- [(yz — ) (@i — l'j)/ﬁ

sen \n)
— In {1+ exp[(y; — y;)(z; — x;)'6]}].

Here the{w,(z;, z;)} are based on a symmetric kernel in the difference betweandz; with
a bandwidth parameter which tends to zero as the sample size grows, ianithe parameter
space.

(1.4)



This estimator is designed for the situation in whichis a continuous variable ang(z)
is continuous inz. If Z were discrete then one could modify the basic idea as follows. First,
partition the observations by the value Bf Second, for each member of the partition con-
struct a pseudo-conditional log-likelihood for that group of observations taken jointly rather than
pairwise. Third, sum up these resulting continubutions and maximize the result. Note that this
procedure does not require the use of kernels and hence does not require the choice of a band-
width. In fact, this modified estimator can be viewed simply as a fixed-effects logit estimator
where the groups are indixed by the valueZof

The idea behind this pairwise comparison estimator is not entirely new. Ahn and Powell
(1993) use a similar method for estimating a censored slection model: first, they use non-
parametric regression to estimate the selection variable, and second, they use a weighted pairwise
difference estimator where the weights depend on the difference between the estimated selection
variables. More recently, Honore, Kyriazidou and Udry (1997) have proposed a number of pair-
wise comparison estimators of the Type-3 Tobit model, although these do not involve the use of
kernel methods.

The objective function which | use takes the form ol astatistic which means that rather
than working with standard laws of large numbers and central limit theorems | need to work with
laws of large numbers and central limit theorems for designed/fetatistics. The key result
which | use is a lemma on mean-square convergence of the first two terms in the Hoeffding
decomposition; this is given as Lemma A.1 in Appendix A and is taken from Lemma A.3 of Ahn
and Powell (19933.

The layout of the paper is as follows. Section 2 presents the model and the estimator, and
demonstrates the existence of the estimator. Section 3 proves the weak consistency of the es-
timator and Section 4 establishes its raoasymptotic normality. Section 5 then proves the
consistency of an asymptotic covariance matrix estimator. Section 6 concludes the paper.

10f course, ifZ can take a very large set of discrete values and takes none of them with high probability then on
average one would need many data points to construct this second estimator.

2See also Lemma 2.1 of Lee (1988) and Lemma 3.1 of Powell, Stock and Stoker (1989).
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2 Model and Estimator

This section of the paper deals with the existence of the estimator of the parameters of interest.
To proceed | make a number of assumptions which are given below.

Assumptions

Al.

A2.

A3.

A4.

Semiparametric Logistic Model
{W;}s2, is a sequence of independently identically distributed (iid) sequence random vec-
tors, such thatV; = (Y;, X;, Z;)’ whereY; € {0, 1}, X; € R? andZ; € R* for eachi € N,
In addition, there exist:
(i) a non-stochastic vectgt, € R?; and

(i) a non-stochastic measurable functigjt-) : R* — R;

such that a version of the conditional probability thiat 1 given X and” is:
p(X,Z) = Fy[X'Bo + 90(2)],
whereFy(-) is the logistic function, given by (o) = e*(1 + e*)~.

Bandwidth Sequence: |
There exists a sequence of strictly positive constémt$>° , (the bandwidth sequence).

Kernel Function: |
There exists a bounded, real-valued, measurable funation: R* — R (the kernel func-
tion) such that (u) = K(—u) for all u € R*.

Compact Parameter Space
The parameter spadgis a compact subset & with a non-empty interior, denoted (i)
such that?, € int(B).

Assumption Al is a formal stamement of the semi-parametric logit model which I use in the
paper. It would be possible to weaken this assumption by allowing(tkg 17;)} sequence to
exhibit serial dependence but this would substantially complicate the proofs. Assumptions A2
and A3 specify the basic requirements on the bandwidth sequence and the kernel function which
| use in defining the estimator. Note that sirig€s3) is symmetric in(i, j), the asumption that
the Kernel function is symmetric is in effect made without loss of generality.

Assumption A4 is a technical assumption. | would like to define the estinsatorbe the
value of 5 which maximizes,,(5; W,,) over R?; however,R? is not compact which leads to
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difficulties in ensuring that the estimator exists, is unique, and is measurable. To avoid these
problems | assume that the parameter space is compact with a non-empty interior which contains
0o as stated in Assumption A4. In practice | could weaken this somewhat by using a sequence
{B,}, of nested compact parameter spaces satisfying Assumption A4 and designed so that for
any givenb € R? there exist3i(b) < oo such thab € int(B,) for all n > n(b). The estimator
would be defined for alh but asymptotically the bounds on the parameter space would vanish.
However, in the remainder of the paper | will continue with the assumption of a fixed compact
parameter space.

The objective function is then given by:

—1 n

Qu(B;W,) = (Z) D a3 Wi ;) (2.1)

1<j

whereW, = (W;)iL;, and where) _;"_; denotes the sum over &ll, j) pairs such that < i <
j < n, and where:

Z,— 7,
U3 Y5, X, X;) = 1508) = (Y = Y5)  In K[(Yi = Y)) (X — X;)'8). (2.3)

SinceY can only take the valugsand1 then(Y; — Y;)? = |V; — Y| so that (2.1) is the same as
the objective function as that given in the Introduction.

Theorem 2.1 (Existence).Under Assumptions A1-A4 there exists a mapping:
Bn() : X?:l({ov 1} X RP x Rk) — B
with Borel measurable components such that:

Qn(BaWo);W,) = sup Qn(8; W). (2.4)

BeB

Proof. See Appendix B. O

This theorem only establishes existence of the estimator; it does not indicate the best way to
compute the estimator. If the kernel were non-negative everywhere then the objective function
would be globally concave (from the concavity of the logarithm of the logistic cdf). If in addition
the parameter space was convex one could simply pick an arbitrary starting value and use any
standard derivative-based algorithm in order to reach the global maximum. However, as | will
show subsequently, in order to establish asyptotic normality vihen3 (or to establish con-
sistent asymptotic covariance matrix estimation when 1) it is necessary to use higher-order

3Assumption A1l is not actually necessary. All that is needed from this assumption for the existéi’;p«'s of
that the sequencfV;}5°, is a sequence of random vectors with the dimensions and event space as given by the
assumption; the iid aspect is not required.
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kernels which are negative over some ranges. In such situations it is not obvious how best to
proceed when implementing this estimator.



3 Consistency

In this section, | demonstrate that the consistency of the estimatof 3 defined in Section 2
under the assumptions made in Section 2 supplemented by a set of additional assumptions.

Assumptions

B1. Bandwidth Sequence: I
The sequencé~y, }°°, specified in Assumption A2 satisfies the following additional re-

guirements:
@) lim, o v, = 0; and
(i) lim, _oo(ny¥)"t =0,

B2. Kernel Function: Il
The functionK (-) specified in Assumption A3 satisfies the following additional require-

ments:

(i) Jer K(u) du=1;and
(i) Jor K(u)? du = Ly < oo.

B3. Conditional PDF ofZ GivenX: |
There exists a versiofy x (z|z) of the conditional pdf ofZ given X such that:

(i) there existsl, < co such thatfy x(z|z) < L, for all = € R* andz € R;
(i) fzx(z|x) is continuous inz, z) for all = € R* andz € R?; and
(i) fzx(z|z) > O0forall z € R* andz € R?.

B4. Semiparametric Component: |
The functiong,(z) specified in Assumption A1 is continuous for alE R*.

B5. Moments ofX: |

(i) There existd.; < oo such thate{||X;||*} < Ls; and
(i) for any fixed¢ € R?, such that # 0, and any scalar constantPr(¢'X; = ¢) = 0.



All of these assumptions are fairly straightforward. Assumption Bl states that the bandwidth
sequence, tends ta) but not too rapidly; in particular, the higher the dimensiotZdhe slower

the rate of convergence must be. Thi is closely related to the standard curse of dimensionality
issue in kernel-based non-parametric estimation. Assumption B2 states that the kernel fucntion
should be normalized to integrate taand should be square integrable. It seems unlikely that
these two assumptions can be weakened.

Assumption B3 is in many respects the strongest and least justifiable of the assumptions
made here: it imposes boundedness, continuity, and strict positivity everwhere of a version of
the conditional pdf ofZ given X. It seems highly plausible that all of its requirements can be
weakened to some extent. Assumption B4 ensures that for any spegiffed is close toz*
theng(z*) is close tog(z); in effect, this motivates the use of the kernel method in this context
as discussed in the Introduction. However, imposing this assumptions only makes sénse if
is continuous. IfZ had a discrete distribution then, as discussed in the Introduction, we could
construct an estimator @f which did not require the use of kernels at all. Nevertheless, even if
one retains Assumption B3 it may still be possible to weaken Assumption B4 to some extent to
allow for discontinuities. For example, one might require that the set of discontinuity points of
go(Z) is finite. The argument here would be that discontinuitieg,(t¥) only matter for pairs
(Zi, Z;) such thatZ;, and Z; are both close together and close to a discontinuity point. As the
sample size grows while the bandwidth shrinks the combined influence of such pairs may wash
out as being asymptotically irrelevant.

Assumption B5 guarantees the existence of the covariance matri afid also ensures
that X does not with positive probability satisfy any linear restriction. This is important for
ensuring global identifiction, though it may well be possible to weaken to simply requiring that
the variance matrix ok is finite and non-singular.

In what follows, | will typically suppress the explicit dependence&Xfon WV, and simply
write Q,,(3) in place ofQ,,(5; W,). The first step in the proof of consistency is to establish that
the expectation of),,(3) converges to a non-stochastic functig(5).

Lemma 3.1. Under Assumptions A1-A4 and B1-B5:
Eo[@n(B)] — Qo(B) (3.1)

asn — oo, Where
Qo(B) = Eo {p(X1, Z2)p(Xs, Zs) f71x (2| X1) In Fp[ (X1 — X5) ]

3.2
+ D(X1, Zo)p(Xa, Z) f21x(Z| X1) In Fo[— (X1 — Xo)' 8]}, (3.2

wherep(z, z) = 1 — p(z, z).
Proof. See Appendix B. ]

Next | establish thaf),, () minus its expectation converges pointwise in probability to zero.



Lemma 3.2. Under Assumptions A1-A4 and B1-B5:

asn — oo.
Proof. See Appendix B. O

Then | extend this pointwise convergence in probability to uniform convergence in probabil-
ity on the compact seb.

Lemma 3.3. Under Assumptions A1-A4 and B1-B5:

sup |Qn(B) — Eol@n(B)]] = 0, (3.4)
seB

asn — o0.

Proof. See Appendix B. l

Finally | establish that the functio,(3) has a unique global maximum dhat 5 = (3.

Lemma 3.4. Under Assumptions A1-A4 and B1-B5:

Qo(B) < Qo) Vi eRP (3.5)
with equality if and only if3 = (.
Proof. See Appendix B. [

These four lemmas taken jointly then establish the consistency of the estifpasdesired
by the following theorem.

Theorem 3.1 (Consistency).Under Assumptions A1-A4 and B1-B5:
Bn i) 607
asn — oQ.

Proof. Theorem 2.1 and Lemmas 3.3 and 3.4 imply that the conditions of Theorem 4.1.1 of
Amemiya (1985) are satisifed from which the result follows immediately. l
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It may be possible to strengthen this result somewhat. First, it may be possible to drop
Assumption A4, namely the compactness of the parameter space. The main role which this
plays, apart from ensuring existence, lies in the proof of Lemma 3.3, i.e. the proof of the uni-
form convergence in probability @, (5) to Ey[Q,.(5)] over the parameter space. If one could
demonstrate that the probability that the unrestricted argméx,0f) belongs toB tended tol
then weak consistency of the unrestricted argmax would be easy to establish (provided that one
handled issues of existence carefully). This in turn would be straightforward to establish if the
objective function was almost surely globally concave, but as noted in Section 2 to ensure this
would require that the kernel function was non-negative which has implications about the maxi-
mum values of: at which one can etablish asymptotic normality of the estimator and consistent
asymptotic covariance matrix estimation. Second, it may be possible to establish almost sure
consistency. This would require considerable modification to the method of proof used in this
paper which is based on a stochastic expansion which converges in mean square (as given by
Lemma A.1). Third, as noted earlier, it may be possible to prove Theorem 3.1 under weakened
versions of Assumptions B3-B5.
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4 Root-n Asympototic Normality

In this section of the paper | demonstrate the asymptotic normalify;.oAs previously, | need
to make some additional assumptions in order to establish the desired result.

Assumptions

C1.

C2.

C3.

C4.

C5.

Bandwidth Sequence:
There exists a strictly positive integéfk) such that the sequende,, }°°; specified in
Assumptions A2 and B1 satisfies the following additional requirement that:

lim n!'/2~1k) =0,

n—oo

Kernel Function: 11I
The functionK (-) specified in Assumptions A3 and B2 satisfies the following additional
requirements:

(i) There existsL, < oo such thatf, |[u["® - |K(u)| du < L4; and
(i) Jpr v’ K(u)du=0foralls=1,... tk)—1.

Conditional PDF ofZ GivenX: Il
The versionfy x (z|x) of the conditional pdf ofZ given X specified in Assumption B3
satisfies the following additional requirement: there exists< oo such that:

|2zt |
0z
forall z € RF, x e RP ands = 1,... ,t(k).

Semiparametric Component: Il
The functiong,(z) specified in Assumptions Al and B4 in addition satisfies the following
additional requirement: there exigts < oo such that:

D*go(2)
0z%

‘§L57

forall - € R*ands = 1,... , (k).

Moments ofX: Il
There existd.; < oo such thatt{|| X;||*} < L, forall i € N.

12



Again all of these assumptions are fairly straightforward. Their main function is to ensure that the
limiting normal distribution has a mean of zero as demostrated below in Lemma 4.3. In the proof
of this Lemma | take a Taylor Series expansiorFdQ),,/d/] to ordert(k) — 1 and show that

the leading terms are all equal to zero and that the remainder term is ofo@yé(é)r). It follows
thatn!'/2E[0Q,, /0] is of ordero[n'/2~4"] which by Assumption C1 tends to zero. The other
assumptions are necessary in order to ensure that a Taylor series expansion of this order can be
taken and to guarantee behaviour as described above of the terms in the expansion. If | weakened
Assumption C1 so thdim,, .., nfyff(k) = ¢o for somel < ¢y < oo then | would obtain asymp-

totic normality with a non-zero mean. Note that Assumption C1 (or this weaker assumption)
combined with Assumption B1 implies thétt) > /2. This follows because by Assumptions

B1(ii) and C1 thenim,, ., yff(k)"“ = 0 which is only consistent withim,, .., v, = 0, from
Assumptions B1(i), provided that(k) — k& > 0.

A similar set of assumptions is used in the standard proof of asymptotic normality of the
kernel regression estimator in order to establish a similar result. Nevertheless there are some
differences between the kernel regression framework and the semi-parametric logit framework
considered here. The most important points to note are as follows. First, | demostraté root-
asymptotic normality provided thatk) > k/2, whereas in the kernel regression context the
larger the value of the equivalent t(%) the faster is the rate of convergence of the estimator
though it never gets t&v!/2. Second, in my framework asymptotic normality only holds if
t(k) > k/2 while no such rquirement is necessary in the kernel regression framework.

Note that Assumption C2 requires thatif> 4 thent(k) > 2 so that [, uv/K (u)du = 0
which implies that/{(-) must be negative for some valueswin view of the requirement that
ka K(u)du = 1 by Assumption B2. As pointed out in Section 3 it is not then possible to
ensure that the objective function will be globally concave. In contrast,<f 3 then one can
use a kernel which ensures that the objective function will be globally concave and still ensure
asymptotic normality.

Assumptions C3 and C4 can probably be weakened somewhat so that although derivatives
to the relevant order do exist they need not be uniformly bounded by a constant but instead
are bounded by suitable functions (@, X'). However, such a weakening of these asumptions
would certainly require a corresponding strengthening of the assumptions about the existence of
moments ofX and~.

The proof of asympototic normality follows a fairly standard line of argument and hinges on
a first-order condition expansion given by the following lemma.

4Yatchew (1997) has proposed an ingenious method of estimation for a partially linear regression model. In the
simplest version the non-parametric component only depends on a scalar varatdeYatchew’s procedure is as
follows. First, re-order the data points by their valuesZof Second, run a regression in first differences of this
re-ordered data. Yatchew also shows how to extend this procedure to a nearest neighbour differencing method when
the non-parametric component depends on a vector variable. Interestingly, the maximal dimension of this vector
variable is3.

13



Lemma 4.1. Under Assumptions A1-A4 and B1-B5:

Y [aQn Qs

a5 |. | T | 9pap

] [n'?(B — Bo)] = o0,(1), (4.1)
Bo B,
for someg; belonging to the line segmentjoinir;fg and 3.

Proof. See Appendix B. [

| then show that'/?[(0Q,,/013); 3 = 3] converges to a multivariate normal with mean zero.
| do this by first, showing that!/?[0Q,, /0] can be stochastically expanded in a fashion which
will permit application of a central limit theorem (CLT).

Lemma 4.2. Under Assumptions A1-A4 and B1-B5:

/2 [8(% . = Y% (By) + %; [75,(Bo) —r5(Bo) | + o0p(1), (4.2)
where
r(B) = Eolra;(8);] = Eo[r.(8)], (4.3)
rni(B) = Eo[rni(B) Wi, (4.4)
_ OGn,ij ok Zi — Zj al;}
mlf) = { 86]] = K( - ) [aﬁ] 9
Proof. See Appendix B. ]

To ensure that'/2[(0Q,,/03); 3 = ] converges to a multivariate normal with mean zero |
need to ensure that/?r¢(3,) converges to zero.

Lemma 4.3. Under Assumptions A1-A4, B1-B5 and C1-C5:
n'?r¢(By) — 0. (4.6)

Proof. See Appendix B. [

Then | need to apply a CLT to the triangular arrpy ;(3) — r5(5) }, indexed byn =
1,2... ,candi =1,2,...n.

SStrictly speaking3; is different for each row in the second derivative matrix.
14



Lemma 4.4. Under Assumptions A1-A4, B1-B5 and C1-C5:

1 n
772 @ —ri®)] = N Al (4.7)
=1
whereA; is a finite symmetric positive definite matrix given by:
Ay = Vo [Eo {[Yarn (Wi, Wy) — (1 = Ya)pa (Wi, Wy)] (A4 X) | Wil (4.8)
and:
(Wi, Wy) = Fo[—(A5X) B DX, Zi) f21x (Zi] X;) (4.9)
pe(Wi, Wi) = Fo[(A5X) Bo] p(X;, Zi) f21x (Zi] X;). (4.10)
Proof. See Appendix B. ]

These three lemmas then imply that:

oQ
_ 12 n
e

] L. N[0,44,], (4.11)
Bo

which takes care of the first term on the right-hand-side of (B.22).

The second stage of the proof consists of establishing[#Ré&t,/0503'; 5] converges in
probability to a non-singular matrix. | start by establishing that the expectatioi@f, /0503'; )
converges to a hon-singular matrix.

Lemma 4.5. Under Assumptions A1-A4, B1-B5 and C1-C5:

Ey [g;gg, . — A, (4.12)
where:

Ay = B {p(Xi, Z))P(X;, Z;) f21x (23| X:) (A X) (A X') } (4.13)
Proof. See Appendix B. l

Next | establish thap*Q,,/059'] converges pointwise in probability.
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Lemma 4.6. Under Assumptions A1-A4, B1-B5 and C1-C5:
82Qn aQQn p
—E 4.14
]~ B || o (4.14)
for eachp € B.

Proof. See Appendix B. Wl

Last | show that the difference betwegQ,,/0893; 3;] and [02Q,,/0303'; 3] converges in
probability to zero.

Lemma 4.7. Under Assumptions A1-A4, B1-B5 and C1-C5:

[ a.
x| (2505

Proof. See Appendix B. ]

0°Qn
0B0p

] 250, (4.15)
Bo

These second three lemmas taken together then implyahat, /0503'; 3] converges in
probability to the non-singular matrit, defined by (4.13). Combined with the asymptotic nor-
mality of n'/2[(0Q,,/03); 3 = 3] together with the result that (B.21) holds with probability
tending to one and hence (B.22) holds with probability tending to one, | can then establish the
following theorem.

Theorem 4.1. Under Assumptions A1-A4, B1-B5 and C1-C5:
(B, = o) = N[0,44;" 41457, (4.16)
whereA; and A, are defined in (4.8) and (4.13) respectively.

Proof. Follows immediately from Theorems 2.1 and 3.1, and Lemmas 4.1-4.7. O]

This estimator is only the simplest of a collection of possible estimators based on the elimi-
nation of approximate fixed effects. Thus one could take each triplet of data pidintd’;, W)
and compute a conditional likelihood contribution for this triplet. These contributions could then
be averaged with weights that depend on the distances befyegnandZ;, and would thus be
generalizations of the kernel-based weights in the pairwise comparison estimator. It seems plau-
sible that such an estimator would be asymptotically more efficient than the pairwise comparison
estimator discussed in the present paper. A somewhat similar issue arises in the differencing

16



estimator of the partially linear regression model proposed by Yatchew (1997) and discussed in
footnote 4 above. Yatchew shows that asymptotic efficiency of the simple differencing estimator
can be improved upon by using more complex differencing transformations; indeed, it is possi-
ble to construct a differencing based estimator whose asymptotic covariance matrix is arbitrarily
close to the semi-parametric efficiency bound. In the present context a natural counterpart to
a more complex difference transformation is a conditional likelihood contribution for than two
data points. However, formulating an appropriate weighting scheme and analyzing the properties
of such an estimator remains a topic for research.
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5 Asympototic Covariance Matrix Estimation

As in the earlier sections of the paper, in order to proved the desired result, namely the consis-
tency of a particular estimator of the asymptotic covariance matrik, dheed to strengthen the
assumptions made previously.

Assumptions

D1. Bandwidth Sequence: IV
The bandwidth sequende,, } specified in Assumptions A2, B1 and C1 satisifes the addi-
tional requirement that, satisfiedim,, .., (ny?*)~! = 0.

When combined with Assumptions A2, B1 and C1, Assumption D1 implieg that> £ which
then implies that Assumptions C2—C4 become much stronger. In particutar; i then As-
sumption C2 implies that the kernel function must be negative over some set and thus the objec-
tive function cannot be guaranteed to be globally concave.

So far I have not specified an asymptotic covariance matrix estimator. Theorem 4.1 demon-
strates that the asymptotic covariance matrix,ofs given asy, = 44,14, Ay, This leads to
an obvious strategy for estimating,, namely to construct consistent estlmatﬁr@ andAgm
of A, and A, respectively and then usg, = 4A4;1 A, , A5},

Since®,, () is not a sample average of independent (or even just uncorrelated) terms, and
hence neither i®Q,,(3) /0], | cannot simply use an outer product of the gradient type estimator
of A;. Instead, | propose to use the following estimatoref

n

Al,n = n_lzfn,i(ﬁn)Fn,i<Bn)/7 (51)
=1
where
fn,z(Bn = ’I’L - ]- IZ - 7,] Tnzy ﬁn) (52)

in which ¢;; equalsl if i = j and0 otherwise. The motivation behind this is that is the
limiting covariance matrix ofy, ;(5) = Eolrs.i;(80)|W:] by Lemmma 4.4. Heuristically, | am

then estimating the individuaf; ;(5,) by their sample equivalents, ;(3,) and then using the
outer product of the,, ;(3,) to estimated,. Note that:

) = (3) Tl = | 2
— n,t n - 2 n,t) n - 858/3/ Bn

i<j

] , (5.3)

which will equal zero with probability tending to one as shown in the proof of Lemma 4.1.
Hence there is no need asymptotically to recenterrthés,,) when constructing their sample
covariance matrix.

18



A little manipulation reveals that:

Ay = All,n + Al?,n (5.4)
where
All,n = n - 1 Z Tn 7,] rn zy )/ (55)
i#j
12112,11 = n - 1 Z Tn Z_] 7nn zl )/ (56)
i#j#l

| then handle these two terms separately. First, | shovwfth;l@,; converges in probability to zero.

Lemma 5.1. Under Assumptions A1-A4, B1-B5, C1-C5, and D1 :
All,n 0. (5.7)

Proof. See Appendix B. [

Second, | show tha/ﬁm,n converges in probability tel;. As in previous proofs of consistency |
do this in three steps.

Lemma 5.2. Under Assumptions A1-A4, B1-B5, C1-C5, and D1 :

n

n—-1)7? Z Tn,ij (B0)7n,ik(Bo)’

itk

E() = Al,n — Al. (58)

Proof. See Appendix B. Wl

Lemma 5.3. Under Assumptions A1-A4, B1-B5, C1-C5, and D1 :

[n_l(”— 1)~ Z T (Bo)Tnik(Bo) | — Arn 5 0. (5.9)
i#j#k
Proof. See Appendix B. ]
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The main role which Assumption D1 plays is to ensure the validity of Lemma 5.3. The reason
why such a strengthening of the earlier assumptions is needed is that to prove Lemma 5.3 | pro-
ceed by proving mean-suare convergence. The squares of terms of the 10150 )] [7n.ix (50) €2]
involve multiplicative factors of;,**. Transforming the variables in a suitable fashion eliminates
a factor ofy 2 leaving multiplicative factors of ;2. Lemma A.1 requires that the expectations
of these squares are of ord€rn) in order to ensure mean-square convergence. Thus | require
thatv;,2* = o(n) which is equivalent to Assumption D1.

Lemma 5.4. Under Assumptions A1-A4, B1-B5, C1-C5, and D1 :

A12,n - [n_l(n— 1)_2 Z Tn,z‘j(ﬂ(J)Tn,ik(ﬁoy 2500 (5.10)
i#jk

Proof. See Appendix B. l

The obvious estimator od, is simply:

A [ 82Qn

b = | 5505 5] (5.11)

This is easily shown to be consistent.

Lemma 5.5. Under Assumptions A1-A4, B1-B5, C1-C5, and D1 :
Ay 25 A, (5.12)

Proof. See Appendix B. l

The consistency oc_tfl; ;AMAQ ! as an estimator of the asymptotic covariance matris,of
then follows straightforwardly.

Theorem 5.1. Under Assumptions A1-A4, B1-B5, C1-C5,and D1 :

AAGL A, A7 2 4ATTA AT (5.13)

Proof. This follows from Lemmas 5.1-5.5. O]
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This is not the only estimator af, which one can construct in the present context: clearly |
could drop/ln,n and simply usefllgm in place ofAl,n. However, a drawback with this estimator
of Ay, and hence of the resulting estimatorXf, is thatthere is no obvious reason why this
latter estimator would be non-negative definite whereas the estimator examined earlier will be
non-negative definite by construction. Another point to note is that the scaling factansed
in the definition ofA, ,, is somewhat arbitrary: any positive scaling fadion) such that.(n) /n
would give the same probability limit. In particular, a scaling factofof- 1) might be more
appropriaté.

8This is of course a standard problem in asymptotic covariance matrix estimation.
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6 Conclusions

In this paper | have formulated a semi-parametric logit model and developed an estimator of the
parameters of interest based on maximizing a kernel weighted average of pairwise conditional
log-likelihood contributions. | have then demonstrated the consistency and mstmptotic
normality of this estimator together with the consistency of a particualr asymptotic covariance
matrix estimator.

There are several possible directions for future research. First, as noted in several places
in the paper it may well be possible to derive the same results under somewhat weaker condi-
tions. Second, it seems likely that asymptotically more efficient estimators can be constructed
by using an objective function which is a weighted average of triplet comparison or even higher
order comparison conditional likelihood contributions. Third, for low values,dhe number
of variables determining the non-parametric component it may be possible to apply a variant of
Yatchew's differencing estimator for the partially linear regression model. The idea here (for the
case wheré = 1) would be to order the data by the values:aind then construct an objective
functiOon which was just the sum of the conditional log-likelihood contributions from the ob-
servations which are adjacent in the re-ordered data set. Fourth, the method of kernel weighting
applied in this paper uses a pre-specified non-random bandwidth sequence. It would clearly be
desirable to be able to use a data-dependent bandwidth sequence, chosen perhaps by some type
of cross-validation scheme though it is not obvious what how to formulate such a scheme in the
present context.

If Z is a scalar continuous random variable then we can adapt the approach of “Yatchew
(1997)” (Economics Letters) & “Yatchew (1998)” (Journal of Economic Literature) to construct
a simpler though related estimator as follows. First, order the data by increasing vatue of
The costruct the object function using only adjacent pairs of observations in this ordering with
no weights. Establishing the asymptotic properties of this estimator reamins a topic for future
research.

Need to add more here
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A Supplementary Lemmas
In this Appendix, | state a supplementary lemma on sequendésstdtistics which will be used

extensively in the proofs of results of the paper.

Lemma A.1. [from Lemma A.3 of Ahn and Powell (1993); see also Lemma 2.1 of Lee (1988)
and Lemma 3.1 of Powell et al. (1989)]et {v;}°, be a sequence of iid random vectors, and
consider anm-th order vectorU-statistic of the form:

U, = (771)_ Zan(Vim---Vim) (A.2)

where the sum is over thg') combinations ofn distinct elementgi,, ... ,i,} from the set
{1,... ,n} and, without loss of generality, the sequence of functigis;,, ... v;, ) are all taken
to be symmetric in theim arguments. Also define the ‘projection’:

as the sum of the first two terms in the Hoeffding decompositioh) ,ofhere:
Un(vi)) = El{an(viy. .. vi,,) — O} il 0, = Ela,(v;,...v;,)] (A.3)
With these definitions, suppose that the sequence of funétiQtig} satisifes:

El|lan(vs, ... v, )|I?] = o(n), (A.4)

then:
(i) Up = 0, + 0,(1),
(i) Un = U} + 0,(n~12).

Note that there appears to be a misprint in Ahn and Powell (1993) whose statement of this
lemma replaces(n) by O(n) in their equivalent to (A.4).
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B Proofs of Main Results

Proof of Theorem 2.1

It is clear thatQ,,(5; W,,) is continuous i € R? given),,, and measuable with respectitd,
given 3. The desired result then follows by Lemma xxx of Jennrich (1969). O]

Proof of Lemma 3.1

In this and the subsequent proofs it is convenient to define the following notation. First, the
operatorA,;; applied to a variable such as is defined byA;; X = (X; — Xj), and, second,

I3 = RF x R x R? andl’y = R* x R* x R? x RP. Since the{W;} are iid by Assumption Al it
follows that:

Eo[Qn(ﬁ)} = Eo[%,m‘(ﬁ)] = EO[EO{Qn,ij(ﬁ)’(Xi,XpZi,Zj)}]- (B.1)

But;
& Ay Z .
Eolnss (B)|(Xis X3 20 2)] = K(—) B {I5(0)(X0 X, 2. 2)}, (B.2)

n
while:

Eolly;(B)(Xi, Xj, Zi, Z5)] = p(Xi, Zi)p(X;, Z;) In Fo[(Ai; X)' 5]

B . (B.3)
+ P(Xi, Zi)p(X;, Z5) In Fo[=(Ay X)) 6,

from which it follows that:

Eo[Qn(B)]
= Bt (D) 6 20p(08, 2 - 8

n

n

= E; {p(X1, Zs + 7 U0)D(X2, Z2) f21x (Z2 + 7 U|X1) In Fy[( X1 — X2) 0]}
+ B {p(X1, Zo + 1 U)p(X2, Z2) f21x (Z2 + 1 U|X1) In Fy[— (X7 — X5)'8]},  (B.4)

+ Ey {%kK (Zl — ZQ) P(X1, Z1)p(X2, Z2) In Fo[— (X, — X2)'ﬁ]}

by transformation of variables fro(¥,, Z,) to (U, Zy) with U = (Z, — Z5) /7., and where:

Eak [h(Xl, XQ, ZQ, U)] = / h(l’l, To, 29, U)K(U)fx(l’l)fzx(ZQ, (L’Q) du dZQ dl’ldl’g.
Iy
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It is easy to demonstrate thgh Fj(«)| < |a| + In2. Furthermore, sincé < p(x,z) < 1 by
Assumption Al and'zx (z|z) < L, for all (z, z) € R x R* by Assumption B3 it follows that:

Es {||p(X1, Zs + 1U)D(X2, Zs) f21x (Z2 + 1 U|X1) In Fy[(X1 — X5)'4]||}
< LEg {1 X0 — Xof - 8] + In2} < oo (B.5)
Furthermore, it is clear that:
JLIEOP(»% 2o + Y w)P(T2, 22) fz1x (22 + Yulz1) In Fo[ (21 — 22)'B] (B.6)
= p(@1, 22)P(22, 22) fz1x (22]21) In Fy[(21 — 22)' 3],

for all (u, z2, x1,22) € T4, in view of the continuity ofgy(z) and fx(z|x) from Assumptions
B3(ii) and B4. Hence it follows by the dominated convergence theorem that:

dm Eg {p(X1, Zs + 7U)p(Xs, Z3) f21x (Z2 + 7 U| X1) In Fy[(X, — X))}

= E5{p(X1, 22)p(Xa, Z2) f21x (Z2| X1) In Fo[(X1 — X))}
= Eo {p(X1, Z2)p(X2, Z2) f21x (Z2] X1) In Fy[( Xy — X))} . (B.7)

By the same logic it follows that:
nh_{glo E; {p X1, Zy + U)p(X2, Z2) f21x (Z2 + 1 U|X1) In Fo[— (X1 — X2)/5]}
= Fo {ﬁ(Xh Z9)p(Xa, Z2) f21x (Z2| X1) In Fy[— (X — Xz)/ﬁ]} . (B.8)
Combining (B.7) and (B.8) then gives:

T}Lrlgo Eo[Qn(B)] = Qo(B)

= Eo {p(X1, Z2)D(Xa, Zs) f71x (Z2]| X1) In Fy[( X1 — X5)' ]
+ P(X1, Zo)p(Xs, Zs) fz1x (Zo] X1) In Fy|[— (X1 — X2)' 6]} (B.9)

which establishes the desired result. ]

Proof of Lemma 3.2

Now consider:

tnis (B = MK( )
m%K( ) (1%, = X - 18] + 2y (B.10)
A Z
< 2%:2‘%( : ) (1% — Xl 181 + 2P}
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It follows that:
Eo [4n35(8)?] < 29, By { K (u) fz1x (Z2| X1) (|| X1 — Xa|* - 8] + [In2]?) }
= ot { [ i} B (e (210 (1 - P 181+ )}

= 0(7,") = o(n),
(B.11)

sinceny® — oo by Assumption B1(ii). But then it follows by Lemma A.1 that,(3)
Eo[@Qn(5)] + 0,(1) which establishes the desired result.

Il

Proof of Lemma 3.3

To prove uniform convergence in probability I first establish stochastic equicontinuity. Observe
that for anys*, 5** € B:

0u5) = Q) = () Llans) = auis (67 512

(2.2) and (2.3) then imply that:

00 87) ~ (7)) = 2|16 (222
[In Fy[(AyY ) (A X)' 87 — In Fo[(AY) (A5 X) 67 (B.13)

But [dlnFO(a)/da} = [1 — Fo(Oé)] = FQ(—Oz), |F0(—OZ)| <1 andlAi]‘Y| < 1 so that by the
mean value theorem:

In Fo[(A5Y)(AyX) 3] — In Fp[(AyY) (A X)' 87 < (A X) (87— 67)]. (B.14)

Now [(A; X)' (6" = ) < || Xi = X[ - |8 — 5] so that:

B NiZ
Q) - @) = (5) St |x (222) ] - x5
= Hin- 157 =57 (B.15)

Then by the same arguments as used in the proof of Lemma 3.1 to establish (B.5) and (B.9) it
follows that:

K (%) ‘ || X — Xj”} — Eo {||X1 — Xo|| - f21x(Za| X1)} (B.16)

n
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and hence that:
EolHy ] — Eo {|IX1 — Xol| - fax(ZaX1)} < 2L,LY7 < oo, (B.17)

by Assumptions B3(i) and B5(i). But thefl;,, = O,(1) by the Markov inequality since
H,, > 0. ThusQ,(5) satifies the conditions of Theorem 21.20 of Davidson (1994) and hence is
stochastically equicontinuous @h But it is clear from (B.9) thaf),(/3) is a continuous function

of § and hence is uniformly continuous ihe B sinceB is compact. It therefore follows that
the sequencé®),,(5) — Qo(5)}22, is stochastically equicontinuous éghwhich combined with
Lemmas 3.1 and 3.2 implies that:

sup [Qn(8) — Qo(B)] — 0, (B.18)
BeB
by Theorem 21.9 of Davidson (1994). This establishes the desired result. l

Proof of Lemma 3.4

It is easy to show that for eachs, x;, z5) € I's:

p(x1, 29) (e, 29) In Fo[(x1 — x2) 8] + 1, 29)p(a, 22) In Fo[— (21 — 22)' ]

= [p(x1,22)P(22, 22) + D(21, 22)p(22, 22)]_1

x{Fy[(w1 — 22)'Bo] In Fo[(z1 — w2)'B] + F[— (21 — 22)'Bo] In Fo[— (1 — 22)'B]} .
(B.19)

In addition, it is easy to show that:
F()(CY(]) lnFo(Oé) +F0<—Oéo) 11’1F0(-Oé)7 (BZO)

treated as a function ef givenag, achieves a strict maximum at= o, which combined with
(B.9), (B.19) and Asumption B5(ii) implies th&,(/) achieves a strict maximum at = f,,
thus establishing the desired result. l

Proof of Lemma 4.1

First, observe that the objective functi@h (3) is almost surely continuously differentiable to an
arbitrary order with respect t® by inspection of (2.1)—(2.3). This combined with the consistency
of 3, from Theorem 3.1 and the property thite int(B) from Assumption A4 implies that,,

will satisfy the following first-order condition with probability tending to unity:

Pr{n1/2 [%%n Bn] _ 0} L (B.21)
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from which it follows immediately that:

0Qn
1/2
e

] = 0,(1).

B

(B.22)

Taking a first-order Taylor series expansiondf2[(9Q,./98): 3 = [3,] around3 = £, and
substituting this into (B.22) gives the desired result. Note that the valug of different for

each row of the second-derivative matrix.

Proof of Lemma 4.2

Observe thalo@,,/0p] is itself aU-statistic given by:

2] = (3) St

1<j

where,r, ;;(3) is defined in (4.5). This implies that:

2

7 7\?
i (B)1* < 7, 2K (%) ' :

n

ol
op
But differentiatingl;;(3) with respect to3 gives:

7
[85] = Ry [ (Y — Y)) (X — X8 (Y — Y)) (X — X)),

using[d1n Fy(a)/da] = Fy(—a), and(Y; — Y;)? = (Y — Y;). Hence:

2
< X = XG01F < XG0+ 11X

op

sinceFy(—a)? < 1forall « and(Y; — Y;)? < 1, so that:

- Zi— 7.\ ?
s (B < 2K (—) A+ 1%1)

n

SinceK (-) is symmetric from Assumption A2(i) it follows that:

k 2 —k Z’L_Zj 2 9
Eo (4F s (B < 2B | 7" K T X

n
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But now observe that:

~ Zi— 7\ 2
T K (,Y—J> ‘HXiHQ]

9
Z1 — =
= / %:kK< 17 2) N l? - fzx (21, 71) f2(22)dz1dzoday
s

n

= K(u)2 ) ||$1||2 ’ fZ|X(Z2 + Ynulry) fx (21) f2(22)d21dzodiry, (B.29)

s

where we have transformed frofm,, 1, 22) t0 (u1, 21, 22) With u = (21 — 22) /7. But fz)x (22 +
Ynulzy) < Ly < 0o by Assumption B3(ii) and, K (u)® du = Ly < co by Assumption B2(iii)

so that:
v (Zi— 25 5
Yo K v | Xl

< Ly | K(u) - [laa]l? - fx(21) f2(22)dzaduda

T's

Ey

IA

Lo - fz(Zg)dZQ'/ K(u)2du ||(L’1||2f)(<l’1)d$1 = L1L2L3 < 0.
RF RE RP
(B.30)

ThusEq (||7.:;(8)]1?) = O(7,,%) = o(n) and hence by Lemma A.1:

OQn 2 « _
{ 0% ] = EO[Tn,ij(ﬁ)]+EZ{EO[Tn,ij(ﬁﬂwi] — Eo [rn35(8)]} + 0p(n™"7?),
=1
(B.31)
from which the desired result follows immediately. l
Proof of Lemma 4.3
From (4.5) and (B.25) it is clear that:
kg (D2 )
Tnij(B) = 7 K —— ) Fo[—(A5Y) (A5 X) 8] (AyY ) (A X). (B.32)
At this point it is convenient to define:
ANV
0i(B) = 1 "K (7—]> 15(6), (B.33)
(8) = WFy[(AyY) {(A5X) 8+ Asgo(2)}] (B.34)
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whereA;;g0(Z) = go(Z;) — go(Z;). Differentiatingg) ,;(3) with respect to3 gives:

0q° . A7\ [01°
0 = UEL " Y B.35
) = |2] = e (22233, (8.35)
where:
oly; ,
3| = Fo [=(A5Y) {(A5X) B+ Aijgo(2)}] (AyY ) (A X). (B.36)
Now it is straightforward to show that:
oL,
Ey J (Xi, X;,2Z:,Z;) | = 0, (B.37)
aﬁ Bo
which combined with (B.33) implies that:
0 3‘]9”‘]'
E() [Tn,ij(ﬁo)] = E() — = 0, (B38)
aﬁ Bo

and hence that:

7 (60) = Eo [rn(B0) — 7;(Bo)]

_ k %) oly; (98 (B.39)

where from (B.25) and (B.36):
(52) - (52)] = @075+ Bua@)] - Rla,1)@,x78)

op op

(B.40)

But then the expectation of (B.40) conditional @X;, X, Z;, Z;) is;

ol 1%,
{51 (51 )]0

= {Fo[(Ai;X) By + Aijg0(2)] — Fo[(AiX) Bo]} (A X)p(Xi, Zi)p(X;, Z;)
+ {Fo[(AiX) Bo + Ajigo(Z)] — Fol(A;iX) Bol} (Ai; X)p(Xi, Zi)p(X;, Z;)
mo(X;, X, Zi, Zj),

(B.41)
30



which is arbitrarily differentiable in all its arguments, so that:

21— %
7 (Bo) = / MK (%) my (1, Ta, 21, 22) (8.42)
Ty n .
X fx (1) fz,x (22, x2)dz1dzada  ds,

wherem, (1, xa, 21, 22) = mo(21, T2, 21, 22) f7)x (21]|71).

Now consider a Taylor Series expansiomof(x;, x;, z;, z;) in z; aroundz; = z; up to order
t(k), wheret(k) is smallest strictly positive integer such that k/2 as specified in Assumption
C2; this gives:

t(k)
my (i, T}, zi, 2;) Z %x]’ %0 2) o (Ay2)°
s=1
(t(k)+1) *
m, (zi, 5, 2", 25) Az )R+ B.43
+ (t(k) + 1)' O ( ZJZ> 3 ( . )

wheremé .;(2) denotes thath-order derivative ofn, ;;(2;) with respect to; evaluated at; =

andz* = Az + (1 — \)z; for some0 < A < 1, and noting thatn, (z;, z;, 2;, z;) = 0. Further-
more, all finite order derivatives af,(«) with respect ton are uniformly bounded and thus
Assumptions C4 and C3 imply that for eagh= 1, ...  t(k), ngs)(xi,xj,zi, z;)|| is bounded
above by a linear function dffz; — z;|| for all (z;, z;). Butthenfors =1,... ,t(k) — 1:

ANDY- s <
/ Y K< ;2 ) ()($1>$2,Z2,22) (A12Z> fX(ajl)fZ,X(Z%x?)dzldzédxldl?
Iy n

= f'y; / U,SK(’LL)mES) (331, T2, 29, Zg)fx(xl)fzx (2’2, l’g)du dZQdQEldIQ
I

=9, mgs)(xlyf%Z2aZ2)fx($1)fZ,X(2’27$2)d2’2d1'1d$2O/ uw’ K (u)du

I's RFE
p— 07
(B.44)
by Asumption C2(ii). In addition:

JANDY-
/ yng ( 12 ) (Algz)t(k)mgt(k))(xl,l’z,Z*,Zg)fx(xl)fz’)((fc’g,l’g)dzlele’ldl’g
Ty

n

< AR [T K ()] - [mS ) (@, @, 2%, 20) || fx (1) F2.x (22, @) du dadaydizs
Iy
= O('™),
(B.45)
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since [l,, [|ul|"®|K (u)|du < oo by Assumption C2(i), andm| " (a1, 2, 2, 2)|| is uniformly
bounded above by a linear function pf, — z,||. But then (B.42), (B.43), (B.44) and (B.45)

together imply that< (3;) = O(+A") and hence:'/2r< (5,) = O(n'/24i*)) = o(1) by Assump-
tion C1. This establishes the desired result. O

Proof of Lemma 4.4

The approach which | adopt is to show that for each fixed R? with ¢ # 0, the triangular array
{ ¢'[re :(Bo) — 15(Bo)] }, indexed byn = 1,2... 00 andi = 1,2,...n satisifes the conditions
of Liapunov’s CLT in the form given by Theorem 2.4.2 of Bierens (1994). For convenience in
what follows I will setp,,; = ¢' [r< ;(6o) — r&(50)] @ndpn,; = ¢'r< ;(Go).
First, consider the behavior of:

on = 17" Volpni), (B.46)
=1

asn — oo. Clearly, for each fixed:, the {p,;}7_, are iid with mean zero and therefore
on = Vo(pni) = Eo [p2;] = Eo [{¢'5,(60)}?] — [¢'r(530)]>. From Lemma 4.3 it is clear that
limy, o0 [¢'75 (50)]* = 0 @and thusimy, .o 0 = limy,—.oe Eo [{¢'rE;(50)}?] = limy e Eo [p2.]-
Now from (4.3) and (4.5) it follows that:

can- nlfw (552) ()
a5 o).

From (B.25) it follows that:

o [(Z2) 100.,,2)| = Yo X, — X506, Z)(X, — )

— (1 =Y)R[(X; = X;) 8] p(X;, Z;)(X; — X;). (B.48)
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Straightforward manipulations then show that:

u) YiFy {(X; = X0)'B) (X, Z)(X: = X;) | Wi

Eq [v;kK (
= Yi/ K (M) Fo{(z; — X3)' B} p(xj, 2) (Xi — x;)
Rk xRP Tn
X fz1x(2j|z5) fx (w5)dz;d;.
= Yi/ K(u)Fo{(z; — X,)'8} p(x;, Z; — yau)(X; — z;)
Rk xRP
X fz1x(Zi — yulz;) fx () du du;.
= Yi/ Fo{(x; — X3)' B}y b, Zi — ynu) f21x(Zi — yula;)(X; — ;)
Rk xRP

X K(u) fx(z;)du dx;,
(B.49)

while:
Ey [%Z’“K (—Zi i
Tn
= (1-Y) / Fo {(Xi — ;) 8} play, Zi — ) f21x(Zs = ;) (X, — )
RF xRP

X K(u)fx(x;)du dzx;.

) (1= Y0 R {(X, — X,)BY p(X;, Z)(Xi — X,) | W,

(B.50)
But by the mean value theorem and Assumptions C4 and C3:
(5, Zi — ) f21x(Zi — youlzy) — (x5, Zi) f21x (Zilzs))|
b (3{ﬁ(fvj,z)fZ|x(z|:vj>} )H
0z . (B.51)
oHAp(x;, 2) fz1x(z|x;
2=7*

whereZ* = \Z; + (1 — \)(Z; — yau) = Z; — (1 — M)y, u for some0 < A < 1, and wherel/;
is a finite constant. Likewise | obtain:

p(x5, Zi — ) f21x(Zi — yaules) — p(xj, Zi) f21x (Zilzg)| < - Mo - |lull,  (B.52)

where M, is also a finite constant. Sing&;|, |Fy(«)| < 1, taken together these results imply
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that:

hi(B) — {/RWP [YiFo {(z; — Xi)' B} plxj, Zi) — (1 = Vi) Fo {(Xi — ;) B} p(x, Zs)]

Sf21x(Zila) (Xi — 25) K (u) fx () du da; }

)

X RP

(B.53)
and hence:
768 = 76,3)| < m(d + M) { [l |K<u>|du} X0+ B (1IX,D)
= T (Ms + My - || X5])
(B.54)
where:
r64(8) = Eo{[YiFo {—(AyX)'B} p(X;, Zi) — (1 = Vo) Fo {(Ay; X) "B} p(X;, Z)]
X fz1x(Zi X5) (A X)W}
(B.55)
and M5 and M, are finite constants, from which it follows that:
|Pni = ol < Yalldll - (Ms + My~ [|Xil]) = vl (1K), (B.56)
wherep,; = ¢'r§ ;. But then:
[P0l = mha ([1Xil]) < ol < lpol + b (1 XG]]) - (B.57)
But from (B.55) it is clear that:
1pol < ol - (Ms + Mg - || Xq]]) = ha ([|X:]]) (B.58)

where); and)M; are finite constants. Sindé (+), h,(-) are linear functions and sindg, (|| X;||*) <
oo by Asumption C5 and,, — 0 by Assumption A1(i), then (B.57) implies that:

nh_ffolo Eo[ﬂ%m] = T}LYEOEO[PSJ] < o9, (B.59)
lim Eolp,;] = lim Ey[p;,] < oo. (B.60)

Now definew, (W;, W;) andy, (W;, W;) as in (4.9) and (4.10) so that:
poi = Eo {[Yipr (Wi, W) — (1 = Yo o (Wi, W) (A X) ¢ | Wi} (B.61)
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Clearly, from Assumptions Al and B3(iii) it follows thatr{..,(W;, W;) > 0|W;} = 1 for
s = 1,2. But sincePr{(A;; X)'¢ # 0| W;} = 1 from Assumption B5 then:

Vo [poi | (Xis Zi)] > 0, (B.62)

sinceV;[Y; | (X;, Z;)] > 0. This then implies that; (po:) > 0 and hencef[pf ;] > 0. But then
the conditions of Theorem 2.4.2 of Bierens (1994) are satisfied (witl2) giving:

1 <~_. »
i=1

whereo§ = lim,, .o Ey[pg,;]. But sincep # 0 was fixed and arbitrary, then:

1 n
7 2 B = 1G] = N[0, Al (B.64)
=1
where:
Ay = Vo [Bo {[Yin (Wi, Wy) — (1 = Yy pua (Wi, Wy)] (Ay; X) | Wil], (B.65)
which establishes the desired result. O

Proof of Lemma 4.5

Differentiation of(),, with respect tq5 reveals that:

aQ”] - —(">_1 s () (B.66)
where:
—k Az‘jZ 2 ! !
wnij(B) = 1 K (7—) (A5Y) (A XAGX) fol(AyY ) (A X'B)], (B.67)

in which fo(a) = e*(1 + ¢*)~2 is the pdf of the logistic distribution evaluated @t From
the iid property of thelV; it follows that thew, ;;(3) are identically distributed (though not
independently distributed). Hence:

0Qn | B
EO |:6ﬁ8ﬁ’:| — _EO[Wn,z](ﬁ)]

- EO{%;W( (A;'JZ ) (ALY )AL XA X) fo[(Ain)(Ain)’ﬁ]}. (B.68)
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Now define:

ma(B; X, X;, 7, 7;) = Eo {(Ay W) Ay X B(X, X5, Zi, Z;)
= fo[(AmX) ]p(Xu z)ﬁ( )+f0[ (Ai; X)) B1p(Xi, Zi)p(X;, Z;)
)P

= fol(AyX)'B] [p(Xi, Zs ( Z;) + p(Xi, Zi)p(X;, Z;)]
(B.69)

and observe that,(5; X;, X;, Z;, Z;) is clearly continuous in all its arguments and lies in the
rangel0, 1/2]. Then | have that:

Eo [wn,i;(B)] = EO{ K(A Z) mz(ﬁ;XiaXmZinj)}

n

A z /
/ Vn K( 712 )m2(5;$17I272’1,22)(A12$)(A125E)
Iy

n

X fZ,X(Zlywl)fZ,X<22a T2) dzy dzy dzy dxs,

= ma(B; 1, T2, 22 + Ynl, 22) f71x (22 + Ynto]x1)(A122) (Araz’)
Ty

X K(u)fx(x1) fz.x (22, x2) du dzy dxy dzs. (B.70)

Sincefzx (22 + vo,ulz1) is bounded in absolute value < p(z,z) < 1,0 < fy(a) < (1/4) for
all a, andE (|| X;]|?) < oo, it follows by the dominated convergence theorem that:

Eo [wnii(8)] — A5(8) = Eo {ma(8; X1, Xa, Zo, Zo) f21x(Z2| X1) (A1 X ) (A1 X)'} .

(B.71)
Evaluating this at = 3, gives:
{8%%%’] — Ay = Ey {mz(ﬁo; X1, Xa, Za, ZQ)fZ\X<Z2|X1)<A12X)(A12X/)}
= Eo{[p(X1, 21)p(X2, Z2) + (X1, Z1)p(X2, Z2))
X fD[_(A12)X/5]fZ|X(Zz|X1)(A12X)(A12X)/}- (B.72)

Clearly mq(5o; X1, X2, Zs, Z5) is almost surely strictly positive, anfl;x(Z|X,) is almost
surely strictly positive by Assumption B3(iii). In additiof[(A12X)(A12X)’] is non-singular
in view of Assumption B5. Together these imply thét is non-singular which establishes the
desired result. O
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Proof of Lemma 4.6

Observe that (B.67) implies that:

||Wn7z‘j(5)||2 = trwnii(B)wnij(B)']
- AlZ ’ 4 4 / 2
= ok (S22) Ay A X I AlALY (8, X'5)
L (A2
< a2nn (S22) Al ©.73)
since the pdf of the logistic distribution is bounded above bit), (A;;Y)?* is bounded above
by 1, and|| A X[ < (2I|XG]1% + 2/1G]*)* < 8(IXi[|* + [|X5]|*). Hence,

~ A
%%(ﬁﬁwmﬂ7 (6.74)

n

Ey (lwnis (B)I) < ' Eo

using the iid property of thél’; and the symmetry of(-) from Assumptions Al and A3. But
then by parallel arguments to those used in the proof of Lemma 4.2 to establish (B.30) it follows
that:

Az‘jZ

2
Eo |7, K <7—) -||Xi!|4] < L1LyL7 < oo, (B.75)

n

and hence that:

Ey (lloni; (B)]7) = O(3") = o(n). (B.76)

Lemma A.1 then implies that:

Qn 92Q,,
L‘?ﬁgﬁ’} = o {@ﬁgﬁf] + 0p(1) = Eofwnij(B)] + 0,(1), (B.77)
which establishes the desired result. B

Proof of Lemma 4.7

Let &, & be two arbitrary non-stochastip x 1) vectors and consider the behaviour of:

-1 n

@@@z—@)iymwm%%NM@ (8.79)

1<j
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Applying the mean value theorem to each term gives:

a[fiwn,z'j(ﬁ)fz]

9B o
where 3}, is a convex combination of;; and 5, whose coefficients depend on the term in

guestion. Substituting this into (B.78) gives:

& [Wnij (Br) — wnij(Bo)] §2 = < ) (8, — Bo), (B.79)

_l n / .. !
Calbr &) = —(Z) 2 (—8[€1w’52(ﬁ = ) (8, = o), (8.80)
i<j Brvis
and hence:
T 0&} n,ij
Cu(n&)] < (Z) 3 (% )H'Hﬁi—ﬁo!\- (8.81)
i<j Brvis

Now diferentiation of (B.67) reveals that:

[M] _ K(A Z) (AY P (A X) (A XV al(Ay XV 6]

9P Tn
x fo [(AgY) (A5 X)'B), (B.82)
wheref\"(.) denotes the first derivative of the logistic pdf. Hence:
8 'wm‘ _ AzZ
(ZenalDEl) | <ok lie (222) ol -l (B.89

for all 3, which substituted into (B.81) implies that:

Culr, )] < ( )Zv

( )\ 1AL XIP -l - - 185 — ol
1<J

= Hyp - [|60] - (€2l - 1185 — Boll- (B.84)
It is clear that:

YAV
o - o (32)

converges to a finite limit a8 — oo following the same line of argument used in the proof of
Lemma 3.3 to establish (B.17) in view of the finitenes#df| X;||*} implied by Assumption C5.
SinceH, , is non-negative it follows by the Markov inequality thds ,, = O,(1).

Then since3” lies on the line segment joining, and;3, it follows that|| 32 — Go|| < || 5. — ||
and thus that:

(Con(©)] < Hop- 6] - €]l - 180 = Boll = Op(1) x O(1) x O(1) x 0,(1) = 0,(1),

: H%MP} : (B.85)

(B.86)
since¢, = O(1) and¢, = O(1) by assumption and sindgs, — G| = o0,(1) by Theorem 3.1.
This establishes the desired result. O

38



Proof of Lemma 5.1

As in the proof of Lemma 4.7, let;, &, be two arbitrary non-stochast{gp x 1) vectors and
consider the behaviour of:

&11,71(51752) = 5112111@52

n

= 0 (= 1) [rn i (8a) Gl (50) €]

it
= n -1 MK (%> (A;Y)
i#j "
CFo[—(ApY)(Au X ) Ba)? - (A5 X)&] - (A5 X)'&, (B.87)

from which it is clear that:

a6 &) < 07— 1) 3 K (A 2 ) (A,YY
i#j "
Fol[—(AuY ) (AyX) Bal® - 185X N1 - [l - [l

< nln— 1) ZK( ) |AG X2 & -

i#]j
= Hzp- 6]l - 1.

(B.88)

But then (B.30) from the proof of Lemma 4.2, which uses a subset of the assumptions currently
made, implies that:

E()[H?,’n] = (n— 1)_1E0

n

2
7K (—Ajz> ||Ain||2] < (=17 LLeLs,
(B.89)

which tends to zero. Sindés,, is non-negative it follows by the Markov inequality thfd ,, ——

0. But this implies thatas (&1, &)| -~ 0 and hence thatl;;,, —*~ 0 since¢, and¢, were
assumed fixed. This establishes the desired result. O

Proof of Lemma 5.2

Observe that:

Ey|n " (n—1)" Z Tn,ij (B0)Tn zz(ﬁo)] = (Z : i) Ey [Tn,ij(ﬁo)m,ik(ﬂo)’] (B.90)
i#£j#l
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Now note that:
CoVp 1,1 (50): ik (B0)'] = %[Eo{rn,ij(ﬁoﬂm}}, (B.91)

sincelV;, W; andW¥; are iid; hence:

Ey [Tn,z‘j(ﬁo)?”n,z‘k(ﬁo)/] = ‘/E)[EO{Tn,ij(ﬁOMVVi}} + Eo{rn,ij(ﬁo)}Eo{Tn,z'j(ﬁo)}/
= Vo[rsi(Bo)] + r5(Bo)rs(Bo)- (B.92)

Lemma 4.3 implies that¢(5,) converges to zero, and the proof of Lemma 4.4 establishes that
Vo[re :(60)] converges tol;. Since(n —2)/(n — 1) converges to one this establishes the desired
result. O

Proof of Lemma 5.3

First observe that:

'(n—1)" Z Tnii (B)n,a(6) = (Z)_ Z Un,iji(B) (B.93)

EFE 1<g<l

where:

Uniit(B) = Tnii(B)na(B) + 1o (B)rnii (8) + 7 ji(B)rnji(B)
+ Tt (B)rngi(B) + 10 (B)rngg (B) + 1t (B)ra(B) (B.94)

which is clearly symmetric in the indicés, j, (), so that the right-hand-side expression in (B.93)

is a third-order symmetri€/-statistic function to which it is possible to apply Lemma A.1. Fur-
thermore, the six terms in the right-hand-side expression in (B.94) have an exchangeable joint
distribution and hence have identical means and cross-covariances. Thus:

Eo[Unin(B)] = 6Eo[rnij(B)rna(B)],  Vol&tnin(B)&] < 36Vo[&1rnu(B)rnii(8)&],
(B.95)

for any fixed(px 1) vectorsg; andé, and all3. Now consider the behaviour & [{¢]r,,.i;(8) }*{rm.u(8)'& 3] -
Observe that:

(s (DY Erma(BY = 7K (%) K(Ajz) (AyY (ALY
ol (A Y ) (A XY BP Ry (AaY ) (AuX ) BP[(A, X V&M X VST, (B.96)
Now define:
ma(8; X, X5, X, Zi, Z;, 7)) = Eo{ (AyY ) (AnY )2 Fo[—(AyY ) (A X)' B
FO[—(AilY)(AilX)/ﬁ]2|(Xi,Xj,Xl,Zi,Zj,Zl)}, (B.97)
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and observe thah,(-) is continuous in all its arguments and lies in the rajtge]; then:
Eq [{girn,w(ﬁ)}ﬁ{grn a(p )}2}
2
o (22 (22)

Tn Tn
ma(3; Xi, Xj, X0, Zi, Zj, Z0)[(D4; X) &P [(Aa X ) &)
= 7, B { K(U) K (U)ma(B; X, X, X0, Zi, Zi = Uy, Zi — yal0)
f21x(Zi — U1 X5) f21x(Zs — Ul X0) (A5 X) &P [(Aa X)) &)}
< 29, LI EG{ | A X 1P| Aa X P} = o(n),

(B.98)

by Assumptions C5 and D1. But this implies tHaf{{£]¥n.ii1(8)&2}?] = o(n) so that:

n =1 i (B)rnalB) = Eoléitnin(B8)6] + op(1), (B.99)

i#j#l
by application of Lemma A.1, and singg and&; were arbitrary fixed vectors this establishes
the deisred result. l
Proof of Lemma 5.4
Again let¢; andé, be arbitrary fixedp x 1) vectors and consider:
nt(n—1)"? Z ﬂ{?“n,ij (Bn)rnzl(ﬁn), — Tnyj (ﬁ())rn,il<60)/}/§2
i#j#l
S n- TL - 1 Z ‘51{7“71 i ﬁn Tn zl(ﬁn) Tn,ij(ﬁO)rn,il(ﬁO)/}ISZ|- (BlOO)

i#j#
By application of the mean value theorem to each term I have that:

51 {Tn,ij (Bn)rnll(ény — Tnyj (ﬁo)rn,iz(ﬁo)’}/fz
= _{ [wn,ij (ﬁ;zjl>€1] [rn,ij (ﬁ;,ijl)lgﬂ + [wn,il (621]1)52} [Tﬂ,il<ﬁ;ijl)/£1] }(Bn - ﬁo),

(B.101)
whereg;, ., lies on the line segment joining, and,. Hence:
n_l n - 1 Z ‘Sl{rn i Bn Tn zl(ﬂn) rn,ij(ﬂO)rn,il(ﬁO),},gé}
i#J#l
< Hyp - & &l 182 — Boll, (B.102)
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where;:

Hip = n'(n =172 {Hwn,ij(ﬂi,m)H Mg (B i)
o
+ lwn,a (B0l - Hrn,il<ﬁ;§,ijl)H}' (B.103)

But from (B.67) it is clear that:

AN Z
lwnis(DEI < 7" K(T) AuX]2 - el (B.104)
for all 5 while from (4.5) it is clear that:
! — AZZ
rnii (B)€E] < 7, K(v—]> lAGX] (1€ (B.105)

From these it follows that:
i (3l - Nmss Brsa)ll + NG - Irmar(Bs)
N Z NyZ
K(T)HK< - )'-HAUXH-nAﬂXn-(||Ain||+||AuX||)-||51||-||52||.
(B.106)

But then by the same line of arguments as used in the proof of (B.89) from Lemma 5.1 it follows
that the expectation of the right-hand-side is uniformly bounded for afid hence i), (1). But
thenH,,, = O,(1) and thusH,,, - ||&1]| - [|&]] - |8, — Boll = 0,(1) since3, - 3, by Lemma

3.1 and since; and¢, are fixed(p x 1) vectors. In view of (B.100), this establishes that:

< 5, %

n

nt(n—1)"? Z 5{{%,@(@)7%,11(@)/ — T‘n,ij(ﬂo)rn,u(ﬁo)/}/&
i#j#l
which in turn establishes the desired result sificend¢, are arbitrary. O

= 0,(1), (B.107)

Proof of Lemma 5.5

First observe that following exactly the same line of reasoning as used in the proof of Lemma
[ P*Qn

4.7:
| 2*Qu
030F |5 | | 9BOp

since||3, — Bo|| = 0,(1) just as||3: — B|| = 0,(1). The desired result follows immediately from
(B.108) combined with Lemmas 4.5 and 4.6. O

] L (B.108)
Bo
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