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Abstract

In this paper, I develop an estimator for a semi-parametric logit model based on a kernel-
wieghted average of pairwise conditional logit terms. Then I demonstrate consistency, asymp-
totic normality, and consistent asymptotic covariance matrix estimation for this estimator
using results for sequences ofU -statistic.
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1 Introduction

The logit model is one of the most widely used discrete choice models in econometrics for three
main reasons. First, it is easy to estimate due to the functional form of the logistic distribution.
Second, it can be motivated as a model of choice between alternatives with random utilities,
where the randomness comes from independent draws from an Weibull distribution (McFadden
1974, McFadden 1976). Third, it gives rise to a linear log-odds ratio which makes the interpre-
tation of the parameters very simple. In the present paper, I develop a method for estimating a
semi-parametric logit model in which the log-odds ratio is partially linear:

ln
[

Pr(Y = 1|X,Z)
1− Pr(Y = 1|X,Z)

]
= X ′β0 + g0(Z). (1.1)

In this model, theβ0 parameters retain the same interpretation as in the conventional logit model.
Furthermore, this model could be derived from a random utilities model in which each of the
utilities was partially linear (with the same split between variables) plus a draw from an extreme
value distribution.

The method of estimation which I develop is based on eliminating theg0(·) function rather
than on simultaneously estimating it jointly withβ0. The procedure is based on the following
observation. For any arbitrary pair of observations(i, j) with i 6= j, the logarithm of the proba-
bility that (Yi, Yj) = (yi, yj) given (Yi + Yj) = (yi + yj) and(Xi, Xj, Zi, Zj) = (xi, xj, zi, zj)
is:

p∗(yi, yj, xi, xj, zi, zj) =
{

exp[(yi − yj){(xi − xj)′β0 + g0(zi)− g0(zj)}]
1 + exp[(yi − yj){(xi − xj)′β0 + g0(zi)− g0(zj)}]

}|yi−yj |
.

(1.2)

When[g0(zi)− g0(zj)] is small then the right-hand-side of (1.2) is approximately the same as:

p0(yi, yj, xi, xj) =
{

exp[(yi − yj)(xi − xj)′β0]
1 + exp[(yi − yj)(xi − xj)′β0]

}|yi−yj |
, (1.3)

which is familiar as a contribution to the conditional likelihood function used to eliminate fixed-
effects in the fixed-effect panel data logit model (Chamberlain 1980). The estimator I propose
for this semi-parametric logit model is based on maximizing a weighted sum of the logarithms
of these approximate conditional likelihood terms where the average is over all distinct pairs:

β̂n = arg max
β∈B

(
2
n

)−1 n∑
i<j

wn(zi, zj) · |yi − yj| ·
[
(yi − yj)(xi − xj)′β

− ln {1 + exp[(yi − yj)(xi − xj)′β]}
]
.

(1.4)

Here the{wn(zi, zj)} are based on a symmetric kernel in the difference betweenzi andzj with
a bandwidth parameter which tends to zero as the sample size grows, andB is the parameter
space.
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This estimator is designed for the situation in whichZ is a continuous variable andg0(z)
is continuous inz. If Z were discrete then one could modify the basic idea as follows. First,
partition the observations by the value ofZ. Second, for each member of the partition con-
struct a pseudo-conditional log-likelihood for that group of observations taken jointly rather than
pairwise. Third, sum up these resulting continubutions and maximize the result. Note that this
procedure does not require the use of kernels and hence does not require the choice of a band-
width. In fact, this modified estimator can be viewed simply as a fixed-effects logit estimator
where the groups are indixed by the value ofZ.1

The idea behind this pairwise comparison estimator is not entirely new. Ahn and Powell
(1993) use a similar method for estimating a censored slection model: first, they use non-
parametric regression to estimate the selection variable, and second, they use a weighted pairwise
difference estimator where the weights depend on the difference between the estimated selection
variables. More recently, Honore, Kyriazidou and Udry (1997) have proposed a number of pair-
wise comparison estimators of the Type-3 Tobit model, although these do not involve the use of
kernel methods.

The objective function which I use takes the form of aU -statistic which means that rather
than working with standard laws of large numbers and central limit theorems I need to work with
laws of large numbers and central limit theorems for designed forU -statistics. The key result
which I use is a lemma on mean-square convergence of the first two terms in the Hoeffding
decomposition; this is given as Lemma A.1 in Appendix A and is taken from Lemma A.3 of Ahn
and Powell (1993).2

The layout of the paper is as follows. Section 2 presents the model and the estimator, and
demonstrates the existence of the estimator. Section 3 proves the weak consistency of the es-
timator and Section 4 establishes its root-n asymptotic normality. Section 5 then proves the
consistency of an asymptotic covariance matrix estimator. Section 6 concludes the paper.

1Of course, ifZ can take a very large set of discrete values and takes none of them with high probability then on
average one would need many data points to construct this second estimator.

2See also Lemma 2.1 of Lee (1988) and Lemma 3.1 of Powell, Stock and Stoker (1989).
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2 Model and Estimator

This section of the paper deals with the existence of the estimator of the parameters of interest.
To proceed I make a number of assumptions which are given below.

Assumptions

A1. Semiparametric Logistic Model
{Wi}∞i=1 is a sequence of independently identically distributed (iid) sequence random vec-
tors, such thatWi = (Yi, Xi, Zi)′ whereYi ∈ {0, 1},Xi ∈ Rp andZi ∈ Rk for eachi ∈ N.
In addition, there exist:

(i) a non-stochastic vectorβ0 ∈ Rp; and

(ii) a non-stochastic measurable functiong0(·) : Rk → R;

such that a version of the conditional probability thatY = 1 givenX andZ is:

p(X,Z) ≡ F0[X ′β0 + g0(Z)],

whereF0(·) is the logistic function, given byF0(α) = eα(1 + eα)−1.

A2. Bandwidth Sequence: I
There exists a sequence of strictly positive constants{γn}∞n=1 (the bandwidth sequence).

A3. Kernel Function: I
There exists a bounded, real-valued, measurable functionK(·) : Rk → R (the kernel func-
tion) such thatK(u) = K(−u) for all u ∈ Rk.

A4. Compact Parameter Space
The parameter spaceB is a compact subset ofRp with a non-empty interior, denoted int(B)
such thatβ0 ∈ int(B).

Assumption A1 is a formal stamement of the semi-parametric logit model which I use in the
paper. It would be possible to weaken this assumption by allowing the{(Xi,Wi)} sequence to
exhibit serial dependence but this would substantially complicate the proofs. Assumptions A2
and A3 specify the basic requirements on the bandwidth sequence and the kernel function which
I use in defining the estimator. Note that sincel∗ij(β) is symmetric in(i, j), the asumption that
the Kernel function is symmetric is in effect made without loss of generality.

Assumption A4 is a technical assumption. I would like to define the estimatorβ̂ to be the
value ofβ which maximizesQn(β;Wn) overRp; however,Rp is not compact which leads to
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difficulties in ensuring that the estimator exists, is unique, and is measurable. To avoid these
problems I assume that the parameter space is compact with a non-empty interior which contains
β0 as stated in Assumption A4. In practice I could weaken this somewhat by using a sequence
{Bn}∞n=1 of nested compact parameter spaces satisfying Assumption A4 and designed so that for
any givenb ∈ Rp there exists̄n(b) < ∞ such thatb ∈ int(Bn) for all n ≥ n̄(b). The estimator
would be defined for alln but asymptotically the bounds on the parameter space would vanish.
However, in the remainder of the paper I will continue with the assumption of a fixed compact
parameter space.

The objective function is then given by:

Qn(β;Wn) =
(
n

2

)−1 n∑
i<j

qn(β;Wi,Wj) (2.1)

whereWn = (Wi)ni=1, and where
∑n

i<j denotes the sum over all(i, j) pairs such that1 ≤ i <
j ≤ n, and where:

qn(β;Wi,Wj) = qn,ij(β) ≡ l∗(β;Yi, Yj, Xi, Xi)γ−kn K

(
Zi − Zj
γn

)
, (2.2)

l∗(β;Yi, Yj, Xi, Xj) = l∗ij(β) ≡ (Yi − Yj)2 lnF0[(Yi − Yj)(Xi −Xj)′β]. (2.3)

SinceY can only take the values0 and1 then(Yi − Yj)2 = |Yi − Yj| so that (2.1) is the same as
the objective function as that given in the Introduction.

Theorem 2.1 (Existence).Under Assumptions A1–A4 there exists a mapping:

β̂n(·) : ×ni=1({0, 1} × Rp × Rk)→ B

with Borel measurable components such that:

Qn(β̂n(Wn);Wn) = sup
β∈B

Qn(β;Wn). (2.4)

Proof. See Appendix B.3

This theorem only establishes existence of the estimator; it does not indicate the best way to
compute the estimator. If the kernel were non-negative everywhere then the objective function
would be globally concave (from the concavity of the logarithm of the logistic cdf). If in addition
the parameter space was convex one could simply pick an arbitrary starting value and use any
standard derivative-based algorithm in order to reach the global maximum. However, as I will
show subsequently, in order to establish asyptotic normality whenk > 3 (or to establish con-
sistent asymptotic covariance matrix estimation whenk > 1) it is necessary to use higher-order

3Assumption A1 is not actually necessary. All that is needed from this assumption for the existence ofβ̂n is
that the sequence{Wi}∞i=1 is a sequence of random vectors with the dimensions and event space as given by the
assumption; the iid aspect is not required.
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kernels which are negative over some ranges. In such situations it is not obvious how best to
proceed when implementing this estimator.
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3 Consistency

In this section, I demonstrate that the consistency of the estimatorβ̂n of β defined in Section 2
under the assumptions made in Section 2 supplemented by a set of additional assumptions.

Assumptions

B1. Bandwidth Sequence: II
The sequence{γn}∞n=1 specified in Assumption A2 satisfies the following additional re-
quirements:

(i) limn→∞ γn = 0; and

(ii) limn→∞(nγkn)−1 = 0.

B2. Kernel Function: II
The functionK(·) specified in Assumption A3 satisfies the following additional require-
ments:

(i)
∫
Rk K(u) du = 1; and

(ii)
∫
Rk K(u)2 du = L1 <∞.

B3. Conditional PDF ofZ GivenX: I
There exists a versionfZ|X(z|x) of the conditional pdf ofZ givenX such that:

(i) there existsL2 <∞ such thatfZ|X(z|x) ≤ L2 for all z ∈ Rk andx ∈ Rp;
(ii) fZ|X(z|x) is continuous in(z, x) for all z ∈ Rk andx ∈ Rp; and

(iii) fZ|X(z|x) > 0 for all z ∈ Rk andx ∈ Rp.

B4. Semiparametric Component: I
The functiong0(z) specified in Assumption A1 is continuous for allz ∈ Rk.

B5. Moments ofX: I

(i) There existsL3 <∞ such thatE{‖Xi‖2} ≤ L3; and

(ii) for any fixedξ ∈ Rp, such thatξ 6= 0, and any scalar constantc, Pr(ξ′Xi = c) = 0.
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All of these assumptions are fairly straightforward. Assumption B1 states that the bandwidth
sequenceγn tends to0 but not too rapidly; in particular, the higher the dimension ofZ the slower
the rate of convergence must be. Thi is closely related to the standard curse of dimensionality
issue in kernel-based non-parametric estimation. Assumption B2 states that the kernel fucntion
should be normalized to integrate to1 and should be square integrable. It seems unlikely that
these two assumptions can be weakened.

Assumption B3 is in many respects the strongest and least justifiable of the assumptions
made here: it imposes boundedness, continuity, and strict positivity everwhere of a version of
the conditional pdf ofZ givenX. It seems highly plausible that all of its requirements can be
weakened to some extent. Assumption B4 ensures that for any specifiedz, if z∗ is close toz∗

theng(z∗) is close tog(z); in effect, this motivates the use of the kernel method in this context
as discussed in the Introduction. However, imposing this assumptions only makes sense ifZ
is continuous. IfZ had a discrete distribution then, as discussed in the Introduction, we could
construct an estimator ofβ which did not require the use of kernels at all. Nevertheless, even if
one retains Assumption B3 it may still be possible to weaken Assumption B4 to some extent to
allow for discontinuities. For example, one might require that the set of discontinuity points of
g0(Z) is finite. The argument here would be that discontinuities ing0(Z) only matter for pairs
(Zi, Zj) such thatZi andZj are both close together and close to a discontinuity point. As the
sample size grows while the bandwidth shrinks the combined influence of such pairs may wash
out as being asymptotically irrelevant.

Assumption B5 guarantees the existence of the covariance matrix ofX and also ensures
thatX does not with positive probability satisfy any linear restriction. This is important for
ensuring global identifiction, though it may well be possible to weaken to simply requiring that
the variance matrix ofX is finite and non-singular.

In what follows, I will typically suppress the explicit dependence ofQn onWn and simply
writeQn(β) in place ofQn(β;Wn). The first step in the proof of consistency is to establish that
the expectation ofQn(β) converges to a non-stochastic functionQ0(β).

Lemma 3.1. Under Assumptions A1–A4 and B1–B5:

E0[Qn(β)] → Q0(β) (3.1)

asn→∞, where

Q0(β) = E0
{
p(X1, Z2)p̄(X2, Z2)fZ|X(Z2|X1) lnF0[(X1 −X2)′β]

+ p̄(X1, Z2)p(X2, Z2)fZ|X(Z2|X1) lnF0[−(X1 −X2)′β]
}
,

(3.2)

wherep̄(x, z) = 1− p(x, z).

Proof. See Appendix B.

Next I establish thatQn(β) minus its expectation converges pointwise in probability to zero.
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Lemma 3.2. Under Assumptions A1–A4 and B1–B5:

Qn(β) − E0[Qn(β)] p−→ 0, (3.3)

asn→∞.

Proof. See Appendix B.

Then I extend this pointwise convergence in probability to uniform convergence in probabil-
ity on the compact setB.

Lemma 3.3. Under Assumptions A1–A4 and B1–B5:

sup
β∈B

∣∣∣Qn(β) − E0[Qn(β)]
∣∣∣ p−→ 0, (3.4)

asn→∞.

Proof. See Appendix B.

Finally I establish that the functionQ0(β) has a unique global maximum onB atβ = β0.

Lemma 3.4. Under Assumptions A1–A4 and B1–B5:

Q0(β) ≤ Q0(β0) ∀ β ∈ Rp (3.5)

with equality if and only ifβ = β0.

Proof. See Appendix B.

These four lemmas taken jointly then establish the consistency of the estimatorβ̂n as desired
by the following theorem.

Theorem 3.1 (Consistency).Under Assumptions A1–A4 and B1–B5:

β̂n
p−→ β0,

asn→∞.

Proof. Theorem 2.1 and Lemmas 3.3 and 3.4 imply that the conditions of Theorem 4.1.1 of
Amemiya (1985) are satisifed from which the result follows immediately.
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It may be possible to strengthen this result somewhat. First, it may be possible to drop
Assumption A4, namely the compactness of the parameter space. The main role which this
plays, apart from ensuring existence, lies in the proof of Lemma 3.3, i.e. the proof of the uni-
form convergence in probability ofQn(β) to E0[Qn(β)] over the parameter space. If one could
demonstrate that the probability that the unrestricted argmax ofQn(β) belongs toB tended to1
then weak consistency of the unrestricted argmax would be easy to establish (provided that one
handled issues of existence carefully). This in turn would be straightforward to establish if the
objective function was almost surely globally concave, but as noted in Section 2 to ensure this
would require that the kernel function was non-negative which has implications about the maxi-
mum values ofk at which one can etablish asymptotic normality of the estimator and consistent
asymptotic covariance matrix estimation. Second, it may be possible to establish almost sure
consistency. This would require considerable modification to the method of proof used in this
paper which is based on a stochastic expansion which converges in mean square (as given by
Lemma A.1). Third, as noted earlier, it may be possible to prove Theorem 3.1 under weakened
versions of Assumptions B3–B5.
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4 Root-n Asympototic Normality

In this section of the paper I demonstrate the asymptotic normality ofβ̂n. As previously, I need
to make some additional assumptions in order to establish the desired result.

Assumptions

C1. Bandwidth Sequence: III
There exists a strictly positive integert(k) such that the sequence{γn}∞n=1 specified in
Assumptions A2 and B1 satisfies the following additional requirement that:

lim
n→∞

n1/2γt(k)
n = 0.

C2. Kernel Function: III
The functionK(·) specified in Assumptions A3 and B2 satisfies the following additional
requirements:

(i) There existsL4 <∞ such that
∫
Rk ‖u‖

t(k) · |K(u)| du ≤ L4; and

(ii)
∫
Rk u

sK(u) du = 0 for all s = 1, . . . , t(k)− 1.

C3. Conditional PDF ofZ GivenX: II
The versionfZ|X(z|x) of the conditional pdf ofZ givenX specified in Assumption B3
satisfies the following additional requirement: there existsL6 <∞ such that:∥∥∥∥ ∂sfZ|X(z|x)

∂zs

∥∥∥∥ ≤ L6,

for all z ∈ Rk, x ∈ Rp ands = 1, . . . , t(k).

C4. Semiparametric Component: II
The functiong0(z) specified in Assumptions A1 and B4 in addition satisfies the following
additional requirement: there existsL5 <∞ such that:∥∥∥∥ ∂sg0(z)

∂zs

∥∥∥∥ ≤ L5,

for all z ∈ Rk ands = 1, . . . , t(k).

C5. Moments ofX: II
There existsL7 <∞ such thatE{‖Xi‖4} ≤ L7 for all i ∈ N.
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Again all of these assumptions are fairly straightforward. Their main function is to ensure that the
limiting normal distribution has a mean of zero as demostrated below in Lemma 4.3. In the proof
of this Lemma I take a Taylor Series expansion ofE[∂Qn/∂β] to ordert(k) − 1 and show that
the leading terms are all equal to zero and that the remainder term is of ordero(γt(k)

n ). It follows
thatn1/2E[∂Qn/∂β] is of ordero[n1/2γ

t(k)
n ] which by Assumption C1 tends to zero. The other

assumptions are necessary in order to ensure that a Taylor series expansion of this order can be
taken and to guarantee behaviour as described above of the terms in the expansion. If I weakened
Assumption C1 so thatlimn→∞ nγ

2t(k)
n = c0 for some0 < c0 < ∞ then I would obtain asymp-

totic normality with a non-zero mean. Note that Assumption C1 (or this weaker assumption)
combined with Assumption B1 implies thatt(k) > k/2. This follows because by Assumptions
B1(ii) and C1 thenlimn→∞ γ

2t(k)−k
n = 0 which is only consistent withlimn→∞ γn = 0, from

Assumptions B1(i), provided that2t(k)− k > 0.
A similar set of assumptions is used in the standard proof of asymptotic normality of the

kernel regression estimator in order to establish a similar result. Nevertheless there are some
differences between the kernel regression framework and the semi-parametric logit framework
considered here. The most important points to note are as follows. First, I demostrate root-N
asymptotic normality provided thatt(k) > k/2, whereas in the kernel regression context the
larger the value of the equivalent tot(k) the faster is the rate of convergence of the estimator
though it never gets toN1/2. Second, in my framework asymptotic normality only holds if
t(k) > k/2 while no such rquirement is necessary in the kernel regression framework.

Note that Assumption C2 requires that ifk ≥ 4 thent(k) > 2 so that
∫
Rk uu

′K(u)du = 0
which implies thatK(·) must be negative for some values ofu in view of the requirement that∫
Rk K(u)du = 1 by Assumption B2. As pointed out in Section 3 it is not then possible to

ensure that the objective function will be globally concave. In contrast, ifk ≤ 3 then one can
use a kernel which ensures that the objective function will be globally concave and still ensure
asymptotic normality.4

Assumptions C3 and C4 can probably be weakened somewhat so that although derivatives
to the relevant order do exist they need not be uniformly bounded by a constant but instead
are bounded by suitable functions of(Z,X). However, such a weakening of these asumptions
would certainly require a corresponding strengthening of the assumptions about the existence of
moments ofX andZ.

The proof of asympototic normality follows a fairly standard line of argument and hinges on
a first-order condition expansion given by the following lemma.

4Yatchew (1997) has proposed an ingenious method of estimation for a partially linear regression model. In the
simplest version the non-parametric component only depends on a scalar variableZ and Yatchew’s procedure is as
follows. First, re-order the data points by their values ofZ. Second, run a regression in first differences of this
re-ordered data. Yatchew also shows how to extend this procedure to a nearest neighbour differencing method when
the non-parametric component depends on a vector variable. Interestingly, the maximal dimension of this vector
variable is3.
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Lemma 4.1. Under Assumptions A1–A4 and B1–B5:

n1/2

[
∂Qn

∂β

∣∣∣∣
β0

]
+

[
∂2Qn

∂β∂β′

∣∣∣∣
β∗n

]
[n1/2(β̂n − β0)] = op(1), (4.1)

for someβ∗n belonging to the line segment joininĝβn andβ0.5

Proof. See Appendix B.

I then show thatn1/2[(∂Qn/∂β); β = β0] converges to a multivariate normal with mean zero.
I do this by first, showing thatn1/2[∂Qn/∂β] can be stochastically expanded in a fashion which
will permit application of a central limit theorem (CLT).

Lemma 4.2. Under Assumptions A1–A4 and B1–B5:

n1/2

[
∂Qn

∂β

∣∣∣∣
β0

]
= n1/2ren(β0) +

2√
n

n∑
i=1

[
ren,i(β0)− ren(β0)

]
+ op(1), (4.2)

where

ren(β) = E0 [ rn,ij(β); ] = E0
[
ren,i(β)

]
, (4.3)

ren,i(β) = E0 [ rn,ij(β) |Wi ] , (4.4)

rn,ij(β) =
[
∂qn,ij
∂β

]
= γ−kn K

(
Zi − Zj
γn

)[
∂l∗ij
∂β

]
. (4.5)

Proof. See Appendix B.

To ensure thatn1/2[(∂Qn/∂β); β = β0] converges to a multivariate normal with mean zero I
need to ensure thatn1/2ren(β0) converges to zero.

Lemma 4.3. Under Assumptions A1–A4, B1–B5 and C1–C5:

n1/2ren(β0) → 0. (4.6)

Proof. See Appendix B.

Then I need to apply a CLT to the triangular array
{
ren,i(β0)− ren(β0)

}
, indexed byn =

1, 2 . . . ,∞ andi = 1, 2, . . . n.

5Strictly speaking,β∗n is different for each row in the second derivative matrix.
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Lemma 4.4. Under Assumptions A1–A4, B1–B5 and C1–C5:

1√
n

n∑
i=1

[
ren,i(β)− ren(β)

] D−→ N [0, A1], (4.7)

whereA1 is a finite symmetric positive definite matrix given by:

A1 = V0 [E0 {[Yiµ1(Wi,Wj)− (1− Yi)µ2(Wi,Wj)] (∆ijX) |Wi}] , (4.8)

and:

µ1(Wi,Wj) ≡ F0 [−(∆ijX)′β0] p̄(Xj, Zi)fZ|X(Zi|Xj) (4.9)

µ2(Wi,Wj) ≡ F0 [(∆ijX)′β0] p(Xj, Zi)fZ|X(Zi|Xj). (4.10)

Proof. See Appendix B.

These three lemmas then imply that:

ηn = n1/2

[
∂Qn

∂β

∣∣∣∣
β0

]
D−→ N [0, 4A1], (4.11)

which takes care of the first term on the right-hand-side of (B.22).
The second stage of the proof consists of establishing that[∂2Qn/∂β∂β

′; β∗n] converges in
probability to a non-singular matrix. I start by establishing that the expectation of[∂2Qn/∂β∂β

′; β0]
converges to a non-singular matrixA2.

Lemma 4.5. Under Assumptions A1–A4, B1–B5 and C1–C5:

E0

[
∂2Qn

∂β∂β′

∣∣∣∣
β0

]
−→ A2, (4.12)

where:

A2 = E0
{
p(Xi, Zj)p̄(Xj, Zj)fZ|X(Zj|Xi)(∆ijX)(∆ijX

′)
}

(4.13)

Proof. See Appendix B.

Next I establish that[∂2Qn/∂β∂β
′] converges pointwise in probability.
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Lemma 4.6. Under Assumptions A1–A4, B1–B5 and C1–C5:[
∂2Qn

∂β∂β′

]
− E0

[
∂2Qn

∂β∂β′

]
p−→ 0, (4.14)

for eachβ ∈ B.

Proof. See Appendix B.

Last I show that the difference between[∂2Qn/∂β∂β
′; β∗n] and [∂2Qn/∂β∂β

′; β0] converges in
probability to zero.

Lemma 4.7. Under Assumptions A1–A4, B1–B5 and C1–C5:[
∂2Qn

∂β∂β′

∣∣∣∣
β∗n

]
−

[
∂2Qn

∂β∂β′

∣∣∣∣
β0

]
p−→ 0. (4.15)

Proof. See Appendix B.

These second three lemmas taken together then imply that[∂2Qn/∂β∂β
′; β∗n] converges in

probability to the non-singular matrixA2 defined by (4.13). Combined with the asymptotic nor-
mality of n1/2[(∂Qn/∂β); β = β0] together with the result that (B.21) holds with probability
tending to one and hence (B.22) holds with probability tending to one, I can then establish the
following theorem.

Theorem 4.1. Under Assumptions A1–A4, B1–B5 and C1–C5:

n1/2(β̂n − β0) D−→ N [0, 4A−1
2 A1A

−1
2 ], (4.16)

whereA1 andA2 are defined in (4.8) and (4.13) respectively.

Proof. Follows immediately from Theorems 2.1 and 3.1, and Lemmas 4.1–4.7.

This estimator is only the simplest of a collection of possible estimators based on the elimi-
nation of approximate fixed effects. Thus one could take each triplet of data points(Wi,Wj,Wk)
and compute a conditional likelihood contribution for this triplet. These contributions could then
be averaged with weights that depend on the distances betweenZi,Zj andZk, and would thus be
generalizations of the kernel-based weights in the pairwise comparison estimator. It seems plau-
sible that such an estimator would be asymptotically more efficient than the pairwise comparison
estimator discussed in the present paper. A somewhat similar issue arises in the differencing
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estimator of the partially linear regression model proposed by Yatchew (1997) and discussed in
footnote 4 above. Yatchew shows that asymptotic efficiency of the simple differencing estimator
can be improved upon by using more complex differencing transformations; indeed, it is possi-
ble to construct a differencing based estimator whose asymptotic covariance matrix is arbitrarily
close to the semi-parametric efficiency bound. In the present context a natural counterpart to
a more complex difference transformation is a conditional likelihood contribution for than two
data points. However, formulating an appropriate weighting scheme and analyzing the properties
of such an estimator remains a topic for research.
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5 Asympototic Covariance Matrix Estimation

As in the earlier sections of the paper, in order to proved the desired result, namely the consis-
tency of a particular estimator of the asymptotic covariance matrix ofβ̂n I need to strengthen the
assumptions made previously.

Assumptions

D1. Bandwidth Sequence: IV
The bandwidth sequence{γn} specified in Assumptions A2, B1 and C1 satisifes the addi-
tional requirement thatγn satisfieslimn→∞(nγ2k

n )−1 = 0.

When combined with Assumptions A2, B1 and C1, Assumption D1 implies thatt(k) > k which
then implies that Assumptions C2–C4 become much stronger. In particular, ifk ≥ 2 then As-
sumption C2 implies that the kernel function must be negative over some set and thus the objec-
tive function cannot be guaranteed to be globally concave.

So far I have not specified an asymptotic covariance matrix estimator. Theorem 4.1 demon-
strates that the asymptotic covariance matrix ofβ̂n is given asΣ0 = 4A−1

2 A1A
−1
2 . This leads to

an obvious strategy for estimatingΣ0, namely to construct consistent estimatorsÂ1,n andÂ2,n

of A1 andA2 respectively and then usêΣn = 4Â−1
2,nÂ1,nÂ

−1
2,n.

SinceQn(β) is not a sample average of independent (or even just uncorrelated) terms, and
hence neither is[∂Qn(β)/∂β], I cannot simply use an outer product of the gradient type estimator
of A1. Instead, I propose to use the following estimator ofA1:

Â1,n = n−1
n∑
i=1

r̄n,i(β̂n)r̄n,i(β̂n)′, (5.1)

where:

r̄n,i(β̂n) = (n− 1)−1
n∑
j=1

(1− δij)rn,ij(β̂n), (5.2)

in which δij equals1 if i = j and0 otherwise. The motivation behind this is thatA1 is the
limiting covariance matrix ofren,i(β0) = E0[rn,ij(β0)|Wi] by Lemmma 4.4. Heuristically, I am

then estimating the individualren,i(β0) by their sample equivalents̄rn,i(β̂n) and then using the

outer product of thērn,i(β̂n) to estimateA1. Note that:

n−1
n∑
i=1

r̄n,i(β̂n) =
(
n

2

)−1 n∑
i<j

rn,ij(β̂n) =

[
∂Qn

∂β∂β′

∣∣∣∣
β̂n

]
, (5.3)

which will equal zero with probability tending to one as shown in the proof of Lemma 4.1.
Hence there is no need asymptotically to recenter ther̄n,i(β̂n) when constructing their sample
covariance matrix.
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A little manipulation reveals that:

Â1,n = Â11,n + Â12,n (5.4)

where:

Â11,n = n−1(n− 1)−2
n∑
i6=j

rn,ij(β̂n)rn,ij(β̂n)′ (5.5)

Â12,n = n−1(n− 1)−2
n∑

i 6=j 6=l

rn,ij(β̂n)rn,il(β̂n)′. (5.6)

I then handle these two terms separately. First, I show thatÂ11,n converges in probability to zero.

Lemma 5.1. Under Assumptions A1–A4, B1–B5, C1–C5, and D1 :

Â11,n
p−→ 0. (5.7)

Proof. See Appendix B.

Second, I show that̂A12,n converges in probability toA1. As in previous proofs of consistency I
do this in three steps.

Lemma 5.2. Under Assumptions A1–A4, B1–B5, C1–C5, and D1 :

E0

[
n−1(n− 1)−2

n∑
i 6=j 6=k

rn,ij(β0)rn,ik(β0)′
]

= A1,n −→ A1. (5.8)

Proof. See Appendix B.

Lemma 5.3. Under Assumptions A1–A4, B1–B5, C1–C5, and D1 :[
n−1(n− 1)−2

n∑
i 6=j 6=k

rn,ij(β0)rn,ik(β0)′
]
− A1,n

p−→ 0. (5.9)

Proof. See Appendix B.
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The main role which Assumption D1 plays is to ensure the validity of Lemma 5.3. The reason
why such a strengthening of the earlier assumptions is needed is that to prove Lemma 5.3 I pro-
ceed by proving mean-suare convergence. The squares of terms of the form[ξ′1rn,ij(β0)][rn,ik(β0)′ξ2]
involve multiplicative factors ofγ−4k

n . Transforming the variables in a suitable fashion eliminates
a factor ofγ−2k

n leaving multiplicative factors ofγ−2k
n . Lemma A.1 requires that the expectations

of these squares are of ordero(n) in order to ensure mean-square convergence. Thus I require
thatγ−2k

n = o(n) which is equivalent to Assumption D1.

Lemma 5.4. Under Assumptions A1–A4, B1–B5, C1–C5, and D1 :

Â12,n −

[
n−1(n− 1)−2

n∑
i6=j 6=k

rn,ij(β0)rn,ik(β0)′
]

p−→ 0. (5.10)

Proof. See Appendix B.

The obvious estimator ofA2 is simply:

Â2,n =

[
∂2Qn

∂β∂β′

∣∣∣∣
β̂n

]
. (5.11)

This is easily shown to be consistent.

Lemma 5.5. Under Assumptions A1–A4, B1–B5, C1–C5, and D1 :

Â2,n
p−→ A2. (5.12)

Proof. See Appendix B.

The consistency of4Â−1
2,nÂ1,nÂ

−1
2,n as an estimator of the asymptotic covariance matrix ofβ̂n

then follows straightforwardly.

Theorem 5.1. Under Assumptions A1–A4, B1–B5, C1–C5, and D1 :

4Â−1
2,nÂ1,nÂ

−1
2,n

p−→ 4A−1
2 A1A

−2. (5.13)

Proof. This follows from Lemmas 5.1–5.5.
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This is not the only estimator ofΣ0 which one can construct in the present context: clearly I
could dropÂ11,n and simply usêA12,n in place ofÂ1,n. However, a drawback with this estimator
of A1, and hence of the resulting estimator ofΣ0, is thatthere is no obvious reason why this
latter estimator would be non-negative definite whereas the estimator examined earlier will be
non-negative definite by construction. Another point to note is that the scaling factor ofn used
in the definition ofÂ1,n is somewhat arbitrary: any positive scaling factorh(n) such thath(n)/n
would give the same probability limit. In particular, a scaling factor of(n − 1) might be more
appropriate.6

6This is of course a standard problem in asymptotic covariance matrix estimation.
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6 Conclusions

In this paper I have formulated a semi-parametric logit model and developed an estimator of the
parameters of interest based on maximizing a kernel weighted average of pairwise conditional
log-likelihood contributions. I have then demonstrated the consistency and root-n asymptotic
normality of this estimator together with the consistency of a particualr asymptotic covariance
matrix estimator.

There are several possible directions for future research. First, as noted in several places
in the paper it may well be possible to derive the same results under somewhat weaker condi-
tions. Second, it seems likely that asymptotically more efficient estimators can be constructed
by using an objective function which is a weighted average of triplet comparison or even higher
order comparison conditional likelihood contributions. Third, for low values ofk, the number
of variables determining the non-parametric component it may be possible to apply a variant of
Yatchew’s differencing estimator for the partially linear regression model. The idea here (for the
case wherek = 1) would be to order the data by the values ofz and then construct an objective
functi0on which was just the sum of the conditional log-likelihood contributions from the ob-
servations which are adjacent in the re-ordered data set. Fourth, the method of kernel weighting
applied in this paper uses a pre-specified non-random bandwidth sequence. It would clearly be
desirable to be able to use a data-dependent bandwidth sequence, chosen perhaps by some type
of cross-validation scheme though it is not obvious what how to formulate such a scheme in the
present context.

If Z is a scalar continuous random variable then we can adapt the approach of “Yatchew
(1997)” (Economics Letters) & “Yatchew (1998)” (Journal of Economic Literature) to construct
a simpler though related estimator as follows. First, order the data by increasing value ofZ.
The costruct the object function using only adjacent pairs of observations in this ordering with
no weights. Establishing the asymptotic properties of this estimator reamins a topic for future
research.

Need to add more here
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A Supplementary Lemmas

In this Appendix, I state a supplementary lemma on sequences ofU -statistics which will be used
extensively in the proofs of results of the paper.

Lemma A.1. [from Lemma A.3 of Ahn and Powell (1993); see also Lemma 2.1 of Lee (1988)
and Lemma 3.1 of Powell et al. (1989)].Let {νi}∞i=1 be a sequence of iid random vectors, and
consider anm-th order vectorU -statistic of the form:

Un =
(
n

m

)−1∑
c

an(νi1 , . . . νim) (A.1)

where the sum is over the
(
n
m

)
combinations ofm distinct elements{i1, . . . , im} from the set

{1, . . . , n} and, without loss of generality, the sequence of functionsan(νi1 , . . . νim) are all taken
to be symmetric in theirm arguments. Also define the ‘projection’:

U∗n = θn +
m

n

n∑
i=1

ψn(νi1), (A.2)

as the sum of the first two terms in the Hoeffding decomposition ofUn, where:

ψn(νi1) ≡ E[{an(νi, . . . νim)− θn}|νi], θn ≡ E[an(νi, . . . νim)]. (A.3)

With these definitions, suppose that the sequence of functions{an(·)} satisifes:

E[ ‖an(νi, . . . νim)‖2 ] = o(n), (A.4)

then:

(i) Un = θn + op(1),

(ii) Un = U∗n + op(n−1/2).

Note that there appears to be a misprint in Ahn and Powell (1993) whose statement of this
lemma replaceso(n) byO(n) in their equivalent to (A.4).
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B Proofs of Main Results

Proof of Theorem 2.1

It is clear thatQn(β;Wn) is continuous inβ ∈ Rp givenWn, and measuable with respect toWn

givenβ. The desired result then follows by Lemma xxx of Jennrich (1969).

Proof of Lemma 3.1

In this and the subsequent proofs it is convenient to define the following notation. First, the
operator∆ij applied to a variable such asX is defined by∆ijX ≡ (Xi − Xj), and, second,
Γ3 ≡ Rk ×Rk ×Rp andΓ4 ≡ Rk ×Rk ×Rp×Rp. Since the{Wi} are iid by Assumption A1 it
follows that:

E0[Qn(β)] = E0[qn,ij(β)] = E0[E0{qn,ij(β)|(Xi, Xj, Zi, Zj)}]. (B.1)

But:

E0[qn,ij(β)|(Xi, Xj, Zi, Zj)] = γ−kn K

(
∆ijZ

γn

)
E0
{
l∗ij(β)|(Xi, Xj, Zi, Zj)

}
, (B.2)

while:

E0[l∗ij(β)|(Xi, Xj, Zi, Zj)] = p(Xi, Zi)p̄(Xj, Zj) lnF0[(∆ijX)′β]

+ p̄(Xi, Zi)p(Xj, Zj) lnF0[−(∆ijX)′β],
(B.3)

from which it follows that:

E0[Qn(β)]

= E0

{
γ−kn K

(
Z1 − Z2

γn

)
p(X1, Z1)p̄(X2, Z2) lnF0[(X1 −X2)′β]

}
+ E0

{
γ−kn K

(
Z1 − Z2

γn

)
p̄(X1, Z1)p(X2, Z2) lnF0[−(X1 −X2)′β]

}
= E∗0

{
p(X1, Z2 + γnU)p̄(X2, Z2)fZ|X(Z2 + γnU |X1) lnF0[(X1 −X2)′β]

}
+E∗0

{
p̄(X1, Z2 + γnU)p(X2, Z2)fZ|X(Z2 + γnU |X1) lnF0[−(X1 −X2)′β]

}
, (B.4)

by transformation of variables from(Z1, Z2) to (U,Z2) with U = (Z1 − Z2)/γn, and where:

E∗0 [h(X1, X2, Z2, U)] ≡
∫

Γ4

h(x1, x2, z2, u)K(u)fX(x1)fZ,X(z2, x2) du dz2 dx1dx2.
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It is easy to demonstrate that| lnF0(α)| ≤ |α| + ln 2. Furthermore, since0 ≤ p(x, z) ≤ 1 by
Assumption A1 andfZ|X(z|x) ≤ L2 for all (x, z) ∈ Rp × Rk by Assumption B3 it follows that:

E∗0
{∥∥p(X1, Z2 + γnU)p̄(X2, Z2)fZ|X(Z2 + γnU |X1) lnF0[(X1 −X2)′β]

∥∥}
≤ L2E

∗
0 {‖X1 −X2‖ · ‖β‖+ ln 2} < ∞. (B.5)

Furthermore, it is clear that:

lim
n→∞

p(x1, z2 + γnu)p̄(x2, z2)fZ|X(z2 + γnu|x1) lnF0[(x1 − x2)′β]

= p(x1, z2)p̄(x2, z2)fZ|X(z2|x1) lnF0[(x1 − x2)′β],
(B.6)

for all (u, z2, x1, x2) ∈ Γ4, in view of the continuity ofg0(z) andfZ|X(z|x) from Assumptions
B3(ii) and B4. Hence it follows by the dominated convergence theorem that:

lim
n→∞

E∗0
{
p(X1, Z2 + γnU)p̄(X2, Z2)fZ|X(Z2 + γnU |X1) lnF0[(X1 −X2)′β]

}
= E∗0

{
p(X1, Z2)p̄(X2, Z2)fZ|X(Z2|X1) lnF0[(X1 −X2)′β]

}
= E0

{
p(X1, Z2)p̄(X2, Z2)fZ|X(Z2|X1) lnF0[(X1 −X2)′β]

}
. (B.7)

By the same logic it follows that:

lim
n→∞

E∗0
{
p̄(X1, Z2 + γnU)p(X2, Z2)fZ|X(Z2 + γnU |X1) lnF0[−(X1 −X2)′β]

}
= E0

{
p̄(X1, Z2)p(X2, Z2)fZ|X(Z2|X1) lnF0[−(X1 −X2)′β]

}
. (B.8)

Combining (B.7) and (B.8) then gives:

lim
n→∞

E0[Qn(β)] = Q0(β)

≡ E0
{
p(X1, Z2)p̄(X2, Z2)fZ|X(Z2|X1) lnF0[(X1 −X2)′β]

+ p̄(X1, Z2)p(X2, Z2)fZ|X(Z2|X1) lnF0[−(X1 −X2)′β]
}
, (B.9)

which establishes the desired result.

Proof of Lemma 3.2

Now consider:

qn,ij(β)2 = γ−2k
n K

(
∆ijZ

γn

)2

lij(β)2

≤ γ−2k
n K

(
∆ijZ

γn

)2

{‖X1 −X2‖ · ‖β‖+ ln 2}2

≤ 2γ−2k
n K

(
∆ijZ

γn

)2 {
‖X1 −X2‖2 · ‖β‖2 + [ln 2]2

}
.

(B.10)
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It follows that:

E0
[
qn,ij(β)2] ≤ 2γ−kn E∗0

{
K(u)fZ|X(Z2|X1)

(
‖X1 −X2‖2 · ‖β‖2 + [ln 2]2

)}
= 2γ−kn

{∫
Rk
k(u)2du

}
E0
{
fZ|X(Z2|X1)

(
‖X1 −X2‖2 · ‖β‖2 + [ln 2]2

)}
= O(γ−kn ) = o(n),

(B.11)

sincenγkn → ∞ by Assumption B1(ii). But then it follows by Lemma A.1 thatQn(β) =
E0[Qn(β)] + op(1) which establishes the desired result.

Proof of Lemma 3.3

To prove uniform convergence in probability I first establish stochastic equicontinuity. Observe
that for anyβ∗, β∗∗ ∈ B:

|Qn(β∗)−Qn(β∗∗)| ≤
(
n

2

)−1 n∑
i<j

|qn,ij(β∗)− qn,ij(β∗∗)| . (B.12)

(2.2) and (2.3) then imply that:

|qn,ij(β∗)− qn,ij(β∗∗)| = γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣
· |lnF0[(∆ijY )(∆ijX)′β∗]− lnF0[(∆ijY )(∆ijX)′β∗∗]| . (B.13)

But [d lnF0(α)/dα] = [1 − F0(α)] = F0(−α), |F0(−α)| ≤ 1 and |∆ijY | ≤ 1 so that by the
mean value theorem:

|lnF0[(∆ijY )(∆ijX)′β∗]− lnF0[(∆ijY )(∆ijX)′β∗∗]| ≤ |(∆ijX)′(β∗ − β∗∗)|. (B.14)

Now |(∆ijX)′(β∗ − β∗∗)| ≤ ‖Xi −Xj‖ · ‖β∗ − β∗∗‖ so that:

|Qn(β∗)−Qn(β∗∗)| ≤
(
n

2

)−1 n∑
i<j

γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖Xi −Xj‖ · ‖β∗ − β∗∗‖

= H1,n · ‖β∗ − β∗∗‖. (B.15)

Then by the same arguments as used in the proof of Lemma 3.1 to establish (B.5) and (B.9) it
follows that:

E0

[
γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖Xi −Xj‖
]
−→ E0

{
‖X1 −X2‖ · fZ|X(Z2|X1)

}
, (B.16)
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and hence that:

E0[H1,n] −→ E0
{
‖X1 −X2‖ · fZ|X(Z2|X1)

}
≤ 2L2L

1/2
3 < ∞, (B.17)

by Assumptions B3(i) and B5(i). But thenH1,n = Op(1) by the Markov inequality since
H1,n ≥ 0. ThusQn(β) satifies the conditions of Theorem 21.20 of Davidson (1994) and hence is
stochastically equicontinuous onB. But it is clear from (B.9) thatQ0(β) is a continuous function
of β and hence is uniformly continuous inβ ∈ B sinceB is compact. It therefore follows that
the sequence{Qn(β)−Q0(β)}∞n=1 is stochastically equicontinuous onB which combined with
Lemmas 3.1 and 3.2 implies that:

sup
β∈B
|Qn(β)−Q0(β)| p−→ 0, (B.18)

by Theorem 21.9 of Davidson (1994). This establishes the desired result.

Proof of Lemma 3.4

It is easy to show that for each(z2, x1, x2) ∈ Γ3:

p(x1, z2)p̄(x2, z2) lnF0[(x1 − x2)′β] + p̄(x1, z2)p(x2, z2) lnF0[−(x1 − x2)′β]

= [p(x1, z2)p̄(x2, z2) + p̄(x1, z2)p(x2, z2)]−1

×{F0[(x1 − x2)′β0] lnF0[(x1 − x2)′β] + F [−(x1 − x2)′β0] lnF0[−(x1 − x2)′β]} .
(B.19)

In addition, it is easy to show that:

F0(α0) lnF0(α) + F0(−α0) lnF0(−α), (B.20)

treated as a function ofα givenα0, achieves a strict maximum atα = α0 which combined with
(B.9), (B.19) and Asumption B5(ii) implies thatQ0(β) achieves a strict maximum atβ = β0,
thus establishing the desired result.

Proof of Lemma 4.1

First, observe that the objective functionQn(β) is almost surely continuously differentiable to an
arbitrary order with respect toβ by inspection of (2.1)–(2.3). This combined with the consistency
of β̂n from Theorem 3.1 and the property thatβ0 ∈ int(B) from Assumption A4 implies that̂βn
will satisfy the following first-order condition with probability tending to unity:

Pr

{
n1/2

[
∂Qn

∂β

∣∣∣∣
β̂n

]
= 0

}
−→ 1, (B.21)
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from which it follows immediately that:

n1/2

[
∂Qn

∂β

∣∣∣∣
β̂n

]
= op(1). (B.22)

Taking a first-order Taylor series expansion ofn1/2[(∂Qn/∂β); β = β̂n] aroundβ = β0 and
substituting this into (B.22) gives the desired result. Note that the value ofβ∗n is different for
each row of the second-derivative matrix.

Proof of Lemma 4.2

Observe that[∂Qn/∂β] is itself aU -statistic given by:[
∂Qn

∂β

]
=
(
n

2

)−1 n∑
i<j

rn,ij(β), (B.23)

where,rn,ij(β) is defined in (4.5). This implies that:

‖rn,ij(β)‖2 ≤ γ−2k
n K

(
Zi − Zj
γn

)2

·
∥∥∥∥ ∂l∗ij∂β

∥∥∥∥2

. (B.24)

But differentiatingl∗ij(β) with respect toβ gives:[
∂l∗ij
∂β

]
= F0 [−(Yi − Yj)(Xi −Xj)′β] (Yi − Yj)(Xi −Xj), (B.25)

using[∂ lnF0(α)/∂α] = F0(−α), and(Yi − Yj)3 = (Yi − Yj). Hence:∥∥∥∥ ∂l∗ij∂β

∥∥∥∥2

≤ ‖Xi −Xj‖2 ≤ ‖Xi‖2 + ‖Xj‖2, (B.26)

sinceF0(−α)2 ≤ 1 for all α and(Yi − Yj)2 ≤ 1, so that:

‖rn,ij(β)‖2 ≤ γ−2k
n K

(
Zi − Zj
γn

)2

·
(
‖Xi‖2 + ‖Xj‖2) . (B.27)

SinceK(·) is symmetric from Assumption A2(i) it follows that:

E0
(
γkn · ‖rn,ij(β)‖2) ≤ 2E0

[
γ−kn K

(
Zi − Zj
γn

)2

· ‖Xi‖2

]
. (B.28)
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But now observe that:

E0

[
γ−kn K

(
Zi − Zj
γn

)2

· ‖Xi‖2

]

=
∫

Γ3

γ−kn K

(
z1 − z2

γn

)2

· ‖x1‖2 · fZ,X(z1, x1)fZ(z2)dz1dz2dx1

=
∫

Γ3

K(u)2 · ‖x1‖2 · fZ|X(z2 + γnu|x1)fX(x1)fZ(z2)dz1dz2dx1, (B.29)

where we have transformed from(z1, x1, z2) to (u1, x1, z2) with u = (z1−z2)/γn. ButfZ|X(z2 +
γnu|x1) ≤ L2 <∞ by Assumption B3(ii) and

∫
Rk K(u)2 du = L1 <∞ by Assumption B2(iii)

so that:

E0

[
γ−kn K

(
Zi − Zj
γn

)2

· ‖Xi‖2

]
≤ L2 ·

∫
Γ3

K(u)2 · ‖x1‖2 · fX(x1)fZ(z2)dz2dudx1

≤ L2 ·
∫
Rk
fZ(z2)dz2 ·

∫
Rk
K(u)2du ·

∫
Rp
‖x1‖2fX(x1)dx1 = L1L2L3 < ∞.

(B.30)

ThusE0 (‖rn,ij(β)‖2) = O(γ−kn ) = o(n) and hence by Lemma A.1:[
∂Qn

∂β

]
= E0 [ rn,ij(β) ] +

2
n

n∑
i=1

{E0 [ rn,ij(β) |Wi ]− E0 [ rn,ij(β) ]}+ op(n−1/2),

(B.31)

from which the desired result follows immediately.

Proof of Lemma 4.3

From (4.5) and (B.25) it is clear that:

rn,ij(β) = γ−kn K

(
∆ijZ

γn

)
F0 [−(∆ijY )(∆ijX)′β] (∆ijY )(∆ijX). (B.32)

At this point it is convenient to define:

q0
n,ij(β) = γ−kn K

(
∆ijZ

γn

)
l0ij(β), (B.33)

l0ij(β) = lnF0 [(∆ijY ) {(∆ijX)′β + ∆ijg0(Z)}] , (B.34)
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where∆ijg0(Z) = g0(Zi)− g0(Zj). Differentiatingq0
n,ij(β) with respect toβ gives:

r0
n,ij(β) =

[
∂q0

n,ij

∂β

]
= γ−kn K

(
∆ijZ

γn

)[
∂l0ij
∂β

]
, (B.35)

where:[
∂l0ij
∂β

]
= F0 [−(∆ijY ) {(∆ijX)′β + ∆ijg0(Z)}] (∆ijY )(∆ijX). (B.36)

Now it is straightforward to show that:

E0

[(
∂l0ij
∂β

∣∣∣∣
β0

)
|(Xi, Xj, Zi, Zj)

]
= 0, (B.37)

which combined with (B.33) implies that:

E0
[
r0
n,ij(β0)

]
= E0

[
∂q0

n,ij

∂β

∣∣∣∣
β0

]
= 0, (B.38)

and hence that:

ren(β0) = E0
[
rn,ij(β0)− r0

n,ij(β0)
]

= E0

{
γ−kn K

(
∆ijZ

γn

)[(
∂l∗ij
∂β

∣∣∣∣
β0

)
−

(
∂l0ij
∂β

∣∣∣∣
β0

)]}
,

(B.39)

where from (B.25) and (B.36):[(
∂l∗ij
∂β

)
−
(
∂l0ij
∂β

)]
= {F0[(∆ijY ){(∆ijX)′β + ∆ijg0(Z)}]− F0[(∆ijY )(∆ijX)′β]}

× (∆ijY )(∆ijX).
(B.40)

But then the expectation of (B.40) conditional on(Xi, Xj, Zi, Zj) is;

E0

{[(
∂l∗ij
∂β

∣∣∣∣
β0

)
−

(
∂l0ij
∂β

∣∣∣∣
β0

)]
|(Xi, Xj, Zi, Zj)

}
= {F0[(∆ijX)′β0 + ∆ijg0(Z)]− F0[(∆ijX)′β0]} (∆ijX)p(Xi, Zi)p̄(Xj, Zj)

+ {F0[(∆jiX)′β0 + ∆jig0(Z)]− F0[(∆jiX)′β0]} (∆ijX)p̄(Xi, Zi)p(Xj, Zj)

≡ m0(Xi, Xj, Zi, Zj),
(B.41)
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which is arbitrarily differentiable in all its arguments, so that:

ren(β0) =
∫

Γ4

γ−kn K

(
z1 − z2

γn

)
m1(x1, x2, z1, z2)

× fX(x1)fZ,X(z2, x2)dz1dz2dx1dx2,

(B.42)

wherem1(x1, x2, z1, z2) = m0(x1, x2, z1, z2)fZ|X(z1|x1).
Now consider a Taylor Series expansion ofm1(xi, xj, zi, zj) in zi aroundzi = zj up to order

t(k), wheret(k) is smallest strictly positive integer such thatt > k/2 as specified in Assumption
C2; this gives:

m1(xi, xj, zi, zj) =
t(k)∑
s=1

[
m

(s)
1 (xi, xj, zj, zj)

s!

]
◦ (∆ijz)s

+

[
m

(t(k)+1)
1 (xi, xj, z∗, zj)

(t(k) + 1)!

]
◦ (∆ijz)t(k)+1, (B.43)

wherem(s)
0,ij(z) denotes thesth-order derivative ofm0,ij(zi) with respect tozi evaluated atzi = z,

andz∗ = λzi + (1 − λ)zj for some0 ≤ λ ≤ 1, and noting thatm1(xi, xj, zj, zj) = 0. Further-
more, all finite order derivatives ofF0(α) with respect toα are uniformly bounded and thus
Assumptions C4 and C3 imply that for eachs = 1, . . . , t(k), ‖m(s)

1 (xi, xj, zi, zj)‖ is bounded
above by a linear function of‖xi − xj‖ for all (zi, zj). But then fors = 1, . . . , t(k)− 1:∫

Γ4

γ−kn K

(
∆12z

γn

)
m

(s)
1 (x1, x2, z2, z2) ◦ (∆12z)sfX(x1)fZ,X(z2, x2)dz1dz2dx1dx2

= γsn

∫
Γ4

usK(u)m(s)
1 (x1, x2, z2, z2)fX(x1)fZ,X(z2, x2)du dz2dx1dx2

= γsn

∫
Γ3

m
(s)
1 (x1, x2, z2, z2)fX(x1)fZ,X(z2, x2)dz2dx1dx2 ◦

∫
Rk
usK(u)du

= 0,
(B.44)

by Asumption C2(ii). In addition:∣∣∣∣∫
Γ4

γ−kn K

(
∆12z

γn

)
(∆12z)t(k)m

(t(k))
1 (x1, x2, z

∗, z2)fX(x1)fZ,X(z2, x2)dz1dz2dx1dx2

∣∣∣∣
≤ γt(k)+1

n

∫
Γ4

‖u‖t(k)|K(u)| · ‖m(t(k))
1 (x1, x2, z

∗, z2)‖fX(x1)fZ,X(z2, x2)du dz2dx1dx2

= O(γt(k)
n ),

(B.45)

31



since
∫
Rk ‖u‖

t(k)|K(u)|du < ∞ by Assumption C2(i), and‖mt(k)
1 (x1, x2, z

∗, z2)‖ is uniformly
bounded above by a linear function of‖x1 − x2‖. But then (B.42), (B.43), (B.44) and (B.45)
together imply thatren(β0) = O(γt(k)

n ) and hencen1/2ren(β0) = O(n1/2γ
t(k)
n ) = o(1) by Assump-

tion C1. This establishes the desired result.

Proof of Lemma 4.4

The approach which I adopt is to show that for each fixedφ ∈ Rp with φ 6= 0, the triangular array{
φ′[ren,i(β0)− ren(β0)]

}
, indexed byn = 1, 2 . . . ,∞ andi = 1, 2, . . . n satisifes the conditions

of Liapunov’s CLT in the form given by Theorem 2.4.2 of Bierens (1994). For convenience in
what follows I will setρ̃n,i = φ′

[
ren,i(β0)− ren(β0)

]
andρn,i = φ′ren,i(β0).

First, consider the behavior of:

σn = n−1
n∑
i=1

V0(ρ̃n,i), (B.46)

as n → ∞. Clearly, for each fixedn, the {ρ̃n,i}ni=1 are iid with mean zero and therefore
σn = V0(ρ̃n,i) = E0

[
ρ̃2
n,i

]
= E0

[
{φ′ren,i(β0)}2

]
− [φ′ren(β0)]2. From Lemma 4.3 it is clear that

limn→∞[φ′ren(β0)]2 = 0 and thuslimn→∞ σn = limn→∞E0
[
{φ′ren,i(β0)}2

]
= limn→∞E0

[
ρ2
n,i

]
.

Now from (4.3) and (4.5) it follows that:

ren,i(β) = E0

[{
γ−kn K

(
Zi − Zj
γn

)(
∂l∗ij(β)
∂β

)}
|Wi

]
= E0

{
γ−kn K

(
Zi − Zj
γn

)
E0

[(
∂l∗ij(β)
∂β

)
| (Wi, Xj, Zj)

]
|Wi

}
.

(B.47)

From (B.25) it follows that:

E0

[(
∂l∗ij(β)
∂β

)
| (Wi, Xj, Zj)

]
= YiF0 [(Xj −Xi)′β] p̄(Xj, Zj)(Xi −Xj)

− (1 − Yi)F0 [(Xi −Xj)′β] p(Xj, Zj)(Xi −Xj). (B.48)
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Straightforward manipulations then show that:

E0

[
γ−kn K

(
Zi − Zj
γn

)
YiF0 {(Xj −Xi)′β} p̄(Xj, Zj)(Xi −Xj) |Wi

]
= Yi

∫
Rk×Rp

γ−kn K

(
Zi − zj
γn

)
F0 {(xj −Xi)′β} p̄(xj, zj)(Xi − xj)

× fZ|X(zj|xj)fX(xj)dzjdxj.

= Yi

∫
Rk×Rp

K(u)F0 {(xj −Xi)′β} p̄(xj, Zi − γnu)(Xi − xj)

× fZ|X(Zi − γnu|xj)fX(xj)du dxj.

= Yi

∫
Rk×Rp

F0 {(xj −Xi)′β} p̄(xj, Zi − γnu)fZ|X(Zi − γnu|xj)(Xi − xj)

×K(u)fX(xj)du dxj,
(B.49)

while:

E0

[
γ−kn K

(
Zi − Zj
γn

)
(1− Yi)F0 {(Xi −Xj)′β} p(Xj, Zj)(Xi −Xj) |Wi

]
= (1− Yi)

∫
Rk×Rp

F0 {(Xi − xj)′β} p(xj, Zi − γnu)fZ|X(Zi − γnu|xj)(Xi − xj)

×K(u)fX(xj)du dxj.
(B.50)

But by the mean value theorem and Assumptions C4 and C3:

|p̄(xj, Zi − γnu)fZ|X(Zi − γnu|xj) − p̄(xj, Zi)fZ|X(Zi|xj)|

=
∥∥∥∥γnu′( ∂{p̄(xj, z)fZ|X(z|xj)}

∂z

∣∣∣∣
z=Z∗

)∥∥∥∥
≤ γn · ‖u‖ ·

∥∥∥∥( ∂{p̄(xj, z)fZ|X(z|xj)}
∂z

∣∣∣∣
z=Z∗

)∥∥∥∥ ≤ γn ·M1 · ‖u‖,

(B.51)

whereZ∗ = λZi + (1− λ)(Zi − γnu) = Zi − (1− λ)γnu for some0 ≤ λ ≤ 1, and whereM1

is a finite constant. Likewise I obtain:

|p(xj, Zi − γnu)fZ|X(Zi − γnu|xj) − p(xj, Zi)fZ|X(Zi|xj)| ≤ γn ·M2 · ‖u‖, (B.52)

whereM2 is also a finite constant. Since|Yi|, |F0(α)| ≤ 1, taken together these results imply
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that: ∥∥∥∥ren,i(β)−
{∫

Rk×Rp
[YiF0 {(xj −Xi)′β} p̄(xj, Zi)− (1− Yi)F0 {(Xi − xj)′β} p(xj, Zi)]

·fZ|X(Zi|xj)(Xi − xj)K(u)fX(xj)du dxj
}∥∥ ,

≤
∫
Rk×Rp

γn · (M1 +M2) · ‖u‖ · ‖Xi − xj‖ · |K(u)|fX(xj)du dxj,

(B.53)

and hence:∥∥ren,i(β)− re0,i(β)
∥∥ ≤ γn(M1 +M2)

{∫
Rk
‖u‖ · |K(u)|du

}
{‖Xi‖+ E (‖Xj‖)}

= γn (M3 +M4 · ‖Xi‖) ,
(B.54)

where:

re0,i(β) = E0 {[YiF0 {−(∆ijX)′β} p̄(Xj, Zi)− (1− Yi)F0 {(∆ijX)′β} p(Xj, Zi)]

×fZ|X(Zi|Xj)(∆ijX)|Wi

}
,

(B.55)

andM3 andM4 are finite constants, from which it follows that:

|ρn,i − ρ0,i| ≤ γn‖φ‖ · (M3 +M4 · ‖Xi‖) = γnh1 (‖Xi‖) , (B.56)

whereρ0,i = φ′re0,i. But then:

|ρ0,i| − γnh1 (‖Xi‖) ≤ |ρn,i| ≤ |ρ0,i|+ γnh1 (‖Xi‖) . (B.57)

But from (B.55) it is clear that:

|ρ0,i| ≤ ‖φ‖ · (M5 +M6 · ‖Xi‖) = h2 (‖Xi‖) , (B.58)

whereM5 andM6 are finite constants. SinceH1(·), h2(·) are linear functions and sinceE0 (‖Xi‖4) <
∞ by Asumption C5 andγn → 0 by Assumption A1(i), then (B.57) implies that:

lim
n→∞

E0[ρ2
n,i] = lim

n→∞
E0[ρ2

0,i] <∞, (B.59)

lim
n→∞

E0[ρ4
n,i] = lim

n→∞
E0[ρ4

0,i] <∞. (B.60)

Now defineµ1(Wi,Wj) andµ1(Wi,Wj) as in (4.9) and (4.10) so that:

ρ0,i = E0 {[Yiµ1(Wi,Wj)− (1− Yi)µ2(Wi,Wj)] (∆ijX)′φ |Wi} . (B.61)
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Clearly, from Assumptions A1 and B3(iii) it follows thatPr{µs(Wi,Wj) > 0 |Wi} = 1 for
s = 1, 2. But sincePr{(∆ijX)′φ 6= 0 |Wi} = 1 from Assumption B5 then:

V0 [ρ0,i | (Xi, Zi)] > 0, (B.62)

sinceV0[Yi | (Xi, Zi)] > 0. This then implies thatV0(ρ0,i) > 0 and henceE0[ρ2
0,i] > 0. But then

the conditions of Theorem 2.4.2 of Bierens (1994) are satisfied (withδ = 2) giving:

1√
n

n∑
i=1

ρ̃n,i
D−→ N [0, σ2

0], (B.63)

whereσ2
0 = limn→∞E0[ρ2

0,i]. But sinceφ 6= 0 was fixed and arbitrary, then:

1√
n

n∑
i=1

[
ren,i(β0)− ren(β0)

] D−→ N [0, A1], (B.64)

where:

A1 = V0 [E0 {[Yiµ1(Wi,Wj)− (1− Yi)µ2(Wi,Wj)] (∆ijX) |Wi}] , (B.65)

which establishes the desired result.

Proof of Lemma 4.5

Differentiation ofQn with respect toβ reveals that:[
∂Qn

∂β∂β′

]
= −

(
n

2

)−1 n∑
i<j

ωn,ij(β), (B.66)

where:

ωn,ij(β) = γ−kn K

(
∆ijZ

γn

)
(∆ijY )2(∆ijX∆ijX

′)f0[(∆ijY )(∆ijX
′β)], (B.67)

in which f0(α) ≡ eα(1 + eα)−2 is the pdf of the logistic distribution evaluated atα. From
the iid property of theWi it follows that theωn,ij(β) are identically distributed (though not
independently distributed). Hence:

E0

[
∂Qn

∂β∂β′

]
= −E0[ωn,ij(β)]

= E0

{
γ−kn K

(
∆ijZ

γn

)
(∆ijY )2(∆ijX∆ijX

′)f0[(∆ijY )(∆ijX)′β]
}
. (B.68)
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Now define:

m2(β;Xi, Xj, Zi, Zj) ≡ E0
{

(∆ijY )2f0[(∆ijY )(∆ijX
′β)]|(Xi, Xj, Zi, Zj)

}
= f0[(∆ijX)′β]p(Xi, Zi)p̄(Xj, Zj) + f0[−(∆ijX)′β]p̄(Xi, Zi)p(Xj, Zj)
= f0[(∆ijX)′β] [p(Xi, Zi)p̄(Xj, Zj) + p̄(Xi, Zi)p(Xj, Zj)] ,

(B.69)

and observe thatm2(β;Xi, Xj, Zi, Zj) is clearly continuous in all its arguments and lies in the
range[0, 1/2]. Then I have that:

E0 [ωn,ij(β)] = E0

{
γ−kn K

(
∆ijZ

γn

)
m2(β;Xi, Xj, Zi, Zj)

}

=
∫

Γ4

γ−kn K

(
∆12z

γn

)
m2(β; x1, x2, z1, z2)(∆12x)(∆12x

′)

× fZ,X(z1, x1)fZ,X(z2, x2) dz1 dz2 dx1 dx2,

=
∫

Γ4

m2(β;x1, x2, z2 + γnu, z2)fZ|X(z2 + γnu|x1)(∆12x)(∆12x
′)

×K(u)fX(x1)fZ,X(z2, x2) du dz2 dx1 dx2. (B.70)

SincefZ|X(z2 + γnu|x1) is bounded in absolute value,0 < p(x, z) < 1, 0 < f0(α) ≤ (1/4) for
all α, andE0 (‖Xi‖2) <∞, it follows by the dominated convergence theorem that:

E0 [ωn,ij(β)] → A∗2(β) ≡ E0
{
m2(β;X1, X2, Z2, Z2)fZ|X(Z2|X1)(∆12X)(∆12X)′

}
.

(B.71)

Evaluating this atβ = β0 gives:[
∂Qn

∂β∂β′

]
→ A2 = E0

{
m2(β0;X1, X2, Z2, Z2)fZ|X(Z2|X1)(∆12X)(∆12X

′)
}

= E0 {[p(X1, Z1)p̄(X2, Z2) + p̄(X1, Z1)p(X2, Z2)]

× f0[−(∆12)X ′β]fZ|X(Z2|X1)(∆12X)(∆12X)′
}
. (B.72)

Clearly m2(β0;X1, X2, Z2, Z2) is almost surely strictly positive, andfZ|X(Z2|X1) is almost
surely strictly positive by Assumption B3(iii). In addition,E0[(∆12X)(∆12X)′] is non-singular
in view of Assumption B5. Together these imply thatA2 is non-singular which establishes the
desired result.

36



Proof of Lemma 4.6

Observe that (B.67) implies that:

‖ωn,ij(β)‖2 = tr[ωn,ij(β)ωn,ij(β)′]

= γ−2
n K

(
∆ijZ

γn

)2

(∆ijY )4‖∆ijX‖4f0[∆ijY (∆ijX
′β)]2

≤ (1/2)γ−2
n K

(
∆ijZ

γn

)2

(‖Xi‖4 + ‖Xj‖4), (B.73)

since the pdf of the logistic distribution is bounded above by(1/4), (∆ijY )4 is bounded above
by 1, and‖∆ijX‖4 ≤ (2‖Xi‖2 + 2‖Xj‖2)2 ≤ 8(‖Xi‖4 + ‖Xj‖4). Hence,

E0
(
‖ωn,ij(β)‖2) ≤ γ−1

n E0

[
γ−1
n K

(
∆ijZ

γn

)2

· ‖Xi‖4

]
, (B.74)

using the iid property of theWi and the symmetry ofK(·) from Assumptions A1 and A3. But
then by parallel arguments to those used in the proof of Lemma 4.2 to establish (B.30) it follows
that:

E0

[
γ−1
n K

(
∆ijZ

γn

)2

· ‖Xi‖4

]
≤ L1L2L7 <∞, (B.75)

and hence that:

E0
(
‖ωn,ij(β)‖2) = O(γ−kn ) = o(n). (B.76)

Lemma A.1 then implies that:[
∂2Qn

∂β∂β′

]
= E0

[
∂2Qn

∂β∂β′

]
+ op(1) = E0 [ωn,ij(β)] + op(1), (B.77)

which establishes the desired result.

Proof of Lemma 4.7

Let ξ1, ξ2 be two arbitrary non-stochastic(p× 1) vectors and consider the behaviour of:

Cn(ξ1, ξ2) = −
(
n

2

)−1 n∑
i<j

ξ′1 [ωn,ij(β∗n)− ωn,ij(β0)] ξ2. (B.78)
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Applying the mean value theorem to each term gives:

ξ′1 [ωn,ij(β∗n)− ωn,ij(β0)] ξ2 =

(
∂[ξ′1ωn,ij(β)ξ2]

∂β

∣∣∣∣
β∗∗n,ij

)′
(β∗n − β0), (B.79)

whereβ∗∗n,ij is a convex combination ofβ∗n andβ0, whose coefficients depend on the term in
question. Substituting this into (B.78) gives:

Cn(ξ1, ξ2) = −
(
n

2

)−1 n∑
i<j

(
∂[ξ′1ωn,ij(β)ξ2]

∂β

∣∣∣∣
β∗∗n,ij

)′
(β∗n − β0), (B.80)

and hence:

|Cn(ξ1, ξ2)| ≤
(
n

2

)−1 n∑
i<j

∥∥∥∥∥
(
∂[ξ′1ωn,ij(β)ξ2]

∂β

∣∣∣∣
β∗∗n,ij

)∥∥∥∥∥ · ‖β∗n − β0‖. (B.81)

Now diferentiation of (B.67) reveals that:[
∂[ξ′1ωn,ij(β)ξ2]

∂β

]
= γ−kn K

(
∆ijZ

γn

)
(∆ijY )3(∆ijX)[(∆ijX)′ξ1][(∆ijX)′ξ2]

× f (1)
0 [(∆ijY )(∆ijX)′β], (B.82)

wheref (1)
0 (·) denotes the first derivative of the logistic pdf. Hence:∥∥∥∥(∂[ξ′1ωn,ij(β)ξ2]

∂β

)∥∥∥∥ ≤ γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖∆ijX‖3 · ‖ξ1‖ · ‖ξ2‖, (B.83)

for all β, which substituted into (B.81) implies that:

|Cn(ξ1, ξ2)| ≤
(
n

2

)−1 n∑
i<j

γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖∆ijX‖3 · ‖ξ2‖ · ‖ξ2‖ · ‖β∗n − β0‖

= H2,n · ‖ξ1‖ · ‖ξ2‖ · ‖β∗n − β0‖. (B.84)

It is clear that:

E0[H2,n] = E0

{
γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖∆ijX‖3
}
, (B.85)

converges to a finite limit asn → ∞ following the same line of argument used in the proof of
Lemma 3.3 to establish (B.17) in view of the finiteness ofE{‖Xi‖3} implied by Assumption C5.
SinceH2,n is non-negative it follows by the Markov inequality thatH2,n = Op(1).

Then sinceβ∗n lies on the line segment joiningβ0 andβ̂n it follows that‖β∗n−β0‖ ≤ ‖β̂n−β0‖
and thus that:

|C2,n(ξ)| ≤ H2,n · ‖ξ1‖ · ‖ξ2‖ · ‖β̂n − β0‖ = Op(1)×O(1)×O(1)× op(1) = op(1),
(B.86)

sinceξ1 = O(1) andξ2 = O(1) by assumption and since‖β̂n − β0‖ = op(1) by Theorem 3.1.
This establishes the desired result.
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Proof of Lemma 5.1

As in the proof of Lemma 4.7, letξ1, ξ2 be two arbitrary non-stochastic(p × 1) vectors and
consider the behaviour of:

a11,n(ξ1, ξ2) = ξ′1Â11,nξ2

= n−1(n− 1)−2
n∑
i 6=j

[rn,ij(β̂n)′ξ1][rn,ij(β̂n)′ξ2]

= n−1(n− 1)−2
n∑
i 6=j

γ−2k
n K

(
∆ijZ

γn

)2

(∆ijY )2

· F0[−(∆ijY )(∆ijX)′β̂n]2 · [(∆ijX)′ξ1] · [(∆ijX)′ξ2], (B.87)

from which it is clear that:

|a11,n(ξ1, ξ2)| ≤ n−1(n− 1)−2
n∑
i6=j

γ−2k
n K

(
∆ijZ

γn

)2

(∆ijY )2

· F0[−(∆ijY )(∆ijX)′β̂n]2 · ‖∆ijX‖2 · ‖ξ1‖ · ‖ξ2‖

≤ n−1(n− 1)−2
n∑
i6=j

K

(
∆ijZ

γn

)2

‖∆ijX‖2 · ‖ξ1‖ · ‖ξ2‖

= H3,n · ‖ξ1‖ · ‖ξ2‖.
(B.88)

But then (B.30) from the proof of Lemma 4.2, which uses a subset of the assumptions currently
made, implies that:

E0[H3,n] = (n− 1)−1E0

[
γ−2k
n K

(
∆ijZ

γn

)2

‖∆ijX‖2

]
≤ (n− 1)−1γ−kn L1L2L3,

(B.89)

which tends to zero. SinceH3,n is non-negative it follows by the Markov inequality thatH3,n
p−→

0. But this implies that|a11,n(ξ1, ξ2)| p−→ 0 and hence that̂A11,n
p−→ 0 sinceξ1 andξ2 were

assumed fixed. This establishes the desired result.

Proof of Lemma 5.2

Observe that:

E0

[
n−1(n− 1)−2

n∑
i 6=j 6=l

rn,ij(β0)rn,il(β0)′
]

=
(
n− 2
n− 1

)
E0 [rn,ij(β0)rn,ik(β0)′] (B.90)
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Now note that:

Cov0 [rn,ij(β0), rn,ik(β0)′] = V0

[
E0
{
rn,ij(β0)|Wi

}]
, (B.91)

sinceWi,Wj andWl are iid; hence:

E0 [rn,ij(β0)rn,ik(β0)′] = V0

[
E0
{
rn,ij(β0)|Wi

}]
+ E0

{
rn,ij(β0)

}
E0
{
rn,ij(β0)

}′
= V0

[
ren,i(β0)

]
+ ren(β0)ren(β0)′. (B.92)

Lemma 4.3 implies thatren(β0) converges to zero, and the proof of Lemma 4.4 establishes that
V0
[
ren,i(β0)

]
converges toA1. Since(n−2)/(n−1) converges to one this establishes the desired

result.

Proof of Lemma 5.3

First observe that:

n−1(n− 1)−2
n∑

i6=j 6=l

rn,ij(β)rn,il(β)′ =
(
n

3

)−1 ∑
i<j<l

ψn,ijl(β) (B.93)

where:

ψn,ijl(β) = rn,ij(β)rn,il(β)′ + rn,il(β)rn,ij(β)′ + rn,ji(β)rn,jl(β)′

+ rn,jl(β)rn,ji(β)′ + rn,li(β)rn,lj(β)′ + rn,lj(β)rn,li(β)′ (B.94)

which is clearly symmetric in the indices(i, j, l), so that the right-hand-side expression in (B.93)
is a third-order symmetricU -statistic function to which it is possible to apply Lemma A.1. Fur-
thermore, the six terms in the right-hand-side expression in (B.94) have an exchangeable joint
distribution and hence have identical means and cross-covariances. Thus:

E0
[
ψn,ijl(β)

]
= 6E0

[
rn,ij(β)rn,il(β)′

]
, V0

[
ξ′iψn,ijl(β)ξ2

]
≤ 36V0

[
ξ′1rn,il(β)rn,ij(β)′ξ2

]
,

(B.95)

for any fixed(p×1) vectorsξ1 andξ2 and allβ. Now consider the behaviour ofE0
[
{ξ′1rn,ij(β)}2{rn,il(β)′ξ2}2

]
.

Observe that:

{ξ′1rn,ij(β)}2{ξ′2rn,il(β)}2 = γ−4k
n K

(
∆ijZ

γn

)2

K

(
∆ilZ

γn

)2

(∆ijY )2(∆ilY )2

F0[−(∆ijY )(∆ijX)′β]2F0[−(∆ilY )(∆ilX)′β]2[(∆ijX)′ξ1]2[(∆ilX)′ξ2]2. (B.96)

Now define:

m4(β;Xi, Xj, Xl, Zi, Zj, Zl) = E0
{

(∆ijY )2(∆ilY )2F0[−(∆ijY )(∆ijX)′β]2

F0[−(∆ilY )(∆ilX)′β]2|(Xi, Xj, Xl, Zi, Zj, Zl)
}
, (B.97)
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and observe thatm4(·) is continuous in all its arguments and lies in the range[0, 2]; then:

E0
[
{ξ′1rn,ij(β)}2{ξ′2rn,il(β)}2]
= E0

{
γ−4k
n K

(
∆ijZ

γn

)2

K

(
∆ilZ

γn

)2

m4(β;Xi, Xj, Xl, Zi, Zj, Zl)[(∆ijX)′ξ1]2[(∆ilX)′ξ2]2

= γ−2k
n E∗0

{
K(Uj)K(Ul)m4(β;Xi, Xj, Xl, Zi, Zi − γnUj, Zi − γnUl)

fZ|X(Zi − γnUj|Xj)fZ|X(Zi − γnUl|Xl)[(∆ijX)′ξ1]2[(∆ilX)′ξ2]2
}

≤ 2γ−2k
n L2

1L
2
2E
∗
0

{
‖∆ijX‖2·‖∆ilX‖2} = o(n),

(B.98)

by Assumptions C5 and D1. But this implies thatE0[{ξ′1ψn,ijl(β)ξ2}2] = o(n) so that:

n−1(n− 1)−2
n∑

i6=j 6=l

rn,ij(β)rn,il(β)′ = E0[ξ′1ψn,ijl(β)ξ2] + op(1), (B.99)

by application of Lemma A.1, and sinceξ1 andξ2 were arbitrary fixed vectors this establishes
the deisred result.

Proof of Lemma 5.4

Again letξ1 andξ2 be arbitrary fixed(p× 1) vectors and consider:∣∣∣n−1(n− 1)−2
n∑

i 6=j 6=l

ξ′1
{
rn,ij(β̂n)rn,il(β̂n)′ − rn,ij(β0)rn,il(β0)′

}′
ξ2

∣∣∣
≤ n−1(n− 1)−2

n∑
i6=j 6=l

∣∣ξ′1{rn,ij(β̂n)rn,il(β̂n)′ − rn,ij(β0)rn,il(β0)′
}′
ξ2
∣∣. (B.100)

By application of the mean value theorem to each term I have that:

ξ′1
{
rn,ij(β̂n)rn,il(β̂n)′ − rn,ij(β0)rn,il(β0)′

}′
ξ2

= −
{[
ωn,ij(β∗n,ijl)ξ1

][
rn,ij(β∗n,ijl)

′ξ2
]

+
[
ωn,il(β∗n,ijl)ξ2

][
rn,il(β∗n,ijl)

′ξ1
]}

(β̂n − β0),

(B.101)

whereβ∗n,ijl lies on the line segment joininĝβn andβ0. Hence:

n−1(n− 1)−2
n∑

i6=j 6=l

∣∣ξ′1{rn,ij(β̂n)rn,il(β̂n)′ − rn,ij(β0)rn,il(β0)′
}′
ξ2
∣∣

≤ H4,n · ‖ξ1‖ · ‖ξ2‖ · ‖β̂n − β0‖, (B.102)
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where:

H4,n = n−1(n− 1)−2
n∑

i 6=j 6=l

{
‖ωn,ij(β∗n,ijl)‖ · ‖rn,ij(β∗n,ijl)‖

+ ‖ωn,il(β∗n,ijl)‖ · ‖rn,il(β∗n,ijl)‖
}
. (B.103)

But from (B.67) it is clear that:

‖ωn,ij(β)ξ‖ ≤ γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖∆ijX‖2 · ‖ξ‖, (B.104)

for all β while from (4.5) it is clear that:

|rn,ij(β)′ξ| ≤ γ−kn

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣ · ‖∆ijX‖ · ‖ξ‖. (B.105)

From these it follows that:

‖ωn,ij(β∗n,ijl)‖ · ‖rn,ij(β∗n,ijl)‖+ ‖ωn,il(β∗n,ijl)‖ · ‖rn,il(β∗n,ijl)‖

≤ γ−2k
n

∣∣∣∣K (∆ijZ

γn

)∣∣∣∣·∣∣∣∣K (∆ilZ

γn

)∣∣∣∣·‖∆ijX‖·‖∆ilX‖·
(
‖∆ijX‖+‖∆ilX‖

)
·‖ξ1‖·‖ξ2‖.

(B.106)

But then by the same line of arguments as used in the proof of (B.89) from Lemma 5.1 it follows
that the expectation of the right-hand-side is uniformly bounded for alln and hence isOp(1). But
thenH4,n = Op(1) and thusH4,n · ‖ξ1‖ · ‖ξ2‖ · ‖β̂n − β0‖ = op(1) sinceβ̂n

p−→ β0 by Lemma
3.1 and sinceξ1 andξ2 are fixed(p× 1) vectors. In view of (B.100), this establishes that:∣∣∣n−1(n− 1)−2

n∑
i 6=j 6=l

ξ′1
{
rn,ij(β̂n)rn,il(β̂n)′ − rn,ij(β0)rn,il(β0)′

}′
ξ2

∣∣∣ = op(1), (B.107)

which in turn establishes the desired result sinceξ1 andξ2 are arbitrary.

Proof of Lemma 5.5

First observe that following exactly the same line of reasoning as used in the proof of Lemma
4.7: [

∂2Qn

∂β∂β′

∣∣∣∣
β̂n

]
−

[
∂2Qn

∂β∂β′

∣∣∣∣
β0

]
p−→ 0, (B.108)

since‖β̂n−β0‖ = op(1) just as‖β∗n−β0‖ = op(1). The desired result follows immediately from
(B.108) combined with Lemmas 4.5 and 4.6.
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