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Abstract

Parikh and Krasucki (1990) suggested in an informal manner that a con-
sensus does not require common knowledge. Weyers (1992) proved that their
model does not permit such a conclusion and that a more general one has to
be constructed. Heifetz (1996) gave an example with three agents inspired
by computer science which illustrates the intuition of Parikh and Krasucki
(1990), i.e., where a consensus is obtained without common knowledge of it.
We propose a general setting of noisy communication to confirm this result.
We show that common knowledge cannot emerge with any non-public and
noisy communication protocol. But, with “fair” protocols and a sufficiently
rich language, a consensus and arbitrary high levels of interactive knowledge
are achievable. A minimal example with two agents and two states is given.
Nevertheless, for public and noisy communication, some results on common
knowledge and consensus are obtained. We apply our results to describe
some conditions that ensure or prevent epistemic conditions for Nash equi-
librium. In general, non-public and noisy communication is not sufficient for
the conjectures to form, during time, a Nash equilibrium, even if the game
and mutual rationality are mutually known. However, with only two agents
or with a noisy and public communication protocol, sufficient conditions are
given for the conjectures to form a Nash equilibrium in a finite number of
communication periods.
Keywords: Noisy communication protocols, common knowledge, consen-
sus, Nash equilibrium, conjectures.
JEL Classification: C72, D82.



Résumé

Parikh et Krasucki (1990) ont suggéré de manière informelle qu’un con-
sensus ne nécessite pas la connaissance commune. Weyers (1992) a prouvé
que leur modélisation ne permet pas d’obtenir une telle conclusion, et qu’un
modèle plus général doit donc être construit. Heifetz (1996) a donné un
exemple à trois agents, inspiré par les travaux effectués en informatique
théorique, qui illustre l’intuition de Parikh et Krasucki (1990), i.e., où
un consensus est atteint sans qu’il ne devienne connaissance commune.
Nous proposons un cadre général qui confirme ce résultat. Nous montrons
que pour tout protocole de communication faillible et non public, aucun
événement ne peut devenir connaissance commune s’il ne l’était pas au
départ. Cependant, si le langage disponible est suffisamment riche, un con-
sensus et un niveau arbitraire de connaissances interactives peuvent être
obtenus avec des protocoles “fair”. Un exemple minimal à deux agents et
deux états de la nature est donné. Pour des protocoles de communication
faillibles mais publics, nous proposons des résultats à la fois sur l’évolution de
la connaissance commune et l’obtention de consensus. Nous appliquons nos
résultats afin de décrire des conditions qui assurent ou empêchent d’obtenir
les conditions épistémiques de l’équilibre de Nash. En général, la communi-
cation faillible et non publique n’est pas suffisante à l’obtention de conjec-
tures formant un équilibre de Nash, même si la rationalité et le jeu sont une
connaissance mutuelle. Cependant, avec uniquement deux agents, ou si la
communication est publique, des conditions suffisantes assurant un équilibre
de Nash en un nombre fini de périodes sont proposées.
Mots Clés : Communication faillible, protocoles, connaissance commune,
consensus, équilibre de Nash, conjectures.
Classification JEL : C72, D82.



1 Introduction

When individuals with different knowledge communicate some messages to
each other, each one integrates in his own knowledge the information which
is contained in the messages he received. But each individual also takes
into account others’ knowledge about this information. In the same way,
each individual also considers his own knowledge about others’ knowledge
about this information, and so on. When communication takes place, all
these hierarchies of knowledge are incorporated into individuals’ knowledge.
Thus, the learning process that occurs during communication involves not
only first-order knowledge but also higher-order knowledge. In other words,
when some information is transferred from a set of senders to a set of re-
ceivers, every agent learns something because interactive knowledge (i.e.,
knowledge about knowledge) is also modified. When iterative reasoning
about interactive knowledge is applied infinitely many times and leads to
the same knowledge for every individual, this knowledge is called common
knowledge. More precisely, an event is said to be common knowledge if ev-
eryone knows it, everyone knows that everyone knows it, everyone knows
that everyone knows that everyone knows it, and so on ad infinitum.

A fundamental phenomenon related to common knowledge is consensus
(or agreement). When agents can communicate their beliefs, or more gen-
erally when they can communicate messages determined by the value of a
function that depends on their private information, we say that a consensus
about this function is achieved when agents agree about its value. In this
case, all agents send the same message, i.e., communicated values are equal.
Common knowledge of these values was shown to be a sufficient condition
for consensus.1 Furthermore, when a consensus emerges, common knowl-
edge of this consensus also naturally seems to emerge. However, in some
practical settings, this last conclusion remains problematic. Indeed, com-
mon knowledge is particularly difficult to achieve through communication
if there are intertemporal uncertainties, i.e., if agents are uncertain about
the period at which other agents’ learning occurs. When communication is
noisy, i.e., if some messages may fail to reach the receivers at some periods,
intertemporal uncertainties appear because agents are uncertain about oth-
ers’ current information. Since common knowledge requires perfect trans-
parency of interactive knowledge, communication in these conditions does
not seem to create common knowledge. Nevertheless, the emergence of a
consensus seems to be possible. In such a setting, the analysis of the emer-
gence of common knowledge and consensus, and of their interdependence,
is still restrained.

The aim of this paper is to formally analyze under which conditions com-
mon knowledge and consensus could emerge when there are intertemporal

1See Aumann (1976).
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uncertainties generated by noisy communication. We show that the type of
communication protocol and the richness of the available language are cru-
cial elements for the emergence of consensus and common knowledge. Our
results can be applied in any context where the notion of common knowl-
edge intervenes. For example, they can be used to analyze the emergence of
epistemic conditions that characterize solution concepts in game theory. In
the last section, such an application is done to characterize conditions ensur-
ing or preventing epistemic conditions for Nash equilibrium2 when players’
conjectures are communicated through noisy communication protocols.

The notions of knowledge and common knowledge have become increas-
ingly used in economics and game theory. Aumann (1976) was the first
economist3 to define common knowledge technically in order to prove that
agents cannot “agree to disagree”, i.e., they cannot disagree about their pos-
terior probabilities if they are common knowledge. In other words, rational
economic agents having common knowledge of their beliefs about an event
cannot disagree. In terms of consensus this result means that a consensus
about posteriors is achieved when these posteriors are common knowledge.

Several authors were interested in the way posteriors might become com-
mon knowledge. They proved the general convergence to identical and com-
mon knowledge messages when perfectly reliable communication takes place
(i.e., when communication is not noisy and when there is no intertemporal
uncertainty). First of all, Geanakoplos and Polemarchakis (1982) showed
that when two agents exchange their posteriors about an event then the
revision of these posteriors converge in a finite number of periods, and
these probabilities become common knowledge, and hence equal. Roughly
speaking, “we can’t disagree forever”. Thus, a consensus about posteri-
ors is obtained during communication and this consensus becomes common
knowledge. Later, Cave (1983) generalized this result to public communica-
tion with many agents when the function which determines sent messages is
union consistent.4 Nevertheless, Parikh and Krasucki (1990) showed that for
non-public, pairwise communication, union consistency is not strong enough
to ensure the emergence of a consensus. Actually, they showed that if the
function that determines sent messages is convex (which is a stronger re-
quirement than union consistency), and if the communication protocol is
“fair”, then a consensus is always achieved. This work was pursued further

2Epistemic conditions for Nash equilibrium are sufficient conditions on knowledge for
the realization of a Nash equilibrium. They were formally characterized by Aumann and
Brandenburger (1995).

3Logical and formal analysis of knowledge really started in the sixties in philosophy,
and was largely developed in cognitive science, linguistics, artificial intelligence, computer
science, psychology, and game theory. For a survey see, e.g., Halpern (1995).

4A function f : 2Ω → M is union consistent if f(E) = f(F ) and E ∩ F = ∅ imply
f(E∪F ) = f(E). In other words, if an agent sends the same message at E and F then he
sends the same message when he does not know which of these events realized. Posterior
probabilities verify this property.
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by Krasucki (1990, 1996).
In their conclusion, Parikh and Krasucki (1990) claimed informally that

common knowledge of sent messages is not always verified, despite consensus
about them is always obtained. They argued that within their framework
consensus is sometimes achieved without common knowledge of this con-
sensus, i.e., without common knowledge of sent messages. This claim was
contradicted by Weyers (1992) who showed, within the same framework,
that sent messages always become common knowledge.

The intuition that the consensus is obtained but not necessarily common
knowledge stems from computer science. This later field usually makes use of
epistemic logic endowed with intertemporal uncertainties. That is, commu-
nication errors are possible, or there is no upper-bound for message delivery
(see particularly Halpern and Moses (1990)). Besides, Heifetz (1996) gave
an example of consensus without common knowledge in a setting which in-
cludes intertemporal uncertainty and where knowledge is represented by a
partitional information structure on a state space. Thus, he showed that
the standard game-theoretic setting permits to illustrate the phenomenon
of consensus without common knowledge.

In this paper we consider the same knowledge framework as Heifetz
(1996). We show that with noisy and non-public communication no event
can become common knowledge if it was not so at the beginning. In other
words, if communication is not public, common knowledge cannot be at-
tained when perfect communication is not guaranteed. This result does not
depend on the richness of language, i.e., is independent of communication
details. It turns out that Heifetz’s (1996) example, based on communica-
tion between three agents, is a particular case of our model. Moreover, we
exhibit a simpler and minimal example that involves only two players. In
our example, inspired by the electronic mail game5 (or coordinated attack
problem), a consensus also emerges without common knowledge. A general
result for the emergence of consensus without common knowledge is given
for noisy, non-public and fair protocols.

For noisy and public communication we provide some results on the emer-
gence of common knowledge and consensus which depend on the richness of
the available language. Then, we apply our results to epistemic conditions
for Nash equilibrium to show that if conjectures are not common knowledge,
noisy and non-public communication protocols cannot make them common
knowledge. Thus, even with truthful and mandatory reports, such a com-
munication is not sufficient to achieve a mixed Nash equilibrium if there are
more than two agents. However, with only two agents or with a noisy and
public communication protocol, we give sufficient conditions for conjectures

5The electronic mail game was introduced by Rubinstein (1989). It is a 2-player coordi-
nation game with incomplete information where players communicate by noisy electronic
mail signals.
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to form a Nash equilibrium in a finite number of communication periods.
We describe the model and some definitions in the next section. In

section 3, we provide our results with some examples and illustrations. In
section 4, we focus on Nash equilibrium by applying our model to noisy
communication of conjectures. We conclude in section 5. Proofs are in
appendix.

2 The model

2.1 The basic framework

We consider a set of agents with private information represented by a parti-
tional information structure on a state space. An exogenous communication
protocol determines sequential information exchanges between agents. Like
Heifetz (1996), we incorporate time stages into the information structure.
This is done by considering noisy communication between some agents at
each period. By noisy communication we mean communication where the
set of messages can fail to be delivered with a strictly positive probability at
each period. Thus, agents are not always and immediately sure if the mes-
sage they send at a certain period reaches the receivers at this period. In this
case, they are not able to distinguish the current period from the preceding
period. Therefore, such a setting generates intertemporal uncertainties.

The global state will correspond to the realization of a “basic” state
completed with the number of periods during which messages have been
transmitted. The probability of transmission failure at each period is strictly
positive. Without loss of generality, we suppose that once an error occurs
no message will be sent afterwards. We will say that we are at period t when
exactly t waves of messages have been sent.

Formally, let (Ω, q) be a finite probability space with q(ω) > 0 for all
ω ∈ Ω, and (T, µ) a probability space with µ(t) > 0 for any t ∈ T ≡ N ∪ 0,
where N = {1, 2, . . .}. We assume that µ(t) < µ(t − 1) for all t ∈ N. Let
S = Ω× T be the space of states of the world with a probability measure p
such that p(s) = q(ω)× µ(t), where s = (ω, t) ∈ S. A state s = (ω, t) ∈ S is
a global state composed by the basic state ω ∈ Ω and the time state t ∈ T .

Let N = {1, . . . , n} be the set of agents, with n > 1, (Hi)i∈N their
information partitions on S, M = H1 ∧ . . . ∧ Hn the Meet (finest common
coarsening) and J = H1 ∨ . . . ∨Hn the Join (coarsest common refinement)
of these partitions. The sets hi(s), M(s) and J(s) are respectively the
elements of Hi, M and J containing s ∈ S. These sets are sufficient to
describe the configuration of agents’ knowledge and any order of interactive
knowledge in the group. The set hi(s) contains global states that agent i
cannot distinguish when the real global state is s. Because time stages
of T are included in states of S, this information structure also describes
how knowledge is distributed throughout time. In particular, it describes
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intertemporal uncertainties, i.e., it gives periods that each agent cannot
distinguish.

When we are interested by consensus and by first-order knowledge about
the states of Ω at a certain period, it is useful to represent agents’ partitions
that are only defined on Ω. To this end, let P t

Ω : 2S → 2Ω be the projection
on Ω at t such that for any F ∈ 2S , we have P t

Ω(F ) =
{
ω ∈ Ω : (ω, t) ∈ F

}
.

We denote by ht
i(ω) ≡ P t

Ω

(
hi(ω, t)

)
the information set of player i on Ω

at period t. It contains states of Ω that player i cannot distinguish from
ω at period t. The partition generated by the sets

(
ht

i(ω)
)
ω∈Ω

is denoted
by Ht

i for all i ∈ N and t ∈ T . These partitions are sufficient to describe
consensus and first-order knowledge but are not sufficient to describe agents’
knowledge about others’ knowledge. Indeed, if agents do not know in which
period they are, they may be uncertain about others’ information at the
current period.

An event E ⊆ Ω will be called a basic event (or simply event if there
is no possible confusion with events of S). For a set of agents N ′ ⊆ N , let
JN ′(ω, t) be the element of

∨
i∈N ′ Hi containing (ω, t). The set JN (ω, t) is

the element of the Join of (Hi)i∈N . We define J t
N ′(ω) ≡ P t

Ω

(
JN ′(ω, t)

)
and

M t(ω) ≡ P t
Ω

(
M(ω, t)

)
. We adapt interactive knowledge definitions to infor-

mation structures incorporating time stages in the following subsection.6

2.2 Intertemporal knowledge

We say that a basic event E is known at period t by agent i at ω ∈ Ω if
E is realized at all states he considers possible at (ω, t), i.e., if ht

i(ω) ⊆ E.
The event E is mutually known at period t if all agents know it at period t.
These kinds of knowledge only include first-order knowledge because they do
not involve interpersonal knowledge reasoning. Thus, they can be defined
without considering the information structure over the whole state space
Ω×T . Information partitions on Ω are sufficient to describe such knowledge.
For interactive knowledge (as c-common knowledge or common knowledge)
this is not sufficient. The basic event E will be said c-common knowledge
at period t if everyone knows that everyone knows [c times] that everyone
knows E at t. It is common knowledge at t if it is c-common knowledge at
t when c goes to infinity. When c is high but finite, c-common knowledge
is also called “almost” common knowledge. Finally, the knowledge about
E will be called distributed among a set of agents at t if this knowledge is
acquired when agents perfectly share all their knowledge at period t.

Formally, let Ki : 2S → 2S be the knowledge operator of agent i. As usual,
for any event Ẽ ∈ 2S , KiẼ is the event “agent i knows Ẽ”. That is, the
knowledge operator gives for each event the states in which the agent knows

6For a survey on interactive knowledge modeling in game theory see, e.g., Geanakoplos
(1994).
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this event. To differentiate knowledge at different periods we introduce the
following definitions.

Definition 1 Consider a basic event E ⊆ Ω, a set of agents N ′ ⊆ N , and
suppose that the real state is s = (ω, t). Let Ẽ ≡

{
(ω, t) ∈ S : ω ∈ E

}
=

E × {t}t∈T .

• E is known at period t by agent i, if s ∈ KiẼ ≡
{
s′ ∈ S : hi(s′) ⊆

Ẽ
}
, or equivalently if ht

i(ω) ⊆ E.

• E is mutually known at period t , if s ∈ KẼ ≡
⋂

i∈N KiẼ, or
equivalently if

⋃
i∈N ht

i(ω) ⊆ E.

• E is c-common knowledge at period t , if s ∈ K . . . K︸ ︷︷ ︸
c times

Ẽ = KcẼ.

• E is common knowledge at period t , if M(s) ⊆ Ẽ, or equivalently
if M t(ω) ⊆ E or if s ∈ CKE ≡ K∞E.

• The knowledge about E is distributed among N’ at period t , if
J t

N ′(ω) ⊆ E.7

2.3 Communication protocols and consensus

How knowledge is distributed during time is determined by a communication
system (f, Pr). We define Pr as a noisy communication protocol , i.e.,
a function

Pr : N →
(
2N\{∅})× (2N\{∅}

)
,

t 7→
(
e(t), r(t)

)
,

which associates with probability µ(t)
µ(t−1) to each period t a set e(t) ⊆ N of

senders and a set r(t) ⊆ N of receivers.8 With probability 1 − µ(t)
µ(t−1) no

message is sent at period t. Roughly speaking, a protocol determines who
sends a message to whom, and in which order. The probability that exactly
t waves of messages have been transmitted is equal to µ(t).9 The function
f : 2Ω →M, where M is an arbitrary set of messages, determines messages

7See Aumann (1976) and Nishihara (1991) for the proof of the equivalence between
M(s) ⊆ Ẽ and s ∈ K∞Ẽ. The other equivalences come from s ∈ KiẼ ⇔ hi(ω, t) ⊆ Ẽ ⇔
ht

i(ω) ⊆ P t
ΩẼ = E and M(ω, t) ⊆ Ẽ ⇔ M t(ω) ⊆ P t

ΩẼ = E.
8A protocol is often defined as a function from N to N × N , i.e., it associates only

one sender and one receiver at each period, as in Parikh and Krasucki (1990). Here, we
consider rather a larger class of stochastic protocols that allow for several senders and
several receivers at a time.

9For example, if the probability of transmission error at each period is constant and
equal to ε ∈]0, 1[, then µ(t) = (1− ε)tε and µ(t)

µ(t−1)
= (1− ε).
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sent by each sender at each of his information set on Ω. The characteristic
of this function can be seen as the type of communication language used by
agents.

Remark 1 The type of communication we consider in this paper is not
strategic at all because the function f which determines messages sent by
agents is exogenous and imposed to them. When we will consider actions
possibilities in section 4, communication should be seen as an exogenous
procedure that imposes agents to truthfully communicate their conjectures.

Different kinds of relevant protocols can be considered. We will say that
a communication protocol is fair if each agent can directly or indirectly send
a message to any other agent an infinite number of times. In fair protocols,
nobody is “excluded” from communication. A protocol is public if messages
are sent simultaneously to all agents during at least one period. It is perfectly
public when messages are always sent simultaneously from all agents to all
the others. Formally:

Definition 2 A communication protocol Pr is:

• fair , if for all players i, j ∈ N, i 6= j, there exists an infinite number
of finite sequences t1, . . . , tK , with tk ∈ N for all k ∈ {1, . . . ,K}, such
that i ∈ e(t1) and j ∈ r(tK);

• public, if there exists t ∈ N such that r(t) = N ;

• perfectly public, if r(t) = e(t) = N for all t ∈ N.

Clearly, a perfectly public protocol is fair and public. A public (fair)
protocol can be fair (public), but not necessarily. Some particular protocols
are given in the following example.

Example 1 (Some protocols) Let N = {1, . . . , n} be a set of agents,
with n ≥ 2.

1. Fair and non-public protocols: for all t ∈ N, e(t) = t mod n and
r(t) = t + 1 mod n.

2. Public and non-fair protocols: let k ∈ N and consider two different
agents i and j. For all t ≤ k, e(t) = t and r(t) = N ; for all t > k,
e(t) = N−i and r(t) = N−j .

3. Fair and public protocols:

• Let k ∈ N . For all t ≤ k, e(t) = t and r(t) = N ; for all t > k,
e(t) = t mod n and r(t) = t + 1 mod n.

• For all t ≥ 1, e(t) = t mod n and r(t) = N .
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We will say that a consensus about f is obtained at period t when agents
agree about the value of f at period t. Formally:

Definition 3 A consensus about f is achieved at (ω, t) ∈ S if f
(
ht

i(ω)
)

=
f
(
ht

j(ω)
)

= f̄ t for all i, j ∈ N , or equivalently if ω ∈ [f̄ t] ≡
{
ω′ ∈ Ω :

f
(
ht

j(ω
′)
)

= f
(
ht

i(ω)
)

= f̄ t ∀ i, j ∈ N
}
.

By definition 3 and by the definition of common knowledge, a consensus
at (ω, t) is common knowledge at (ω, t) if M t(ω) ⊆ [f̄ t].

2.4 The learning process

At this stage, we do not specify any condition on information partitions
on S = Ω × T . Because f is only defined on 2Ω, all what can be learned
between agents are events of Ω. Their knowledge about the events of T will
only be determined by the protocol itself. At the beginning of the process
agents’ knowledge about basic states of Ω is given by an initial information
structure (H0

i )i∈N on Ω.
Let Mn be the Cartesian product of each agent’s message space. Denote

by f t(ω) ∈ Mn the vector of sent messages at t, where f
(
ht

l(ω)
)

is the l-th
coordinate of f t(ω) for all l ∈ e(t). For all l /∈ e(t), the l-th coordinate of
f t(ω) does not depend on ω. We follow Parikh and Krasucki (1990) and we
extend their learning process to our framework. For all ω ∈ Ω and t ∈ N we
have,

ht
i(ω) = ht−1

i (ω) ∩
{
ω′ ∈ Ω : f t(ω′) = f t(ω)

}
, ∀ i ∈ r(t),

and ht
i(ω) = ht−1

i (ω), ∀ i /∈ r(t).
(1)

This learning process means that when player i receives the message
f t(ω) at t (i.e., i ∈ r(t)) from all the senders at that time, he excludes from
his preceding information all the states of Ω which are incompatible with
this message. When player i does not receive this message (i.e., i /∈ r(t)), he
keeps his preceding information ht−1

i (ω) unchanged. We will assume that
agents who do not receive the message of period t do not observe whether it
reaches the receivers at t or not. However, when an agent receives a message
at period t, he knows that the protocol did not fail at this period. That is,
he knows that receivers of r(t) correctly get all messages from senders of
e(t) at this period.

After having described our framework and definitions, we now turn to
the presentation of our results.

3 Common knowledge and consensus emergence

In this section, we provide four general results on the evolution of knowledge
and on the emergence of consensus when communication is done through
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noisy communication protocols. Proposition 1 is an impossibility result. It
states that common knowledge cannot emerge when communication is noisy
and non-public. Nevertheless, in proposition 2 we show that with a suffi-
ciently rich language and with fair protocols a consensus always emerges in
a finite number of periods and this consensus becomes c-common knowledge
for any positive integer c. However, common knowledge of this consensus
does not necessarily emerge. In proposition 3 we show that when commu-
nication is public, the knowledge that is distributed among senders during
public revelation periods becomes common knowledge if the communication
language is sufficiently rich. Finally, under such language conditions or with
union consistency, proposition 4 states that if communication is perfectly
public then sent messages become common knowledge and equal in a finite
number of periods. Thus, consensus and common knowledge emerge.

First, we give some properties that characterize our information structure
framework. The following lemma states that if communication is noisy then
agents who do not receive a message at period t cannot distinguish period t
from period t−1.10 It implies that if at each period, at least one agent does
not receive any message, players’ information partitions overlap through
time.

Lemma 1 For all ω ∈ Ω, hi(ω, t− 1) = hi(ω, t) iff i /∈ r(t).

Remark 2 Our formalism is compatible with Heifetz’s (1996) framework
where information sets on S are defined by hi(ω, t) =

{
(ω′, t′) : ω′ ∈ ht

i(ω),
agent i can not tell between the stages t, t′

}
.

The following lemma provides other properties of the information struc-
ture. The first one corresponds to perfect recall. The second allows to
express the projection of the Join of some partitions over the whole state
space Ω× T as a function of players’ information on Ω.

Lemma 2 For all ω ∈ Ω, t ∈ N, i ∈ N , and N ′ ⊆ N , we have the following
properties:

1. ht
i(ω) ⊆ ht−1

i (ω), M t(ω) ⊆ M t−1(ω) and J t
N ′(ω) ⊆ J t−1

N ′ (ω);

2. J t
N ′(ω) =

⋂
i∈N ′ ht

i(ω).

By the second property of lemma 2, the projection of the Join of (Hi)i∈N

is equal to the Join of the projection of these partitions. This property is
not true for the Meet. More precisely, remind that Ht

i is the partition of Ω
generated by the sets

(
ht

i(ω)
)
ω∈Ω

. The Meet of (Ht
i )i∈N is denoted by Mt ≡∧

i∈N Ht
i . Let M̄ t(ω) be the element of Mt containing ω. In general, with

10Lemma 1 is a direct implication of our time stages framework and as such, might be
seen as an assumption.
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noisy communication protocols we have M̄ t(ω) 6= M t(ω). This is illustrated
in the following example, due to Heifetz (1996). In all examples, players’
information sets are represented by the boxes depicted in figure 1. Player 1’s
information sets are represented by dotted boxes, player 2’s information sets
by solid boxes, and player 3’s information sets by dashed boxes.

Player 1’s information sets,

Player 2’s information sets,

Player 3’s information sets.

Figure 1: Players’ information sets.

Example 2 (Heifetz, 1996) Suppose that n = 3, Ω = {ω1, ω2}, p(ω) =
1/2 for all ω ∈ Ω, H0

1 =
{
{ω1}, {ω2}

}
, H0

2 = H0
3 = {Ω}, r(t) = {t, t +

1} mod 3 and e(t) = t mod 3. Such protocol corresponds to the situation
where three agents are around a table. At each period, an agent sends a
message to the agent at his left. The latter sends a message to the agent
at his left in the next period, and so on. Agents who communicate at each
period observe the reception of the message but the third agent does not. It
is a fair and non-public protocol. The space Ω corresponds to the outcomes
of a toss of a fair coin. Agent 1 is the only one who knows the real basic
state.

Let f(E) = p(ω1 | E) and suppose that the real basic state is ω1. The
information structure is represented by figure 2 on the next page. From the
learning process (1) we clearly get a consensus at t ≥ 2 because f

(
ht

i(ω1)
)

=
1 for all i ∈ N and t ≥ 2. This consensus at t ≥ 2 corresponds to the
basic event {ω1}. This event is not common knowledge at period 0 (because
M0(ω1) = Ω * {ω1}) and it will never be common knowledge (because
M t(ω1) = Ω * {ω1} for all t ∈ N). More generally, for all ω ∈ Ω we have
M t(ω) = M0(ω) = Ω for all t ∈ N and M̄ t(ω) = {ω} for all t ≥ 2.

In the previous example common knowledge never emerges. We show in
the following proposition that this impossibility is general: common knowl-
edge can never evolve during noisy and non-public communication for any
function f , i.e., for any available language.

Proposition 1 Consider a non-public and noisy communication protocol.
If a (basic) event E ⊆ Ω is not common knowledge at a certain period t̄ ∈ T ,
it will never be common knowledge.

10
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Figure 2: Heifetz’s example.

The intuition of this result is that, when communication is non-public,
there is at least one agent at each period who does not know if messages reach
correctly the receiver(s) at this period. Therefore, any collective uncertainty
that was present at the beginning is reachable when we apply iteratively
a sufficiently long reasoning on interactive knowledge. This means that
nothing that was not common knowledge can become common knowledge.

The following example shows the same phenomenon as Heifetz’s example
(i.e., it shows that a consensus is achievable without common knowledge),
but involves only two agents.

Example 3 (A minimal example) Suppose that n = 2, Ω = {ω1, ω2},
p(ω) = 1/2 for all ω ∈ Ω, H0

1 =
{
{ω1}, {ω2}

}
, H0

2 = {Ω}, e(t) = t mod 2,
r(t) = t + 1 mod 2 and f(E) = p(ω1 | E). As in example 2, this protocol is
fair and non-public.

Suppose that the real state is ω1. Clearly, a consensus about f is obtained
at t ≥ 1, all players communicating the message “1” because f

(
ht

i(ω1)
)

= 1
for all i ∈ N and t ≥ 1. However, as before, the basic event {ω1} which
corresponds to this consensus at t ≥ 1 will never be common knowledge.
The information structure is represented by figure 3 on the following page.
For all ω ∈ Ω we have M t(ω) = M0(ω) = Ω for all t ∈ N and M̄ t(ω) = {ω}
for all t ≥ 1.

Why is publicity so essential? In particular, why do agents need to send
messages to themselves for an eventual common knowledge creation? In fact,
with perfect recall and perfectly reliable communication agents do not need
to send messages to themselves. On the one hand, such a communication
can be a tool to avoid absentmindedness. On the other hand, with noisy
communication it is a tool for interactive knowledge creation. It helps agents
to know if the messages they send at a certain period reach the receivers, and
then to know who knows. This is necessary to generate common knowledge
and is impossible if communication is noisy and non-public.

11



c
c

cc

Ω
T 0 1 2 3 4 . . .

ω1

ω2

. . . . .

. . . . .

. . .

. . .

Figure 3: A minimal example.

A noisy and non-public communication does not exclude learning be-
cause proposition 1 allows to have ht

i(ω) * F and ht+1
i (ω) = F for some

F ⊆ Ω, as it was illustrated by examples 2 and 3. Some learning occurred
and a consensus was even achieved. Thus, in these examples, non-public
communication was sufficient to achieve a consensus and also arbitrary high
levels of interactive knowledge. Then, “almost” common knowledge states
are achievable. The following proposition shows this general phenomenon
for any fair protocol. This is obtained with an injectivity condition on the
function f , which means that different information always gives different
messages.

Formally, a function f : 2Ω → M is injective on 2Ω if E 6= F implies
f(E) 6= f(F ), where E,F ⊆ 2Ω. Injectivity requires a relatively large set of
possible messages M, i.e., a relatively rich language. In previous examples,
the function f was injective. Let Z be the set of basic events which are in
an event of the initial Meet on Ω, and which include one event of the Join
on Ω. Formally, Z =

{
z ⊆ 2Ω : ∃ ω ∈ Ω s.t. z ⊆ M0(ω) and J0(ω) ⊆ z

}
,

where J0(ω) ≡ J t
N (ω) = P t

Ω

(
J(ω, t)

)
.11 Injectivity will be sufficient on Z

because information sets on Ω always belong to Z.

Proposition 2 Let c ∈ N be an arbitrary integer. Suppose that f is injective
on Z and that Pr is fair (public or not). Then there exists a period t̄ ∈ T
such that messages are c-common knowledge and equal at any period t ≥ t̄.

Remark 3 We have not determined all sufficient conditions on f and Pr
that guarantee consensus. Nevertheless, some necessary conditions are given
by Krasucki (1990) with a deterministic protocol Pr : N → N . They are
trivially necessary here.

11The set J t
N (ω) does not depend on t because agents cannot learn more than what is

distributed among all of them (see lemma 2 with N ′ = N).
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Remark 4 The application f being injective, c-common knowledge of sent
messages implies obviously c-common knowledge of all distributed knowl-
edge.

Even with noisy communication, if an information transmission is pub-
lic, i.e., observed by all agents, all what senders know can become common
knowledge as it is shown in proposition 3. The need for public communi-
cation confirms that common knowledge creation requires face-to-face com-
munication, or at least awareness reflexivity between communicators.

Proposition 3 If f is injective on Z and Pr is public then there exists
t̄ ∈ N such that distributed knowledge among e(t̄) is common knowledge at
period t for all t ≥ t̄.

The last result is illustrated in the following example.

Example 4 (A public, non-fair protocol) Let Ω = {ω1, ω2, ω3}, n = 2,
e(1) = 1, r(1) = N , and e(t) = 2, r(t) = 1 for all t > 1. This proto-
col corresponds to example 1, case 2, with k = 1. Here, we have H0

1 ={
{ω1, ω2}, {ω3}

}
and H0

2 =
{
{ω1}, {ω2, ω3}

}
. The information structure

is represented by figure 4. We see that the event {ω3} becomes com-
mon knowledge, but not {ω1} because M t(ω3) = {ω3} for all t ≥ 1 but
M t(ω1) = M t(ω2) = {ω1, ω2} * {ω1} for all t ≥ 1. We see that player 2
will never know that player 1 knows {ω1} or {ω2}. A consensus is achieved
(because information sets on Ω are the same after period 1) but it will never
be c-common knowledge for c ≥ 2 at ω1 or ω2. If r(t) is equal to 2 instead of
1, a consensus at ω1 or ω2 will never emerge, even if the protocol is public
(but it is not fair).
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T 0 1 2 3 4 . . .

ω1

ω2

ω3

. . . . .

. . . . .

. . . . .

. . .

. . .

. . .

Figure 4: A public, non-fair protocol.
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The next proposition extends Cave’s (1983) result to noisy and perfectly
public communication. It states that consensus and common knowledge
about this consensus are obtained in a finite number of periods for injec-
tive or union consistent12 functions if the protocol is perfectly public. All
distributed knowledge does not necessarily become common knowledge be-
cause, in general, a union consistent function does not transmit all senders’
information.

Proposition 4 If f is union consistent or injective on Z and Pr is perfectly
public then messages become common knowledge and equal in a finite number
of periods.13

Common knowledge and consensus emergence in perfectly public proto-
cols is illustrated by the following example.

Example 5 (A perfectly public protocol) Consider the same initial in-
formation structure as in example 4, except that H0

1 = {Ω}, with a perfectly
public protocol, i.e., e(t) = r(t) = N = {1, 2} for all t ∈ N. This information
structure is represented by figure 5. We see that all distributed knowledge
becomes common knowledge at t ≥ 1 because J0(ω) = M t(ω) for all t ≥ 1
and ω ∈ Ω.
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ω2

ω3

. . . . .

. . . . .

. . . . .

. . .

. . .

. . .

Figure 5: A perfectly public protocol.

The effect of noisy communication on strategic behaviors has already
been analyzed in the electronic mail game, or coordinated attack problem.14

Actually, in this game, the reason for inefficiency is that common knowledge
12See footnote 4 on page 2.
13Cave (1983) showed this result for non-noisy communication.
14See, e.g., Rubinstein (1989), Halpern and Moses (1990) and Morris and Shin (1997).
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is “good” at equilibrium but that common knowledge of the real game played
is not obtained, because it was not common knowledge at the beginning and
because of noisy and non-public communication. The communication pro-
tocol considered in the electronic mail game is exactly the one considered in
example 3. Though, when communication is voluntary, we can obtain an-
other communication protocol. In this case, common knowledge may not be
necessary for coordination because there are equilibria where coordination
occurs almost all the time.15 Thus, common knowledge is not necessarily a
prerequisite for coordinated actions when communication is strategic. As it
was shown in proposition 2 and in examples 2 and 3 it is also not always
a prerequisite for agreement and consensus.16 In the next section, we will
shed some light on the relationship between Nash equilibrium and common
knowledge in order to apply our preceding results to this equilibrium con-
cept. This is an application among many others that can be done in contexts
where common knowledge is called upon.

4 Application: noisy communication and Nash equi-
librium

In this section we will suppose that a basic state ω ∈ Ω describes players’
actions, payoff functions and initial beliefs (about others’ actions, payoff
functions and beliefs). The time states of T will modify players’ beliefs but
not the other parameters. In particular, we do not allow agents to modify
their actions at a given basic state even if their beliefs change at this state
during time.

Aumann and Brandenburger (1995) formally showed that, in a game, if
each player is rational, knows his own payoff function, and knows the others’
strategy choices, then players’ strategy choices constitute a Nash equilib-
rium of this game. This result applies for pure and for mixed strategies, if
mixed strategies are viewed as conscious randomization. Thus, contrary to
some general claims, common knowledge and interactive knowledge assump-
tions are not needed for Nash equilibrium. Only some mutual knowledge is
needed.

Nevertheless, if we adopt the view of Nash equilibrium in terms of con-
jectures, common knowledge can be called upon. Indeed, if we suppose that
agents choose a definite action, a mixture could represent players’ uncertain-
ties (conjectures) about a player’s choice. In this case, common knowledge
of those conjectures is a very weak sufficient condition for Nash equilibrium
in n-player games when n > 2. This will be stated formally in theorem 1.

15See Binmore and Samuelson (1999).
16When common knowledge is required for agreement or coordination, Fagin, Halpern,

Moses, and Vardi (1999) proposed to relax the granularity of time (to avoid intertemporal
uncertainties) or the requirement for coordination.
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However, no other common knowledge assumptions (about payoff functions
or players’ rationality) are needed. In this section, we apply our results to
such a setting.

First, suppose that we are at the initial period t = 0. Let Ai be the
finite set of actions of player i. For all ω ∈ Ω, each player i has a payoff
function ui(ω) : A → R, where A = ×i∈NAi. The n-tuple of payoff functions
u(ω) : A → Rn is called a game . Let ai : Ω → Ai be the strategy of player i.
A n-tuple of actions at ω is denoted by a(ω) =

(
a1(ω), . . . ,an(ω)

)
. Given

a n-tuple of actions a(ω), i’s payoff at ω is ui(ω)
(
a(ω)

)
. A conjecture

φi(ω) of player i at ω is a probability distribution over A−i. We write [x]
for the event

{
ω ∈ Ω : x(ω) = x

}
. Player i’s conjecture about [a−i] at ω is

defined by φi(ω)(a−i) ≡ p
(
[a−i] | h0

i (ω)
)
. A n-tuple of conjectures at ω is

denoted by φ(ω) =
(
φ1(ω), . . . ,φn(ω)

)
. For j 6= i, the conjecture of i about

j induced by φi(ω) is the marginal of φi(ω) on Aj .

Definition 4 Player i is rational at ω if

E
(
ui(·)

(
ai(·),a−i(·)

)
| h0

i (ω)
)
≥ E

(
ui(·)

(
bi,a−i(·)

)
| h0

i (ω)
)
, ∀ bi ∈ Ai.

(2)

Let [R0] be the set of states such that inequality (2) is verified for all
players. Let ω̄ be the realized basic state. Let u = u(ω̄) and φ = φ(ω̄) be
respectively the game and the conjectures formed at ω̄, and suppose that
agents are rational at ω̄, i.e., ω̄ ∈ [R0]. Aumann and Brandenburger (1995)
proved the following result:

Theorem 1 (Aumann and Brandenburger, 1995) If [u] and [R0] are
mutually known and [φ] is commonly known at ω̄ then for each player j, all
conjectures φi of players i other than j induce the same conjecture σj about
j, and (σ1, . . . , σn) is a Nash equilibrium of u.

Remark 5 Theorem 1 does not state that common knowledge of the game
is never important for Nash equilibrium. Indeed, mutual or higher-order
knowledge of the game are sometimes not sufficient for some conjectures to
be rational, when common knowledge may be sufficient. For example, in the
electronic mail game, even if the game is “almost” common knowledge, a co-
ordinated attack is not necessarily rational but it is with common knowledge
of the game.17 Hence, rationality implies some knowledge assumptions, may
imply some other assumptions of theorem 1 as well, and may imply even
more.

Now, we suppose that players communicate through noisy protocols, as
in the preceding sections. The game is the same at each period. During

17Common knowledge is however not necessary as it is shown with simpler communica-
tion protocols by Morris and Shin (1997).
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time, the game must not be seen as a repeated game. Agents communicate
information on Ω through a given protocol. When we consider a certain
period t ∈ T , we look at agents’ beliefs and rationality at this period, as
well as their conjectures to see if these last ones form a Nash equilibrium at
this period.

We define the conjecture of player i at t by φt
i(ω)(a−i) ≡ p

(
[a−i] | ht

i(ω)
)
,

where ht
i(ω) follows the learning process defined by equation (1) on page 8.

Call player i rational at t if inequality (2) is verified by replacing “0” by “t”.
Let [Rt] be the event “everybody is rational at t”. A n-tuple of conjectures
at (ω, t) is denoted by φt(ω) =

(
φt

1(ω), . . . ,φt
n(ω)

)
. Let φt = φt(ω̄) be the

n-tuple of conjectures formed at (ω̄, t).
In proposition 5 we apply proposition 1 to show that noisy and non-

public communication between players is not sufficient to obtain a Nash
equilibrium in a finite number of communication periods, even if the game
and mutual rationality are mutually known.

Proposition 5 Let t̄ ∈ T be a period. Suppose that n > 2 and that [u] and
[Rt̄] are mutually known at t̄ but that conjectures formed at t̄ are not common
knowledge at period 0. Then, if the communication protocol is non-public
and noisy, those conjectures do not necessarily form a Nash equilibrium of
u at t̄.

Let ϕ : 2Ω →M = Rn be the application such that:

ϕ(E) =
(
p
(
[a−1] | E

)
, . . . , p

(
[a−n] | E

))
, ∀ E ⊆ Ω.

A direct application of proposition 4 gives the following result. It states
that even if non-public and noisy communication protocols are not sufficient
to achieve a Nash equilibrium, perfectly public ones might ensure a Nash
equilibrium in a finite number of periods if the game is mutually known, and
if agents’ rationality is mutually known after a certain period.

Proposition 6 Consider a perfectly public communication protocol and sup-
pose that there exists t∗ ∈ T such that [u] and [Rt] are mutually known at t
for all t ≥ t∗. If f = ϕ or if f is injective on Z then there exists a period
t̄ ≥ t∗ such that the conjectures at t̄ form a Nash equilibrium of u.

Now, we prove that with only two agents, a noisy and non-public com-
munication protocol is sufficient to ensure that agents’ conjectures form a
Nash equilibrium if their mutual rationality and the game are a distributed
knowledge after a certain period. First, we introduce the following theorem:

Theorem 2 (Aumann and Brandenburger, 1995) Suppose that n =
2. If [u], [R0] and [φ] are mutually known at ω̄ then (φ2, φ1) is a Nash
equilibrium of u.
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Theorem 2 and proposition 2 give the following result:

Proposition 7 Consider a fair (public or not) communication protocol.
Suppose that n = 2 and that there exists t∗ ∈ T such that the knowledge
about [u] and [Rt] are distributed for all t ≥ t∗. If f is injective on Z then
there exists a period t̄ ≥ t∗ such that (φt̄

2, φ
t̄
1) is a Nash equilibrium of u.

5 Concluding remarks

Due to time imprecision, common knowledge creation was proved to be un-
likely to occur in some practical settings. In this paper we have formally
characterized different classes of communication protocols and communica-
tion languages that generate common knowledge or (and) consensus. We
showed that intertemporal uncertainty combined with non-public commu-
nication prevent any common knowledge creation, whatever the available
language is. Meanwhile, we also showed that some public announcements
can generate common knowledge, and that fair communication allows for
arbitrary high levels of interactive knowledge, depending on the available
language. Even if standard common knowledge results obtained without
intertemporal uncertainties do not hold, consensus and agreement results
were shown to be easily achieved, however. Using these results, we showed
that strong epistemic conditions for mixed Nash equilibrium (that are used
for general n-player games) cannot be obtained with noisy and non-public
communication, even if this communication is very precise and imposed on
agents (i.e., knowledge sharing is mandatory). Nevertheless, for 2-player
games or with public communication, sufficient conditions were provided to
ensure the emergence of a Nash equilibrium in a finite number of communi-
cation periods.

In this paper, two important limitations were present: the lack of strate-
gic (voluntary) communication, and excess cognitive rationality.18 Taking
into account endogenous information structures or (and) cognitive irrational-
ity is, to our mind, crucial for game theory. With noisy communication, this
could be illustrated in the electronic mail game. Indeed, in this game, al-
lowing strategic communication or limited rationality19 permits coordinated
actions, which is the outcome we intuitively expect and that we observe in
reality. Such phenomena should clearly be extended to many types of inter-
active decision making situations.

For general studies of endogenous information via communication a set-
ting with noisy communication seems however difficult. To interpret volun-
tary disclosure of information agents need a clear temporality (as in meet-
ings, face-to-face contacts, phone calls, . . . ). They must distinguish the fact

18Cognitive rationality relies on the way agents represent and process information and
beliefs.

19See respectively Binmore and Samuelson (1999) and Dulleck (1997).
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that an agent sends a message or does not send it in order to interpret
communication choices. Technically, with noises, if we do not restrict the
analysis to perfectly public communication, the partitions on which agents
base their decisions and their choices of disclosure are never common knowl-
edge, as it was shown in this paper. Advances in the analysis of strategic
communication without noise, which is still not very well explored, may help
to study the effects of the introduction of communication noises on incentives
to communicate.

Appendix: Proofs

Proof of lemma 1. By µ(t) > 0 for all t ∈ T and q(ω) > 0 for all ω ∈ Ω,
we get p(s) = q(ω) × µ(t) > 0 for all s ∈ S. As each state of the world
occurs with strictly positive probability, there is no null event, and thus we
have s ∈ hi(s′) iff p

(
s | hi(s′)

)
> 0. Because agent i does not receive the

message at t and because µ(t)
µ(t−1) > 0, he assigns strictly positive probability

that it does not reach the receivers, that is p
(
(ω, t−1) | hi(ω, t)

)
> 0. Then,

(ω, t− 1) ∈ hi(ω, t). By the properties of partitional information structures,
we get hi(ω, t− 1) = hi(ω, t).20

The converse is similar. If an agent receives a message at t he knows
that at least t messages have been sent. Thus, if i ∈ r(t), we have p

(
(ω, t−

1) | hi(ω, t)
)

= 0. It follows that (ω, t− 1) /∈ hi(ω, t) and then hi(ω, t− 1) 6=
hi(ω, t). �

Proof of lemma 2.
1. Directly from the learning process (1) which implies perfect recall.
2. The elements of the Join of some partitions are given by JN ′(s) =⋂

i∈N ′ hi(s). Afterwards, notice that for E,F ⊆ S, we have P t
Ω(E ∩ F ) =

P t
Ω(E) ∩ P t

Ω(F ). Thus, we get J t
N ′(ω) ≡ P t

Ω

(
JN ′(s)

)
= P t

Ω

( ⋂
i∈N ′ hi(s)

)
=⋂

i∈N ′ P t
Ω

(
hi(s)

)
≡

⋂
i∈N ′ ht

i(ω). �

Proof of proposition 1. Because the communication protocol is not public,
for all t ∈ N there exists i(t) ∈ N s.t. i(t) /∈ r(t). Thus, lemma 1 gives
immediately hi(t)(ω, t − 1) = hi(t)(ω, t) for all ω ∈ Ω and t ∈ N. We obtain
M(ω, t) = M(ω, t′) for all t, t′ ∈ T .21 If E is not common knowledge at t̄,
we have M(ω, t̄) * Ẽ, which gives immediately M(ω, t) * Ẽ for all t ∈ T ,
i.e., E is never common knowledge. �

Proof of proposition 3. Let t̄ be the first period s.t. r(t̄) = N . This period
exists because Pr is public. We get hi(ω, k) 6= hi(ω, t̄) for all i ∈ r(t̄) = N

20With partitional information structures we have s′ ∈ hi(s) iff hi(s
′) = hi(s).

21Think about the “reachability” criteria (Aumann (1976)): ω′ is reachable from ω in
(Ω, (Hi)i∈N ) if there is a sequence of information sets 〈h1, h2, . . . , hk〉 s.t. ω ∈ h1, ω

′ ∈ hk,
where consecutive hj intersect and belong alternatively to some partitions of (Hi)i∈N .
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and k < t̄ by lemma 1. It follows that:

(ω, k) /∈ M(ω, t̄), ∀ k < t̄. (3)

Because f is injective on Z, we have f t̄(ω′) = f t̄(ω) iff ht̄
j(ω) = ht̄

j(ω
′) for

all j ∈ e(t̄), those last information sets always being included in Z. From
the learning process defined by (1), we get:

∀ i ∈ N, ∀ ω ∈ Ω,

ht̄
i(ω) = ht̄−1

i (ω) ∩
{
ω′ ∈ Ω : ht̄

j(ω) = ht̄
j(ω

′), ∀ j ∈ e(t̄)
}
,

= ht̄−1
i (ω)

⋂
j∈e(t̄)

ht̄
j(ω),

⊆
⋂

j∈e(t̄)

ht̄
j(ω) = J t̄

e(t̄)(ω) by lemma 2. (4)

This last event is the knowledge distributed among e(t̄) at (ω, t̄). Be-
cause

(
J t̄

e(t̄)(ω)
)
ω∈Ω

forms a partition of Ω, it is a common coarsening of the

partitions (H t̄
i )i∈N by (4). Thus, M̄ t̄(ω) ⊆ J t̄

e(t̄)(ω) because M̄t is the finest

common coarsening of the partitions (H t̄
i )i∈N .

Now, we prove that M t̄(ω) ⊆ M̄ t̄(ω). Set ω′ ∈ M t̄(ω). Thus, (ω′, t̄) ∈
M(ω, t̄). From the “reachability” criteria, there exists a sequence,

〈hi1 , . . . , hiK 〉 = 〈hi1(ω1, t1), . . . , hiK (ωK , tK)〉, (5)

with ij ∈ N , ωj ∈ Ω, tj ∈ T for all j ∈ {1, . . . ,K} and ω1 = ω′, ωK =
ω, t1 = tK = t̄, where consecutive hij intercept. Consider the associate
following sequence of information sets on Ω:

〈P t1
Ω hi1(ω1, t1), . . . , P

tK
Ω hiK (ωK , tK)〉 = 〈ht̄

i1(ω
′), . . . , htk

ik
(ωk), . . . , ht̄

iK
(ω)〉.

Those consecutive sets obviously intercept. By relation (3) we have tj ≥ t̄
for all j ∈ {1, . . . ,K}. If not, consecutive hij of the initial sequence (5)
would not intercept. Thus, by lemma 2 we have h

tj
ij

(ωj) ⊆ ht̄
ij

(ωj) for all
j ∈ {1, . . . ,K}. Then, we can consider the following sequence of intercepting
sets of Ω:

〈ht̄
i1(ω

′), . . . , ht̄
ik

(ωk), . . . , ht̄
iK

(ω)〉.

This proves that ω is reachable from ω′ through (Ω, (H t̄
i )i∈N ), i.e., ω′ ∈

M̄ t̄(ω). Thus, M t̄(ω) ⊆ M̄ t̄(ω).
It follows that M t̄(ω) ⊆ J t̄

e(t̄)(ω), i.e., all distributed knowledge among
e(t̄) at t̄ is common knowledge at t ≥ t̄. �

Proof of proposition 2. Let ω be the real state and set [f t] =
{
ω′ ∈ Ω :

f
(
ht

j(ω
′)
)

= f
(
ht

i(ω)
)
∀ i, j ∈ N

}
. Because f is injective, the learning

process (1) gives (see the proof of proposition 3) ht
i(ω) ⊆ ht

j(ω) for all
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j ∈ e(t) and i ∈ r(t). Thus, Pr being fair there exists t1 ∈ N s.t. ht1
i (ω) ⊆

ht1
j (ω), i.e., ht1

i (ω) = ht1
j (ω) for all i, j ∈ N .22 So, ht1

i (ω) = J0(ω) = [f t]
for all i ∈ N and t ≥ t1, i.e., [f t1 ] is mutually known at t ≥ t1. For
[̃f t1 ] =

{
(ω′, t′) ∈ S : ω′ ∈ [f t1 ]

}
we get [f t1 ] × {t}t≥t1 ⊆ K [̃f t1 ]. Now, set

t2 ∈ N s.t. for all j ∈ N , there exists t′ ∈ [t1, t2] s.t. j ∈ r(t′). The period
t′ exists because Pr is fair. By lemma 1, we get hj(ω, t2) 6= hj(ω, t) for all
t < t1 and j ∈ N . Thus, hj(ω, t) ⊆ K [̃f t1 ] for all j ∈ N and t ≥ t2. This
gives [f t1 ]×{t}t≥t2 ⊆ KK [̃f t1 ]. We easily see that we can continue the same
reasoning any finite number of times to show that there exists tc ∈ N s.t.
[f t1 ]×{t}t≥tc ⊆ Kc [̃f t1 ]. Then, there exists a period tc s.t. (ω, tc) ∈ Kc [̃f t1 ]
(remind that ω ∈ [f t1 ]), i.e., messages are c-common knowledge and equal
(equality is already verified at time t1). This completes the proof. �

Proof of proposition 4. By the same reasoning as in the proof of proposi-
tion 3, if Pr is perfectly public we get M t(ω) ⊆ M̄ t(ω) for all ω ∈ Ω and
t ∈ T . So, with f union consistent Cave’s (1983) result directly applies
because he showed that there exists t̄ ∈ T s.t. M̄ t̄(ω) ⊆ [f t̄] =

{
ω′ ∈ Ω :

f
(
ht̄

j(ω
′)
)

= f
(
ht̄

i(ω)
)
∀ i, j ∈ N

}
. The restriction on Z does not change

the proof because f is never applied outside Z. When f is injective, propo-
sition 4 is a corollary of proposition 3 with t̄ = 1 and e(1) = N . �

Proof of proposition 5. By proposition 1 we know that [φt̄] will never be
common knowledge because it is not at t = 0 and because of non-public and
noisy communication. Thus, [φt̄] cannot be common knowledge at t̄ and a
condition of theorem 1 is not verified (and the conditions of this theorem
cannot be weakened, as it was proved by the authors). �

Proof of proposition 6. First, we show that ϕ is union consistent. Let
E,F ⊆ Ω s.t. E ∩ F = ∅ and suppose that ϕ(E) = ϕ(F ). We have:

ϕ(E ∪ F ) =
(

p([a−i] ∩ (E ∪ F ))
p(E ∪ F )

)
i∈N

,

=
(

p([a−i] ∩ E) + p([a−i] ∩ F )
p(E) + p(F )

)
i∈N

,

=
(
p([a−i] | E)

)
i∈N

.

Thus, ϕ is union consistent. Because Pr is perfectly public we know by
proposition 4 that for all t∗ ∈ T there exists t̄ ≥ t∗ s.t. [φt̄] =

{
ω ∈ Ω :

φ(ht̄
i(ω)) = φ(ht̄

j(ω̄)), ∀ i, j ∈ N
}

becomes common knowledge at (ω̄, t̄).
Then, because [u] and [Rt̄] are mutually known at t̄, we know that φt̄ form
a Nash equilibrium of u at t̄ by theorem 1. �

22For perfectly public or non-noisy protocols the proof is completed because in this case
we get M t1(ω) ⊆ M̄ t1(ω) = ht1

i (ω) = [f t1 ] for all i ∈ N .
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Proof of proposition 7. By proposition 2 we know that there exists t̄ ≥ t∗ s.t.
[u] and [Rt̄] become c-common knowledge at t̄, and thus mutually known at
t̄. Because ht

i(ω) = ht
j(ω) for all t ≥ t̄, ω ∈ Ω, and i, j ∈ N , the conjectures

become c-common knowledge at t̄. Then, [u], [Rt̄] and [φt̄] are mutually
known at t̄, i.e., (φt̄

2, φ
t̄
1) is a Nash equilibrium of u by theorem 2. �

References

Aumann, R. J. (1976): “Agreeing to disagree,” The Annals of Statistics,
4(6), 1236–1239.

Aumann, R. J., and A. Brandenburger (1995): “Epistemic conditions
for Nash equilibrium,” Econometrica, 63(5), 1161–1180.

Binmore, K., and L. Samuelson (1999): “Coordinated action in the
electronic mail game,” mimeo.

Cave, J. A. K. (1983): “Learning to agree,” Economics Letters, 12, 147–
152.

Dulleck, U. (1997): “A note on the e-mail game – Bounded rationality and
induction,” mimeo, Humboldt University, Institute of Economic Theory.

Fagin, R., J. Y. Halpern, Y. Moses, and M. Y. Vardi (1999): “Com-
mon knowledge revisited,” Annals of Pure and Applied Logic, 96, 89–105.

Geanakoplos, J. (1994): “Common knowledge,” in Handbook of Game
Theory, ed. by R. J. Aumann, and S. Hart, vol. 2, chap. 40, pp. 1437–
1496. Elsevier Science B. V.

Geanakoplos, J., and H. M. Polemarchakis (1982): “We can’t dis-
agree forever,” Journal of Economic Theory, 28, 192–200.

Halpern, J. Y. (1995): “Reasoning about knowledge: a survey,” in Hand-
book of Logic in Artificial Intelligence and Logic Programming, ed. by
D. Gabbay, C. J. Hogger, and J. A. Robinson, vol. 4, pp. 1–34. Oxford
University Press.

Halpern, J. Y., and Y. Moses (1990): “Knowledge and common knowl-
edge in a distributed environment,” Journal of the ACM, 37(3), 549–587.

Heifetz, A. (1996): “Comment on consensus without common knowledge,”
Journal of Economic Theory, 70, 273–277.

Krasucki, P. (1990): “Reaching consensus on decisions,” in Theoretical
Aspects of Reasoning about Knowledge, Proc. of the Third Conf., ed. by
R. Parikh, pp. 141–150. Morgan Kaufmann, San Francisco.

22



(1996): “Protocols forcing consensus,” Journal of Economic The-
ory, 70, 266–272.

Morris, S., and H. S. Shin (1997): “Approximate common knowledge
and co-ordination: recent lessons from game theory,” Journal of Logic,
Language, and Information, 6, 171–190.

Nishihara, K. (1991): “A note on the equivalence of the two definitions of
common knowledge,” Mathematical Social Sciences, 21, 177–178.

Parikh, R., and P. Krasucki (1990): “Communication, consensus, and
knowledge,” Journal of Economic Theory, 52, 178–189.

Rubinstein, A. (1989): “The electronic mail game: strategic behavior
under “almost common knowledge”,” American Economic Review, 79(3),
385–391.

Weyers, S. (1992): “Three results on communication, information and
common knowledge,” CORE Discussion Paper 9228, Université catholique
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