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Abstract

We present algorithms for computing the weights implicitly assigned to observations when es-
timating unobserved components using a model in state space form. The algorithms are for both
�ltering and signal extraction. In linear time-invariant models such weights can sometimes be
obtained analytically from the Wiener-Kolmogorov formulae. Our method is much more general,
being applicable to any model with a linear state space form, including models with deterministic
components and time-varying state matrices. It applies to multivariate models and it can be used
when there are data irregularities, such as missing observations.

The algorithms can be useful for a variety of purposes in econometrics and statistics: (i) the
weights for signal extraction can be regarded as equivalent kernel functions and hence the weight
pattern can be compared with the kernels typically used in nonparametric trend estimation; (ii)
the weight algorithm for �ltering implicitly computes the coeÆcients of the vector error-correction
model (VECM) representation of any linear time series model; (iii) as a by-product the mean
square errors associated with estimators may be obtained; (iv) the algorithm can be incorporated
within a Markov chain Monte Carlo (MCMC) method enabling computation of weights assigned
to observations when computing the posterior mean of unobserved components within a Bayesian
treatment.

A wide range of illustrations show how the algorithms may provide important insights in em-
pirical analysis. The algorithms are provided and implemented for the software package SsfPack

2.3, that is a set of �ltering, smoothing and simulation algorithms for models in state space form
(see www.ssfpack.com). Some details of implementation and example programs are given in the
appendix of the paper.

KEYWORDS:Kalman filter and smoother; Kernel smoothing; Markov chain Monte

Carlo; Moving average; Nonparametric regression; Spline smoothing; State space

model; Wiener-Kolmogorov filter.

JEL classi�cation: C15, C22.

1 Introduction

Time series models are used for prediction and signal extraction. These operations are carried out
using a variety of algorithms. If a model can be put in state space form (SSF) the computations
are done by the Kalman �lter and smoother (KFS); the latest version of this algorithm is described
in Durbin and Koopman (2000). The KFS implicitly assigns weights to the various observations in
making predictions and forming smoothed estimates of the components at di�erent points in time.
Examining these weighting patterns can be very informative. It helps the user to understand what
a model actually does, and it enables comparisons to be made with other methods. For example,
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nonparametric procedures may be used to estimate trends and it is interesting to compare the weighting
patterns of various kernels, or moving averages, with the weighting patterns implied by an unobserved
components (UC) time series model.

For time-invariant UC models, the Wiener-Kolmogorov (WK) �lter provides expressions for �lter-
ing and smoothing weights; see Whittle (1983). However, this analytic solution, while very elegant,
is often diÆcult to implement. In such circumstances numerical values of the weights can often be
computed by the well-known device of running the appropriate algorithm on a set of arti�cially con-
structed observations all of which are zero except for the one at the point of interest which is unity.
This device, which we call the zero-one method, cannot be used when systems are time-varying, or
there are data irregularities such as missing observations. Nor can it be used for time-invariant UC
models with correlated components if interest centres on the weights for estimators near the begin-
ning or end of the sample. Even with uncorrelated components �ltering weights cannot be accurately
obtained if a steady-state has not be reached. The aim of this paper is to present an algorithm that
can be used to compute the exact weights for any model which has a linear state space form. Thus we
can, amongst other things, deal with short time series, deterministic components, heteroscedasticity,
missing observations, and multivariate models. The weights are optimal if the model is Gaussian. In
the absence of Gaussianity they are optimal within the class of linear estimators.

Further aspects of the weight algorithms are as follows. Firstly, the predictive �ltering weights can
be interpreted as the coeÆcients of a (vector) autoregressive (VAR) representation of a time series
model in state space form. This can be of considerable interest in econometrics; for example, if there
is co-integration it is possible to obtain the vector error-correction model (VECM) representation.
Secondly, within a Bayesian framework the algorithms can be used in conjunction with a Markov chain
Monte Carlo (MCMC) procedure to compute the weights for the posterior mean of the state vector.
Finally, it is informative to compare weight patterns with kernels typically used in nonparametric trend
estimation. Because of the known connection between cubic spline smoothing and trend estimation
in a UC model the spline weights may be obtained and interpreted as an implicit kernel.

Section 2 gives a brief review of the classical Wiener-Kolmogorov �lter, while the Kalman �lter
and smoother (KFS) is discussed in section 3. The algorithms for computing weights for predictive
and contemporaneous �ltering and for smoothing are developed in section 4; the section begins with
a discussion of when the zero-one method can be used. Mean square errors of estimators can be very
useful for purposes of analysis and sub-section 4.7 shows how they can be obtained as a by-product
of the weighting algorithms. Applications are given in section 5 for univariate models and in section
6 for multivariate models. The appendix includes some example programs in the Ox code of Doornik
(1998) using the SsfPack package of Koopman, Shephard and Doornik (1999).

2 Classical Formulae for Prediction and Signal Extraction

Consider a model consisting of two stochastic components, �t and "t: The classical Wiener-Kolmogorov
(WK) formula for �nding the weights used to extract mtj1, that is the minimum mean square linear
estimator (MMSLE) of �t in a doubly in�nite sample, is

mtj1 = w(L)yt =
1X

j=�1

w�jL
jyt =

1X
j=�1

wjyt+j; w(L) =

�(L) + 
�"(L)


y(L)
; (1)

where L is the lag operator, 
�(L) is the autocovariance generating function (ACGF) of �t and 
�"(L)
is the cross-covariance generating function of �t and "t: The ACGF of yt is


y(L) = 
�(L) + 
�"(L) + 
"�(L) + 
""(L); (2)

though this is usually evaluated in terms of the reduced form parameters. For a stationary ARMA
process, written ��1(L)�(L)�t; where �(L) and �(L) are polynomials in the lag operator and �t is
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white noise with variance �2, the ACGF is given directly by


(L) = fj�(L)j2=j�(L)j2g�2; (3)

where j�(L)j2 = �(L)�(L�1) and similarly for �(L).
Although formula (1) is only proved for stationary models in Whittle (1983, pp.56-58), it is argued

in Bell (1984) and Burridge and Wallis (1988) that it can still be used for nonstationary models even
though expressions like (3) are no longer ACGFs.

The weights for �ltering and for smoothing near the end of a sample may be obtained by modifying
the above signal extraction formula. Expressions are most easily derived by assuming a semi-in�nite
sample, in other words an in�nite number of past observations are available; see Whittle (1983, chapter
6). The expressions for �nite samples may also be worked out, but are more complicated; see Whittle
(1983, chapter 7). The initial conditions may have important e�ects, particularly for nonstationary
models.

2.1 Local level model

As a simple illustration of the WK formula, we consider the local level (or the random walk plus noise)
model

yt = �t + "t; "t �WN(0; �2" ); t = 1; : : : ; T; (4)

�t+1 = �t + �t; �t �WN(0; �2�); (5)

where q = �2�=�
2
" is the signal-noise ratio and WN denotes `white noise', that is serially uncorrelated

random variables. The disturbances may be correlated contemporaneously, that is

E("t�t) = �q1=2�2" ; t; s = 1; : : : ; T;

E("t�s) = 0; t 6= s;
(6)

with j�j � 1. An alternative model has the transition equation written at time t; that is

�t = �t�1 + �t; �t �WN(0; q�2"); (7)

with the covariance still as in (6). When the correlation, �, is zero the two models are essentially
the same. For non-zero � the weighting patterns display an interesting asymmetry. This is examined
in Harvey and Koopman (1999) where (5) is referred to as the future state form and (7) as the
contemporaneous state form. In this paper we present algorithms for the future state form but as
shown in section 3 it can be used for the contemporaneous form straightforwardly by expressing the
model in future state form.

The reduced form of the local level model is an ARIMA(0,1,1) model, that is

�yt = �t + ��t; �t �WN(0; �2): (8)

Assuming a local level model with uncorrelated disturbances (� = 0), the relation between the MA
parameter � and the signal-to-noise ratio q is given by

� = f�q � 2 +
q
q2 + 4qg=2; (9)

and further �2 = ��2"=� for � 6= 0. Thus, provided q > 0, the WK formula for estimating �t yields

mtj1 = w(L)yt =
�2�

�2j1 + �Lj2
yt =

(1 + �)2

j1 + �Lj2
yt; (10)
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as �2� = (1 + �)2�2. Note that j1 + �Lj2 denotes (1 + �L)(1 + �L�1) where L is the lag operator. The
weights decline symmetrically and exponentially, that is

wj = f(1 + �)=(1� �)g(��)jjj; j = 0; 1; 2; : : : : (11)

On setting L = 1 in (10) it can be immediately seen that the weights sum to unity. When the
components are correlated, the weighting pattern is asymmetric; see Harvey and Koopman (1999).

At the end of a semi-in�nite sample

w�j = (1 + �)(��)j; j = 0; 1; 2; : : : : (12)

This is the �ltered estimator which here is an exponentially weighted moving average (EWMA). The
weights for the smoothed estimator of �t near the end of a semi-in�nite sample are given in Whittle
(1983, p.69) as:

wj = f(1 + �)=(1� �)g[(��)j�jj + (��)�j+2(T�t)+1]; �1 < j � T � t: (13)

Setting t = T gives the weights for the �ltered estimator (12), while if t� T , the weights are as for a
doubly in�nite sample as given in (11).

2.2 Local linear trend

In the local linear trend model

yt = �t + "t; "t �WN(0; �2" );

�t+1 = �t + �t + �t; �t �WN(0; �2�); (14)

�t+1 = �t + �t; �t �WN(0; �2� );

we may be interested in estimating both the trend, �t, and the slope, �t. The weights may be found
from the WK formula by noting that the reduced form is ARIMA(0; 2; 2):

�2yt = �t + �1�t�1 + �2�t�2 = �2(L)�t; �t �WN(0; �2):

The weights for the slope are obtained by �rst writing

�yt = �t�1 + �t�1 +�"t:

Application of the WK �lter then gives a set of weights attached to �rst di�erences of the observations,
that is

btj1 = w�(L)�yt+1 =
�2�

�2j�2(L)j2
�yt+1:

Since the denominator is equal to �2�+j1�Lj
2�2�+j1�Lj

4�2" , it can be seen immediately that w�(1) = 1,
in other words the weights sum to one. The weights attached to the observations themselves are given
by w�(L)(1�L)L�1 and these clearly sum to zero. On the other hand, the weights for estimating the
level of the trend are given by

w(L) =
�2� + j1� Lj2�2�

�2� + j1� Lj2�2� + j1� Lj4�2"
;

and these sum to one.
The smooth trend, obtained by setting �2� = 0, is of particular interest, one reason being that

it is equivalent to a cubic spline. Harvey and Koopman (1999) present some weighting patterns for
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trend extraction. It follows immediately from the above formulae that w�(L) = w(L). It is interesting
that this weighting function for extracting the level from the observations is the same as the one for
extracting the slope from the �rst di�erences. However, this is not surprising since it follows that

btj1 = w�(L)(1� L)yt+1 = mt+1j1 �mtj1;

and this corresponds to the identity in the model. This identity still holds in �nite samples.
The exact weights algorithm for smoothing that we present in section 4 con�rms that weights for

level and slope (the latter in terms of �rst di�erences) still sum to unity for �nite samples even when
observations are missing.

2.3 Mean square errors of estimated components

Applying the formula in Whittle (1983, p.58) indicates that the error in estimating the signal in a
model of the form (4) has an ACGF given by

[
�(L)
"(L)� 
�"(L)
"�(L)]=
y(L): (15)

The MSE of the estimator of the signal is given by the variance of the estimation error which is
obtained as the coeÆcient of L0 in (15). The formula may be adapted to semi-in�nite samples. Thus
in the local level model with uncorrelated components the MSE associated with (13) is shown by
Whittle (1983, p.70) to be

�2" [(1 + �)=(1� �)][1� �(��)2(T�t)]; t � T: (16)

The MSE of the �ltered estimator, (12), is obtained when t = T , so it is �2"(1 + �), while if T � t is
large we get the MSE of the smoother in a doubly in�nite sample, that is

MSE(mtj1) = �2" [(1 + �)=(1� �)]: (17)

2.4 Multivariate models

The WK formula (1) can be generalized to a multivariate model as in Whittle (1983, ch9). If �t is a
K � 1 vector of unobserved components to be extracted from a series of observation vectors of length
N , the K �N weighting matrix is given by

W (L) = ��y(L)�
�1
y (L);

where �(L) denotes a multivariate ACGF. Unfortunately, it is diÆcult to obtain expressions for the
reduced form parameters in terms of the parameters of the unobserved components model. (Whittle
refers to this as canonical factorisation). Consider the multivariate local level model

yt = �t + "t; "t �WN(0;�"); t = 1; : : : ; T; (18)

�t+1 = �t + �t; �t �WN(0;��); (19)

where yt, �t, "t and �t are all N � 1 vectors so that, for example, yt = (y1t; y2t; :::; yNt)
0. The reduced

form is
�yt = �t +��t�1; �t �WN(0;�) t = 2; : : : ; T;

but unless N = 1, it does not seem to be possible to �nd a formula expressing the N � N moving
average matrix � in terms of �" and ��. However, we can at least write

W (L) = ��[�� + j1� Lj2�"]
�1;

from which it follows that W (1) = I. Thus in estimating the i-th element in �t, the weights on the
observations in the i-th series sum to one while the weights on the other series all sum to zero. An
analogous result holds in the multivariate local linear trend model, both for the level and the slope,
that is W (1) = I and W�(1) = I.
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3 Kalman �lter and smoother

The future form of the linear state space model is given by

yt = Zt�t +Gt"t; "t �WN(0; I); t = 1; : : : ; T;
�t+1 = Tt�t +Ht"t; �1 �WN(a; P );

(20)

where yt is the N � 1 vector of observations, �t is the p � 1 state vector and "t is the q � 1 vector
of disturbances. The equation for yt is called the measurement equation and the equation for �t+1
is the transition equation. The standardized disturbance vector "t appears in both equations but the
disturbances in the two equations are mutually uncorrelated if HtG

0
t = 0. The initial state vector is

to have mean a and variance matrix P . The system matrices Zt, Gt, Tt and Ht, with appropriate
dimensions, are �xed. The state space model (20) is said to be time-invariant when the system
matrices are constant over time t, that is Zt = Z, Tt = T , Gt = G and Ht = H, for t = 1; : : : ; T .
An introduction to statistical analysis based on state space models is given by, for example, Harvey
(1989), Kitagawa and Gersch (1996), West and Harrison (1997) and Durbin and Koopman (2000).

The contemporaneous form of the state space model is

yt = Z�
t �

�
t +G�

t "t; "t �WN(0; I); t = 1; : : : ; T;
��t = Tt�

�
t�1 +Ht"t; ��0 �WN(a; P ):

(21)

By setting ��t = �t+1, the future state model is obtained with

yt = Z�
t Tt�t + (G�

t + Z�
tHt)"t; (22)

such that Zt = Z�
t Tt and Gt = G�

t + Z�
tHt.

A predictive �ltered estimator is an estimator of (a function of) the state vector at time t + 1
based on observations up to and including time t. The Kalman �lter computes the predictive �ltered
estimator at+1jt, the MMSLE of the state vector �t+1 conditional on the observations Yt = fy1; : : : ; ytg

0,
together with its MSE matrix, that is the covariance matrix of the estimation error, Pt+1jt. The Kalman
�lter is given by

vt = yt � Ztatjt�1; Ft = ZtPtjt�1Z
0
t +GtG

0
t;

Mt = TtPtjt�1Z
0
t +HtG

0
t; t = 1; : : : ; T;

at+1jt = Ttatjt�1 +Ktvt; Pt+1jt = TtPtjt�1T
0
t +HtH

0
t �KtM

0
t ;

(23)

with Kalman gain matrix Kt = MtF
�1
t and initialisation a1j0 = a and P1j0 = P . The one-step ahead

prediction error is vt with covariance matrix Var(vt) = Ft. The �ltered estimator atjt, the MMSLE of
the state vector �t conditional on Yt and its MSE matrix Ptjt, can be computed by

atjt = atjt�1 + Ptjt�1Z
0
tF

�1
t vt; Ptjt = Ptjt�1 � Ptjt�1Z

0
tF

�1
t ZtPtjt�1; t = 1; : : : ; T: (24)

For a time-invariant state space model, the Kalman recursion for Pt+1 may converge to a constant
matrix �P for a suÆciently large t. The steady state is the solution to the matrix equation

�P = T �PT 0 +HH 0 � �K �M 0;

where �M = T �PZ 0+HG0, �F = Z �PZ 0+GG0 and �K = �M �F�1. Use of the steady state after convergence
usually leads to considerable computational savings because the computations for Ft, Mt, Kt and Pt+1
are no longer required.

Smoothed estimators of the state and disturbance vector, which are conditional on all observations
YT , can be evaluated by the backwards recursion

rt�1 = Z 0
tF

�1
t vt + L0

trt; Nt�1 = Z 0
tF

�1
t Zt + L0

tNtLt; t = T; : : : ; 1; (25)
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where Lt = Tt �KtZt and with initialisation rT = 0 and NT = 0. The Kalman �lter output of vt,
F�1
t and Kt must be stored for t = 1; : : : ; T . The smoothed state vector atjT with MSE matrix PtjT

can be evaluated by

atjT = atjt�1 + Ptjt�1rt�1; PtjT = Ptjt�1 � Ptjt�1Nt�1Ptjt�1; t = T; : : : ; 1: (26)

A substantive amount of additional memory space is required to store atjt�1 and Ptjt�1 of the Kalman
�lter. The smoothed disturbance vector is computed by

etjT = G0
tF

�1
t vt + J 0trt; Var(etjT ) = G0

tF
�1
t Gt + J 0tNtJt; t = T; : : : ; 1; (27)

where Jt = Ht �KtGt. In the case where HtG
0
t = 0, we obtain

GtetjT = GtG
0
te
�
t ; Var(GtetjT ) = GtG

0
tDtGtG

0
t;

HtetjT = HtH
0
trt; Var(HtetjT ) = HtH

0
tNtHtH

0
t;

(28)

with
e�t = F�1

t vt �K 0
trt; Dt = F�1

t +K 0
tNtKt; t = T; : : : ; 1:

Disturbance smoothing does not require the storage of atjt�1 and Ptjt�1 but it still enables us to
compute atjT by the forwards recursion

at+1jT = TtatjT +HtetjT ; t = 1; : : : ; T;

where a1jT = a+ Pr0.

4 Computation of the observation weights

In this section we present general algorithms for computing the weights implicitly assigned to observa-
tions when estimating (linear combinations of) elements of the state vector. These quantities typically
correspond to trends, seasonals, cycles and other components of interest. There are two �ltering al-
gorithms, one for predictive �ltering, that is computing the vector of weights used to form atjt�1; and
another for contemporaneous �ltering, that is for atjt. The smoothing algorithm is for atjT , and asso-
ciated with this is an algorithm for computing weights used to extract estimators of the disturbances.
The algorithms are easy to implement and have been included in the SsfPack 2.3 package of Koopman
et al (1999) as the function SsfWeights(). Ssfpack is written for the Ox 2.1 programming language
of Doornik (1998) and the latest version can be obtained from www.ssfpack.com; some examples of
the implementation of the algorithms are given in the appendix.

Before presenting the new KFS algorithms, we discuss the idea behind the zero-one method for
computing weights and analyse the conditions under which it can be correctly applied.

4.1 The zero-one method

Consider a time-invariant UC model and suppose that we are interested in the trend component �t;
as for example in the local level model of section 2. The weights for computing mtjT ; the MMSLE of
�t based on all the observations, will be denoted as wj(mtjT ) such that

mtjT =
TX
j=1

wj(mtjT )yj; t = 1; :::; T: (29)

Given an algorithm for computing mtjT , it is often suggested that the weights can be obtained by
running the algorithm on an arti�cial series consisting entirely of zeroes except for a one in the t-th
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position; for, example, see H�ardle (1991, p.59) or Riani (1998). We will call this the zero-one method.
If the weights are independent of time then, we can write

wj = wt+j(mtjT ); j = : : : ;�2;�1; 0; 1; 2; : : : ; 1 � t � T;

and
mt+jjT =

X
i

wiyt+j+i = w�j ; j = : : : ;�2;�1; 0; 1; 2; : : : : (30)

To illustrate this, take T = 3 so that

m1jT = w0y1 + w1y2 + w2y3;

m2jT = w�1y1 + w0y2 + w1y3;

m3jT = w�2y1 + w�1y2 + w0y3:

For the zero-one method with t = 2, we have y1 = y3 = 0 and y2 = 1 such that

m1jT = w1; m2jT = w0; m3jT = w�1:

Thus if the weighting pattern is asymmetric (wj 6= w�j), the weights appear in reverse order. The
WK formula (1), which is for a doubly in�nite sample and a time-invariant model, applies in this
situation but it is not always easy to evaluate.

In order to investigate the extent to which the zero-one method applies more generally, we consider
�ltering and smoothing for the local level model as a matrix operation for a �nite sample of size T ,
so we have

m =Wy; (31)

where m = (m1jT ; : : : ;mT jT )
0, W is a T � T matrix with the i; j-th element equal to wj(mijT ) and

y = (y1; : : : ; yT )
0. The zero-one method amounts to replacing the T � 1 vector y by a T � 1 selection

vector `t, where `t is the t-th column of the identity matrix IT . However, this device can only be used
when the matrix W is of a special structure because when we postmultiply W by `t we obtain the
t-th column of W whereas what we want is its t-th row. Only when W is symmetric, is the t-th row
the same as the t-th column. When W is not necessarily symmetric, but has a band structure, the
t-th row is the same as the t-th column in reverse order. The band structure means the weights are
independent of time.

When the components are mutually uncorrelated, W is symmetric for smoothing (in this case,
W = V�V

�1
y where V� and Vy are the covariance matrices of the vectors � and y respectively). Hence

the KFS applied to y = `t computes the correct weights in the right order. The method not only
works for the smoother near the end of the sample, it also gives the (contemporaneous) �lter weights
at time T since these are the same as the weights for the smoother at time T .

With correlated components, W is not symmetric but the correct weights are obtained in reverse
order provided the smoother is in a steady-state, that is W has a band structure and the weights
are time-invariant as in (30). This will not be the case near the end of the sample. When a �lter
is in a steady-state it implies a lower triangular band structure for W such that the t-th row is the
reverse of the t-th column at least for elements close to (t; t). Therefore, a Kalman �lter applied to
the observations y = `t produces the t-th row of W but in reverse order. The initialisation means that
the zero-one method may only give the weights for large t, and then perhaps only approximately.

When deterministic components are present, the zero-one method for smoothing still works because
of the symmetric weight patterns, but the �lter doesn't because it never gets to a steady-state with
non-zero weights; see Harvey (1989, p.108).

Thus the validity of the zero-one method is limited even for time-invariant models. For models
with time-varying system matrices and for data irregularities, such as missing observations, the zero-
one method does not work because the t-th column of W is not equal to the t-th row, even in reverse
order.
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4.2 Computing weights for predictive �ltering

The �ltered estimator of the state vector in the next time period, that is the estimator of �t based on
information available at time t� 1, can be written as

atjt�1 =
t�1X
j=1

wj(atjt�1) yj : (32)

After the Kalman �lter has been applied up to time t�1 and the matricesKj stored for j = 1; : : : ; t�1,
the weight vectors can be computed by the backward recursion

wj(xt) = Bt;jKj ; Bt;j�1 = Bt;jTj � wj(xt)Zj ; j = t� 1; t� 2; : : : ; 1; (33)

with xt = atjt�1 and Bt;t�1 = I. We have introduced the variable xt because (33) will also be used for
computing the weights of other estimated variables. The weights for the one-step ahead estimator of
the observation yt, denoted by ŷtjt�1 for which ŷtjt�1 = Ztatjt�1 and

ŷtjt�1 =
t�1X
j=1

wj(ŷtjt�1) yj;

are given simply by wj(ŷtjt�1) = Ztwj(atjt�1) for j = t � 1; t � 2; : : : ; 1. This leads to the backward
recursion

wj(xt) = bt;jKj ; bt;j�1 = bt;jTj � wj(xt)Zj ; j = t� 1; t� 2; : : : ; 1; (34)

with xt = ŷtjt�1 and bt;t�1 = Zt. Note that bt;j = ZtBt;j. In the case of univariate observations yt, bt;j
is a vector.

Vector autoregressive representation

Since ŷtjt�1 + vt = yt, the weights give the (vector) autoregressive (VAR) representation for a time-
invariant model when the �lter is in a steady state; see section 3. In more familiar notation

yt =
1X
k

�k yt�k + vt; Var(vt) = �F ; (35)

where �k = wt�k(ŷtjt�1). The lag length will usually be in�nite for a UC model, but the weights
will tend to die away as k increases. If deterministic components, such as means, are present, some
modi�cation to the computed weights may be required in small samples. The relevance of the VAR
representation for the (vector) error-correction model (VECM) is discussed in section 6.3.

Derivation

The Kalman recursion for at+1jt can be re-formulated as

at+1jt = Ltatjt�1 +Ktyt;

where Lt = Tt �KtZt. By simple substitution, it follows that

atjt�1 = Kt�1yt�1 + Lt�1Kt�2yt�2 + Lt�1Lt�2Kt�3yt�3

+Lt�1Lt�2Lt�3Kt�4yt�4 + : : : + Lt�1 : : : L2K1y1

=
t�1X
j=1

Bt;jKjyj

9



where
Bt;t�1 = I; Bt;j = Lt�1Lt�2 : : : Lj+1; j = 1; : : : ; t� 2: (36)

Thus the weight vectors in (32) are given by wj(atjt�1) = Bt;jKj : They can be computed eÆciently
by the backwards recursion (33) since it follows from (36) that

Bt;j�1 = Bt;jLj; j = t� 1; t� 2; : : : ; 1:

Minor manipulation, using the de�nition Lj = Tj �KjZj, gives (33).

4.3 Computing weights for (contemporaneous) �ltering

The estimator of the state vector �t given the observations up to and including time t is referred to
as the (contemporaneous) �ltered estimator, atjt, and it can be represented as

atjt =
tX

j=1

wj(atjt) yj: (37)

After the Kalman �lter is applied together with the backwards recursion (33), the weight vector at
time t is computed by wt(atjt) = Ptjt�1Z

0
tF

�1
t and the weight vectors for j = t � 1; t � 2; : : : ; 1 are

the same as for atjt�1 but premultiplied by the matrix I � Ptjt�1Z
0
tF

�1
t Zt. The �ltering weights for

j < t can be computed by the backwards recursion (33) with xt = atjt and replacing the initialisation

Bt;t�1 = I with Bt;t�1 = I � Ptjt�1Z
0
tF

�1
t Zt.

The �ltered estimator of the observation yt is given by ŷtjt and can be represented as

ŷtjt =
tX

j=1

wj(ŷtjt) yj:

The weight at time t is computed by wt(ŷtjt) = I � GtG
0
tF

�1
t and the weights wj(ŷtjt) for j =

t� 1; t� 2; : : : ; 1 are the same as wj(ŷt) but need to be premultiplied by the matrix GtG
0
tF

�1
t . Thus

we can use recursion (34) with xt = ŷtjt and initialisation bt;t�1 = GtG
0
tF

�1
t Zt.

Derivation

The �ltered estimator of the state vector at time t is given by

atjt = atjt�1 + Ptjt�1Z
0
tF

�1
t vt

= (I � Ptjt�1Z
0
tF

�1
t Zt)atjt�1 + Ptjt�1Z

0
tF

�1
t yt:

The weights for contemporaneous �ltering are closely related to the weights for predictive �ltering,
wj(atjt�1), since we have

wt(atjt) = Ptjt�1Z
0
tF

�1
t ;

wj(atjt) = (I � Ptjt�1Z
0
tF

�1
t Zt)wj(atjt�1); j = t� 1; t� 2; : : : ; 1:

Therefore, recursion (33) can be used with xt = atjt and Bt;t�1 = I � Ptjt�1Z
0
tF

�1
t Zt.

The weights for the �ltered estimator ŷtjt are given by wj(ŷtjt) = Ztwj(atjt), for j = t; t� 1; : : : ; 1.
Since

ZtPtjt�1Z
0
tF

�1
t = I �GtG

0
tF

�1
t ; Zt(I � Ptjt�1Z

0
tF

�1
t Zt) = GtG

0
tF

�1
t Zt;

we obtain the result as stated.

10



4.4 Computing weights for smoothing

The smoothed state vector, atjT ; can be represented as a weighted sum of all observations, that is

atjT =
TX
j=1

wj(atjT ) yj: (38)

The weight matrices wj(atjT ) can be computed after the Kalman �lter is applied for t = 1; : : : ; T and
the smoothing recursion (25) is applied backwards up to time t. The Kalman �lter stores Kj , for
j = 1; : : : ; T , and the smoother stores

Cj = Z 0
jDj � T 0

jNjKj ; (39)

where Dj = F�1
j + K 0

jNjKj for j = T; T � 1; : : : ; t. The weight matrices are calculated from time
t in the two opposite directions: (i) backwards in time (j = t � 1; : : : ; 1); (ii) forwards in time
(j = t; t+ 1; : : : ; T ).

The weights wj(atjT ) for j < t are given by wj(atjT ) = (I � Ptjt�1Nt�1)wj(atjt�1) and they can be
computed by the backwards recursion (33) with xt = atjT and initialisation Bt;t�1 = I � Ptjt�1Nt�1.
The weights wj(atjT ) for j � t are computed by the forwards recursion

wj(xt) = B�
t;jCj; B�

t;j+1 = B�
t;jL

0
j; j = t+ 1; : : : ; T; (40)

with xt = atjT and B�
t;t+1 = Ptjt�1L

0
t.

The smoothed estimator of the observation yt is given by ŷtjT = ZtatjT and can be represented as

ŷtjT =
nX

j=1

wj(ŷtjT )yj;

where wj(ŷtjT ) = Ztwj(atjT ). The weight vectors wj(ŷtjT ) can be obtained directly by using the same
kind of backwards and forwards operation. The backwards recursion is the same as (34) but with
xt = ŷtjT and bt;t�1 = GtG

0
tC

0
t. The forwards recursion is similar as (40), that is

wj(xt) = b�t;jCj; b�t;j+1 = b�t;jL
0
j; j = t+ 1; : : : ; T; (41)

with xt = ŷtjT and b�t;t+1 = ZtPtjt�1L
0
t = GtG

0
tK

0
t. Further, note that wt(ŷtjT ) = ZtPtjt�1Ct =

I �GtG
0
tDt.

Derivation

We develop the algorithm for computing the weights for smoothing in three steps: (1) the weights for
rt�1; (2) the weights for atjT ; (3) the weights for ZtjTatjT .

Step 1

De�ne
ut = ZtF

�1
t vt; Ut = ZtF

�1
t Z 0

t:

It follows that Ut = Var(ut) and, since vt = yt � Ztatjt�1,

wt(ut) = ZtF
�1
t � Utwt(atjt�1); wj(ut) = �Utwj(atjt�1); (42)
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for j = t� 1; : : : ; 1. We can rewrite the smoothing recursions (25) as

rt�1 = ut + L0
trt

= ut + L0
tut+1 + L0

tL
0
t+1ut+2 + : : :+ L0

t : : : L
0
n�1un

= ut +B0
t+1;t�1ut+1 +B0

t+2;t�1ut+2 + : : :+B0
n;t�1un; (43)

Nt�1 = Ut + L0
tNtLt

= Ut + L0
tUt+1Lt + L0

tL
0
t+1Ut+2Lt+1Lt+2 + : : :+ L0

t : : : L
0
T�1UTLT�1 : : : Lt

= Ut +B0
t+1;t�1Ut+1Bt+1;t�1 +B0

t+2;t�1Ut+2Bt+2;t�1 + : : :+B0
T;t�1UTBT;t�1; (44)

where matrix Bt;j is de�ned in (36). Note some properties of matrix Bj;t�1:

Bj;t�1 = Lj�1Bj�1;t�1; j = t; : : : ; n;
Bj;t�1 = Bj;kBk+1;t�1; j = t; : : : ; n; k = t� 1; : : : ; j � 1;
Bj;t�1 = 0; j = 1; : : : ; t� 1:

(45)

The weights for rt�1 are obtained by

wj(rt�1) = wj(ut) +B0
t+1;t�1wj(ut+1) +B0

t+2;t�1wj(ut+2) + : : : +B0
T;t�1wj(uT ):

for j = 1; : : : ; n. By substitution of (42), we obtain

wj(rt�1) = B0
j;t�1ZjF

�1
j

�[Utwj(atjt�1) +B0
t+1;t�1Ut+1wj(at+1jt) + : : :+B0

T;t�1UTwj(aT jT�1)]:

From (33) we have wj(atjt�1) = Bt;jKj and substitution leads to

wj(rt�1) = B0
j;t�1ZjF

�1
j

�[UtBt;j +B0
t+1;t�1Ut+1Bt+1;j + : : : +B0

T;t�1UTBT;j]Kj :

Convenient expressions for wj(rt�1) can be obtained by using (44) for Nt�1 and using the properties
of Bj;t�1 in (45), we have

wj(rt�1) =

8><>:
�Nt�1Bt;jKj ; j = t� 1; t� 2; : : : ; 1;

ZtF
�1
t � L0

tNtKt; j = t;

B0
j;t�1ZjF

�1
j �B0

j+1;t�1NjKj ; j = t+ 1; t+ 2; : : : ; T;

Using de�nition Dj = F�1
j +K 0

jNjKj we further de�ne

Cj = Z 0
jF

�1
j � L0

jNjKj = Z 0
jDj � T 0

jNjKj ; j = t; t+ 1; : : : ; T:

From the fact that Bj+1;t�1 = LjBj;t�1, we obtain �nally

wj(rt�1) =

8><>:
�Nt�1Bt;jKj ; j = t� 1; t� 2; : : : ; 1;
Ct; j = t;
B0
j;t�1Cj; j = t+ 1; t+ 2; : : : ; T;
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Step 2

For the state smoothing recursions (25) and (26), it can be shown that atjT is the weighted average

atjT =
TX
j=1

wj(atjT ) yj:

The weights for atjT depend on the position of j with respect to t. For example, for j < t we have

wj(atjT ) = wj(atjt�1) + Ptjt�1wj(rt�1)

= Bt;jKj � Ptjt�1Nt�1Bt;jKj

= (I � Ptjt�1Nt�1)Bt;jKj ; j = t� 1; t� 2; : : : ; 1:

It follows that the weights for the smoothed state vector atjT are given by

wj(atjT ) =

8><>:
(I � Ptjt�1Nt�1)wj(atjt�1); j = t� 1; t� 2; : : : ; 1;

Ptjt�1Ct; j = t;

Ptjt�1B
0
j;t�1Cj ; j = t+ 1; t+ 2; : : : ; T:

Note that wj(atjt�1) = 0 for j � t.
Evaluation of B0

j;t�1 for j = t+ 1; t+ 2; : : : ; T can be done using the forwards recursion (40) since
it follows that

B0
j+1;t�1 = B0

j;t�1L
0
j ; j = t+ 1; : : : ; T;

and B0
t+1;t�1 = L0

t. The matrix B�
t;j in (40) for xt = atjT is de�ned as B�

t;j = Ptjt�1B
0
j;t�1 for

j = t+ 1; : : : ; T .

Step 3

The weights for the smoothed estimator of the signal are given by wj(Zt(atjT ) = Ztwj(atjT ), for
j = 1; : : : ; T . This leads to the following simpli�cation

Zt(atjT =
TX
j=1

wj(ŷtjT ) yj ;

where

wj(Zt(atjT ) =

8><>:
GtG

0
tC

0
twj(atjt�1); j = t� 1; t� 2; : : : ; 1;

I �GtG
0
tDt; j = t;

GtG
0
tK

0
tB

0
j;tCj; j = t+ 1; t+ 2; : : : ; T:

Note that Zt(I � Ptjt�1Nt�1) = GtG
0
tC

0
t and ZtPtjt�1L

0
t = GtG

0
tKt. Note also that Zt(atjT is the

estimator of yt when it is missing.

4.5 Computing weights for disturbance smoothing

The smoothed estimator of the disturbance vector "t conditional on all available observations, that
is etjT ; is given by (27) and is a linear estimator which can be expressed as a weighted average of all
observations, that is

etjT =
TX
j=1

wj(etjT ) yj:

The weight matrices wj(etjT ) can be computed by applying the Kalman �lter and smoother and storing

Kj (j = 1; : : : ; T ) and Cj (j = T; : : : ; t). The weight at time t is wt(etjT ) = G0
tF

�1
t � J 0tNtKt. The

backwards recursion (33) with initialisationBt;t�1 = �(G0
tC

0
t+H

0
tNtLt) is used to compute the weights

wj(etjT ) for j = t� 1; t � 2; : : : ; 1. The forwards recursion (40) with initialisation B�
t;t+1 = J 0t is used

to compute the weights for j = t+ 1; t+ 2; : : : ; T .
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Derivation

The smoothed estimator for etjT can be expressed as

etjT = G0
tF

�1
t vt + J 0trt

= G0
tF

�1
t yt + J 0trt �G0

tF
�1
t Ztatjt�1:

It follows that
wt(etjT ) = G0

tF
�1
t + J 0twt(rt);

where wt(rt) = �NtKt. Further,

wj(etjT ) = J 0twj(rt)�G0
tF

�1
t Ztwj(atjt�1); j = t� 1; t� 2; : : : ; 1;

where wj(atjt�1) = Bt;jKj , wj(rt) = �NtBt+1;jKj and Bt+1;j = LtBt;j . Minor manipulation, using
(39), gives

wj(etjT ) = �(G0
tC

0
t +H 0

tNtLt)wj(atjt�1); j = t� 1; t� 2; : : : ; 1:

Therefore, we can use recursion (33) with xt = etjT and initialisation Bt;t�1 = �(G0
tC

0
t + H 0

tNtLt).
Further,

wj(etjT ) = J 0twj(rt); j = t+ 1; t+ 2; : : : ; T:

where wj(rt) = B0
j;tCj . In this case we can use recursion (40) with xt = etjT and initialisation

B�
t;t+1 = J 0t .

4.6 An overview

The same backwards recursion (33) can be used to compute the weights wj(xt), with j = t � 1; t �
2; : : : ; 1, for predictive �ltering (xt = atjt�1), contemporaneous �ltering (xt = atjt) and smoothing
(xt = atjT ). Table 1 shows that only the initialisation of the recursion di�ers when computing weights
for �ltering and smoothing. For smoothing, the weights for j = t + 1; : : : ; T are computed by the
forwards recursion (40). The initialisations of both recursions (33) and (40) di�er for di�erent type
of estimators. For example, the initialisations for computing the weights for the smoothed state and
the smoothed disturbance vector "t are clearly di�erent. However, these di�erent initialisations lead
to consistent results. We give a few examples:

� The initialisations of (33) for contemporaneous �ltering and smoothing at t = T are consistent
with each other since NT�1 = Z 0

TF
�1
T ZT = UT .

� The weights for the estimator of the observation yt are equivalent to the weights for the state
�t when they are premultiplied by Zt. For example, ŷtjT = ZtatjT and it can be shown that
Zt � ZtPtjt�1Nt�1 = GtG

0
tC

0
t.

� The relationship GtetjT = yt� ŷtjT leads to similar relationships for the weights obtained by our
algorithms.

4.7 Computing mean squared errors

The WK approach to signal extraction also provides formulae for the MSEs of the estimated signals.
Similarly, the KFS computes the MSEs. The new algorithms, which are summarized in table 1, provide
direct ways to compute the MSE of particular estimators at time t. It follows immediately that

MSE(atj� ) = Bt;t�1Ptjt�1;

MSE(ŷtj� ) = ZtBt;t�1Ptjt�1Z
0
t = btjt�1Ptjt�1Z

0
t;
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xt operation initialisation (33) weight wt(xt) initialisation (40)

atjt�1 �ltering (pred) I 0 0

atjt �ltering (cont) I � Ptjt�1Ut Ptjt�1Z
0
tF

�1
t 0

atjT smoothing I � Ptjt�1Nt�1 Ptjt�1Ct Ptjt�1L
0
t

ŷtjt�1 �ltering (pred) Zt 0 0

ŷtjt �ltering (cont) GtG
0
tF

�1
t Zt I �GtG

0
tF

�1
t 0

ŷtjT smoothing GtG
0
tC

0
t ZtPtjt�1Ct = ZtPtjt�1L

0
t =

I �GtG
0
tDt GtG

0
tK

0
t

etjT smoothing �(G0
tC

0
t +H 0

tNtLt) G0
tF

�1
t � J 0tNtKt J 0t

GtetjT smoothing �GtG
0
tC

0
t GtG

0
tDt �GtG

0
tK

0
t

HtetjT smoothing �HtH
0
tNtLt �HtH

0
tNtKt HtH

0
t

Table 1: Computing Weights

where Bt;t�1 associated with � = t � 1; t; T is given in table 1 under the header initialisation (33).
Note that btjt�1 = Btjt�1Zt. For the disturbance estimators, it can be shown that

MSE(etjT ) = wt(etjT )Gt +B�
t;t+1NtHt; (46)

where B�
t;t+1 = J 0t; see table 1 under the header initialisation (40).

4.8 Computing weights when di�use initial conditions apply

The general algorithms for computing weights are developed for state space models with a properly
de�ned initial state vector as given in (20). However, when models contain nonstationary and de-
terministic components the initial speci�cation of the state vector is adjusted to allow for di�use
elements; see Ansley and Kohn (1985, 1990), de Jong (1991) and Koopman (1997). This requires an
augmented KFS for the initial period of the data set. The length of the initial period is usually equal
to the number of di�use elements in the state vector and is therefore relatively small. When using
the approach of Ansley and Kohn (1990) and Koopman (1997), the KFS equations for the post-initial
period remains unaltered. Therefore, the algorithms in this section for computing the weights assigned
to observations after the initial period remain valid. The weights for the observations within the initial
period can be computed straightforwardly by following similar arguments as in this section. However,
notation and presentation of these results are somewhat elaborate and therefore we do not give them
here. In any case, weights near the beginning of the sample are rarely required.

5 Univariate illustrations

5.1 Local level: small samples and deterministic components

For the local level model (4) and (5) with uncorrelated components, the simple zero-one method
described in sub-section 4.1 can be used for the smoother, but not for the predictive �lter if the sample
size is too small to allow suÆcient convergence to the steady-state; this is illustrated in table 2 where,
for a sample of size eleven, the weights for m6j6 (contemporaneous �ltering) and m6j11 (smoothing)
are presented. The weights could, in principle, be obtained by the WK formulae adapted for �nite
samples as in Whittle (1983, chapter 7). However, these formulae cannot be used if q is zero since
then the level is deterministic (so � = �1 in the reduced form). The zero-one method works for a
smoother if the weights are taken in the natural order (because they are all the same, that is 1=T ):
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q = 0:01 � = 0 q = 4 � = 1
Filtering Smoothing Filtering Smoothing

i j exact zero-one exact zero-one exact zero-one exact zero-one

-5 1 0.157 0.0865 0.0865 0.0865 0.1667 1.0 0.091 -1.0
-4 2 0.159 0.098 0.0874 0.0874 -0.5 -1.1 -0.273 1.0
-3 3 0.162 0.113 0.0891 0.0891 0.8333 1.222 0.455 -1.0
-2 4 0.167 0.130 0.0918 0.0918 -1.1667 -1.375 -0.636 1.0
-1 5 0.173 0.152 0.0953 0.0953 1.5 1.571 0.818 -1.0
0 6 0.1815 0.1815 0.0998 0.0998 0.1667 0.1667 1.0 1.0
1 7 0.0 0.0 0.0953 0.0953 0.0 0.0 -0.818 1.0
2 8 0.0 0.0 0.0918 0.0918 0.0 0.0 0.636 -1.0
3 9 0.0 0.0 0.0891 0.0891 0.0 0.0 -0.455 1.0
4 10 0.0 0.0 0.0874 0.0874 0.0 0.0 0.273 -1.0
5 11 0.0 0.0 0.0865 0.0865 0.0 0.0 -0.091 1.0

sum 1.0 0.761 1.0 1.0 1.0 1.485 1.0 1.0

Table 2: Weights for estimator of �6 of local level model (T = 11).

The weights for contemporaneous �ltering are associated with m6j6 =
P

0

i=�5
wiy6+i =

P
6

j=1
wj(m6j6)yj , and the weights for

smoothing are associated with m6j11 =
P5

i=�5
wiy6+i =

P11

j=1
wj(m6j11)yj .

A less obvious case where WK cannot be applied is in a model with perfectly correlated components,
� = 1 in (6), and q = 4, since then the reduced form is strictly noninvertible with � = 1. The weights
computed by the exact algorithm are shown in table 2. The zero-one method gives the wrong answer
because of the asymmetry in the W matrix in (31).

5.2 Seasonality

Consider a model consisting of trend, seasonal and irregular components, that is

yt = �t + 
t + "t; "t � N(0; �
2
" ); (47)

where �t is a random walk, (5), and 
t is the stochastic seasonal component which can be either con-
structed using dummy variables or trigonometric terms; see Harvey (1989, chapter 2). The randomness
of the seasonal component is governed by Gaussian disturbances with variance �2!. A knowledge of
the implied weighting patterns for smoothed components is useful for making comparisons between
a model-based seasonal adjustment procedure based on (47) and procedures based on moving aver-
ages. The weighting patterns are studied in Riani (1998) using the zero-one method. Here we simply
emphasize that the weight functions can all be obtained directly using the exact algorithm even if
some components are deterministic (that is the corresponding disturbance variances are zero). If the
seasonal component is deterministic, the zero-one method cannot give the �lter weights. Even if,
as often happens, the seasonal changes, but does so slowly, convergence to the steady-state is slow,
rendering the zero-one method for �ltering inappropriate in small samples. Note that the weights for
the estimated irregular are computed using the algorithm of section 4.5.

In �gure 1 we present the weighting patterns column-wise for the estimated level, seasonal and
irregular, respectively. The row-wise panels re
ect four di�erent model speci�cations: in row 1, the
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Figure 1: Weighting patterns for smoothed components

Weights are for model (47) and for middle of series (T = 17): the weights wj = w9+j(m9jT ) for j = �8;�7; : : : ; 8 are associated

with level, seasonal and irregular, respectively (column-wise); with �2�=�
2
" = 0:5 and (i)-(iii) no seasonal; (iv)-(vi) �xed seasonal

(�2! = 0); (vii)-(ix) �2!=�
2
" = 0:5; (x)-(xii) �2!=�

2
" = 5.

seasonal component is removed and the signal-to-noise ratio for the level, �2�=�
2
" , is 0:5 (as for the

other cases); in row 2, the seasonal component is included but �xed (�2! = 0); in row 3, �2!=�
2
" = 0:5;

and in row 4, �2!=�
2
" = 5. The weights are for the estimated components in the middle of the series of

length T = 17. We note that the weights for the level and the irregular of a model without a seasonal
are very similar compared to a model with a �xed seasonal. Even when the seasonal component is
time-varying the level weights are not a�ected very much; the weights for the irregular however do
change when �2!=�

2
" becomes larger. The end-of-sample e�ects are visible for the seasonal weights.

5.3 Missing observations

Missing observations can be estimated by smoothing. It may often be of interest to look at the
weighting patterns implied for surrounding observations and to compute the MSE. By following the
argument in Whittle (1983, pp.76-7), analytic expressions can be obtained but only in special cases.
The zero-one method does not work. When the ith observation is missing, the ith column ofW in (31)
is a vector of zeroes and this is exactly the column which is obtained by computing the weights for
ŷijT using the zero-one method. Thus the symmetry and band structure of W are lost. To illustrate
our point we repeat the computations for table 2 but treat observations 3, 6, 8 and 9 as missing. The
results are reported in table 3. Note that the correct weights still sum to unity.

5.4 Multi-step predictions

Multi-step forecasts can be obtained by extending the sample, applying the Kalman �lter beyond time
T and treating the observations after T as missing. The vector aT+kjT and its MSE matrix PT+kjT , for
k = 1; 2; : : :, are the multi-step forecast of the state vector and its mean square forecast error matrix,
respectively. The weights assigned to observations at the end of the sample for multi-step predictions
can be obtained using the exact method, simply by adding missing values at the end of the sample.

The local linear trend model, (14), serves to illustrate the kind of weighting patterns which can
arise. In this case there is a straightforward relationship between the forecasting weights and the

17



q = 0:01 � = 0 q = 4 � = 1

i j Filtering Smoothing Filtering Smoothing

-5 1 0.2415 0.1374 -0.05 -0.04579
-4 2 0.2439 0.1387 0.15 0.1374

0.0000 0.0000 0.0 0.0000
-2 4 0.2536 0.1442 -0.65 -0.5953
-1 5 0.2610 0.1485 1.55 1.420

0.0 0.0000 0.0 0.0
1 7 0.0 0.1498 0.0 0.09306

0.0 0.0000 0.0 0.0
0.0 0.0000 0.0 0.0

4 10 0.0 0.1414 0.0 -0.01329
5 11 0.0 0.14 0.0 0.004431

sum 1.0 1.0 1.0 1.0

Table 3: Exact weights for estimator of �6 of local level model (T = 11).

The weights have the same interpretation as for table 2. Observations 3, 6, 8 and 9 are missing. The zero-one method gives all
weights equal to zero.

�ltering weights since

ŷT+kjT = �̂T+kjT = �̂T jT + k�̂T jT ; k = 1; 2; : : : : (48)

and so
wj(ŷT+kjT ) = wj(�̂T jT ) + kwj(�̂T jT ); k = 1; 2; : : : :

Thus as k becomes larger the weights for the forecasts depend more and more on the weights of the
slope estimator �̂T jT . This can be seen in �gure 2 with �2" = 1, �2� = :04 and �2� = :01.

5.5 Irregularly spaced observations

In this sub-section and the next sub-section, we consider 133 observations of acceleration against
time (measured in milliseconds) for a simulated motorcycle accident which is originally analysed by
Silverman (1985). The observations are not a time series, and they are not equally spaced over time
and at certain time points multiple observations are recorded; see �gure 3. These data are often used
as an illustration for nonparametric regression using cubic splines. The connection between cubic
splines and the state space framework has been known for many years; see Wecker and Ansley (1983).
Given the data set y1; : : : ; yT for which the t-th observation is recorded at time �t, the time series
model for a cubic spline is (14) with

"t �WN(0; �2" ); �t �WN(0; �2� Æ
3
t =3); �t �WN(0; �2� Æt); E(�t�t) = �2� Æ

2
t =2;

"t is uncorrelated with both �t and �t and Æt = �t+1 � �t; see Harvey (1989, sections 9.1.2 and 9.2.1)
and Koopman et al (1999) for further details. The weighting pattern for the estimated signal �t can
be interpreted as the equivalent kernel function and can be compared with kernel functions used in
nonparametric regression.
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Figure 2: Weights for forecasting

The weights wj = wT+j(ŷT+kjT ) are for local linear trend model with �2" = 1, �2� = :04 and �2
�
= :01: (i) k = 1, (ii) k = 6, (iii)

k = 30, (iv) k = 150.

The smoothing parameter, q� = �2�=�
2
" , can be estimated by maximum likelihood using the Kalman

�lter and is given by q̂� = :0275. Figure 3 (i) presents the cubic spline (solid line). The KFS is used
to compute the estimates of ��t but it also computes the root mean square error (RMSE) of these
estimates. The error bounds based on the RMSEs for the �tted spline are also given in �gure 3 (i)
(dotted lines).
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Figure 3: Motorcycle acceleration data analysed by a cubic spline

(i) observations against time with spline and 95% con�dence intervals and (ii) the weights for the spline at time �105 = 35:6 against
time distance �105 � �j .

Figure 3 (ii) shows the weights assigned to observations at adjacent time points for computinge��t , with �t = 35:6 corresponding to the 105th observation. The gaps are caused by time periods for
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Figure 4: Motorcycle acceleration data analysed by a cubic spline corrected for heteroscedasticity

(i) absolute values of smoothed irregular and h�t , (ii) the weights for the local level signal at time �105 = 35:6 against time distance
�105 � �j .

which no observations are recorded. The weighting pattern in �gure 3 (ii) is not symmetric. This is in
contrast to the nonparametric approach where the weighting pattern is symmetric in that observations
which are at the same `distance' from the time point �t receive the same weight; see, for example, Green
and Silverman (1994). The reason the optimal weights, obtained from the model, are not symmetric
is that the number of data points observed around a particular observation is taken into account; if
this number is large, the observation receives less weight.

5.6 Heteroscedasticity

Figure 4 (i) shows the standardised smoothed estimates of the irregular disturbance from the analysis
of the previous sub-section. There appears to be heteroscedasticity. This may be corrected for by the
simple device of �tting a local level signal through the absolute values of the smoothed irregular. The
variance �2" of the original cubic spline model is then replaced by �2"h

�2
t where h�t is the smoothed

estimate of the local level signal but scaled such that h�1 = 1; see Harvey and Koopman (1999) for
more details. The absolute values of the smoothed irregular and the h�t 's are presented in �gure 4 (i).
Figure 4 (ii) presents the weighting pattern at time �105 = 35:6 and it can be seen that the adjusted
spline is locally more smooth than before because the weights decline at a slower rate. Since the
variance of the irregular is changing over time, we need to apply the exact method of computing the
weights.

5.7 Bayesian estimation

The weights we have considered so far apply to estimators of the state vector when the parameters of
the model are known. However, these parameters, such as the variances �2" and �2� in the local level
model, are usually unknown. For Gaussian models they can be estimated by maximum likelihood,
using the Kalman �lter to compute the likelihood function. The weights assigned to observations
for �ltering and smoothing can then be computed using the algorithms of section 4 with parameters
replaced by estimates.
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In a Bayesian approach the parameters are treated as random variables with some prior distribu-
tion. To obtain the posterior distribution of the parameter and state vector we may employ Markov
chain Monte Carlo (MCMC) techniques; see, for example, Shephard and Pitt (1997). In the case of a
linear Gaussian model the MCMC techniques are relatively easy to implement; see Fr�uwirth-Schnatter
(1994). In this sub-section, we show how our weighting algorithm can be used to calculate weights for
the posterior mean of the state vector.

Consider the local level model (4) and (5) where the disturbances are Gaussian and mutually
independent. To compute moment characteristics of the posterior densities p(�2" jy1; : : : ; yT ) and
p(�2� jy1; : : : ; yT ) we can use the following MCMC algorithm:

1. Give some prior values for �2" and �2� .

2. Sample from the multivariate Gaussian distribution of �jy; �2" ; �
2
� , where � = (�1; : : : ; �T )

0 and
y = (y1; : : : ; yT )

0, using the simulation smoother of de Jong and Shephard (1995) as implemented
in SsfPack 2.2.

3. Sample from the distribution of �2" jy; � and �2� jy; �.

4. Goto 2.

It can be shown that after some \burning-in" iterations, the draws generated in step 3 can be regarded
as draws from the posterior distributions of �2" jy and �2� jy, respectively.

Simulation samples from the distributions of �2" jy; � and �2�jy; � for a given y, can be obtained as
follows. First, the appropriate prior density for the variance is given by

�2a � IG

�
ca
2
;
sa
2

�
;

where IG is the inverse gamma distribution with shape parameter ca and scale parameter sa and a
refers to disturbance "t or �t. The prior mean and variance of �2a are given by

sa
ca � 2

;
2sa

(ca � 2)2(ca � 4)
;

respectively. Then, the corresponding posteriors are

�2" jy; � � IG

 
c" + n

2
;
s" +

P
"2t

2

!
; �2� jy; � � IG

 
c� + n

2
;
s� +

P
�2t

2

!
; (49)

where
�t = �t+1 � �t � NID(0; �2�);

"t = yt � �t � NID(0; �2" ):

It is easy to sample from these distributions as shown in the Ox program bayesw.ox of the appendix;
further computing details are given by Koopman et al (1999). The posterior means for �2" and �2� are
simply obtained by taking the averages of the generated samples in step 3 excluding the samples from
the \burning-in" period. In the same way the posterior mean of the level �t is obtained using the
samples generated in step 2.

The weights of the smoothed posterior mean of the level can simply be obtained by averaging the
weight patterns of the smoothed level implied by a model with parameter values obtained from step
3 of the MCMC algorithm. This approach can be straightforwardly generalised to more complicated
models.

To illustrate our method of computing weights for the local level model, we use the Nile data anal-
ysed by Balke (1993) and Harvey, Koopman and Penzer (1998). The maximum likelihood estimates of
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Figure 5: Weighting patterns for local level model

(i) classical estimator of level; (ii) Bayesian smoothed posterior mean; (iii) di�erence.

the variances, calculated using STAMP 5.0 of Koopman et al (1995), are �̂2" = 15099 and �̂2� = 1469:2
and the consequent \classical" weighting pattern for the smoothed level in the middle of the series
is shown in �gure 5. The Bayesian weights are computed using the MCMC algorithm with 10; 000
iterations and 1; 000 \burning-in" iterations. The posterior means of the variances are ��2" = 15165
and ��2� = 1407:4. The di�erences between the classical and Bayesian weights are also presented in
�gure 5; the tails of the Bayesian weighting pattern are heavier because the Bayesian approach takes
into account the uncertainty of the variances. The Ox program wbayes.ox is used to generate these
results and the listing of the program is given in the appendix.

6 Multivariate models

Suppose we have a multivariate model forN time series and we wish to investigate how the observations
in all N series are weighted in forming an estimator of a component in the �rst series. This is of
considerable interest in understanding how the interactions in a dynamic model work and whether
they result in weighting patterns which have a useful interpretation. We illustrate this by looking
at multivariate unobserved components models which generalise the local level and local linear trend
models introduced in section 2.

6.1 Filtering and signal extraction using related series

The multivariate local level model can be written in the contemporaneous state space form

yt = �t + "t; "t �WN(0;�"); t = 1; : : : ; T; (50)

�t = �t�1 + �t; �t �WN(0;��);

where WN now denotes multivariate white noise. For simplicity we concentrate on a bivariate model
for the series of interest, the target series, and a single related series. The aim is to examine how
the observations in the two series are weighted when the level in the target series is estimated. This
provides insight into what exactly the model does. In general the weights cannot be deduced analyt-
ically for the reasons given in sub-section 2.3. However, there are two special cases { homogeneity

22



and common trends { where some theoretical insight is possible and we examine these cases before
presenting weights computed for a range of speci�cations by our exact numerical algorithm.

If the model is homogeneous, that is �� = q�", where q is a scalar, then there is no gain from using
a second series (except in the estimation of q) and so the weighting pattern is as in the univariate
case; see Harvey (1989, chapter 8). Thus the �ltered estimator of each level component is an EWMA
of its own past observations only. Similarly the smoother shows a two-sided exponential decline as in
�gure 1 (i).

If the rank of the covariance matrix �� in (50) is K < N , an appropriate ordering of the series
enables the model to be written in the common trends (or levels) form

y1t = �yt + "1t (51)

y2t = ��yt + ��+ "2t

where y1t is a K� 1 vector, y2t is an r� 1 vector with r = N �K, � is an r�K matrix of coeÆcients
and the K � 1 vector �yt follows a multivariate random walk

�yt = �yt�1 + �yt ; �yt �WN(0;�y
�); (52)

where �yt is aK�1 vector and �
y
� is aK�K positive de�nite matrix. The r�1 vector �� is deterministic.

In terms of (50), �� = �y�y
��

y0, where �y = (I;�0)0.
For a bivariate model we can write

�� =

 
�21� ���1��2�
���1��2� �22�

!
(53)

where �� is the correlation. If �� = �1, there is a single common trend and so

y1t = �1t + "1t = �yt + "1t; t = 1; : : : ; T; (54)

y2t = �2t + "2t = ��yt + ��+ "2t

where � = sgn(��)�2�=�1� . Some insight into weighting patterns can be achieved by transforming this
model to

(y1t + y2t=�)=2 = �yt + ��=2� + ("1t + "2t=�)=2

��y1t + y2t = ��+ (��"1t + "2t)

The Jacobian of the transformation is unity. The second equation does not contain the common
trend while in the �rst equation �� can be absorbed into the initial conditions for the trend. If we
make the assumption that Var("2t)=Var("1t) = �2(= �22�=�

2
1�) the irregular disturbances in the two

transformed equations are uncorrelated with each other whatever the correlation, �", between the
original irregulars and so the weights for estimating the stochastic trend in the �rst equation will
be as for a univariate local level with signal-noise ratio, q, equal to (1 + �")=2 times the signal-noise

ratio in the �rst untransformed equation. If �� is known, this is the pattern which applies to �yt , and
hence to �1t, and so, unless �" = 1, the weights associated with (y1t + y2t=�)=2 will show a more
rapid exponential decline than the weights for y1t in the univariate model. The weights on y1t sum to
one-half while those on y2t sum to 1=2�. If �� is not known, its estimator is obtained from the second
transformed equation as �y2���y1. The weights for the estimator of ��=2� need to be subtracted from the
weighting pattern for �1t obtained when �� is known. This term contributes 1=2T to each observation
in the �rst series and �1=2T� to each observation in the second series. Thus, for extracting �1t, the
weights on the �rst series now sum to one while those on the second sum to zero. The converse is
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Figure 6: Weighting patterns for estimated level of �rst (target) series

Multivariate local level model with Var("t) = I2 and T=100: (i) weights for y1t in case (a), (ii) corresponding weights for y2t, (iii)
weights for y1t in case (b), (iv) corresponding weights for y2t, (v) weights for y1t in case (c) with known constant, (vi) corresponding
weights for y2t, (vii) weights for y1t in case (c) with unknown constant, (viii) corresponding weights for y2t.

true for �2t; thus illustrating that the weighting matrix sums to the identity matrix even if �� is not
of full rank.

We now consider three di�erent speci�cations, (a), (b) and (c). In all cases �" = I2 while

�(a)
� =

 
:2 0
0 :2

!
; �(b)

� =

 
:2 �:2

�:2 :3

!
; �(c)

� =

 
:2 :2
:2 :2

!
:

Figure 6 presents the weighting patterns used to construct smoothed estimators of the level in the
�rst series in terms of its own values and those of the related series. The sample size is 100. The

results for �
(a)
� are in panels (i) and (ii), while for �

(b)
� is in panels (iii) and (iv). Because the level

disturbances in (b) are negatively correlated, the weights from the second series are negative. Case (c)

has a common level as matrix �
(c)
� is of rank one; � is equal to one. Weights when �� in (54) is known

are shown in panels (v) and (vi). The analysis of the previous paragraph is con�rmed in that the
weights on the target series decline faster than in the corresponding univariate model - these weights
are as in panel (i). Panels (vii) and (viii) show that when �� is estimated 1=2T is added to the weights
for the �rst series while the same quantity is subtracted from the weights for the second series. Note
that the presence of an unknown deterministic component in this case makes the use of the zero-one
method problematic.

6.2 Missing observations

When a series contains missing observations, using a related series can provide better estimates of the
missing values than can the target series alone. In such cases, it is of interest to compute the weights
assigned to observations in both series and this can be done by the weighting algorithm. In �gure 7
the same weighting patters are presented as in �gure 6 but with a missing observation in the target
series at the time point for which the weights are produced. The patterns are similar to those in �gure
6, except that the largest weight is now on the observation in the related series corresponding to the
missing observation in the target series. With the exception of panels (vii) and (viii), the weights in
the left-hand panels sum to one and those in the right-hand panels sum to zero.
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Figure 7: Weighting patterns for estimated level of �rst (target) series

Weighting patterns as in �gure 6 but with observation in the target series y1t missing.

A related problem is using a monthly series to estimate the underlying trend of a quarterly series.
The state space form can be modi�ed to handle 
ows as well as stocks. In such cases the exact method
of computing weights is the only practical method.

6.3 Vector error correction representation

The presence of common trends implies co-integration. In the local level model (51), there exist
r = N � K co-integrating vectors. Let A be an r � N matrix partitioned as A = (A1; A2). Then
pre-multiplying (51) by A gives

Ayt = A1y1t +A2y2t = (A1 +A2�)�
y
t +A2��+A1"1t +A2"2t; t = 1; : : : ; T: (55)

The r series in Ayt are stationary, and hence A consists of co-integrating vectors, if A1 +A2� = 0.
Pre-multiplying the observation vector in the bivariate model (54) by the vector A = (��; 1) gives

y2t = �y1t + ��+ "t; (56)

where "t = "2t��"1t. Since the linear combination y2t��y1t is stationary, the series are co-integrated.
Econometricians often handle co-integrated systems by a vector error-correction model (VECM)

and so it is interesting to compute the coeÆcients in the VECM representation of the common trends
model. The VECM can be written as

�yt = ��yt�1 + Æ +
1X
j=1

��
j�yt�j + vt; (57)

where the relationship between the N �N parameter matrices and those in the VAR model of (35) is

�� =
1X
k=1

�k � I; ��
j = �

1X
k=j+1

�k; j = 1; 2; : : : : (58)

The rank of �� is r. It is normally expressed as �� = �A, where A is the r�N matrix of co-integrating
vectors and � is a N � r matix of coeÆcients. When there is no co-integration, �� = 0.
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If we were to have a homogeneous model, (50) with �� = q�", then there is no co-integration, so
�� = 0, and the model is just a VAR in �rst di�erences. The parameter matrices are ��

j = (��)jI,
j = 1; 2; : : :, where � is obtained from (9). If q is small, � is close to minus one and there is a slow
decline in the ��

j 's. Obtaining more general results is diÆcult. This provides a motivation for the use
of our exact predictive �ltering weighting algorithm. As already noted, the zero-one method cannot
be used when a steady-state is obtained too slowly or when co-integration is present.
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Figure 8: VAR representation weights for multivariate local level model

Model with Var(�1t) = :4, Var(�2t) = :1 and Cov(�1t; �2t) = :2: elements of ��
j for j = 1; : : : ; 9, (i) (1,1); (ii) (1,2); (ii) (2,1); (iv)

(2,2).

Given a common trends model, (51), the weighting algorithm is used to compute the coeÆcient
matrices in the corresponding VAR. The vector �� is set to zero. The VECM matrices, �� and the
��
j 's, are then obtained from (58). As is well known, the matrix A is not unique for r > 1 but it can

be set to (��; I). The � matrix is then computed so as to satisfy �� = �A, while Æ = ���(0; ��0)0. If
�� is dominated by �", a slow decline in the ��

j 's can be expected. This has implications for using a
VECM to model a system for which a common trends model is appropriate.

Consider the bivariate local level model (51) with �" = I2 and �� = 0:1(2; 1)(2; 1)0 . The implied
co-integrating vector is equal to (�:5; 1) and we �nd

�� =

 
�:2 :4
:4 �:8

!
=

 
:4
�:8

!�
�:5 1

�
:

Figure 8 shows the weights attached to �y1;t�j and �y2;t�j, for j = 1; 2; : : :, for the two series. It
is interesting that the weights still decline exponentially as in the simple homogeneous case analysed
earlier. The Ox program vecm.ox is used to generate these results and the listing of the program is
given in the appendix.

6.4 Using a related series to estimate level and change

By constructing a bivariate local linear trend model, generalising (14), it may be possible to use a
related series to obtain an improved estimator of the underlying change or slope in a target series.
It was shown in sub-section 2.2 how the WK formula could be used in the univariate case to obtain
weights for the smoothed estimator of slope. Weights for the �ltered estimator could be similarly
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obtained. In fact it is the �ltered estimator which is usually required. Harvey and Chung (1999)
give an example in connection with UK unemployment, where the series of interest, based on an ILO
de�nition, is obtained from a survey which is subject to sampling error. The related series, on monthly
claimant counts, is exact.
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Figure 9: Weighting patterns for the Harvey and Chung model

(i) univariate �̂tjt in terms of yt+j ; (ii) univariate �̂tjt in terms of �yt+j; (iii) multivariate �̂1;tjt in terms of y1;t+j ; (iv) multivariate

�̂1;tjt in terms of �y1;t+j ; (v) multivariate �̂1;tjt in terms of y2;t+j ; (vi) multivariate �̂1;tjt in terms of �y2;t+j .

Parameter values close to those reported in Harvey and Chung (1999) are as follows

�" =

 
2500 0
0 0

!
; �� =

 
100 0
0 100

!
; �� =

 
49 49
49 49

!
:

The �rst series is the ILO series with an irregular component taken to represent the survey error,
the variance of which is 2500. The level and slope disturbance variances are the same and the slope
disturbances are perfectly correlated, so the model is co-integrated of order (2,1). Harvey and Chung
argue further that the slopes in the two series are proportional so the deterministic slope component,
analogous to �� in the local level model, is set to zero. The zero-one method could not, therefore,
be used. The weights for the current estimator of both the level and the slope of the �rst series are
presented in the �rst two panels of �gure 9. The weights implied by the bivariate model are presented
in graphs (iii) and (iv) for the �rst series and in graphs (v) and (vi) for the second series. Because the
second series has no sampling error it actually plays a dominant role in estimating the level and slope
in the �rst series. Furthermore, in estimating the slope, relatively more weight is assigned to the most
recent observations, so the bivariate estimator is faster to respond.

Actually the model in Harvey and Chung (1999) is more complex than the one above since the
survey uses a rotating sample which leads to a serial correlation. Furthermore the observations are
constructed from the survey by averaging over a three month period. Harvey and Chung (1999) build
an unobserved components model to capture these features and estimate it using SsfPack. Adding the
subroutine to calculate the weights requires only one line of extra code.

27



Acknowledgements

During the main part of this research, the �rst author was a Research Fellow of the Royal Netherlands
Academy of Arts and Sciences and its �nancial support is gratefully acknowledged. Further, we would
like to thank Neil Shephard and Marius Ooms for discussions and suggestions. Neil Shephard suggested
the idea of computing the Bayesian weights.

Appendix

Some Ox code listings are given below. The software and the documentation of the SsfPack 2.3

package can be freely downloaded from the Internet at www.ssfpack.com; for further details, see
Koopman, Shephard and Doornik (1999). All Ox code used in this paper can be downloaded from
http://www.econ.vu.nl/koopman/weights/.

Code for table 2

#include <oxstd.h>

#include <packages/ssfpack/ssfpack.h>

main()

{

decl ct, loc, my, mphi, momega, q, r, mw, mw_zo;

// data (zeroes with unity on position where weights are required)

ct = 11; loc = 5;

my = zeros(1,ct); my[0][loc] = 1;

// local level model

mphi = <1;1>; momega = unit(2);

q = 0.01; r = 0.0;

momega[0][0] = q; momega[1][0] = momega[0][1] = sqrt(q) * r;

// exact method

mw = SsfWeights(ST_SMO, my, mphi, momega);

// zero one method

SsfMomentEst(ST_SMO, &mw_zo, my, mphi, momega);

// table output

decl index = range(-5, 5);

println(index'~mw'~reverser(mw_zo[:1][])');

println(sumc(index'~mw'~reverser(mw_zo[:1][])'));

}

Comments: (i) by replacing SMO with FIL the program computes the weights for �ltering rather
than for smoothing (note that in Ox indices for arrays start counting at 0, not 1); (ii) the functions
SsfMomentEst and SsfWeights are from SsfPack.

Code for computing Bayesian weights

#include <oxstd.h>

#include <oxprob.h>

#include <packages/ssfpack/ssfpack.h>
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main()

{

// data and model

decl myt, mzt, loc = 50, mphi, momega, msigma;

myt = loadmat("Nile.dat")';

mzt = zeros(myt); mzt[0][loc] = 1;

GetSsfStsm(<CMP_LEVEL, 1.0, 0, 0; CMP_IRREG, 1.0, 0, 0>, &mphi, &momega, &msigma);

// prior distribution: inverse gamma

decl s_eta, s_xi, c_eta, c_xi;

s_eta = 5000; s_xi = 50000;

c_eta = c_xi = 2.5 + (0.5 * columns(myt));

// posterior analysis by MCMC

decl i, crep=10000, cinit=1000, mbw, mpsi, md;

mbw = zeros(2, columns(myt));

for (i = 0, mpsi = zeros(2, crep); i < crep; i++)

{

if (i >= cinit) mbw += SsfWeights(ST_SMO, mzt, mphi, momega, msigma);

md = SsfCondDens(DS_SIM, myt, mphi, momega, msigma);

md = md * md';

mpsi[0][i] = 1.0 / rangamma(1,1, c_eta, (s_eta + md[0][0])/2);

mpsi[1][i] = 1.0 / rangamma(1,1, c_xi, (s_xi + md[1][1])/2);

momega = diag(mpsi[][i]);

}

mpsi = mpsi[][cinit:]; // drop first cinit draws

print("\nPosterior analysis\n");

print("%r", {"var_eta", "var_xi"}, "%c", {"mean", "st.dev."}, "%15.3f",

meanr(mpsi)~sqrt(varr(mpsi)));

mbw /= (crep-cinit); // bayesian weights

// classical analysis

momega = diag(<1469.2;15099>); // ml estimates obtained from STAMP

decl mw = SsfWeights(ST_SMO, mzt, mphi, momega, msigma);

// graphs for mw, mbw and mbw-mw

}

Comment: the functions GetSsfStsm, SsfWeights and SsfCondDens are from SsfPack.

Code for vector error-correction model weights

#include <oxstd.h>

#include <oxdraw.h>

#include <packages/ssfpack/ssfpack.h>

decl s_idraw = 0, s_ct = 400, s_loc = 200;

decl s_mphi, s_momega, s_msigma, s_op = ST_PRED;

DrawVECM(const i, const j)

{

decl my = zeros(2,s_ct); my[j][s_loc - 1] = 1;

decl mw = SsfWeights(s_op, my, s_mphi, s_momega, s_msigma);

mw = cumulate(mw' )';

decl d = mw[i][s_loc - 1]; if (i==j) d -= 1.0;

println(" phi* ", i+1, " ", j+1, " = ", d);
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// graph for mw[i][]

}

main()

{

// bivariate LL (common) model

s_mphi = <1,0;0,1;1,0;0,1>;

s_momega = unit(4);

s_momega[:1][:1] = <.4,.2;.2,.1>;

s_msigma = 10^9 * s_momega[:1][:1]| 0;

DrawVECM(0,0); DrawVECM(0,1); DrawVECM(1,0); DrawVECM(1,1);

// show graphs

}

Comment: the Ox function cumulate() is used to compute the VECM matrices de�ned in (58).

References

Ansley, C.F. and R. Kohn (1985) Estimation, �ltering and smoothing in state space models with
incompletely speci�ed initial conditions. Annals of Statistics, 13, pp.1286-1316.

Ansley, C.F. and R. Kohn (1990) Filtering and smoothing in state space models with partially di�use
initial conditions. Journal of Time Series Analysis, 11, pp.275-293.

Balke, N.S. (1993) Detecting level shifts in time series. Journal of Business and Economic Statistics,
11, pp.81-92.

Bell, W.R. (1984) Signal extraction for nonstationary time series, Annals of Statistics, 13, pp.646-664.

Burridge, P. and K.F. Wallis (1988) Prediction theory for autoregressive-moving average processes.
Econometric Reviews, 7, pp.65-69.

de Jong, P. (1991) The Di�use Kalman �lter. Annals of Statistics, 19, pp.1073-1083.

de Jong, P. and Shephard, N. (1995) The simulation smoother for time series models. Biometrika, 82,
pp.339-350.

Doornik, J.A. (1998) Object-Oriented Matrix Programming using Ox 2.0. London: Timberlake Con-
sultants Press.

Durbin, J. and S.J. Koopman (2000) Time Series Analysis by State Space Methods. Oxford: Oxford
University Press, forthcoming.

Fr�uhwirth-Schnatter, S. (1994) Applied state space modelling of non-Gaussian time series using
integration-based Kalman �ltering. Statistics and Computing, 4, pp.259-269.

Green, P.G. and B.W. Silverman (1994) Nonparametric regression and generalized linear models. Lon-
don: Chapman and Hall.

Harvey, A.C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge:
Cambridge University Press.

30



Harvey, A.C. and C-H. Chung (1999) Estimating the Underlying Change in UK Unemployment.
Discussion paper, University of Cambridge.

Harvey, A.C. and S.J. Koopman (1999) Signal Extraction and the Formulation of Unobserved Com-
ponents Models. CentER Discussion paper, Tilburg University.

Harvey, A.C., S.J. Koopman and J. Penzer (1998) Messy Time Series. In T.B. Fomby and R.C. Hill
(eds), Advances in Econometrics. Volume 13. New York: JAI Press.

Kitagawa, G., and W. Gersch (1996). Smoothness priors analysis of time series. Berlin: Springer-
Verlag.

Koopman, S.J. (1997) Exact initial Kalman �ltering and smoothing for nonstationary time series
models. Journal of the American Statistical Association, 92, pp.1630-1638.

Koopman, S.J, N. Shephard and J.A. Doornik (1999) Statistical algorithms for models in state space
using SsfPack 2.2. Econometrics Journal, 2, pp.113-166.

Riani, M. (1998) Weights and Robustness of Model-based Seasonal Adjustment. Journal of Forecast-
ing, 17, pp.19-34.

Shephard, N. and Pitt, M.K. (1997) Likelihood analysis of non-Gaussian measurement time series.
Biometrika, 84, pp.653-667.

Silverman, B.W. (1985) Some aspects of the spline smoothing approach to non-parametric regression
curve �tting. Journal of the Royal Statistical Society, Series B, 47, pp.1-52.

Wecker, W.E. and C.F. Ansley (1983) The signal extraction approach to nonlinear regression and
spline smoothing. Journal of the American Statistical Association, 78, pp.81-89.

West, M. and P.J. Harrison (1997) Bayesian Forecasting and Dynamic Models, 2nd ed. New York:
Springer-Verlag.

Whittle, P. (1983) Prediction and Regulation, 2nd ed. Oxford: Blackwell.

31


