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Abstract

In this paper we analyze GMM estimators for time series models as advocated by
Hayashi and Sims, and Hansen and Singleton. It is well known that these estimators
achieve efficiency bounds if the number of lagged observations in the instrument set goes
to infinity.

A new version of the GMM estimator based on kernel weighted moment conditions is
proposed. Higher order asymptotic expansions are used to obtain optimal rates of expan-
sions for the number of instruments to minimize the asymptotic MSE of the estimator.

Estimates of optimal bandwidth parameters are then used to construct a fully feasible
GMM estimator where the number of lagged instruments are endogenously determined by
the data.

Expressions for the asymptotic bias of kernel weighted GMM estimators are obtained.
It is shown that standard GMM procedures have larger asymptotic biases than kernel
weighted GMM. A bias correction for the estimator is proposed. It is shown that the bias
corrected version achieves a faster rate of convergence of the higher order terms of the
MSE than the uncorrected estimator.
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1. Introduction

In recent years GMM estimators have become one of the main tools in estimating economic
models based on first order conditions for optimal behavior of economic agents. Hansen (1982)
established the asymptotic properties of a large class of GMM estimators. It was subsequently
shown by Chamberlain (1987), Hansen (1985) and Newey (1988) that GMM estimators based on
conditional moment restrictions can be constructed to achieve semiparametric efficiency bounds.

In independent sampling situations feasible versions of such estimators were implemented by
Newey (1990). In a time series context examples of such estimators are Hayashi and Sims (1983),
Stoica, Soderstrum and Friedlander (1985), Hansen and Singleton (1991,1996) and Hansen,
Heaton and Ogaki (1996). To this date no analysis of the allowed expansion rate for the number
of instruments has been provided. In this paper a data dependent selection rule for the number
of instruments is obtained and a fully feasible version of GMM estimators for linear time series
models is proposed. The number of lagged instruments is chosen in a way similar to a bandwidth
selection procedure for nonparametric density estimation.

While for some time series estimators the number of instruments needed to achieve the
efficiency lower bound is small this is not the case in general. Calculations based on asymptotic
covariance matrices in Hansen and Singleton (1991) indicate that the number of instruments
needed to achieve the lower bounds can be large in some cases. In particular the calculations
in Stoica, Soderstrum and Friedlander (1985) for the ARMA(1,1) model indicate that when the
moving average coefficient is close to the unit circle the asymptotic efficiency of the parameter
estimates approaches the bound slowly with the number of instruments increasing.

This indicates that estimators which allow the number of instruments to grow rapidly with
the sample size are empirically important and can lead to overall faster rates of convergence
of the higher order terms contributing to the MSE of the estimator. A feasible version of an
estimator where the number of instruments grows at the same rate as the sample was recently
developed in Kuersteiner (1997) for a special problem. In general however much slower expansion
rates for the instrument set are required. This fact was shown by Newey (1990) and Donald
and Newey (1997) in a cross section context.

Here a GMM procedure based on kernel weighted moment conditions is proposed. The
analysis of the higher order asymptotic terms reveals that bias terms dominate the asymptotic
Mean Squared Error (MSE). The idea behind using the kernel weighted version of the GMM
estimator is to dampen the importance of these bias terms and thus allowing a larger number
of instruments to be included.

While the automatic choice of bandwidth parameters has a relatively long tradition in the

nonparametric literature for density estimation, its equivalent in the semiparametric literature



is relatively recent. Two approaches have been proposed. Andrews (1999) looks at a moment
selection procedure based on minimizing an information criterion over a set of possible moment
restrictions.

Alternatively, Linton (1995) analyses the optimal choice of bandwidth parameters based on
minimizing the asymptotic MSE of the estimator. He applies this technique to nonparametric
kernel estimates of the partially linear regression model. Xiao and Phillips (1996) apply similar
ideas to determine the optimal bandwidth in the estimation of the residual spectral density
in a Whittle likelihood based regression set up. More recently Linton (1997) extended his
procedure to the determination of the optimal bandwidth choice in a efficient semiparametric
instrumental variables estimator. While his approach is based on kernel estimates of the optimal
instruments, Donald and Newey (1997) use similar arguments to determine the optimal number
of base functions in polynomial approximations to the optimal instrument. The idea behind
these estimators is to analyze higher order asymptotic expansions of the estimators around
their true parameter values. While the first order asymptotic terms typically do not depend
on the estimation of infinite dimensional nuisance parameters as shown in Andrews (1994) and
Newey (1994) this is not the case for higher order terms of the expansions.

For fully parametric models the higher order terms go to zero with the rate O,(n™!) where n
is the sample size. For semiparametric models the rate of convergence typically depends on the
way the infinite dimensional nuisance parameters are estimated. Donald and Newey (1997) show
that the optimal rate of convergence of the approximate MSE is O(n_ﬁ) for LIML and JIVE
estimators and O(nfﬁ) for 2SLS where s is the degree of differentiability of the nonlinear
mean function and d is the dimension of the regressor space. These results conform with the
results of Xiao and Phillips (1996) who find an asymptotic rate of convergence of the MSE of
O(n_%) where s is the degree of differentiability of the innovation spectral density.

In this paper we will obtain expansions similar to the ones of Donald and Newey (1997) for
the case of GMM estimators for models with lagged dependent right hand side variables. This
set up is important for the analysis of intertemporal optimization models which are characterized
by first order conditions of maximization. One particular area of application are asset pricing
problems.

Expressions for the asymptotic MSE are obtained. It turns out that the rate of convergence
of the higher order terms in the mean squared error are O(n*ZQW) which corresponds to the
2SLS case of Donald and Newey (1997). Minimizing the asymptotic approximation to the MSE
with respect to the number of lagged instruments leads to a feasible GMM estimator for time
series models. Full implementation of the procedure requires the specification of estimators for
the constants in the expression for the optimal bandwidth parameter. It is established that a
plug-in estimator for the optimal bandwidth leads to a GMM estimator that is fully feasible



and achieves the same asymptotic distribution as the infeasible optimal estimator. Moreover, it
is shown that the asymptotic bias is lower if suitable kernel weights are applied to the moment
conditions. A semiparametric correction of the asymptotic bias term is proposed. It turns out
that a bias corrected version of the GMM estimator achieves a faster optimal rate of convergence
of the higher order terms. In this sense the MSE of the bias corrected GMM estimator is an
order of magnitude smaller than the MSE of the uncorrected GMM estimator.

The paper is organized as follows. Section 2 presents the time series models and introduces
notation. Section 3 contains the analysis of higher order asymptotic MSE terms and derives
the optimal number of instruments. Section 4 discusses implementation of the procedure, in
particular consistent estimation of the constants in the optimal bandwidth formula. Section 5
analyzes the asymptotic bias of the kernel weighted GMM estimator and introduces the bias
corrected GMM estimator.

2. Linear Time Series Models

We consider the linear time series framework of Hansen and Singleton (1996). Let y; € R? be a
strictly stationary stochastic process with Ey? < oo. By the Wold representation theorem there

exists an infinite moving average representation
yo =+ C(L)u (2.1)

where 1 € RP and wu; is a strictly stationary white noise process with Eu; = 0 and Fuuu, = > .
We define the information set of the observer as the o-filed F; generated by current and lagged
values of y; such that 7, = o (ys, y¢ 1, ...). It is assumed that economic theory provides restrictions
of the form

A(L, By = et + ap (2.2)

where g, = ®(L)u; and ®(L) = &g+ P1L+...+P,, L™ is a1 x p vector of lag polynomials of

order m — 1 with m > 0 such that &, is strictly stationary with Fe; = 0 and follows an MA (m-1)

process. We denote its autocovariance function by 75 = Eeie; ; with 45 = 0 for |j| > m. The

coefficients 75 can be expressed in terms of ®; as V5 = ZZZBI (IDZE(I);_]- where ®; = 0 for 7 < 0.
The economic model (2.2) implies moment restrictions of the form

E(et4myi—;) = 0 for all j > 0. (2.3)

These moment restrictions are the basis for the formulation of GMM estimators exploiting or-
thogonality between &;,, and elements of the random variables generating F;. Alternatively, the
moment restrictions (2.3) are often implied by economic theory and then lead to the formulation
of a structural model of the form (2.2). A classical example are Asset Pricing models.
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The parameter vector of interest is 3. To simplify the exposition we assume that the 1 x p
vector A(L, 3) contains finite order lag polynomials of known functional form up to the unknown
parameter vector 3. Here, it is assumed that 8 € R?. In particular assume A(L, 3) = 8o(3) —
51(B)L — ... — 6,.(B)L". Identification of the structural parameters 3 follows from the following
Assumption.

Assumption A. The map 6(8) = (60(0),...0-(8)) : © —— = is a homeomorphism where
E={(ceR" xXRP|b—&z—...—&.2" #0,|2]| <1}. Without loss of generality it is assumed
that 6(8) : 2 — = and that 6;(3) is the i-th coordinate projection, i.e. [ = vecd(3) . A
normalization restriction (3; = 1 is imposed where (3, is the first element of 3.

The spectral density matrix of y; is proportional to {C’ (e*) ‘2 where the norm of a complex
matrix A is defined as |A|* = tr AA* with A* the complex conjugate transpose of A. The following

more formal restrictions are imposed on u; and C(L).

Assumption B. Let u; € RP be a strictly stationary, white noise vector process with Fu; = 0,
Eu, = ¥{s =t} where {} is the indicator function. Moreover, E(uuu|F;) = Eug, for t > s.
Let u@ be the i-th element of w, and cum,,  ; (t1,...,tx—1) the k-th order cross cumulant of
u?ﬁl, ...,u* defined in (A.1) in the Appendix. Assume that

0 00
Z Z lcumy, ., (t1, ..., tk—1)| < oo for k < 8.

t1=—00 tk_lz—oo

Assumption (B) implies that the economic model (2.2) is correctly specified only up to
second order properties of the data. The assumption of a white noise innovation sequence is
also a natural choice because of the Wold representation theorem. The presence of white noise
innovations implies that v, y;_1,... are the only available instruments and GMM estimators
using this class of instruments achieve the GMM efficiency bound for all GMM estimators based
on orthogonality conditions between ¢;,,, and F;.

The conditional homoskedasticity condition E(u,u|F;) = Eugul is restrictive as it rules out
time changing variances. Relaxing this restriction results in more complicated GMM weight
matrices as was shown in Kuersteiner (1997, 1998). In principle this higher order moment
restriction could be used in addition to the conditions (2.3). The resulting estimator is however
nonlinear and will not be considered here.

The summability assumption for the cumulants limits the temporal dependence of the in-
novation process. Andrews (1991) shows for & = 4 that the summability condition on the

cumulants is implied by a strong mixing assumption for wu;.



Assumption C (s). Let u; satisfy Assumption (B) and let y, = oy + > peo Cru—r, where C,
are real matrices of dimension p X p such that Y, |k|” ||Cy|| < co for some s > 0.

The following definitions will be used throughout the paper and are given next. Let y; satisfy
Assumption (C(s)). Partition y, = [y;, 4] where y; is the first element of y;. Then define z, =
W2\ Y1, s Vi) Let p, = By, and p, = Exy. Define wy; = (Trem — p1) (i — p,)", T =
Ew; and 'Y, = Ew;i and let w;; = w;; —I'}”. Next define wf’j_i = (yt_i — py) (yt_j — py), with
Bw!; ; =T%, Let ¢ = ®(L)u; and define vy; = ey (ye—i — p,). Also define Eey iz, = T57,

and Ee;nmys = I'}Y,. We define the following second order spectral densities

and
1 < o
fafd V) =5 ;oo 71T where a,b € {,y,¢} .
The shorter notation f, is used for f,,. A forth order spectrum of particular interest is
fa()) = £ 3% i T4 6™ which can be represented as fo(X) = 2w fo(A) f,(N).

o j=—00

Assumption D. There exists an € > 0 such that the spectral density f.(\) > € uniformly in
A€ [—m, 7).

Remark 1. Assumption (D) is an invertibility condition for the innovation process ;. It guar-
antees that 1/f.(\) has the same smoothness properties as f.(\). In particular the Fourier
expansion of f71(\) has coefficients (; = [ fZ1(A)e™dA such that > 20 |j||¢;| for all ¢ < oo,

j=—o0

One of the main advantages of using moment conditions (2.3) as a basis for estimating the
parameters is that no additional restrictions need to be imposed on the C(L) polynomial. No
such restrictions will be assumed for the theoretical part of this paper. Nevertheless it is useful
to be able to relate structural and reduced form. In order to completely relate the model (2.2)
to the generating process (2.1) we define additional p — 1 x p matrices ¥(L) and A(L) such that
U(L)y; = A(L)et + 1. The matrices ®(L) and A(L) satisfy

57 ][ ] -ewma [557] [a]-

Infeasible efficient GMM estimation for (3 is based on exploiting all the implications of
the moment restriction (2.3). In our context this is equivalent to choosing instrument vectors

2o = (YY1 Yi—pa1) and letting the number of instruments go to infinity. We define

6



an infeasible estimator of 3 as a reference point to which we compare feasible versions of the
estimator. The infeasible estimator of 3 is based on a nonrandom projection matrix D}, PMQ_I/ 2
and is given by

A _ 1

By = DMIPMQMIg D (=) e — o © )

t
where 27 is an M x 1 vector of ones, Qur = > 7" 1m+1 ViEz, M7, o P = E(Tiim — pg) (2o —
I X ,U,y) and DM = PA[Q P]u
In order to characterize the limit of D, and P]’uQ&1 as M — oo we introduce the sequence

space [? of square summable sequences s = {s;};-, with elements s; € RF such that s € [*
if > . |si]| < oo. We define the operator Q) component-wise by its image for all s € [? by
lf—m—l—l %, is the 4, j th block of Q. The operator
) has a well defined and bounded inverse if it is selfadjoint, bounded and noncompact. These

bl' = hmmﬁoo Z;n Wi, jSj where Wij =

conditions are satisfied for covariance matrices under Assumptions (B) and (C). The Closed
Graph theorem then implies boundedness of Q71 i.e. sQ™! € [? for all s € (2. Denote by ¥;
the 4, j-th element of Q~!. In the same way let P € ®‘;:1 I? be an element of the d dimensional
product of sequence spaces [? in the sense that each column of P is an element of /2. It then
follows that the limiting operator P! maps 1% sequences into [? sequences.

Let D = limy, Py, Q5 Py = P'Q7P and d,, = limy, P]’UQMl\} S (zear — 2 ® p)er. It can
be shown that D—*d, 2 N(0,D') as n — oo under the assumptions made about y;. It is also
true that \/EB v —D7'd, 2 0as M — oco. The last statement is no longer true, at least without
specifying the rate at which M goes to infinity, once we replace [3 v by a feasible counterpart.

A feasible version of B M 1s obtained by replacing D]T/}PMQX} by an estimated counterpart
D7!P, Q7). The notation Bn ar 18 used for such a feasible estimator. We call an estimator fully
feasible if M is a function of the data alone. A fully feasible estimator is denoted by Bn L

From the results in Hansen (1985) it follows that estimators for which M goes to infinity
are achieving the efficiency lower bound for GMM as long as there are no additional restrictions
placed on the lag polynomials ¥(L) and A(L).

Once the infeasible estimator has been replaced by a feasible counterpart where D} P}, Q;/}
is estimated from the data the choice of the number of included instruments becomes a more
delicate matter. It is well known that introducing additional instruments often comes at the
cost of substantial biases for parameter estimates.

A fully feasible procedure therefore requires a data dependent selection rule for the parameter
M in a finite sample. We derive such a selection rule in the next section.



3. Higher Order Asymptotic Expansions

In this section we are concerned with the question of determining the optimal bandwidth para-
meter M* in Bn o While the fully feasible version of the estimator where M* is replaced by an
estimate is discussed in the next section.

The criterion used to determine the optimal bandwidth M™* is to minimize the Mean Squared
Error (MSE) of terms in a Taylor Series expansion of Bn u that depend on M and are of highest
order in probability. Choosing an optimal value for M* is based on exploiting the trade off
between adding more instruments resulting in higher efficiency and the finite sample biases
introduced by additional instruments.

In this paper a generalized class of GMM estimators based on kernel weighted moment re-
strictions is introduced. Under the assumptions of this paper the conditioning set F; is generated
by lagged observations 3, y;_1,... leading to an infinite set of unconditional moment restrictions
of the form Eeyypny:—; = 0. A conventional GMM estimator is based on using the first M of these
moment restrictions. More generally one can consider non-random weights k(j/M) € [—1,1]
such that

k(j/M)Eetimye—; = 0.

This more general approach covers the standard procedure as a special case where k(j/M) =
{lj/M] < 1} is the truncated kernel. One reason for allowing more general kernel functions
is discussed in Section 5. It turns out that kernel weighting reduces the asymptotic bias of
the GMM estimator. Other advantages are that certain kernel functions such as the Quadratic
Spectral kernel allow to use all lagged observations in a sample as instruments. The Quadratic
Spectral (QS) kernel is known to have certain optimality properties that apply to our context.

Optimal nuisance parameter selection based on minimizing asymptotic mean squared errors
has been used in similar contexts by Xiao and Phillips (1998) and Donald and Newey (1997).
The main new technical difficulty handled in this paper is to allow for lagged dependent right
hand side variables. The MSE calculations presented here are therefore unconditional rather
than conditional.

We first specify the formal requirements the kernel weight function k(.) has to satisfy.

Assumption E. The kernel function k(.) satisfies k : R — [—1,1], k(0) = 1, k(z) = k(—z)Vz €
R, [ |k(z)|dz < oo, k(.) is continuous at 0 and at all but a finite number of points.

Assumption F. The kernel function k(.) satisfies Assumption (E) and for q € (0,00) there
exists a constant k, such that k, = lim,_o(1 — k(z))/ |z|* . Assume that there exists a largest q
such that k, € (0,00).



Assumption (E) corresponds to the assumptions made in Andrews (1991). A number of
well known kernels such as the Truncated, Quadratic Spectral, Bartlett, Parzen and Tukey
Hanning kernels satisfy Assumption (E). Assumption (F) rules out the Truncated kernel. For
the Quadratic Spectral, Parzen and Tukey Hanning kernels ¢ = 2 and for the Bartlett kernel
q=1.

We define the matrix

kyr = diag(k(1/M),....k(n — 1/M))’

having kernel weight k(j/M) in the j-th diagonal element and zeros otherwise. Kernels for
which k(z) # 0 for |z| > 1 are permitted to allow for potentially all lagged observations to
be included as instruments. An instrument selection matrix S,(t) = diag({t > 1},...{t > n})
is introduced to exclude instruments for which there is no data in the sample. The vector of
available instruments is denoted by zi, = S, (t)(2tn — 1 ® ¥). The empirical analogue to the
moment condition is then

Gn,m (B ) Werm — 9))Z 0 K ar

3IH

t=1

with § = n=' >0y, Ky = (ky ® 1) and I, the p-dimensional identity matrix. The 1 X n
vector z;, Ky is the vector of kernel weighted instruments. Note that for the truncated kernel
kar = tar such that
I, O
Ky = P .
= 0
In other words in this case z; ,,(ka ® 1) = (2 51, 0). Given the definition of the instrument vector
Zt,» one has to estimate an n dimensional covariance matrix Q~!. As will become transparent from
the higher order expansions this is not as problematic as it first seems. The weights in K, serve
as kernel weights for the estimated elements of Q~'. We define Q,(j) = 1 Eimrr;(:x?;rjj ) 20—
The optimal weight matrix is then given by

m—1
j=—m+1
where 4°(j) = L300, &8 and & = A(L, ﬂn ) Werm — §) for some consistent first

stage estimator ﬂ .- Note that Q,, is symmetric but not necessarily positive definite. This is
unimportant as long as the estimator Bn v 1s known in closed form which is the case for linear
models.

We now define the feasible GMM estimator for a given M such that M > d. Under Assump-
tion (A) the structural parameters 3 are identified and (3, 5, has a closed form expression. Let Zj



be the matrix of stacked instruments Zy; = [Z1.a1, -y Zn-mnr) and X = [Typi1 — Ty ooy Ty, — T
the matrix of regressors. Also, Y is the stacked vector of the first demeaned element in g;. Then
define the d x pn matrix

Py =n"'X'Z,

with elements f‘;y = 2 > 1 (@em — ©)(yi—j — §). The estimator 3, ; can now be written as

ZY

A A .11 . N
B = Py Ky Ky Py | PrrKagS, Ky n

where p]V[K]V[Q;}V[K]VIPJIW = EZJfzcyk’(l/M){?Z’]k(j/M)f‘?jx and {91'7]' = [Q;l} is the Z,j—th
). i7]

block of Q-!. We are considering sequences M, for which M, < M,,; and M, — oo such

that M,/\/n — 0. For notational convenience we usually write M = M,,. It then follows

that Hﬁ]u - DH = Op(l) and ’J}u _dn = Op(l) where [)]u = ﬁ]WK]LIQ;lK]Wﬁ]/\[ and dAM =
pMKMQT_LlKA[%

The bandwidth parameter M is chosen such that the MSE of a weighted sum of the estimators
By, 1 1 minimized. We approximate the MSE by first expanding 3,, 5, in terms of its elements
and then obtaining the MSE for the terms in the expansion that are largest in probability and

depend both on M and n. For this purpose a second order Taylor approximation of ﬁ;} around
D71 leads to

V(B — B) = DI + (Dyy — D)D" + (Day — D)D" Y(Day — D)D Ydas + 0,(M/+/n).

The expansion is valid as long as M/y/n — 0. The size of the mean squared error of the estimator

is given in the next lemma. Define the mean squared error of 3, ,, as

Spn(Mv f) k()) = nglEDl/Q(ﬁn,J\I - ﬁ)(ﬂn,]\[ - ﬁ)Dl/Q% -1

where the normalization D'/? is used to standardize the asymptotic variance. The vector £ € R?
is a vector of weights given to the elements in (. It is usually assumed that ¢/ = 1 although
that is not crucial to the results.

Lemma 3.1. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies As-
sumptions (E) and (F). Then for any { € R? with (¢ = 1 the MSE is ¢,,(M, {,k(.)) = O(M?/n)+
O(M~29). The optimal rate of expansion for the set of instruments is M = O(n'/?+29)_ If the
truncated kernel k(x) = {|z| < 1} is used then ¢,(M,(,k(.)) = O(M?/n) + o(M 7).

This result is similar to the result for the 2SLS estimator obtained in Donald and Newey
(1997). The source of the O(M~29) bias terms is however different in our context. This is due
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to the fact that we are weighting the moment restrictions with a weight function k(z) which
introduces an additional variance term of order M —29. The second part of the Lemma shows
that using the truncation kernel, i.e. using a standard GMM procedure with a certain number
of instruments results in variance terms of lower order than the ones found in Donald and Newey
(1997).

The reason why the variance terms are of lower order in the truncated case lies in the sta-
tionarity assumption made in the time series context. Since the correlation between instruments
and regressors has to decay at a faster than polynomial rate as instruments with longer and
longer lags are used, the importance of omitting these far distant instruments is of lower than
polynomial order.

The optimal rate of expansion n'/(*+20) for the bandwidth parameter is slower than the
optimal rate encountered in other contexts of automated bandwidth selection, in particular
for density estimation. The reason for the slower rate of convergence lies in the presence of
asymptotic bias terms of order O(M/y/n) which dominate the usually present variance terms
of order O(M/n).

An immediate corollary resulting from Lemma (3.1) is that the feasible estimator has the
same asymptotic distribution as the optimal infeasible estimator as long as M?/n — 0.

Corollary 3.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies
Assumptions (E) and (F). If M — oo and M?/n — 0 asn — oo then \/nf3,, ; — D~ 'd, = 0,(1).

The corollary shows that the number of instruments included for estimation can grow at
most at rate o(y/n) in order to achieve the same asymptotic distribution as the infeasible optimal
estimator D~'d,,. The optimal rate of expansion for M is much slower than o(y/n). The next
proposition gives an expression for the asymptotic MSE using the largest in probability terms
depending on M and n. For this purpose we define the p* x p* commutation matrix K,, =

i i1 eie;- ® eje; where ® is the Kronecker product and e; is the i-th unit p-vector; see Magnus

and Neudecker (1979).

Proposition 3.3. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies
Assumptions (E) and (F). If M — oo and M?92/n — k then for any £ € R¢ with ('{ =1

o 2
limn/M?p, (M, 0, k() = A (/ kQ(m)dx) —{-kgB(Q)/li

with the constants A = A, D~Y200'D~Y2 A and B@ = 1/2¢ D-Y2(BY — B 180" D-1/2¢
where Ay, B and B are defined as

A= / ) (vecfP N [weef (\)) @ f= (V) + Kpp (YN @ [ V)] dA, - (3.1)

—T
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BY = [ f90 AN+ [ £ fa D 3.2
By = / [f;?@)fgl@)f;w)+fQ<A>/(fﬁﬂ(A))z+2f£g><A>/f§q><A> o (33)

—T
The Mean Squared error displays the usual trade off between higher accuracy due to more in-
cluded terms represented by M 27k, B@ and distortions introduced by estimating more unknown

parameters manifesting itself in n='M?A [ k*(z)dz. It turns out that the leading contributor
to the latter term is the bias from (Fi - fy) k(i/M)9; ;k(jo/M)vy ; which would have zero

expectation if 'Y were nonrandom.

Proposition (3.3) thus gives an analytical explanation of the empirical fact observed when
applying GMM procedures in the time series context. Typically, inclusion of a small number of
lags leads to significant changes in the parameter estimates. These changes are in fact due to
the presence of the Bias term n*M?A [ k*(z)dx

The properties of the more standard, non smoothed GMM estimator can be obtained as a
corollary to Proposition (3.3). In fact, in this case k(z) = {|z| < 1} such that [ k*(z)dz = 2
and kg, = 0.

Corollary 3.4. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k(z) = {|]z| <
1}. If M — oo and M?%*? /n — k then for any { € R? with ' = 1

lirrlnn/MQcpn(M,E, k(.)) = 4A.

In other words inclusion of more lags carries no first order benefits of polynomial order and
the MSE behaves asymptotically like n='M?. A more refined analysis of the lower order variance
term could be used to determine the optimal choice of M. This problem is however beyond the
scope of this paper. For the remaining discussion we therefore exclude the truncated kernel.

We use Proposition (3.3) to determine the optimal number of lagged instruments in the
sense of minimizing the approximate (asymptotic) MSE of 3, ,,. From well known arguments
we deduce that the optimal lag length choice, M*, is given by

1
2 7%
M* = nl/(a+2) 0B .
A(S k(m)zalx)2

Using M* directly does not result in a feasible procedure because the constants A and B(@ are

unknown. In the next section estimators for the constants A and B@ are discussed.
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4. Fully Feasible GMM

In this section we derive the missing results that are needed to obtain a fully feasible procedure.
In particular one needs to replace the unknown optimal bandwidth parameter M* by an estimate
M*. Moreover, it needs to be shown that using the estimate M* instead of the optimal value
M* in forming Bn u does not introduce additional distortions.

In order to have a fully feasible procedure we need a consistent first stage estimator. We
define a feasible first stage GMM estimator Bn ar as the solution to minimizing g(3)'g(5) with

g(B)=n" Z (A(L, B)Yerm — ) Zem- (4.1)

t=M+1

The instrument Z, vy = (i — ¥, Yi—1 — ¥» - Yi—pp1 — )’ is @ Mp dimensional vector of lagged
observations where M indicates the highest lag. As long as M is fixed and finite g(0) = Py;.
Classical results show that Bn s 18 consistent and asymptotically normal with \/E(Bn w—0) <,
N(0, (15]’\,115]\,[)71 Py Py (PMPM)A). Typically one chooses a low number of instruments.
The consistent first stage estimate (3,, ,; now can be used to obtain consistent estimates of the
residuals £; which in turn are needed both to construct the optimal weight matrix Q;L I and the
constants A;, B and B Estimation of ;! was dealt with in the previous chapter and we
turn to the estimation of the coefficients A;, ng) and ng). The following analysis shows that

(@)
1

estimation of A; and B;" can be done nuisance parameter free in the sense that consistent esti-

mates of A; and ng) do not depend on additional unknown parameters. Unfortunately the same

is not true for BY

in which case we have to rely on either an approximating parametric model
for C(L) or additional bandwidth parameters. In this paper we choose the former approach.
We now first consider the simpler estimation problem for the constants A; and ng). For
this purpose define the (p — 1) x p matrix Ey = [0, [,_;] and the vector valued function a(\) =
[e=, e\ ., e="]" such that f,,(\) = [f,(\)ES, (a(\) @ f,(N)'] . We also note that fo()\) =

2nf-(N) f,(A) such that to

P 0 = ™ | 8]

where we define the Fourier expansion of f7'()\) as f7'(\) = (2m)7' 32, (;e™V. While f7'())
could be estimated nonparametrically from the autocovariances of the &; this would not be
taking full account of the structure of the model. A better procedure is to exploit the fact that
e has a MA(q) representation under the maintained model assumptions.

We assume that consistent estimates of the MA(q) representation of ¢; have been obtained.
Using consistent estimates of the parameter (3 this can be done by using a nonlinear least squares
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or pseudo maximum likelihood procedure as described in chapter 8 of Brockwell and Davis
(1987). Denoting the consistent MA(q) parameters by 6; the coefficients ¢ ; can be obtained
from ¢, = (27) % o > oo €y Blere) Bitre; where e is the first unit vector in R™ and

6, 0, 0,
1 0 0
B =
0 1 0

In order to estimate the constant Bg we need to evaluate [ fay (q) (M) fo'(A) fyz(M\)dX which can

be written as

[ H05 WA = [ FYWET N [ B ) @) ] i

The k,I-th block from this matrix is then given by >, ¢, x; [4| T4 if k,1 # 0. The auto-
covariance matrix I'{ in the previous expression is replaced by T'}Ej or EoI') if k = 0 or
| =0 and by E,I'YYE; if both & = 0 and [ = 0. The covariance matrix of y; can be expressed
in terms of the coefficients of the underlying data generating process as F?y = X2,CiC -
Note however that C; need not be estimated here. In fact it is sufficient to substitute F;’y =

=3 Yy as an estimator into expressions of the form 7.,y [4]*T%Y. We denote the esti-

mate of B(q) by B Slmllarly, we note that D = [ f.,(A\) fo ' () f,(A)d can be represented as
SN fay(N) | By (a(X) @ 1,)" ] dX which then can be estimated from quantities of the form
> e +k,ll“§-’ by the same arguments as before. Such an estimator of D is denoted by D.

To express the constant A we use the same definitions as before. From (vecfg') vec fy=pf1
it follows that (vecf%(N\)~1) [vecf*(\) @ f=(N)] = pf1(A\)f.x(A\). Furthermore, using the
properties of the commutation matrix gives (vecfy!) Ky, = (vecfg') leading to

(veef* (N K (F(N) @ f2 ()] = faa () F71 (V).

Again we make use of the fact that f,(A) = foy(A) [ By (a(X) ® I)" | . The spectral density
fu(N) = @2m) 7 3 0 @05 ke can be expressed in terms of the coefficients of the
underlying DGP. Consistent estimation of f.,()) is difficult because even though the parameters
C; could be inferred from the approximate model for C(L) it is not possible to estimate ®;
without estimating the errors u; which in turn requires full specification of the structural model.
Nonparametric density estimation on the other hand entails a bandwidth selection problem
similar to the one encountered for the estimation of 3.

Fortunately, we are not directly interested in f.,(\) but rather in [ f.;(A) f=1(A)dA which
is [Dor G EY > Gl s >k G, ] - This quantity can be estimated consistently by re-
placing ¢, with (2m) 72 6% 3200 ¢ Bleje, BitFe; and T by Iy = n~! > i1 EtymYi—k- Using
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these estimates one then estimates A by

At Y PR 3Gl D D | S a3 G,
k=—n+1 k=—n+1 k=—n+1 k=—n+1

(4.2)
The intuition why quantities of the form ), ¢ kf‘iy are consistent comes from the fact that

!/

(, satisfies summability restrictions by Assumption (D) and can be estimated uniformly con-
sistently. It thus acts like a kernel smoothing operation on the estimated covariance terms
Y.

Unfortunately, the parameter Béq) is harder to estimate mainly because of the presence of
the term [ f9(A)f5 (A) £ (A\)dA which involves unknown I'% matrices in all three spectral
densities and does not lend itself to the same simplifications as before. One possible estimation
strategy is nonparametric kernel density estimation of all the spectral densities involved.

An alternative to estimating f’gy is Andrews’ (1991) approach of fitting a, possibly misspec-
ified, parametric model C'(L) to C(L) and using the parametric dependence of Bg‘” on C(L) to
obtain a feasible M*. Analogue to the results in Andrews the misspecification in C'(L) does not
affect the asymptotic distribution of B, 5 but it results in suboptimal higher order asymptotic
properties.

For simplicity we choose a VAR(k) model as approximating process for C(L) such that

Yo = Ayeo1 + oo + Axli_w + €t (4.3)

The choice of k is guided mainly by practical considerations. A natural candidate is to set Kk = r
where r is the number of lagged variables in the equation of interest. However, if the number of
variables p in the system is large then x should be chosen small, i.e. close to one. Alternatively,
consistent model selection criteria could be used to select an optimal «.

In order to calculate the impulse response coefficients associated with (4.3) define the ma-

trices _
A Ay oo A, I
I 0 --- 0
A= _ ) and B, =
I 0 0

with dimensions kp X kp and kp X p. The j-th impulse coefficient of the approximating model is
given by C; = F} AJE,. For any € > 0 there exists a T, < oo such that ‘ E{(E]T Al — (I — A)*l)Elu <

e. The autocovariance function I'}? is then approximated by f’gy = ZlT;o CiCryj. ’Eh/e spectral
densities of the approximate model are denoted by ﬁgg)()\) and f3'()). We define B@ as

Bl = / ” FDONIZ DO + fa)/ (FO0N) + 279N/ F2 ()| A,

—T
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—_ —_
—_— — —

Substituting estimates Cfor C; in B leads to an estimate BSY. We assume that By is esti-
mated such that it is y/n-consistent for B,

—

—_—

Assumption G. /n(BY — B@) = 0,(1).
It is then established in the following lemma that the estimates for B® /A formed by B / A

where _—
e - - —!

B@ =D VA(BY — B DBY YDV (4.4)

are well enough behaved to be used in a plug in procedure.

—

Lemma 4.1. Let A be defined in (4.2) and B be defined in (4.4) and satisfy (G). Then /n(A—
A) =0,(1) and /n(B9 /A — B@ /A) =0,(1) where B = ¢'D-1/2(BY — BW D-1BW" D12,

—_—
—

While A is positive by construction the same is not true for B(@. In practice it is therefore
necessary to truncate the resulting bandwidth parameter at lag length one negative bandwidth.
Ultimately one is interested in the properties of a fully automated estimator ﬁn’ 1+ Where the
data determined optimal Bandwidth M* is plugged into the kernel function. In order to analyze
this estimator we need an additional Lipschitz condition for the class of permitted kernels.

Assumption H. The kernel k(.) satisfies|k(z)| < Cy|z|™" for some b > 1 + 1/c, and some
C1 < oo for ¢ € (0,00) and |k(z) — k(y)| < C' |z — y| Vz,y € R for some C < co.

Assumption (H) corresponds to the assumptions made in Andrews (1991). Using the previous
results we are now in a position to state the main theorem of this paper which establishes that
an automated bandwidth selection procedure can be used to pick the number of instruments

based on sample information alone.

Theorem 4.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies
1
N = 2+¢ N
Assumptions (E), (F) and (H). If M* = (nqqu(‘I)/2A (f k(x)Qd;v)2> then \/nf3, y. —
D7d,, = 0,(1) and
tim /N2, (1%, £, K(.)) = limn/ 32, (¥, £, k()
1

where M = (nqkql/g\(;)/ZA (f k(z)de)Q) 7
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Theorem (4.2) shows that using the feasible bandwidth estimator M* results in estimates
Bm - that have asymptotic Mean Squared Errors that are equivalent to asymptotic Mean
Squared Errors of estimators where a nonrandom pseudo-optimal bandwidth sequence M is
used. More importantly, the theorem establishes that the fully feasible estimator attains the
same limiting distribution as the infeasible optimal GMM estimator D~'d,,.

5. Bias Reduction and Bias Correction

In this section we analyze the asymptotic bias of 3,, ,, as a function of the sample size n and the
bandwidth parameter M. An approximation to the bias is obtained by again considering terms
that are largest in probability and depend on n and M.

Theorem 5.1. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies
Assumptions (E). If M — oo and then

lim n/ME(B, , — 8) = D' A} / K (z)dx.

n—oo

A simple consequence of this result is that for many standard kernels the asymptotic bias
of the kernel weighted GMM estimator is lower than the bias for the standard GMM estimator
based on the truncated kernel.

Corollary 5.2. Suppose Assumptions (A), (B) and (C(s)) hold with s > ¢ and k() satisfies
Assumptions (E). If M — oo and [ k*(z)dxz < 2 then

where ﬁg’ 18 the GMM estimator based on the truncated kernel.

In practice any one of the following well known kernels could be used: the Bartlett kp(x) =
(1 — |z|) {Jz| < 1}, the Parzen kp(z) = (1 — 622 + 6 |z[*){|z| < 1/2} + (2(1 — |z[*){1/2 <
|z] < 1}, the Tukey-Hanning ky(x) = (1 + cos(nz))/2{|z| < 1} and the Quadratic Spectral
ks(x) = 25(12m%2?) (5 sin(67z /5) / (67x) — cos(67x/5)).

The asymptotic bias for different kernel weighted GMM estimators depends on the constant
[ k(z)*dz. These values were published in Andrews (1991) and are 2/3 for the Bartlett, .539285
for the Parzen, 3/4 for the Tukey-Hanning and 1 for the Quadratic Spectral kernel. It thus
follows that using any of these standard kernels reduces the asymptotic bias of the estimator.

Another important issue is whether the bias term can be corrected for. The benefits of
such a correction are analyzed first. It turns out that correcting for the bias term increases the
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optimal rate of expansion for the bandwidth parameter and consequently accelerates the speed
of convergence to the asymptotic normal limit distribution.
Using the result in Theorem (5.1) the following bias corrected estimator is proposed

. M.
Bt = B — 7D A, / k?(z)d.

The bias term ./11 can be estimated by the methods described in the previous section. The
quality of the estimator .Zl determines the impact of the correction on the convergence rate of
the corrected estimator. If A; — A; is only o0,(1) then the convergence rate of 3, ,, is essentially
the same as the one for 3, ,,. If A — A = O,(n~?) for § € (0,1/2] then the convergence rate
of the estimator is improved. The mean squared error of the bias corrected estimator is defined
as

Pn (M. L, k() = nDVUE(B; 5y — B)(F 0y — B)(D' ~ 1

and we obtain the following result.

Theorem 5.3. Suppose Assumptions (A), (B) and (C(s)) hold with s > q and k() satisfies
Assumptions (E) and (F). If A; — A; = O,(n~Y/?) then for any ¢ € R? with £'¢ = 1 the MSE is
(M, £, k(.)) = O(M/n) + O(M2%). The optimal rate of expansion for the set of instruments
is M = O(n!/(1+20)),

It follows from Theorem (5.3) that for M — oo and M?7™! /n — ¢ the rate of convergence
of the higher order terms in the estimator is now n=2%/(1429) a5 opposed to the previous rate
of n24/(2a+2) Bias correction in other words improves the MSE by an order of magnitude. The
result critically depends on the ability to estimate A; with a parametric rate of convergence.

6. Conclusions

We have analyzed the higher order asymptotic properties of GMM estimators for time series
models. This extends the literature on optimal bandwidth choice in semiparametric procedures
to the case of dependent processes. Using expressions for the asymptotic Mean Squared Error
a selection rule for the optimal number of lagged instruments is derived. It is shown that
plugging an estimated version of the optimal rule into the estimator leads to a fully feasible
GMM procedure.

A new version of the GMM estimator for linear time series models was proposed where the
moment conditions are weighted by a kernel function. The asymptotic expansions suggest that
the dominating terms of the MSE are bias terms stemming from estimated correlations between
instruments and regressors. Kernel weighting of the moment restrictions reduces the importance
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of these bias terms. It is shown that correcting the estimator for the highest order bias term leads
to an overall increase in the optimal rate at which higher order terms vanish asymptotically. In
this sense the proposed procedure reduces the asymptotic MSE of the estimator by an order of

magnitude.
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A. Proofs

We first recall a few well established results on higher order cross cumulants to introduce nota-
tion. A reference for this material is Brillinger (1981).

Definition A.1. Let u; € R? be a strictly stationary vector process with elements u} such that
FEui =0 and E (ul)" < oo. Let £ = (£,,...,&;,) € RF and u = (uh,...,usy) then ¢, 4 4 4 (€) =
Eei€'v is the joint moment generating function with corresponding cumulant generating function
Ing; 4. 4. (&) The joint k-th order cumulant function is

a’U1+~~-+’Uk
*
cumg, g, (1, t) = oe . ogr le=oIn @, iptrt ()

where v; are nonnegative integers vy + ... + v, = k. Alternatively the notation cum*(u,}, ..., u,")
is used where more convenient. By stationarity it is enough to define cum;, _; (t1,....,tx—1) =
cum;‘h“”ik (tl) ceey tkfl) 0)

Assumption I. Let cum;, _; (t1,...,tx) be defined as in Definition (A.1) such that

0o 00
Z Z lcumiy, i, (t1, s teo1)| < 00,

t1=—00 t_1=—00

Definition A.2. Let Assumption (I) hold. Then the k-th order cross cumulant spectrum of

ugt, ..., uy* Is defined as

00 0o k—1
fi1,...ik ()‘17 ceey )‘kfl) = (27r)7k+1 Z e Z CUMYy ... iy, (tl’ B tk*l) exp {_Z Z )\J}
j=t

t1=—0o0 tp_1=—00

for oo < \j < oc.

Lemma A.3. Assume y; satisfies Assumption (C). Let ¢, be the i-th row vector of Cy such
that y; = i, + Y p_ Cyts—k. Define the 1 x p vector polynomial ¢*(L) = Y °2 ¢, L* with j-th
element ¢ (L) = Y232 ¢/ L*. The cross cumulant spectrum of (yj', ..., y;*) is given by

p p
o o SN
fyi17_,,,yik ()‘17 ET) )‘kfl) = (27T)7k+1 Z s z i (62)\1) s Clk’]k(e_zzj:i A])f'il,...’ik()\17 ey )\kfl),

J1=1 Je=1

the cross cumulant is

i1 ik o i1 ih—1 i
cum(ytl, e ytk) = cum(ytl_tk, o Yt 1t Yo )
P 00
_ i1,J1 02,52 ik, Jk
= E E cptey et cumy, i (L + 61 — gy oo I+t — ty)

J1=1,..,jk=111=0,...,lp=0

i 0 ) i1 Ip—1 ik
and satisfies ) ;" -+ Etk_lz_oo ‘cum(ytl_tk, s Yyt Y0) | < 00
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Proof. The first part follows directly from Brillinger (1981, Theorem 2.8.1). The cumulant
cum(y!, ...,y;*) is obtained from

.....

0 o
Z Z lcumy, o (I + 11 —tgy oo lg H 1 — tg)] < 00
t1=—00 tp_1=—00

uniformly in Iy, ...l by Assumption (I). The result then follows from the absolute summability
of c21 Mfor j=1,..,n. W

Usmg these definitions we prove some results for higher moments involving matrices.

Lemma A.4. Let W, XY, Z be random vectors with elements w;, x;,y;, z; such that Fw; =
.= Ez =0 and El|z;|* < o0,...,E|z|" < co. Let A and B be fixed coefficient matrices of
dimensions such that the matrix product W/ AXY'BZ is a well defined scalar. Then

EW'AXY'BZ = (vecA') E(X @ W)E(Z' ® Y')vecB' + tr(EAXZ')(EB'YW')
+tr(EAXY')(EBZW') + K4

where Ky :Z e > gy iy bjs sacum (Wi, Ty Yias Zia)-

Proof. The scalar expression W/AXY'BZ can be written equivalently as (vecA) (X @W)(Z'®
Y vecB = trEAXZ'B'YW' = trAXY'BZW'. The result then follows from F(w,z,y,z) =
E(wz)E(yz) + E(zy)E(wz) + E(xz)E(wy) + cum(w, z,y, z). B

Lemma A.5. Let X,Y be random vectors, W, Z random matrices with all elements having
zero mean and A, B fixed coefficient matrices such that the matrix product WAXY'BZ is well
defined. Then

EtrWAXY'BZ = (veeB) E(Y ® Z)E(X' @ W)vecA + tr(EAXY')(EBZW')
+tr(B'@ E(Y' @ W)(I ® A)Evec(X)vec(Z") + K4

where Ky ZE E @j o Vs CUTWSy o, T, Y s Zjia,k)-

Proof. Note that triWAXY'BZ =tr(B' @ I)(Y' @ W)(I ® A)vec(X)vec(Z') and use the same
reasoning as before. B
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Lemma A.6. If vy; = crpm(ye i — 1) and wi; = (Toym — 1) (yt,i — ,uy)/ and { € RP" is a
vector of constants such that ¢'¢ =1 then

i) Blons @ w,0) = ((vecT 1) @ (T,)) + KyplT5 1y @ TH, ) + K3  £) where K} is a
p? X pr matrix with typical element (a,b) equal to

a—1 1  amodp—
[’C}L] a,b = Cum(€t+m?y£(—i /et ?ys—j a» 1>xb)?

ii) E(vl'ws ;) = (CT5 0P i+ (0T )+ KF where K is ap x p matrix with typical

element (a,b)

[,Ci] a,b = CUm(€t+m7 y?,i, y;];j, EIQL'S),

iii) E(vev), ;) = vi_T¢?

titj_s T K2 where K3 is a p X p matrix with typical element (a,b)

0 720

,CS — .
[ 4] a,b Cum(5t+m) Es+m, ygfia ygfj) otherwise ’

iv) E(w; 00w, ;) = TV 00T + T, 00T, 4+ 0T AT, o+ K} where Kf is a p X p matrix
with typical element (a,b)
i)

/ / a b
ap = cum(lws, Uze, Y i yg_;),

v) Etr(wt,iw;,j) = trnyF?f’; + Fyggifs+j’}/ffs + trr?fifsrfgs+j + K3

5 [ I m m
’C4 - E E Cum(xs? Lty Yt—i ysfj)?
m

l

where v{%, = E(ys — p,) (4 — ) and v§%, = E(ys — ) (e — 1,)-
vi) E(wy ) ;) = DT 447, TF + T, T + K where Kf is a p x p matrix with
typical element (a,b)

[Kg(t7 S, iu j)}a,b - Z cum(l‘?, w?’ yéii, yiij),
l

vil)E (v vec(w!, )) = (Fﬁmﬂ)’ ® Ffﬂiﬂ-_s +TY.  ® (Fﬁsﬂ-) +KI(t,s,1,7) where K} isapxp

87j
matrix with typical element (a,b)

[ICZ(t, s, i,j)}a,b = cum(eg, Y ., y’s’flj"dp“, /L),
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Proof. These results are easily shown by applying F(wzyz) = EwzEyz+ EwyExz+FwzExy+
cum to each element of the respective random matrix or vector and expressing the result in

matrix notation.

Lemma A.7. If vy; = €rym(Yimi — ) and wy; = (Topm — fy) (yt_,» — py), and AlsapXxp
matrix of constants then

Etr((w], i re. i) Ay, thZ A (w? w ;i — re )’)
= (U€CA,) {((Ftygy i+j—s2 ® th 82) + Kpp(rtg so2+7 ® F32+Z to— ]) + IC4)

((Ftyly i+j—s1 ® Ftl 81) + (Ft1 —s1+jJ ® Fsl-‘rz t1—j + ’C4)} UGCA,
+t/r(A(’7t1 tQFtyly i+j—to + Ki))(A(751—2+] Sgrg,ly ED) + Fsl —i— Sgrg,ly so+7 + ,Cg))
+tT {[A, ® ]] |:(U€C(Fty2y i+j— sl) ® FtQ 81) + K (th s1+7 ® F?Zy i— sﬁ—g) + IC£11:|

X [T A][(T5,) @ TH oy + Ty @ (7 ,,) + K] }+’C8

with Kg ZZ 22 @y o g cum (Y, zysl g=5t1+myt1 175t2+m?/523,¢7?/g3—iy§2—j)- Note that Ks is

J1yeesda
a forth order cumulant of the random variables y¥ R ,—; and 5t1+myt1 - which can be expressed

as a sum of products of cumulants of the underlying processes £; and ;.
Proof. Apply Lemmas (A.5) and (A.6). B

Lemma A.8. Let T, = 15" min(i)+1 wy, ;. Let ¥; j be a p x p matrix of fixed coefficients..

Then B (2, — T2)9, 5, 2| = 0. 1 5, 9] < oo then

2

Yy Yy
(T5, = TE2)055 ) veg|| < oo

EZ:E

Proof. We have

2
- !
=n ’ z Et?"(( 81 N F?ilgj)ﬁi,jvtlyivtg,iﬁg,j (wsg, I Fyy ),)

81,82,t1,t2

E
NLD

~ (0
vy _ 1YY . ]
(Fifl Fi*l)ﬁ%]
t

We need to consider all the terms appearing in Lemma (A.7). Terms involving second moment
are summable over sy, 53, 1, t2 when standardized by n~? by summability of I'YY and I'}’ together
with the Toeplitz Lemma. Forth order cumulant terms are summable over s and ¢ such that
S 30 KAt 8,4, 7)|| < oo which implies that terms involving 4th order cumulants are of lower
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order by Lemma (A.3). The 8-th order cumulant Ks is analyzed by considering the following
matrix ,
yflfi yﬁ —j
X = Et1+m ytl,i
Etotm  Yip,
yﬁ;iz ?J]sz_j
with typical element X; ;. Then from Brillinger (1981), Theorem 2.3.2,

2 2 2 2
CUTTL(H lej’ HXQJ', HX3’j7 HX47]') = Z H cum(Xiyj,i,j € Us)
j=1 j=1 j=1 j=1 v Us€EV

where cum(X ;,4, j € vy) is the joint cumulant of all the X; ; with indices 4, j € v, and the sum
is over all indecomposable partitions v of the table

A definition of indecomposable partitions is given in Brillinger (1981), p.20. By indecompos-
ability of partitions all cumulants have at least two elements from different rows. From Lemma

(A.3) it then follows that > |Ks| < oo. Finally to show

$1,82,t1,t2
> E
7

. 2
we note that F H (T2, —T¥ )0 ;> v
result. W

2
(T, =TV )05 Y v

t

< 0

< C'||9;4]* for some constant 0 < C' < oo by the first

Lemma A.9. Let Hy, be defined as

Hy = — io: i | RV —I—QZ z L399, ;T

i=n+1 j=n+1 i=1 j=n+1

Then Hy, = o(n %) where s is such that > |j|° HF?]”’H < 0.

Proof. Use the inequality ||Hy| < (Zy ® it [T ) 2 S T [T
From Lemma 5.2. in Kuersteiner (1998) it follows that ). [4|° > "%, [T ;]| < oo such that
the second term is bounded by Y272 n~* [TV || <n 2322 |47 [T, || — 0 as n — oo
leading to |Hy1|| = o(n™2). W
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Lemma A.10. Let Hip = Y7 Y% TV (1=k(i/M))d; j(1—k(j/M))T*; then Hyy = O(M~29).

Proof. We write

Ty q (/M) 1_k(]/M) -1q YT
His EF H ’/M|q 2] ’]/M|q |] F—j'

i=1 j=1

By the Dominated Convergence Theorem

En: | j1|q 1- k(]l/M)ﬁ ] 1— k(JZ/M) |j2|qum
Ji,52=1 g ’jl/M’q e ’]2/M|q o

= kg Y Tl 05 il TV, = C

J1,j2=0

such that Hyp = M~ 2k2C 4+ o(M27) = O(M27). &

Lemma A.11. Let Hiz = 71" > 7% T7Vk(i/ M)V ;(1 — k(j/M))T* and Hyy = Hj;. Then

Hig+ Hyy = O(M~) and Hyg+Hys = M%7 [ 900 f0 () fur ) + Fas V) f "V SE (V)| dd
o(M~1).

Proof.

M

His+Hy = M- QZZP’% i/M) 19”( |/](\‘7/|q ))| |7
i=1 j=1
M
+M~ qzzrm 1‘1 7 /](W/|q A= ki/M)) ik (i/M)T"
i=1 j=1
= M™% ZZW%HWW +EZF”| |9 ;T 4 o(M™9)
i=1 j=1 i=1 j=1

= M2 [ OV W) + L) S0 )] dA -+ 0(21),
[ |

Lemma A.12. Let Hyy1 be defined by

= 33" (020 = F20) i/ ity ) (750~ £27)

i=0 j=0

the Hypp = Op(n’l).

25



Proof. First note that

| Hon || <

Fj2 - ij

j17j2|| ‘
J1,j2=0

From ['yyj — Doy = (T — p1,) (7 — /Ly)l one obtains

n

= 77/74 Z Etr(xh - :u:c)(th - :uy)l(yta - /j“y)(xtzL - /L:c),

t1,t2,t3,t4

R - 2
B |[Frss = T

n

= 77/74 Z tr(Ftl tthy: ta + 7152 tgrff t1 + Ftl t3Fty2 —tq + ’C4) = O(nfz)

t1,t2,t3,t4

such that Hy; is bounded in expectation by n=?c; 37" . 19, 5[l +o(n™!) = O(n71).

Lemma A.13. Let Ho1o be defined by

!

Horp = iz (F - F) (i /M)D; s (j /M), + ii T3k(i /M) k(i /M) (fj - fj) .

i=0 j7=0 i=0 7=0

Then Hyjs = Op(n’l).
Proof. First note that

(| Hapa| < .

S,
FjQ

yr Tz
FjQ FjQ

1951211 Y| 195,511 | €

1 2—
Now

n—m n—m

= n” Z Z trE(@em — 1) (Y- — My)l(ys—j - Ny)($s+m - :u:c)l
t=i+1 s=i+1

n—m n—m

— S S T g

t=i+1 s=i+1

= )+ o

- 2
£t

where ¥4, = E(yi—; — ) (ys—j — pt,) and K, is a matrix containing fourth order cumulants of
Ztym and g, ;. This together with the arguments in the proof of the previous lemma shows that

E||Hansl| =n 1231 j2=0 191, I HF H =

Lemma A.14. Let Hym = Y0 o 3" ( fov ;ffy) k(i /M) k(i /M) (fg“ - rgm) with ¥ =
Y (Cem — 1) (Wi — )" Then Hypy = Op(M/n).
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Proof. For Hyy, we consider

n—m n—m
2

—n 23 S (A, AT A K) =0 ) (A

t=i+1 s=i+1

E‘ny—l“fy

uniformly in ¢. Then

Bl Y (fj.f_rjf) 9 (f?i”g-Q—F?i”}z) !k(jl/M)Hk(jg/MNH
J1,J2=0
n _ 2\ 1/2 B o\ 1/2
< ¥ (sfez-rz) (Bes-rm) sl
J1,52=0

< On'M Y (195, [k(j2/M)| /M = O(M/n).

J1,52=0

where C'is some constant. In the last equality we have used that 3 ; [[0;, 5[ [E(j2/M)| /M € 1!

where {z;}2, C 1M if 37, [|ls]| < oo. This follows from M =1 377 [k(j/M)| < M~' 377 sup;cecjyq [K(§/M)] <
[ k(@) do and [ k(z)]de < M~ infceesir [FE/M)| < M3 K(G/M)]| by the proper-

ties of the Riemann Integral (see Stroock, 1994). Thus k(j/M)/M €' C *>. &

Lemma A.15. Let Hym = Y0 (3" (ffy - rfy) k(i) M), ;k(j/M)TY. Then Haz = Op(n~Y/2M).

Proof. We use the same arguments as in the proof of the previous lemma.

o) , . . o] 1/2 .
e YT T J1 J2 — ~r 2 J2
B 2 5005 (1%, - T, ) k(ERE)| < a2 30 (E‘rjg > Hq?iJH‘k(M)
J1,j2=0 J1,J2=0
= O(n Y2M)
|

~

Lemma A.16. Let Hsy = P]V[ [Qil] (Qn — Qn) [Qil]npzlw where P]V[ = (ng, ...,Fiy)(k’]\[ X ]p)

Then Hsy = o0,(n~%?).

n
Proof. First note that Hs, can be written as

n n
N ’
DO ai (@i — wij)ay

i=1 j=1
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with af = 7% (Tk(j/M)vj:. Note that |a7| < 222 [Tyl such that |a}| is summable Vn.
Furthermore

m—1
Wij —wij = Z 3 =) (ngl i~ T z)
l=—m+1
m—1
+ Z (’7 7[) Fy—yi-l i
l=—m+1
m—1
+ > (-
l=—m+1
with
n—i—(z/\]—i-l n+(inG+1)’ 1/2
K ‘ Fg-yi-l i F?]J—y‘rl i < Z z tr (715 sFtyys + F FIf?iy.s + Kz)
t=iVj+l s=iVj+l
o 1/2
+ (E |, = 91, — ) )
From E || (s, — ) (1, — 7) g O(n™?%) and the above inequality it follows that £ ‘ Fy+l | =
O(n~'/2) uniformly in i such that
m—1
Bl Y G-y (M -T2 | = 0™
l=—m+1
and .
E Z 7[8 (Fy+l 7 Fy—i—l z) = O(nil/Q)
l=—m+1
From these results
k k "
2 ' -
B33 ail@y - wia (Bll(@ss = wi)I?)" o] = 0t 72)

by the summability of a¥.

Lemma A.17. Let H31 = (p]u — pM) [Q_l]k (Qk — Qk) [Q ] (P]L[ — P]\J) H32 = (p]u —
P]V[) [Qil] (Qk — Qk) [Qil]k PZ,W’ H33 = HéQ Then H31 = Op( 71/2), H32 = Op( 71/2) and
Hzz = 0,(n™"?).

Proof. Use the bound in Equation (A.1) to bound H3; and Hsy From the results of the previous
Lemma it then follows that all these terms are o,(n~/2). ®
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Lemma A.18. Let dy = \/— S Y95, 04, Then lim,, Edodf = D.

J1,52=0 = j1

Proof. Note that Edy = 0 and

n—m t+2mvn

Edydy = Z Z Z T i ViemesL s iyriaWin e — PQT' P as n — oo,

t 1-m s=t j1,j2,53,54=0

|
Lemma A.19. Let d; = \/— Dt 2 gnit 2ogeent1 L0y o Ve gy Then Edydy = o(n™*°).

Proof. Consider

n—m t+2mvn

Edldll - Z Z Z F 3119]1 927t+m sF?tJys 32+3319]3 J4F§Jf = O(n_4s)

tlm s=t  j1,j2,73,ja=n+1

where s is such that > |7]° HF?jy H < oo and the result follows from the summability assumptions. W

Lemma A.20. Letd, = Et 1,j1=0 Z]Q =n+1 xyﬁh Jo v\t/—2 and dz = Et 1,j2=0 Z]l =n+1 xyﬁh Jo \/—2
Then Edydy, = o(n™2%) and Edzd = o(n™>).

Proof. For dy we have

n—m t+2mvn

EdZdIQ == Z Z Z Z Fy Y0 g1 o Viem—sL s jotsa U, J4F§ZJ =o(n %)

tlm s=t  jo,jz=n+1 j1,j4a=0

is summable over j by arguments given in Kuersteiner

and similarly for d3 since HZ?:O 9,
(1998). m

Lemma A.21. Let dy = \/— Dot 2 gm0 Ui (L= k(j1/M))0j, 4, (1 — k(j2/M))vy,j,. Then
Ed41diu = O(M74q).

Proof. Consider

;c J1 J2 J3 Ja <
Bludy = 23 S0 T - )01 ) Bt ) (L~ K205 (1 — (T
t,s=1 j1,j2,j3,j4=0
AL i LV LS AT
" M M

. g (1= k(2)) (1—k(£))
X E'Vt Srtyng s+j3 |]3|q |]3/M|q 19j3,j4 |] /M|q

t,s=1

J1,j2,J3,Ja=0

174" T%.
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Using the fact that ‘ <1—|3j<;f>>

bounded in j» and j3 leads to

2
| Bdad | < CuM ( S 32u>

J1,52=0

-1 n e Yy . .
n Zt,s:l ViUt gy 514y || 18 uniformly

where Y77 oLl d2]? |T5Y95,.5.| = O(1) by Lemma 5.2. in Kuersteiner (1998). Thus

Ed41diu = O(M_4q). |

Lemma A.22. Let d42 = == 2 2 a0 Ui (U= R0,k (£5) + R (37) 0505 (1 = K(5)] 01,50
Then Ed42d 42 = O( )

Proof. For dss consider

3 T jl J2 1 & ]3 j4 T
ID SR TR DN | opToees) | (R oLy
J1,J2,43,54=0 t,s=1
< CiM ( z |J1 ’q {F 3192H> ( Z ’JQ|q ‘meﬁh]QH)
J1,52=0 J1,J2=0

with the remaining terms being also of the same order such that Edsd), = O(M~27). &

Lemma A.23. Let ds = =7, 57 (pw f;?ly) k(j1/M)Y;, jok(ja/M)vy j,. Then ds =
O,(M/n).

Proof. For ds we consider

lo¢ v g Ja Ja Ja
52 > k(iR (B 05 50 )R (Vi gu R ()

t,5=1 j1,j2,j3,54=0

- ) J4
= Z RO 150 19 g 1000 [ R G 2) = O(M?)
J1,52,73,54=0

and using T; — T; = (& — p1,)(7 — 1t,)" = Op(n~") shows that ds = O,(M/n). B

Lemma A.24. Let dg = =57 S0 (ny F;?ff) k(jr/M)D,, 1,k (ja/ M)y ,. Then dg =
Oy(M/ ).

Proof. We consider

o\ 1/2

~ 7 ]
E||dg]| < E H (T = 1) k(7 )i5k(3)



where vy ; = €1 (Vi — ,uy). Then

1 n n
!
= tTE(—E E VgV ;)
/)/l/ b
t=1 s=1
1 n—m t4+2mvn

= = z Z v tr [T, <2m Sup |tr [T%]] Sup ;]

tlm s=t

'Ut i

and defining wy; = (Tem — fy) (Ye—i — Ny),

~ 2 i 1 n n l
b H (Fi Bl Fi) Gl = b <_2 Wi ) 030, 5
L n t=1 s=1
l = — /
= tr ( z Fs t—i—z t—s+i + Yi_ Srtmms —+ Cum> '192]’192,31
L t=1 s=1

|

where || 37 S0 Tyl o+ 7,2, I8, + cum|| = O(n™") uniformly in ¢ by the Toeplitz
‘ 191»]-191»7]-’ < ||95” . Summability of ||| over i shows that E ||dg|| = O(M/\/n). W

1 i 7
§ : T
n2 FS—t-i-ithswLi + ’}/t—srtfs + cum
t=1 s=1

Lemma and

Lemma A.25. Letd; = =3 3, (ny Ffly) k(i /M), g (i —wij) 0y gk (Go/ M) vt g,
Then d; = O,(M/n).

Proof. For d; consider

IR

i=0 j=0
b Ty 7Y\ f i 9 (D 9 -k J VUt 4
+ZZ (Fz’ - T ) (M) i.j(Wi — wij)dij (M)Zﬁ
i=0 j=0 t=1
where w;; = lrf_lmH 'yaFyy] ;and @, ; = ;f_lmﬂ 0% Fyy] , with 45 =1 ks Etfi—j and

~ 7 min(n,n+1)
= AL, 0)(Yerm — 9), nyg = D m(ax 1—:-l+k 1)(%—2 - y)(yt—l—y - ?J) - First

~r T 7 N ’Ut
(Fiy - Fiy) k()i (@ — i)Y Z Jl
o i J e
~E € T T r t,j
< ) H -9l (Fiy - Fiy) k()b sk () > \/—%
l=—m+1 t=1
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where |37 — 75| = O,(n~?) and

i=0 j=0

n

T x Z - ‘7 _UtJ
(Fi‘y _ riy) B(5p)Pai L igk(32) Y Jn
t=1

n 2
vy J Yt
Fz j—l1 Jk(M) Z ﬁ

=1
)

. 2

’ T i >y v“’ = O(1) such that (A.2) can be bounded

by CM/n Y7 o S0 o 1031l |k(45) /M| for some constant C. It follows that the first term in d;
O,(M/n). For the second term we have

1/2
) /

E (A.2)

IA
&
/~
—

8
<
—
8
<

~i - z)k(ﬁ)ﬁ”

2

As before E H (ffy - ny) k()04 -

M

2 2
‘ 19,5 and EH(PW F“'”y)

O(n™!') uniformly in i. Also F

T T i — Vt.i
EZZ (Fz’y_riy) k’(ﬁ)ﬁi,j(wij _ww Z -
i=0 j=0
m—1 n n . 2 1/2
< WY D |E H (f;”y - rfy) k(%)q%,j B\, -1 )9 k(L Z Ut
l=—m+1  i=0 j=0

by Lemma (A.8) E H nyj =Y )i Zt LA il = O(n 1) uniformly in ¢ and j and sum-

mable over ¢ thus the second term of d7 is O (M / n). W

Lemma A.26. Let dg = % Z?:l ZZ jo= ijfk‘(]l/M)ﬁjhjZ (d)zg — Wij)ﬁjl,jzk(jQ/M)Ut,jg- Then
dg = Op(’l’l/_l).

Proof. We bound dg by

lds|| < —= Z |05 k(i /M), |

J1J2 0

(Wij — wij)Vjy 5,k G2/ M) t_Zl Vt o

such that E |[ds|| = O(n =2 X0 o [Tk (1 /M)9;,5]) = O(n ). m

Lemma A.27. Let dy = ﬁ D1 Etrm Dy 0Fffk(jl/]\/[)ﬁi,jk(jg/]\/[)(yj — pt,). Then dy =
Op(M/n).

Proof. For dy note that (§ — p,) = O,(n="/?), ﬁ S Etem = Op(1) and

szfy%m,jk(]ﬁ)‘ M I

j=1 i=0 j=1 i=0

?%Jk(i

£ o) 2

()
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n n . ]

159 ol [ | EATRERRRTIES!
j=1 =0

+> ) Fiyk(ﬁ)ﬁi,jk(ﬁ)H

j=1 i=0

2

where EH(ffy — kG Pisk(d) | = O(n™") and 37, 300

(2

Tk (35)9:,5k(3)|| = O(1).

Using

195,(@0i5 — wii)Piill < (|055(@i5 — @) i l| + [[94,5(0i5 — wij)Ds sl

m—1

< A =l 0T ()9
l=—m+1
i [ (P20 = T220)) 9

such that F ||0; (@i — wi;)i;]|> = O(n") by previous results and thus dy = O,(M/n). B

Lemma A.28. Let dy be as defined in Lemma (A.18) and dy and ds as defined in Lemma
(A.20). Then Edydy = o(n~2°).

Proof.
7
HEdOd2 = _ZZZ Z ‘meﬁﬂhE“’fJﬂ)sga J3J4F?ixJ4H
t s ji,j2 j3=1 ja=n+1
oo [ee)
< Zzur%mwnwmnn 2N 0l > BTl
Ji,J2 jz3=1 ja=n+1 hi=n+1
[ee)
< n- S“P (Z w3 s | Z AR IR ||Fh1||> D 59551l
J3 1 4 TL+1 h1:n j1,j2

— 0(77/725)
where FEdydy = o(n™2%) by the same arguments. B

Lemma A.29. Let dy be as defined in Lemma (A.18) and dss as defined in Lemma (A.22).
Then Edody = —M kB /2 + o(M~9).Next

Edyd, 19 = ——Z Z Z F Djr o T’tm“sn)

t,5=1 j1,j2=0 j3,54=0

0 B D548 + K51~ KD T

33



o0

= Mk, Z nyﬁh 2Wings 19317 Vg ga + Vo 174" T2 o to(M™)

J1,J2,93,74=0
T {/ S9N OO+ [ £S5 L2 (0| + o)

The second equality uses Lemma (A.21) to replace k(£:) by 1. For the third equality note
that 3 7 U, Wi js = 1 if j1 = j3 and zero otherwise.

Lemma A.30. Let dy be as defined in Lemma (A.18), dg as defined in Lemma (A.24) and
dg as defined in Lemma (A.26). Let { € R? such that (' = 1 .Then El'dydy¢ = O(n~2) and
El'dydyt = O(n™2).

Proof.

Eldydgl = — z Z Z k(7 ]3 ]4 glrxyﬁh J2Evt12“sy319j3,34(ry—334 F?f;4)/£

t,s j1,j2=0 j3,ja=0

where
E'Fiﬁi,jvt7jv;,li917h(fh —Tp)'"0 = wvect; j(v; @ TH) (E'(fh -Ty) ® v;,l)vecﬁl’h
= tr(ﬁi,jvt,j(f‘h —Tp)'0) (19;,h1/8,lF;£)
= tr(9; 0,0, ) (n (T — Tp) OT,)

such that all products of expectations with less than three terms are zero. Denote the elements
of [(T%V9; and [0, 5,] , = 92" . Then

a,b J3,J4°

— = & j3 j4 a C Cc
RS 95 3) D) T IE P RPN ST TR

t,s,r j1,J2 J3,J4 a,b,c

a
J1s Jz] = Yjijo

which is of order O(n~2) because the cumulant is summable over ¢, s, 7 and j4. The term Edodg =
O(n™%) by the same arguments. B

Lemma A.31. Let dy and d3 be as defined in Lemma (A.20). Then Edydy = o(n™**).

Proof. Consider

| Bdpdy | < —ZZ S T 4 Bt s

ts ji,j3 j2,ja=n+1

Z Z eryﬁjz J3W 2,43 ]3 J4FWH = O n_45),

J1,J8 j2,ja=n+1

IN
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Lemma A.32. Let dg as defined in Lemma (A.24). Then El'dgdil = M?/nA00' A} +o(M?/n).

Proof. By Lemma (A.4) we have

n 4
1 . / _
Eldgdgl = — E g | | k(<L) { 7)66?9; ]2) E(vt, j, ® w81 31)(6' ® ) E(Ws, j, ® ?)227]-3)7)6019]-3,3-4

t1,t2,51,82 j1,52,J3,J4 I=1
! — ) —
+tr [79j17j2E(7)t17j2€ w82,j4)79j3 j4E(7)t2 j3€ Wsy,jq )]
! —
+tr [19]-1 2 B (Ve 32 V,35) Vs 5 ( W, ]1€£ Wsy,jg } } + Ks

where the eight order cumulant term Kg is summable by Lemma (A.8). Using the results in
Lemma (A.6) the first term can be written as

k
- Z Z H k( J{— 2)6619]1 JZ) E(viy j, @ W), ;)0 Z Z E(Wsy 5, ® V1, 4, )vEC;, j,

t1 81 J1, ]2 - t2,52 j3,ja

where

E(vy, g, @ W), ;) = (vecl'¥?_

t1—s1+j1—J2

® Faml ) + Kpp(rey

t1—s1+m t1—s1+m+7j1

®Ft1 S1— ]2)+,Ci

such that

1 _ h ET. 154 -
ﬁ Z E(Ut1,j2®w;1,j1) = Z (1__) [(vecr?fﬁjwl —7J2 ® Fh-iim) + Kpp(rhimeh ® 1-‘h 32)} +O(n 1)'
’ t1,81 h=—n+1

It now follows from Parzen (1957) that

!
77]\/[ Z Z H E( J{— ?)6019; JQ) E(vy, j, ® ws1 ]1)

t1,81 J1, 92 -

— / k(x)da / (vecfo ") (veef™ @ 5 + Kpp(foy @ fya)) dA
which establishes the first part of (3.1). Next turn to

!/ — /) —
79]’1 j2E(Ut1 jzg Ws, j4)79j3,j4E(Ut2 j3£ w81,j1)

ITEexT yy £Y /LY 2
9]1 J2 (g Ftl 82+mFt1 so—jo+ja Ftl 32+m+]4€ FSQ —t1+J2 + ’C4)
ITET yy ITTY 2
933 »Ja (E Ft2 81+mFt2 s1—j3+J1 + th 81+m+31€ Fsl —to+jJ3 + ,C4)

where for a typical term in this product we have

h1 eT h € T
Z H k JJL_ J1 ng/Z [(1 ‘ l)Fh1+szz ]2+]4i| 93373'4 Z(l |n2|)FhZ+m+]1£,FhZ+J3

J1,J2,73, ]4 - hi ha
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and changing variables ky = ho + J1, U1 = j1 — Jo, Uy = js — joand us = js — j3 leads to

hi ex k 1 € T
Z H k ]]V_ 19u1£lz |:( ‘ |)Fh1+mrzz+u2i| 19u3 Z(l | L ] )Fkg—i-mglrkzy—l—ul —ug+us

urug,uz,ja 1= h1 k2
h k
< Y [EE) | WG e D= by 0| @ = By e
U1,U2,U3,54 h1 ko

= O(M).
Similar arguments show that the second and third terms of Efdgdil are both O(M/n). R

Lemma A.33. Let dg as defined in Lemma (A.24) and dg as defined in Lemma (A.26). Then
Eldedyl = O(M/n) and Eldsdil = O(M/n).

Proof. Consider

1 n 4

. /
Eﬁd@dlgg = ﬁ Z H k'(J_l[) {((2)661931 32) E(Uh o & wsl 31)(£,Fj419j4,j3 ® [)
tl) t27 51,52 =1
] 1 7]4
X E( Wiy, 43,44 ® vllfz j3)vem9j3 j4)

+tr [ﬁjlijE(Utl ng F 19]4 jsW 82 .73, ]4)19]'3 j4E(Ut2 j3£lw81 j1)}
+tr [79j1,j2E(7)t1,j27)752,3'3)79]'3 Ja ( gﬁ,rnﬁh 33 82 ,j3, ]4)] + ’C8}

where the first term is contains

E(w}, ju i @ Vi, ) = re

§2,73,J4 to—s2+7ja

1
®F§’§ to (Uec(Fny S2+74— ]3) ®F§g t2+]3) +’C4

leading to

Zk ]4 u i_ EIFMTS‘ ®€ Z \k‘ Fiﬁ_] ®I‘zy)vem9u
k

U,ja
< E 107,90 @ €] [|lvecdy| Z H . e = o)
u,ja
with the same holding for vec(T'y)_,,,;,_.) @I _, ... This establishes that the first term is of

lower order. The second term is of lower order by the same arguments used before. The third
term is again of lower order showing that Eldgdil = O(M/n).
Finally Eldgdi¢ = O(M/n) by the same arguments as before. B
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Lemma A.34. Let Hyp = Y0 (3" (ffy - r;?y) k(i /M), ;k(j/M)T¥,. Then
EV' Hypo D tdodo D' Hypol = O(n™1).

Proof. By Lemma (A.14) we can replace Hagy by

>3 (ffy _ rfy) k(i /M), ;k(/ M)T™ + o( M /n~2). (A.3)

i=0 j=0

Next define a; =Y oo  I'7¥9; ;. Then, using only the dominant term in (A.3),

4
-1 T . 91\ — / -1 / / -1 —
EHyD “dodyD " Hypy =n E Hk(ﬁ)wsl,jlale AVt jo Uty i Qjs D @340, 4,
=1
t17t2781782

]7 ?96

Using the same arguments as in the proof of Lemma (A.32) it follows that the leading term in
El' Hypo D™ dodo D" H},ol depends on

— Z Z vec(al, D™ ay, ) [(veely, _, @ T3 ,) + KT, @ T )]
j1j2=0 h=—00
where A, is well defined due to the summability properties of a;. It follows that F¢' Hye D™ dodg D™ Hbyol =
O(n1).m

Lemma A.35. Let Hyy be as defined in Lemma (A.34) and d6 as defined in Lemma (A.24).
Then E€/H222D71d0d%£ = O(M/?’l)

Proof. We again replace Ha by 37 (> 77 (f‘fy - ny) k(i/M)V; jk(j/M)TY; and consider

!

Vg j, 0

J3,Ja% 59,54

4
/ -1 ry o —3 Ju -1 _ )
EV' Hogo D “dodgl =n E E T k(&) 505 D ag,v, g, S
tl; t27 81, 52

]7 7]6

where a; is defined in Lemma (A.34). The dominant term in this expectation is given by
M/n [ k(z)*dzA00' Ay where Aj is defined in Lemma (A.34) and A, is defined in (3.1). ®

Lemma A.36. Let Hyy be as defined in Lemma (A.34) and d8 as defined in Lemma (A.26).
Then EEIHQQQD ldodlg = O( _1)
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Proof. By the same arguments as in the proof of Lemmas (A.34) and (A.30). B

Proof of Lemma (3.1). First we will split the error Dy, — D into three different parts.
Recall Dy, = n2X"Zas(kar @ 1), 5 (kar @ 1) Z3 X Let Q' be the upper left side kp x kp block
of the infinite dimensional inverse Q~!. The difference Dy, — D is decomposed into the following
terms

D,—D=H, + H,+ H; + H,

where Hy = Hyy + His + His + Hyy which are defined in Lemmas (A.9)-(A.11), Hy = Hoy +
Ho1o + Haoy + Hago which are defined in Lemmas (A.12)-(A.15), Hs = Hsy + Hsy + Hssz + Hsy
which are defined in Lemmas (A.16)-(A.17) and H, which is a remainder term of lower order.

Next we turn to the analysis of dy; = P}, (kpm ® Ip)len”/2 S eremzZin (kar ® I,) which
is decomposed as cfk = E? d; with d4 = d4; + dso where all the terms are defined in Lemmas
(A.18)-(A.27).

We consider cross products of the form Ed;d};, Ed;dyD~"H; and EH;D~"dod,D~"H; which
depend on M and n and are largest in probability. Lemmas (A.28)-(A.33) show that the largest
terms vanishing as M — oo are E (dodys + dppdl)) = —M kB and Edod,D~(Hy3 + Hy) =
M *qqué‘D which cancel because they are of opposite sign.

Terms of order M=% include Edyd),, Fdod),, EdydyD™'H}, and Hi5D ™' Edydy. Since Edod),
and FEdydyD 1H;}, are of opposite sign these terms cancel. We are left with E(dsy — (Hi3 +
Hu)D'do)(das — (Hys + Hig)D~'do) = O(M~29).

Terms that grow with M and are highest in order are HapD 'dy and dg. It follows that
the cross product term EHQQQD_ldOdIG is of lower order by Lemma (A.35). We are left with
EHyos D tdodyD tH}yy = O(nt) by Lemma (A.34) and Edgdy = O(M?/n). R

Proof of Proposition (3.3) From the proof of Lemma (3.1) we only need to consider the
terms A,, = Edgdy and B,, = E(dyy — (H3+ H14) D™ dg)(ds — (H13 + Hy4) D™'dg)’. Since for all
n > 1 we have A > 0 and B > 0 it follows that liminf,, A,, > 0 and liminf,, B,, > 0 such that
A and B are nonnegative.

From Lemma (A.32) it follows that E¢'D~'2dsdyD /20 = M? /n ([ k:?(g[;)alac)2 A DV D72 AL
It can be shown that B, = Edyd,, — E(Hy3+ H14) D~ dod) D~ (Hy3+ Hy,) where Edyyd,, = B
defined in (3.2) and E(H3 + Hy4)D tdodyD 1 (H,3 + Hy4) defined in (3.3) using the same ar-
guments as in Lemma (A.32).

Proof of Proposition (4.1) The only difficulty here is to show that S ¢ jf?b is \/n-
consistent. Let 3 be a y/n-consistent first stage estimate. The estimated residuals &, =
(ye—7)— 3 (x,— ) are used to estimate (- Let g(X,0) = |1 — 0™ — ...Hm,le“(m_l)f . The peri-
odogram of 2 is I5(\) = n ! >4 5 E185€79). The maximum likelihood estimator for 6 is asymp-
totically equivalent to argming A (6) with AZ(0) = n=" 3" I5(X))/g();,0) for \; = 2mj/n, j =
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—n+1,...,0,...,n — 1. Define I;(\) =n~" 3, | erg,eA ) [ET()\) = 7t > s Et(Ts — fh, ) e
IF(N) = nHéa — ag) 2o, (w1 — e I2(N) = n(dg — @) 2o, , €€ and T2(A) =
n~(ép — ap)? Dt eMt=9) for g — ag = 7§ — p, — 3'(Z — ). It follows that

L) = L)+ (B=8) (7N + L (N) + (B = B)'I; (\) (B = B)

(
+(é0 — o) (L) + I (V) + (B = B) (I (A) + L3 (N) + I ().
Note that IZ(X\;) = IZ*()\;) = I5*()\;) = 0 for j # 0 and IZ(\;) = n(ao — ap)?, IS*(\) =
(Gp — ) >, &1 for j = 0. We now have
AL(0) = AL(O) + (B = BY (AT (0) + AZT(0)) + (B = B)AL(0)(B - )

+ | (G0 — ao)n ™Y (er + (e — 1)) + (&0 — )| /9(0,0).

t

From standard arguments (see Brockwell and Davis 1989, ch 10) it follows that A2(¢) “%
A®(9) with A®(0) = [ fa(M)g(\,0)d) and 9%A(0)/00 > 9*A®(0)/00 for k < oo. Moreover
V/nOA:(0)/06 = p( ) and n 1/2 S 60 = 0,(1) and n=Y2Y", 7, — p, = O,(1). Therefore

VnOA;(0)/06 = /ndA;(8) /06 + v/n(B — B) (DA (8) + A™(9)) /06 + 0, (1)

which shows that /n(f — 6) = O,(1). Expanding ¢, = (27) > o* > g€y Blere) Bit e, around
0y leads to

0o J

- B : ., OvecB
(e = (+(2m) 20426'139+k612(e'1Bl_1®e'lBJ 9 Uag (6 — 6,)
=0 1=0
I JvecB
+ (27) 2 426 B]elz (¢/B'"™' @ | BFITh = 50 (0 — bo) + op(n —1/2),
=0 1=0

The matrices B are evaluated at 6y such that all the sums are absolutely convergent. It then
follows that ¢, — ¢, = Op(n _1/ %) uniformly in k.

We next show that 37" . (I, — 30, G, = Op(n1/?). First consider
n—1
Hck A RS AL D | veM )

k— k=—n+1

‘Ck_CkH > Cn'?).

+P(sup
k
The second probability goes to zero by the previous result. Also

1 1 j € € € € €
ﬁ Z Eé‘t(ytfkf'r_/I’y)gs(ysfka_/j’y), = ; Z(l_%)(%rgyk r sz—rrkz—r F]?—J&-k—&—rrjz—k—i—r—i_lci)
t,s

J
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with similar expressions holding for other terms involving ¢, z; and ¥, such that £ Zz;in + ‘ fiyw =
O(1). Next consider 7~ ¢ k(fﬁT—Fﬁr). By the previous result it follows that ‘ fﬁw -T2, =

O,(n~/2) uniformly in k. The result then follows since ¢, is summable. B

Proof of Theorem (4.2) To be typed. W

Proof of Proposition (5.1) We consider Ed; and EH,;Dd;. First, Ed; = 0 for i < 4. The
terms ds, d7, dg and dy are of lower order by Lemmas (A.23,A.25-A.27). The terms FH;Dd; are
all of lower order. The largest order term is therefore Edg. By the proof of Lemma (A.32) it
follows that Edg = M/\/nA; [ k*(z)dz + o(M/\/n). B

Proof of Theorem (5.3) We consider the expansion of v/n (3}, 5, — 3)as before. First note
that

i (Bors = B) = v/ (Bung — ) — %D*A’l / K(2)dz + Op(M/n)

since \/n(A; — Ay) = Op(n~/2). The analysis of the MSE of \/n (8500 — ) is then the same
as the analysis for \/n (ﬁn, M— ﬁ) where we replace dg by

%A’l / k?(z)dx

and the additional term dyg = M/v/n(A; — A;) [ k*(z)dz needs to be considered. First note
that Fdg— %A’l [ k?*(z)dz = o(1). Then Edgdy = E(ds— Edg)(ds — Edg)'+0(1). From the proof
of Lemma (A.32) it follows that Edgdy = O(M/n). Also E{' Hyy D~ dods, D~/?¢ = o(M/n) and
Edpdip = O(M/n) together with Lemma (A.34) shows that all remaining terms are at most of
order M/n. W

d_6:d6—
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