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Abstract
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1 Introduction

Results for most models of repeated strategic play have this key feature: payo®s of the
game are ¯xed while the discount rate is freely varied by the modeller to achieve a desired

1result, namely the Folk Theorem. The present paper shows that the Folk theorems may be
sensitive to this particular order of limits.

We prove a result that pertains to a class of asynchronously repeated games. These are
dynamic games with a certain payo® stationarity and where at most one player moves at
each decision date. Laguno® and Matsui (LM) (1995, 1997) and, more recently, Yoon (1999)

2examine Perfect equilibria of asynchronously repeated games. LM show that if the stage
game is one of pure coordination and if players are su±ciently patient, then every Perfect
equilibrium payo® is arbitrarily close to the Pareto dominant payo® of the stage game. By
contrast, Dutta (1995) and Yoon (1999) prove Folk Theorems for large classes of repeated
games, including those with synchronous moves, asynchronous moves, and most everything

3in between, provided that stage games satisfy certain dimensionality restrictions.

Since pure coordination games fail the dimensionality restrictions, Dutta's and Yoon's
results suggest that the \Anti-Folk Theorem" of LM is nongeneric. More generally, the
results suggest that multiplicity of equilibria in repeated situations is a generic property.
This paper proves a result that suggests otherwise.

¤Speci¯cally, we prove the following. Fix any stage game of pure coordination. Let u
denote the unique, Pareto dominant Nash equilibrium vector of payo®s. We show that given
some ² > 0, if players are su±ciently patient, then there is an open neighborhood of the
payo® vector of the pure coordination game such that every Pefect equilibrium payo® of the

¤asynchronous repetition of every stage game in this neighborhood is within ² of u .

Hence, by ¯xing the level of discounting in advance, one can construct a neighborhood
of games whose Perfect equilibria all approximate the unique Pareto dominant payo® the
coordination game. The constructed neighborhood contains a positive measure of games
that are full dimensional. In this sense, multiplicity of repeated games is not a generic
phenomenon. The result also demonstrates that games that approximate team problems

1See Aumann (1981) and Fudenberg and Maskin (1986).
2Related models are found in Rubinstein and Wolinsky (1995) and Wen (1998) who examine repeated

extensive form games. See also Benabou (1989), Maskin and Tirole (1987, 1988a,b), Haller and Laguno®
(1997), and Bhaskar and Vega-Redondo (1998) all of whom restrict attention to Markov Perfect equilibria
of certain asynchronously repeated games.

3Strictly speaking, Dutta's result applies to all ¯nite state stochastic games. While many asynchronously
repeated games are stochastic games, Yoon's result applies to asynchronously repeated games with a, possibly,
nonstationary process determining the set of movers each period.
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described by Marshak and Radner (1972) have desirable outcomes.

The paper proceeds as follows. Section 2 describes the model and de¯nes the class of
asynchronously repeated games. In fact, we de¯ne more general class of games with repeated
interaction, only some of which break the perfect synchronization of the standard model. We
call games in this class renewal games. Originally described in Laguno® and Matsui (1995),
a renewal game is de¯ned as a setting in which a stage game is repeated in continuous time,
and at certain stochastic points in time, determined by an arbitrary renewal process, some
set of players may be called upon to make a move. Both standard repeated games and
asynchronously repeated games are special cases. Section 3 states the main result. Section
4 examines the order of limits sensitivity in the context of a 2£ 2 example. Section 5 gives
the proof of the main result.

2 A Model of Asynchronously Repeated Interaction

2.1 Stage Game

Let G = (I; (S ) ; (u ) ) denote a normal form stage game where I is the ¯nite set ofi i2I i i2I
players, S (i 2 I) is the ¯nite set of actions for player i, and u : S ´ £ S ! < is thei i i2I i

payo® function for player i 2 I . Without loss of generality, assume that S \ S = ; for alli j

i6= j. We will call an element of s = (s ; : : : ; s ) 2 S a behavior pro¯le (or simply \pro¯le").1 jIj
Given some ŝ 2 S , let snŝ = (s ; : : : ; s ; ŝ ; s ; : : : ; s ). The tuple of payo® functions isi i i 1 i¡1 i i+1 jIj
denoted by u = (u ) . A mixed strategy for i will be denoted by ¾ and has the standardi i2I iP
properties: ¾ : S ! [0; 1] and ¾ (s ) = 1. A mixed pro¯le is given by ¾ = (¾ ) .i i i i i i2Isi

Finally, a game G is a coordination game if its Nash equilibria are Pareto ranked and there
is some Nash equilibrium that strictly Pareto dominates every other pro¯le of the game.

2.2 Renewal Games and Asynchronously Repeated Games

In this Section, we introduce a framework that encompasses a wide variety of repeated
strategic environments. Consider a continuous repetition of a stage game G. After the
¯rst decision node, which occurs for all players at time zero, all players' decision points are

4determined by a semi-Markov process with ¯nitely many states. In the following, revision

4We can formulate the problem in such a way that the ¯rst action pro¯le is chosen by nature as in models
of evolution. It will be clear that the following description and results will not be altered by speci¯cation of
choice at time zero.
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nodes refer to the decision nodes other than the ¯rst one at time zero.

A semi-Markov process is a stochastic process which makes transitions from state to
state in accordance with a Markov chain, but in which the amount of time spent in each
state before a transition occurs is random and follows a renewal process. For the sake of
convenience, we separate the process into two parts, a renewal process and a Markov chain.
Formally, let X , X ; ¢ ¢ ¢ be an in¯nite sequence of i.i.d. nonnegative random variables which1 2

follow a (marginal) probability measure º with E (X ) < 1 and º(X > ²) > ± for someº 1 1

²; ± > 0. It is also assumed that º(X = 0) = 0 so that the orderliness condition for the1

renewals is guaranteed. Then let T = 0 and T = T +X = X + ¢ ¢ ¢+X (k = 1; 2; ¢ ¢ ¢).0 k k¡1 k 1 k

T is the time elapsed before the kth revision point. At each decision point a state ! isk
1 1determined from a ¯nite set ­ according to a Markov process fY g 2 ­ where Y = !k kk=1

00(! 2 ­) implies that state ! is reached at time T . We denote p = Pr(Y = ! j Y = !)k !! k+1 k
0for !;! 2 ­. Let ­ µ ­ denote the nonempty set of states in which player i has a decisioni

node. Let ­ µ ­ be the set of \inertial" states in which no player has a decision node. By0
~de¯nition, ­ = ­¡ ([ ­ ). We write ­ = (­ ; (­ ) ). We assume that the initial state,0 i2I i 0 i i2I

denoted by !(0) 2 ­, is never reached again. By de¯nition, !(0) 2 ­ for all i 2 I. Notei

that ­ \ ­ \f!(0)g (i6= j) may or may not be empty. To summarize, the renewal process,i j

º, determines when the decision nodes (the \jumps") occur, while the Markov transition, p,
determines who moves at each node.

Using this semi-Markov process, a typical play of the game is described as follows. In
0the beginning, a strategy pro¯le s is chosen. Deterministically or stochastically, the ¯rst

revision time is reached at time T . Suppose that ! is chosen by the Markov process, and1

let I(!) = fi 2 I : ! 2 ­ g denoting the players who can move if nature chooses !. If playeri
1 1 0 1i (i 2 I(!)) takes s , then the strategy pro¯le changes to s = s n(s ) . That is, eachi2I(!)i i

time there is a renewal and revision, only the corresponding coordinate(s) of the previous
strategy pro¯le is replaced by the revised one, while other coordinates remain unchanged. If

k kwe de¯ne (s ) this way, i.e., s (k = 1; 2; ¢ ¢ ¢) is the strategy pro¯le between T and T ,k¸0 k k+1

then the °ow payo® is realized and the discounted payo® for player i 2 I will be given by

Z1 TX k+1 ¡r¿ kr e u (s )d¿: (1)i
Tkk=0

Figure 1 illustrates the process for a two-person game.

De¯nition 1 A renewal game is a tuple

~ 0 0¡ = hG; º;­; (p ) ; ri;!! !;! 2­

where r > 0 is a common discount rate, and for all ! 2 ­ and all i 2 I, there exists a chain
0 1 2 M 0 M

m¡1 mof states, ! ; ! ; ! ; : : : ; ! (M < j­j), with ! = ! and ! 2 ­ such that p > 0i ! !

(m = 1; ¢ ¢ ¢ ;M) (from any state, every player obtains a revision node).
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T T T0 1 2

0 0 times s sdecisions 1 2 -
decision nodes ! 2 ­ ! 2 ­1 2

0 0 0action pro¯le (s ; s ) (s ; s ) (s ; s )1 2 21 1 2

instantaneous 0 0 0u (s ; s ) u (s ; s ) u (s ; s )i 1 2 i 2 i1 1 2
(°ow) payo®

Figure 1: The play of the game

Since the number of states is ¯nite, renewal games have the property that from any state,
every player obtains revision nodes in¯nitely many times, and the expected time interval
between two revision nodes is ¯nite. Standard discounted repeated games are renewal games
which may be described in several ways. One straightforward way is: ­ = ­ ; 8i 2 I, andi

º(X = 1) = 1. However, we wish to specialize further to only those renewal games in which1

choice is asynchronous.

De¯nition 2 An asynchronously repeated game is a renewal game in which ­ \­ nf!(0)g =i j

;; 8i6= j

In asynchronously repeated games, no two individuals have simultaneous revision opportu-
nities. When ! 2 ­ , we will write i(!) = i. Some examples are:i

Example 1 (alternating move game). Let I = f1; 2g, ­ = I , X ´ 1, and p = 1 if i6= j.1 ij

Then the decision points are deterministic, and players' revision nodes alternate.

An example of an alternating move game of pure coordination is a situation in which
two ¯rms in the same product group desire a uniform accounting standard to simplify their
consolidation work. However, they have di®erent closing dates due to the nature of their
business, which makes the decision points alternate. Another example is one in which two
o±ces of a company are located in New York and Tokyo, respectively, so that their business
hours do not overlap.

Example 2 (Poisson revision process). Let ­ = I . And let X follow an exponential distri-1
¡¸xbution with parameter ¸ > 0, i.e., º(X < x) = 1 ¡ e , and let p = p for all i; j 2 I.1 ij j

Then players' revision points are independent of each other, and player i's decision points
(i 2 I) follow a Poisson process almost surely with parameter ¸p .i

An example of this type is a replacement process, common in evolutive models, in which
a player is de¯ned as a lineage rather than a single individual entity. A son inherits his
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father's position only after the father's death, at which time the son can take his own action
and commit to it through the rest of his life.

Example 3 (²-approximation of the standard repeated game). Let I = f1; 2g, and

­ ­ ­0 1 2z }| { z }| { z }| {
1 M 1 2 1 2­ = f! ; : : : ; ! g[f! ; ! g[ f! ; ! g0 0 1 1 2 2

Then assume that Y 's follow the process illlustrated in Figure 2 below. In the ¯gure, thek
Mprocess proceeds through the inertial states until ! . At that time the process moves to0

either player 1's or player 2's decision node with probability 1/2 each. Let X ´ 1=(M + 2).1

Then if M is su±ciently large, the process approximates the standard repeated game in the
sense that each player has a revision opportunity once in a unit of time, and that the two
players' decision nodes are very close in timing.

1!0

#
2!0

#
...

#
M!0

:5 . & :5

1 1! !1 2

# #
2 2! !2 1

& .
1!0

#

Figure 2: An ²-approximation of the standard repeated game.
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2.3 Recursive Structure

One additional assumption that we will make will be to restrict the class of behavior strate-
gies that individuals use. We assume that individuals only condition on the sequences of
decision points and the actions taken at these points rather than on the time interval be-
tween them. This assumption does not restrict the strategy space at all if the renewal
process is deterministic (the Markov process can be stochastic) as with Examples 1 and 3 in
the previous section, and it signi¯cantly reduces the notational burden.

Restricting conditioning events to the \jumps" rather than on time intervals between
jumps allows a straightforward recursive representation of individuals' continuation values
in the asynchronous model. To formulate this, let s(t) = (s (t); : : : s (t)) denote the behavior1 jIj
pro¯le at time t, and let N ´ inffk : T > tg denote the number of renewals up to timet k

t. Due to the assumption on X 's, N < 1 holds almost surely. Then de¯ne the space ofk t
t t t thistories H such that a history h 2 H is given by h = (y ; s ) wherever N is ¯nite, andt

ty = fY g ;k k·Nt

and
ts = fs(T )g :k k·Nt

0The null history is denoted by h . Since at most one player switches his action at a time after
t 0the initial pro¯le we write s = (s(h ); s ; ¢ ¢ ¢ ; s ) whenever convenient. We let s(h) andY Y1 Nt

!(h) denote the current behavior and state at history h, resp., and let i(h) denote the last
t¡ t t¡player whose decision node was reached. We also de¯ne h = (y ;fs(T )g ) so that hk k<Nt

tincludes the same information as history h except for the behavior pro¯le at time t which
¡may include a new decision by a player. We write H for the set of all such conditioning

¡histories and denote an element by h .

¡A strategy for player i is a history contingent action given by the function f : H !i

¢(S ). Although this formulation appears to require that i is unable to condition on thei

current behavior pro¯le, recall that decisions are only made at the \jumps" in the renewal
process.

Given a strategy pro¯le f , the play of the game proceeds as follows. At time zero, all
0¡the players in I simultaneously take actions, f (h ) for i 2 I. Suppose T = t = xi 1 1 1

and Y = y 2 ­ . If i = 0, nothing changes except the Markov \clock." If i 2 I, then1 1 i
t ¡ 0¡1h = (f(h ); y ), player i's revision node is reached at time t , and he takes action1 1

t ¡ t 0¡ 0¡ t ¡1 1 1f (h ). History at time t becomes h = (y ; f (h ); f(h )nf (h )). Given a strategyi 1 1 i
t ¡ t¡ ¡pro¯le f and h 2 H (resp. h 2 H ), f~s(f jh)(¿ )g (resp. f~s(f jh )(¿ )g ) denotes an¿>t ¿¸t

¡induced (stochastic) path of action pro¯le after h (resp. h ).

tGiven a history h 2 H and a strategy pro¯le f = (f ) , we de¯ne the conditionali i2I
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discounted expected payo® to player i at time t by

Z h ³ ´i1
t ¡r(¿¡t) tV (f jh ) = r e E u ~s(f jh )(¿ ) d¿;i i

t

¤where E[¢] is the expectation operator. A strategy pro¯le f is called a perfect equilibrium
¤ ¤ t(PE) if for each i 2 I, f is a best response to (f ) after every history h , i.e.,j6=ii j

¤ t ¤ tV (f jh ) ¸ V (f nf jh )i i i

for any of player i's strategies f .i

One immediate result in the asynchronously repeated game is that for almost all histories,
mixed strategies will not be used at any revision opportunity. Hence, the mixed strategy
minimax payo® which is always an equilibrium of the stage coordination game is not the

¡benchmark here necessarily. Hereafter, we will often denote a pure strategy by f (h ) asi

well as a mixed strategy.

t tGiven a history h = h 2 H, let h ±(!; s ) denote the concatenated history in which, afterj
t t t ¡h , the next state ! 2 ­ is reached, at which player j takes s . Given h 2 H, h ± ! 2 Hj j

tis a path such that after h , state ! is reached (without specifying the revised action). Using
¡this expression, the value after h ± ! 2 H is given by

V (f jh ± !) ´ V (f jh ± (!; f (h ± !))):i i i(!)

The analysis will make extensive use of the following recursive formulation. The con-
t ttinuation value to i induced by f after history h 2 H with !(h ) = ! may be expressed

as X X
t t t 00 0V (f jh ) = (1¡ µ )u (s(h )) + µ V (f j h ± ! ): (2)i !! i !! i

0 0! 2­ ! 2­

where Z 1 ¡rt0 0µ ´ p e dº(t)!! !!
0

0 (3)= expected discounted probability that !

is the ¯rst state reached from !.

2.4 Existence

The following is a standard proof for the existence of perfect equilibria. What is proven here
is actually the existence of Markov perfect equilibrium.
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~Theorem 0 For any asynchronously repeated game ¡ = hG; º;­; p; ri there exists at least
one perfect equilibrium.

¡ ¡Proof Partition H into } = fH g such thats2S;!2­!s

¡ ¡ ¡ ¡ ¡H = fh 2 H j!(h ) = !; s(h ) = sg; 8! 2 ­; 8s 2 S:!s

Observe that } constitutes the \payo® relevent" set of states. Suppose that each player takes
a ¾(})-measurable behavior strategy where ¾(}) is the ¾-algebra generated by }. Then the
play of the game follows a Markov process, and we can represent a strategy of player i by

}the \Markovian" function Ã 2 [¢(S )] . The strategy represented by Ã is denoted by f .i i i Ãi

i iFor each i 2 I let BR = fBR g satisfy!2­;s2S!s

iBR (Ã) = arg maxV (f nf j h) (4)Ã Ã!(h)s i
fÃi

Letting BR = (BR ) , equation (4) de¯nes an upper hemicontinuous correspondence BR :i i2I
} } }£ [¢(S )] ! £ [¢(S )] where£ [¢(S )] is compact and convex. Therefore, by Kakutani'si i i i i i

¯xed point theorem, there exists Ã such that Ã 2 BR(Ã) holds. Standard arguments show
that the corresponding strategy f is a best response to (f ) within the class of allÃ Ã j6=ii j

¡strategies after any history h (or, more precisely, after any h ) since all j; (j6= i) only vary
¡their behavior over \states" !s 2 H . Hence, f is a perfect equilibrium. 2Ã!s

As a special case, we will be interested in pure coordination games. A game G is a pure
5 ¤coordination game if u = u = u for all i and j. Let s denote the pro¯le that gives eachi j

¤player his highest payo® u .

3 Main Result

3.1 A Theorem

The main result below demonstrates that order of limits matters. The typical Folk Theorem
¯xes the stage game and then varies r. By contrast, the hypothesis of the Theorem ¯xes r
and then varies G. The former will surely be more familiar to those familiar with the Folk
Theorem. However, the latter is more useful if it is the discount rate r, rather than the stage
payo®s, which is pinned down by exogenous data.

5This can be weakened so that we require only that u = ®u + ¯ for ® > 0 and ¯ 2 <.i j
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0Theorem Given ² > 0 and any asynchronously repeated game hG; º; (p ); ri in which!!
¤G = (I; S; u) is a pure coordination game with u as the unique Pareto e±cient outcome,

£ Si2I ithere exists ¹r > 0 such that for any r 2 (0; ¹r), there exists an open subset U ½ <
0 00with u 2 U such that in an asynchronously repeated game h(I; S; u ); º; (p ); ri with u 2 U ,!!

¤every continuation value in any perfect equilibrium is at least u ¡ ².

3.2 The Order of Limits: An Example

We apply the Theorem to the class of two-player alternating move games where the stage
¤game is of the form G below. In the stage game G , u > 2 and ®; ¯ < 1. Clearly, G is3 3 3

an \impure" coordination game since the costs of miscoordination are not identical. Notice
that G satis¯es full dimensionality. Using the full-dimensionality of this game, we ¯rst ¯x3

® and ¯ then vary r to construct a perfect equilibrium of which payo® is bounded away
¤ ¤from the Pareto e±cient payo® pair, (u ; u ). Next, we apply our Theorem to show why the

construction fails when, ¯rst ¯xing r, ¯ is varied to be su±ciently close to ®.

2

¤s ¹s22

¤ ¤ ¤1 s u ; u ¯; ®1

¹s ®; ¯ 1; 11

¤G : u ¸ 2; ®; ¯ < 12

Figure 3

We construct such an equilibrium in the following way. First, we consider two phases,
Phase I and Phase II. Phase I is divided into four subphases given by the following.

` times m timesk times z }| { z }| {z }| {
¤ ¤ ¤ ¤ ¤ ¤s ! ¢ ¢ ¢ ! s ! (¹s ; s )! ¢ ¢ ¢ ! (¹s ; s )! ¹s! (s ; ¹s )! ¢ ¢ ¢ ! (s ; ¹s )!1 1 2 22 2 1 1

Phase I:A Phase I:B Phase I:C Phase I:D

This is the prescribed path in Phase I. After the last stage of Phase I.D, the system returns
to the ¯rst stage of Phase I.A. In this construction, k; `; and m satisfy the following:

¤ ¤u k + ®` + 1 + ¯m u k + ¯`+ 1 + ®m
> > 1; (5)

k + ` + 1 +m k + `+ 1 +m
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and ¤u + ¯`+ 1
< 1: (6)

`+ 2

Such k; `; and m exist. Indeed, we choose ` large enough to satisfy (6). Then choose m
so that ®` + ¯m is greater than ¯` + ®m, i.e., ` > m if ® > ¯, and vice versa. This will
guarantee the ¯rst inequality of (5). Note that we cannot ¯nd such a m if the game is pure
coordination, i.e., ® = ¯: Finally, take a su±ciently large k to satisfy the second inequality
of (5).

¤ ¤ ¤Phase II is the same as Phase I except that (¹s ; s ) (resp. (s ; ¹s )) is replaced by (s ; ¹s )1 2 22 1 1
¤(resp. (¹s ; s )). That is, Phase II is a mirror image of Phase I with respect to the players.1 2

The play of the game begins with the ¯rst stage of Phase I.A and stays in Phase I, following
the above arrows, unless there is a deviation. If player 1 deviates, then the system moves to
an appropriate subphase of Phase II. For example, if player 1 deviates in Phase I.B to take
¤s , then the system goes to some state corresponding to player 2's move in Phase II.A.1

If player 2 deviates, then we have the following transitions:

1. If player 2 deviates in Phase I.A, then player 2's prescribed action in the next move is
¤ ¤ ¤to return to s , and player 1 will keep s until player 2 takes s . After player 2 returns,2 1 2

the system goes to the last stage of Phase I.A.

2. If player 2 deviates to take ¹s earlier than prescribed in Phase I.B, then player 1 will2
¤keep ¹s until player 2 takes s , and then the system moves to the ¯rst stage of Phase1 2

¤I.B. If player 2 deviates to keep taking s in the last stage of Phase I.B, then the system2

moves to the second last stage of Phase I.B.

¤3. If player 2 deviates to take s in Phase I.D, then the system moves to the last stage of2

Phase I.A. If player 2 deviates to keep taking ¹s in the last stage of Phase I.D, then2

the system moves to the second last stage of Phase I.D.

Note that player 2 will have no revision point in Phase I.C. Prescribed actions and the
transition in Phase II are the same as those in Phase I except that the roles of the players
are reversed.

Now, we are in a position to check that incentive constraints are satis¯ed for a su±ciently
small discount rate r > 0. Note that this means we now vary r having ¯xed payo® parameters
® and ¯. If player 1 deviates in Phase I, his expected payo® converges to

¤u k + ¯`+ 1 + ®m
(7)

k + `+ 1 +m
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as r goes to zero. On the other hand, his expected payo® in Phase I converges to
¤u k + ®` + 1 + ¯m

;
k + `+ 1 +m

which exceeds (7). Thus, for a su±ciently small r > 0, player 1 has no incentive to devi-
ate. To check player's incentive to deviate, we examine three cases indicated in the above
construction.

¤1. Phase I.A: If player 2 deviates, she will get ® for a while instead of u . Therefore, she
has no incentive to deviate there. Even if she keeps ¹s ; she will get only ® < 1:2

2. Phase I.B: If player 2 deviates to take ¹s earlier than prescribed, she will get 1 and2

then some extra ¯ before the system reaches the stage where she deviated. Since the
expected payo® along the equilibrium path exceeds one, and ¯ < 1; player 2 has no
incentive to deviate. In the last stage of Phase I.B, if she deviates, she will get ¯ < 1
for two more periods, which does not increase her payo®.

¤ ¤3. Phase I.D: If player 2 deviates to take s earlier than prescribed, then she gets u for2

one period, ¯ for ` periods, 1 for one period, and some ®'s before the system reaches
the original stage where player 2 deviates. From (6), the expected average payo® before
the system reaches the same stage is less than one. Thus, player 2 has no incentive to
deviate. Finally, in the the last stage of Phase I.D, if she deviates, she will get ® < 1
for two more periods, which does not increase her payo®.

Hence, the strategy pro¯le constructed above is a perfect equilibrium. It should be noted
that in a standard repeated game, we do not need this type of complicated construction since
the strategy pro¯le that prescribes ¹s for player i = 1; 2 after any history is a subgame perfecti

equilibrium. On the other hand, it is shown that in an asynchronously repeated game, such
a simple strategy does not constitute a subgame perfect equilibrium unless ® is su±ciently
larger than ¯. This type of construction is used in other Folk Theorems possibly without
synchronous moves and without public randomizing devices. See, for example, Dutta (1995),
Wen (1998), and Yoon (1999).

Now suppose that r is ¯xed in advance of ¯xing ® and ¯. The problem with this and
other constructions is the following. Returning to Inequalities (5) and (6), observe that they
are satis¯ed with a judicious choice of phase lengths k; ` and m which depends, in turn, on
values ® and ¯. In particular, for a r bounded away from 0, payo®s in (5) only approximate
actual dynamic payo®s in Phase 1. In fact, the LHS of (5) must exceed the RHS by more

¡rthan 1¡ e times the minimum absolute stage payo® di®erential. For simplicity, let z > 0
denote this di®erential. Then, the incentive constraint for Phase 1 is given by

¤ ¤u k + ®`+ 1 + ¯m u k + ¯` + 1 + ®m ¡r> + (1¡ e )z
k + ` + 1 +m k + `+ 1 +m

11



which we rewrite as

¡r®` + ¯m > ¯` + ®m+ (k + ` + 1 +m)(1¡ e )z: (8)

Instead of having to only satisfy ®` + ¯m > ¯` + ®m as before, we now require that (8) be
satis¯ed. Letting ® = ¯ + ", (8) becomes

¡r"(`¡m) > (k + ` + 1 +m)(1¡ e )z

which is clearly violated for " su±ciently small.

4 Proof of the Main Result

0Take as given an asynchronously repeated game hG;º; (p ); ri in which G = (I; S; u) is a!!
¤pure coordination game, and s 2 S is the unique Pareto e±cient outcome. Also take ² > 0

as given. Any a±ne transformation of u will give the same result in the following analysis.
We set ¹r so as to satisfy

( )
µ ¢ ¢ ¢ µ ² 1! ! ! !0 1 N¡1 Nmin : µ ¢ ¢ ¢ µ > 0 > 1¡ ;! ! ! !0 1 N¡1 N ¤N+1 µ(! ; ¢ ¢ ¢ ; ! ) 3jI j u ¡min u(s)(! ;! ;¢¢¢;! )2­ 0 N s0 1 N

2·N·j­j¡1

where

NX X
`¡1 0µ(! ; ¢ ¢ ¢ ; ! ) = 1¡ ¦ µ µ0 N ! ! ! !nn=1 n¡1 `¡1

0`=1 !6=!`X X X
0 0 0= 1¡ µ ¡ µ µ ¡ ¢ ¢ ¢ ¡ µ ¢ ¢ ¢ µ µ :! ! ! ! ! ! ! ! ! ! ! !0 0 1 1 0 1 N¡2 N¡1 N¡1

0 0 0!6=! ! 6=! !6=!1 2 N

Such an ¹r can be found since both µ ¢ ¢ ¢ µ and µ(¢) converge to p ¢ ¢ ¢ p > 0! ! ! ! ! ! ! !0 1 0 1N¡1 N N¡1 N

as r goes to zero. Also, let µ = minfµ(! ; ¢ ¢ ¢ ; ! ) : µ ¢ ¢ ¢ µ > 0g. Fix r 2 (0; ¹r).0 N ! ! ! !0 1 N¡1 N

0 S 0Consider a neighborhood of u given by U = fu 2 < j 8s 2 S; ju (s) ¡ u (s)j < ´=4gii

where ´ satis¯es
( )Z 11 ² ²¤ ¤¤ ¡r¿0 < ´ < min u ¡ u ; ; [1¡ e dº(¿ )] ;

2 2jI jj­j 3(jIj+ 1) 0

¤¤ ¤where u = max u(s), i.e., the second highest payo®. In the following, we consider ans6=s
0 0 0~ 0asynchronously repeated game ¡ = h(I; S; u ); º;­; (p ); ri with u 2 U .!!

12



0Now, ¯x a perfect equilibrium f of ¡ . For each i 2 I, each s 2 S, and each ! 2 ­, we
s s s slet V = inf V (f jh), and V = inf V (f jh). Note that V = min V .s(h)=s;!(h)=! i s(h)=s i !2­i! i i i!

¤For any ± > 0 there exists h 2 H such that s(h) = s and
¤sV > V (f jh)¡ ±; 8i 2 I: (9)ii

The continuation value for player i 2 I after h is given by
X X0 ¤V (f jh) = (1¡ µ )u (s ) + µ V (f j h ± !): (10)i i!(h)! !(h)!i
!2­ !2­

¤s¤If !(h) 2 ­ , then s(h ± !) = s and therefore, V (f jh ± !) ¸ V . Observe also that since f0 i i

is a perfect equilibrium strategy pro¯le, it must be the case that for all ! 2 ­ (j 2 I),j

¤¤ sV (f j h ± !) ¸ V (f j h ± (s ; !)) ¸ V (11)j j j j

¤swhere the second inequality holds due to the de¯nition of V . Since ju(s) ¡ u (s)j < ´=4,ij

jV (f jh) ¡ V (f jh)j < ´=2 holds for all i; j 2 I, all f and all h 2 H , and therefore, (11)j i

implies
¤sV (f j h ± !) ¸ V ¡ ´: (12)i i

Substituting (12) into (10) and using (9), we obtain
X X¤ ¤s 0 ¤ s0 0V > (1¡ µ )u (s ) + µ V ¡ ± ¡ ´ (13)!(h)! !(h)!i i i
0 0! 2­ ! 2­

Inequality (13) implies
± + ´¤s 0 ¤ RV > u (s )¡ :1i i ¡r¿1¡ e dº(¿ )0

¤sSince ± is arbitrary and independent of other variables, the de¯nition of ´ implies V >i
¤u ¡ ²=(jI j+ 1).

kWe will now show that for all k = 1; 2; ¢ ¢ ¢ ; jI j, after h with s(h) 2 S , its continuation
value satis¯es

²0sV (f jh) > V ¡ ; (14)i i jIj+ 1
0 k¡1 0 k¡1for some s 2 S if r < ¹r. Backward induction implies that (14) holds for all s 2 S if

0r < ¹r. Once we show (14) for all s and k's, we verify that 0 < r < ¹r implies that for all
0 ¤history h 2 H, V (f jh) > u (s ) ¡ ². Moreover, recall that the choice of ¹r is independent ofi i

f . Thus, the proof will be completed.

ŝkFix k = 1; 2; ¢ ¢ ¢ ; jIj and ŝ 2 S . By the de¯nition of V (! 2 ­), there exists h 2 H!i!

such that s(h ) = ŝ, !(h ) = !, and! !

²µŝV > V (f jh )¡ : (15)i !i! 3(jIj+ 1)j­j

13



We have X X0 00 0V (f jh ) = (1¡ µ )u (ŝ) + µ V (f j h ± ! ): (16)i ! !! !! i !i
0 0! 2­ ! 2­

0Since f is a perfect equilibrium, for each ! 2 ­ with j 2 I ,j

0 ŝV (f j h ± ! ) ¸ V (f j h ± (ŝ ;!) ¸ V ; (17)0j ! j ! j j!

ŝ ¤where the second inequality holds by the de¯nition of V . Similarly, if ŝ 6= s , thenjj! j

¤ŝ\sj0 ¤V (f j h ± ! ) ¸ V (f j h ± (s ;!)) ¸ V ; (18)0j ! j ! j j!

ŝAlso, by the de¯nition of V for each ! 2 ­ , we have0 0i!

0 ŝ 0V (f j h ± ! ) ¸ V ; 8! 2 ­ : (19)0i ! 0i!

Since ju(s) ¡ u (s)j < ´=4, then jV (f jh) ¡ V (f jh)j < ´=2 holds for all i; j 2 I , all f , all s,i j i

and all h 2 H, and therefore, (17) and (18) imply

0 ŝV (f j h ± ! ) ¸ V ¡ ´; (20)0i ! i!

and ¤ŝnsj0V (f j h ± ! ) ¸ V ¡ ´; (21)0i ! i!

respectively. Substituting these inequalities into (16), we obtain
X X

ŝ00 0V (f jh ) ¸ (1¡ µ )u (ŝ) + µ V ¡ ´: (22)0i ! !! !!i i!
0 0! 2­ ! 2­

Inequalities (15) and (22) imply

X X ²µŝ 0 ŝ0 0V ¸ (1¡ µ )u (ŝ) + µ V ¡ ¡ ´: (23)0!! !!i! i i! 3(jI j+ 1)j­j0 0! 2­ ! 2­

ŝ ŝSince i was arbitrarily chosen, (23) holds for all i 2 I. By de¯nition, V = V for some ! .0i! i0¤Take such ! . There exists i 2 I such that ŝ 6= s . Then there exists a chain ! ; ! ; : : : ; !0 i 0 1 Ni

with N < j­j and ! 2 ­ such that p > 0 for all n = 1; ¢ ¢ ¢ ; N . SequentiallyN i ! !n¡1 n

substituting ! (n = 0; 1; ¢ ¢ ¢ ; N in place of ! in (23) and applying (21), we obtainn

XPŝ ŝ00 0V ¸ (1¡ µ )u (ŝ) + µ V0 0! ! ! !! 2­ 0 0i i i!
0!6=!12 3

X X
ŝ04 50 0+µ (1¡ µ )u (ŝ) + µ V 0! ! ! ! ! !0 1 1 i 1 i!

0 0! 2­ !6=!2

(24)+ ¢ ¢ ¢ 2 3
XP ŝ04 50 0+µ ¢ ¢ ¢ µ (1¡ µ )u (ŝ) + µ V0 0! ! ! ! ! ! ! !! 2­0 1 i i!N¡2 N¡1 N N¡1
0! 6=!N

¤ŝns ²µi+µ µ V ¡ ¡ ´j­j:! ! ! !0 1 i!N¡1 N N 3(jIj+ 1)
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ŝ ŝUsing V ¸ V (8! 2 ­), we havei! i

" #
¤µ ¢ ¢ ¢ µ µ ¢ ¢ ¢ µ 2²ŝns! ! ! ! ! ! ! !0 1 0 1N¡1 N N¡1 Nŝ 0 iV ¸ 1¡ u (ŝ) + V ¡ii iµ(! ; ¢ ¢ ¢ ; ! ) µ(! ; ¢ ¢ ¢ ; ! ) 3(jI j+ 1)0 N 0 N

Thus, for all r < ¹r,
¤ ²ŝnsŝ iV > V ¡ ;ii jI j+ 1

¤ k¡1where, by construction, ŝns 2 S . 2i
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