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Abstract:

In many surveys multiple observations on the dependent variable are collected from a given

respondent.  The resulting pooled data set is likely to be censored and to exhibit cross-sectional

heterogeneity.  We propose a model that addresses both issues by allowing regression

coefficients to vary randomly across respondents and by using the Geweke-Hajivassiliou-Keane

simulator and Halton sequences to estimate high-order probabilities.  We show how this

framework can be usefully applied to the estimation of power outage costs to firms using data

from a recent survey conducted by a U.S. utility.  Our results strongly reject the hypotheses of

parameter constancy and cross-sectional homogeneity.
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Introduction

In many panel data sets groups of observations on the dependent variable are correlated

and censored at some threshold level for a given cross-sectional unit.  The estimation of the

resulting multivariate tobit model requires the calculation of high-dimensional probability

integrals.  This procedure is computationally involved beyond an order of three or four given

existing software capabilities.  Recent advances in the development of programming techniques

to simulate high-order joint probabilities (e.g. Börsch-Supan and Hajivassiliou, 1993,

Hajivassiliou et al., 1996) now allow for the consistent estimation of such models.   For example,

Hajivassiliou (1994) shows how these simulation techniques can be used to estimate a censored

panel data model in the context of external financial crises of developing countries.  Feenberg

and Skinner (1994) apply one of these simulators, the Geweke-Hajivassiliou-Keane (GHK)

recursive conditioning method, in a multivariate tobit estimation of a panel data set on health

care expenditures.

Data sets with a panel-like structure can also result from surveys that collect multiple

observations on the dependent variable from a given individual, household, or firm based on a

grouping factor other than time periods.  For instance, in many studies consumers are asked to

report expenditures on a variety of goods.  A recent example is the study by Cornick et al. (1994)

on household purchases of different types of milk.  In other applications, especially in the fields

of labor and development economics, surveys frequently capture the allocation of time of

household members across a variety of activities (e.g. Bhargava, 1997, Skoufias, 1993).  In the

context of estimating the value of energy reliability, commercial and industrial electricity

customers are often asked to provide estimates of power outage costs associated with a set of
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interruption scenarios (e.g. Beenstock et al., 1997).  A fourth area of application likely to

generate such data sets are contingent valuation-type studies that elicit respondents’ willingness

to pay (WTP) for a variety of different policy programs or quality levels.  For instance, Boyle et

al. (1993) administer a survey to boaters to elicit their WTP for white water rafting at different

hypothetical water flow levels.

In many of these cases, the resulting pooled regression model exhibits cross-sectional

heterogeneity.  Thus, observations associated with a given individual or firm2 are likely to be

correlated.  As is well known, the use of unadjusted OLS when disturbances are correlated yields

inefficient parameter estimates and biased standard errors.  Moulton (1986) shows that these

problems are generally exacerbated when the error correlation stems from intra-unit

heterogeneity. 3

 In addition, “zero” is often a valid answer in these studies.  This introduces a censoring

aspect into these models.  If there are multiple zero responses per unit, the high-order probability

integral problem described above in the context of panel data estimation arises.  This suggests

that the simulation techniques for joint probability terms, such as the GHK procedure, could be

successfully employed in the estimation of such survey-generated, censored pooled regression

models (CPRMs).  In past studies using CPRMs, researchers have generally circumvented the

computational hurdles associated with high-dimensional integrals by either assuming

independence of intra-unit observations (e.g. Beenstock et al., 1997, Woo and Pupp, 1992), or by

restricting the number of categories associated with each unit to a dimension that is compatible

                                                                
2 Henceforth, individual survey respondents will be alternatively referred to as “cross-sectional

units”, or simply “units”.

3 A related discussion in the context of CV-type studies is offered in Poe et al. (1997).
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with standard computational algorithms (e.g. Cornick et al., 1994).  In this paper, we specify a

pooled regression model with multivariate censoring that extends existing CPRMs by allowing

coefficients to vary over cross-sectional units, and by incorporating the GHK simulator and SML

techniques in the estimation process. We apply this specification to a set of data on power outage

cost estimates stemming from a recent survey of commercial/industrial customers conducted by a

U.S. utility.

The remainder of this text is structured as follows: We start with a discussion of the

econometric characteristics of the model, as well as estimation techniques.  The next section

briefly presents literature and data relevant to the application of our model to outage cost

analysis.  Estimation results and cost predictions are discussed in the fourth section.  We

summarize our findings in section five.

The Model

We assume that in a given survey, multiple answers are collected from each respondent.

Each answer corresponds to some category of the main grouping criterion.  Such a category

could be the expenditure on a specific consumer good, the number of hours allocated to some

daily activity, or the WTP for a specific policy program.  For simplicity, and in view of our

application below, we shall call these categories “scenarios”, and assume that the answers

solicited from each respondent take the form of dollar amounts.  Each response to a specific

scenario by a given survey participant constitutes an observation on the dependent variable.   We

stipulate that these observations are generated by some underlying latent variable, and that they

are censored at zero.  To make censoring an important feature of the model, we further assume
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that there are a substantial number of “zero dollar” observations within and across cross-

sectional units.  We model this censoring aspect with a generic tobit specification:
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Where y*
is is the latent value of the dependent variable corresponding to an observation

associated with unit i and scenario s, yis is the observed value, xis represents a set of scenario

features, β  is a vector of coefficients, and ε is is a random error term.

In general, each response will depend on unit-specific characteristics, and scenario

features.  However, the inclusion of observed attributes of respondents in our CPRM may cause

omitted variable problems, since they are likely to be correlated with unobserved error

components.  For example, in the context of our application below, firms’ cost estimates

associated with a specific interruption scenario may well depend on firm characteristics that are

not captured in a given survey, such as certain details of the production process, or the sensitivity

to interruptions of existing machinery.  Many of these unobserved components will, in turn, be

correlated with more easily observable firm attributes such as energy consumption for a given

time period or peak demand figures.  Therefore, we consider only scenario features as

explanatory variables in our model.

In addition, we link unit-specific observations by allowing parameter sets associated with

a given respondent to vary randomly around a common mean-coefficient vector.  This translates

into the assumption that scenario features have a different effect on different cross-sectional

units, which is intuitively sound in many applications.  Our random parameter specification is

similar to the model proposed by Swamy (1970).  For a given unit i:
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Y*
i is a Tx1 vector of latent variable values associated with each observation.  Xi is a Txk matrix

of scenario characteristics.4  The kx1 coefficient vector associated with each unit consists of a

common mean vector β , and a vector ai that indicates unit-specific deviations from this set of

mean parameter values.  We assume that these deviations are uncorrelated across units, and are

distributed with mean vector zero and the common variance-covariance matrix ∆.  The diagonal

and off-diagonal elements of ∆ correspond, respectively, to the variance and covariance terms of

coefficients associated with scenario characteristics.  The explicit estimation of these parameters

is, by itself, an important objective in many studies. We will demonstrate this added benefit of a

random coefficients specification in our application below.

The term ε i is a normally distributed random vector with a mean vector of zeros and the

common variance matrix σ2
ε IT  for all units.  Consequently, the unit-specific coefficient vector β i

                                                                
4 For convenience, we assume that our data set includes the same number of rows of

observations for each cross-sectional unit.  The extension to a model with unbalanced cross-

sectional observation sets is straightforward.
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and latent variable vector y*
i are random variables with the following multivariate normal

distribution:
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Thus, our pooled model over all cross-sectional units takes the form:
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Finally, like Swamy, we assume that xi, ai, and ε i are uncorrelated within and across

firms.  If censoring was not an issue, estimation of our model using generalized least squares

(GLS) techniques would be straightforward.5  Capturing the presumed strong censoring aspect

prevalent in our data, however, requires the switch from least squares to a framework of joint

probabilities and maximum likelihood estimation.

Given our assumption of independence of error terms across firms, the likelihood

function will be a product of likelihood segments for each unit.  In general, the joint probability

of observing the T latent variables associated with a given firm is:

                                                                
5 See for example Swamy (1970).



8

( ) ( ) ( )iiiTiiiiiiTiiiiTiii xvvvfxyyyfyyyp Ω=Ω= ,|,...,,|,...,,..., 21
**

2
*
1

**
2

*
1 ββ (6)

where f (.) denotes the multivariate normal density function, and vi is the combined error term
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If there are no “zero dollar” observations in a unit’s bundle of responses, (6) constitutes the

contribution of this unit to the likelihood function.  If some of the latent variable observations,

say p out of T, are non-positive, we observe:
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We denote this unit-specific segment of the likelihood function as
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It is convenient to separate the censored from the uncensored components in (9).  The theoretical

underpinnings for this process are described in Pudney (1989).  For an empirical application see

Cornick et al. (1994).  The process is based on the partitioning of f (.) with respect to its censored

(denoted by superscript “c”) and uncensored (denoted by superscript “uc”) segments, and

applying Baye’s rule:
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Thus, using (9),
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where, for notational simplicity, xi
c refers to the whole bundle of censored observations.  F is the

multivariate normal cumulative distribution function (cdf).  We can then specify the segment of

the log-likelihood function for a cross-sectional unit as
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Accordingly, the log-likelihood function for the whole sample is
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The first term in (13) is simply a joint density, while the second term describes a joint

cdf, with a potentially up to T-fold integral (if all dollar reports are zero).  Since the numerical

evaluation of high dimensional integrals beyond an order of three or four is impractical given

currently available maximization routines, we apply simulation techniques to estimate these

components.

In recent years several simulation methods for the estimation of joint probability terms

have been developed by econometricians.  Hajivassiliou et al. (1996) test 13 of these techniques,

and find the Geweke-Hajivassiliou-Keane (GHK) simulator to provide for the overall best

estimation results.  As discussed in Börsch-Supan and Hajivassiliou (1993), the simulated joint

probabilities generated by the GHK algorithm have the desired property of being unbiased

estimates of the true probabilities, a continuous and differentiable function of the parameters of

the model, and bounded by zero and one.  The individual steps of the GHK procedure in the

context of our model are shown in the Appendix.

The simulated joint probabilities of observing censored cost reports replace the second

term in (14) for all relevant cross-sectional units.  The resulting simulated log-likelihood function
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can then be maximized with respect to the elements of β  and Ωi using conventional MLE

algorithms.

Application

In this section we show how the model outlined above can be applied to the econometric

estimation of survey-generated data on expected costs caused to commercial and industrial

customers by unannounced, transmission and distribution (T&D)-type power interruptions.

In recent years electric power providers and regulators have become increasingly aware

that the exclusive use of conventional engineering criteria 6 in designing, operating, and

maintaining electricity supply systems can lead to economically inefficient investments.

Traditionally, power utilities supply energy to a broad spectrum of customers, who differ in their

preferences and requirements for service quality and reliability. 7  Efficient supply planning and

                                                                
6 Examples for such criteria are loss of load expectation, reserve margin, or failure contingencies

(see Sullivan and Keane, 1995).

7 As described in Woo and Pupp (1992), service quality refers to the provision of electricity

within acceptable frequency and voltage ranges, while service reliability is defined as the

utility’s ability to deliver uninterrupted energy flows.  The focus of this paper is on the latter,

although many of the techniques and results presented could feasibly be applied to studies on

power quality.
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optimal pricing of electricity would capture these demand heterogeneities, such that, at the

margin, expenditures on service improvements and resulting benefits to consumers are equal.

However, the demand for energy reliability is, in general, not readily observable due to a lack of

market-based mechanisms that would allow customers to signal their preferences to power

suppliers.

Over the last 10 to 15 years, various theoretical and applied economic approaches to

estimate the marginal value of service reliability have been suggested in the resource and energy

literature.8  Many of these studies use survey-based approaches in their modeling and estimation

process.  In most survey-based reliability studies focusing on firms, respondents are asked to

provide cost estimates associated with various outage scenarios.  These reports together with data

on firm characteristics and outage features are then used to investigate marginal effects of firm

and outage characteristics on outage costs, and to generate cost estimates for specific outage

types and firm groups.  Most of the existing studies on this topic use either a tabular/graphical

presentation of descriptive statistics (Billington et al., 1986, Wacker et al., 1985), or ordinary

least squares (OLS) regressions in their econometric estimation process (Woo et al., 1991,

Analysis Group, 1990).  Only a few of them take account of the fact that cost data is censored

from below at zero, and adjust their model specification accordingly (e.g. Beenstock et al.,

1997,9 Woo and Train, 1988).

In the regression-type studies cited above, the correlation of cost reports associated with a

given outage scenario is implicitly specified as zero for both intra- and inter-firm observations.

                                                                
8 For an overview and comparative evaluation of the different strategies see Caves et al. (1990,

1992).

9 This citation refers to the “Subjective Evaluations” part of their study.
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In other words, each row of observations is treated as independent from all others.  While it can

be reasonably argued that observations are uncorrelated across firms, the assumption of intra-

firm independence is not likely to hold in reality.  Since many firm characteristics are generally

unobserved and thus not explicitly included in the estimation model, it can be expected that

regression error terms are in fact correlated across firm-specific observations.10

In brief, the set of data stemming from these scenario-based outage cost surveys exhibits

all the features of a CPRM described in earlier parts of this text.  Also, allowing regression

coefficients to vary randomly over firms is intuitively attractive in this context.  It is highly likely

that due to heterogeneity individual firms will be affected differently by a given outage

characteristic (such as length or time of occurrence).  Thus, our theoretical model outlined above

should be well suited to estimate this type of data.

 The utility firm in question was interested in allocating future investments in reliability

equipment and services efficiently over circuits and feeder loops in its service area, both in scope

and in timing.  This objective required information on the sensitivity of customers to T&D type

power outages in their neighborhood.  The firm launched two parallel surveys, one for residential

customers, the other one for commercial/industrial (C/I) units.  Results from the latter were made

available for this study.

In order to assure a sufficiently strong representation of C/I customers of different sizes

survey designers grouped the population of firms into four categories, based on annual energy

sales figures.  Overall, 1451 customers were included in the survey. Firm managers were asked

                                                                
10 As discussed earlier, ignoring this correlation will reduce the efficiency of parameter

estimates.  This potential problem is acknowledged by Woo and Train (1988), and briefly

discussed in Caves et al. (1990).
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to calculate costs caused by each of six hypothetical outage scenarios.  Following previous

survey-based studies (e.g. Wacker et al., 1985, Woo and Train, 1988), these calculations include

the value of lost production or sales, reduced staff productivity, the costs of making up for lost

sales or production, equipment repair, the cost of operating backup equipment, and re-starting

costs, net of any reductions in operating costs attributable to the outage.11  The different outage

scenarios are summarized in Table 1.

The first three columns of Table 2 show the size group labels, mean annual energy

consumption, and original sample sizes for each size category.  In order to ensure sufficient

intra-firm variability in scenario features, only units that reported a full set of cost estimates were

retained for this analysis. The last three columns in the table display the number of these

remaining firms, the resulting total number of observations, and the percentage of zero cost

observations in each size group.12  This percentage declines as firm size increases, indicating that

a larger firm is more likely to incur positive costs from a given outage than a smaller unit.

This notion extends naturally to mean and median sample statistics, as shown in Table 3.

For any given scenario, median and mean estimates increase with group size.  As expected, the

weekday, daytime outages (excluding the momentary scenario) prompted the highest cost

                                                                
11 As discussed in Pasha, Ghaus, et al. (1989), and in Munasinghe and Sanghvi (1988), power

outages can also cause indirect costs to parties that are not directly affected by the outage, but

stand in some economic relation with the affected firms.  For this study, only direct, short-term

costs are considered.

12 In each group, there are many firms with multiple (up to six) zero cost reports.  Thus, there is a

clear need for the application of simulation methods for high-order probability terms, as

discussed earlier.
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reports, ranked by outage duration.  Cost estimates for a weekend, morning interruption are

considerably higher than for the weekday, nighttime scenario.  The 1-2 second outage generated

the smallest mean and median cost estimates.

The dependent variable in our specification is expected outage cost, in dollars. The

independent variables are outage duration in hours (“length”), and dummy variables for the two

characteristics describing the time of occurrence of the interruption: weekday vs. weekend

(“day”), and day vs. night (“time”).13  We model both cost and duration in log-form. 14  This

specification is popular in outage cost studies, since it yields an intuitively appealing concave

(but never downward sloping) cost-over-duration function. 15  The shape of this function suggests

that incremental costs are largest at the onset of an outage, but decrease as firms start to take

damage control measures, e.g. by releasing employees, activating backup supplies, or by

temporarily transferring business activities to unaffected locations.

We also propose an innovative way to model momentary interruptions.  Clearly, intuition

dictates that costs should be zero for all firms if no outage occurs.  However, in the first few

seconds of an interruption costs jump up instantaneously for some firms, especially in energy-

                                                                
13 We also considered firm characteristics, especially those routinely collected by the energy

provider, as explanatory variables.  However, as previously discussed, we found that with these

characteristics we would introduce severe omitted variable and endogeneity problems into our

model and therefore decided to exclude them from our estimation.

14 In order to preserve zero-cost observations in log form, we follow Fishe et al. (1994) by re-

coding original cost values from zero to one before transformation.  This yields log- values of

zero at the truncation point, which is convenient when introducing censoring into the model.

15 See, for example, Sullivan and Keane (1995), and Woo and Pupp (1992).
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intensive and high-tech industries.  This introduces a conceptually awkward discontinuity at the

beginning of the duration function, which makes it difficult to interpret the constant term in a

regression model.  We circumvent this dilemma by specifying outage costs to consist of two

components, and instantaneous element and a segment associated with prolonged outage

duration.  We model this by including a constant term while setting the duration value for the

momentary outage scenario to zero.  This allows us to directly interpret the regression intercept

as the expected log-cost of a momentary interruption, and its variance, as captured through the

random coefficients specification of our model, as a measure of firm heterogeneity with respect

to instantaneous outage costs.  We assume that firms differ significantly in their sensitivity to

momentary interruptions, and thus expect this variance term to be large.  As will be shown

below, our estimation results confirm this assumption.

We apply our model separately to each of the size groups defined above.  Since the size

categories are based on annual electricity consumption, this allows us to capture the effect of

consumption, albeit in a discrete fashion, without exposing the model to omitted variable

problems.

Estimation Results and Cost Predictions

Table 4 summarizes the estimation results from the CPRM with random coefficients.

With a few exceptions, all estimated parameters are significant at the 1% level for all size

groups.  As expected, all slope coefficients are positive, i.e. costs are, on average, higher on a

weekday (as indicated by the dummy “day”), and during the day (as indicated by the dummy

“time”), and increase with outage duration.  Generally, the “time” dummy has a stronger effect

on costs than the “day” term.  The negative log-values of the regression intercepts for the first



17

three groups, and the small, positive value for group 4, respectively, indicate that the expected

costs stemming from a momentary outage during the baseline time period are generally close to

zero for the average firm.

The highly significant variance terms for all coefficients and size groups illustrate one of

the key results of this study: Clearly, intercept and slope parameters vary considerably over

cross-sectional units, indicating that a constant parameter model would be misspecified.  Since

the CPRM with random coefficients nests the independent tobit model, we can use a Likelihood

Ratio (LR) test of the null hypothesis that all elements of ∆ are zero to compare the two

specifications.16  Based on the outcome of this test, we reject the null hypothesis at any

reasonable level of significance for all size groups.  This, in turn, implies that our assumption of

correlated error terms within cross-sectional units holds.17

                                                                
16 As discussed in recent studies (e.g. Andrews, 1996), specifying parameter variances to be zero

may violate the regularity conditions for maximum likelihood estimation if the likelihood

function is not well defined on both sides of this zero-value threshold.  For our model, we

assume that Ωi as defined in (3) is always nonnegative-definite even for small negative values of

the diagonal elements of ∆.  Thus, the likelihood function is well behaved in any neighborhood

of the parameter values specified under the null hypothesis.

17 The log-likelihood values for the independent tobit model are –7156, -1569, -2061, and –1147

for sizes 1-4, respectively.  The corresponding LR-statistics are 1498.5, 276.4, 250.2, and

245.96.  The critical χ2 value at 10 degrees of freedom and a level of significance of 1%, for

example, is 23.21.  Since our parameter vector is restricted under the alternative hypothesis, the

LR statistic follows a mixed χ2 distribution, and standard LR test results may be biased towards

not rejecting the null hypothesis (Chen and Cosslett, 1998).  However, our LR-values are well
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As mentioned earlier, the explicit estimation of the variance-covariance matrix of the

coefficients allows for insights beyond those provided by a model with constant parameters.  For

example, the relatively large variance estimates for the constant term (i.e. momentary

interruptions), day, and time reflect the strong heterogeneity in expected cost reports across

individual firms.  This holds especially for momentary outages and for lower size groups.  Thus,

even though expected costs from a momentary outage are low for the whole sample, there are

firms that experience considerable damage even from a very short power interruption.

Information on cross-effects of outage features can be gained by examining the off-

diagonal elements of ∆.  With a few exceptions, all covariance terms are significant at a level of

5% or less.18  The coefficients for day and time exhibit a positive covariance, indicating that

firms that are relatively more affected by a switch from a baseline scenario interruption to a

weekday, are also hit harder by a day versus a night outage.  This concept extends in a similar

fashion to the covariance of time and outage length, at least for the first three size groups.  These

results are intuitively sound.  Unless a firm follows odd hours of operation, its sensitivity to

power interruptions should become transparent at all scenario margins.  However, as indicated

by the negative and significant covariance terms involving the regression constant, this pattern is

                                                                                                                                                                                                                
above the upper bound for the critical χ2 value for such a mixed distribution (given by χ2

(10)), and

the adjustment procedure proposed by Chen and Cosslett would not affect our test results in this

case.

18 We also performed a likelihood ratio test to examine the hypothesis that all off-diagonal terms

of ∆ are jointly zero.  The log-likelihood values for the resulting constrained model are –6835, -

1547, -2057, and –1085 for sizes 1-4, respectively.  The corresponding LR statistics are 856.4,

232.8, 242.1, and 121.4.  Again, the null hypothesis is clearly rejected for all four groups.



19

reversed for the impact of a momentary outage versus the day, time, and length coefficients.

This result suggests that a firm that experiences high instantaneous costs at the onset of a power

interruption will incur relatively smaller incremental cost increases over outage duration, and for

changes in the time of occurrence of the interruption.  This seems reasonable for units with a

high dependence on electricity and no alternative power generation capacity.  Conversely, outage

time and duration matters more, in terms of marginal cost increases, to firms that cope relatively

well with instantaneous interruptions.

For any mix of scenario features, our model yields predictions of latent outage costs in

log form.  Two conceptual steps are needed to translate these estimates into actual cost forecasts.

First, we convert expected latent log-costs into expected censored log-costs using the expression

for the first moment of a censored normal variable19
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The symbols Φ and φ refer to the standard normal cdf and pdf, respectively. The subscript “s”

stands for a specific scenario, as described by the day, time, and length specifications in xs.20  In

                                                                
19 See, for example, Greene (1997), p.960.

20 Since the cost prediction for a given scenario will be the same for any firm, we can omit an

additional “i” subscript in this context.
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the second forecasting step, censored log-costs need to be converted into absolute terms.

However, actual costs follow a log-normal distribution.  As is well known, simply

exponentiating predicted log-costs would result in biased predictions for expected actual costs

(e.g. Stynes et al., 1986).  Instead, the exponent of log-costs needs to be scaled by an appropriate

transformation term, i.e.

( )sss ytxYE ˆexpˆ| ⋅=




 β (17)

where Ys stands for predicted actual costs in dollars.  Several parametric and non-parametric

versions of t have been suggested in the literature, mainly in the context of OLS models with

homoskedastic errors. 21  If forecasting accuracy is important, Stynes et al. (1986) suggest to

specify t as a ratio of observed over predicted values.  This technique is also applied by Woo and

Train (1988) in the context of their outage cost model.  We take a similar approach by specifying

( )s

s
s y

Y
t

ˆexp
= (18)

where sY  represents the sample mean associated with in-sample scenario s.  Therefore, by (17)

and (18), our predicted actual costs for scenarios included in the survey will be equal to the

sample mean associated with these interruptions.  For out-of-sample cost predictions, we

                                                                
21 E.g. Duan (1983), Goldberger (1968), and Meulenberg (1965).



21

generate the necessary transformation terms by interpolation. 22  Table 5 summarizes the resulting

cost estimates for weekday, daytime outages by size groups.  As expected, outage costs increase

with duration for all groups, generally at a decreasing rate.  The sample means for the other two

interruption types used in the survey are shown in the last two rows of the table.  As indicated by

the preceding discussion of parameter estimates, expected costs associated with a weekend,

daytime outage are higher than those caused by a weekday, night outage for all size groups.

Conclusion

Based on research objectives or due to cost considerations researchers often collect

multiple responses associated with some categories or levels of the dependent variable from a

given respondent.  The resulting pooled set of data is likely to exhibit both of the following two

econometric characteristics: Observations on the dependent variable are censored, and error

terms include respondent-specific components and are thus correlated within each observation

bundle.

In this paper we propose an econometric model that simultaneously addresses both

issues.  We link respondent-specific observations in an econometrically efficient and intuitively

appealing way by allowing coefficient vectors associated with a given unit to deviate randomly

from a common sample mean.  We further demonstrate that due to recent progress made in the

simulation of joint probabilities of higher order the added imposition of censoring onto our

                                                                
22 Specifically, the t-terms associated with in-sample outages display an approximately log-linear

relationship to outage length.  We use this fact to derive transformation terms for outages of a

duration other than moment, 1,4, or 12 hours.
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model does not result in insurmountable computational hurdles.  Specifically, we apply the

Geweke-Hajivassiliou-Keane simulator in combination with Halton sequences to evaluate

multivariate cumulative distribution terms, and find that it performs well in this context.

As shown in our application, this framework allows for a more comprehensive analysis of

power outage costs to commercial and industrial customers than existing models.  Specifically,

there are two main improvements over existing specifications stemming from our model: The

number of interruption scenarios included in a given questionnaire is not limited by

computational constraints associated with the calculation of high-order probabilities, and the

explicit estimation of variance and covariance terms for regression coefficients allows for a

better understanding of firm heterogeneity associated with each individual outage feature.  Based

on our results, we conclude that the assumptions of parameter constancy and independent error

terms within units are clearly rejected for our sample, and probably not tenable in any outage

cost estimation of data collected from heterogeneous firms.

Since our model does not include any respondent characteristics, its cost or welfare

predictions are strictly scenario-specific, and unit-indiscriminant.  If predictions for subgroups of

respondents are desired, a model with unit-specific variables is needed.  In that case, correlation

of such variables with the stochastic components of the model may become a problem, and a

random parameter specification may not be appropriate.  However, due to the time-dependency

of many respondent characteristics, the predictive power of models that include observed

attributes of heterogeneous units may be short-lived.  In our specification, all unit-related

heterogeneity is treated as an unobserved error component.  By allowing this component to be

drawn from some probability distribution common to all cross-sectional units, our model is more

robust to changes in individual characteristics over time than a fixed-effects specification.



23

Therefore, it can generate predictions associated with different scenarios that are valid for a

prolonged period of time.  This should be an attractive feature to many decision makers,

especially when the frequent collection of data on respondent characteristics is too costly.
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Appendix A: The GHK Simulation Routine23

The following is based on Börsch-Supan and Hajivassiliou (1993) and Layton (1995):

We can express the joint probability given by the cdf term in (12) as simultaneously observing:
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23 The GAUSS code for this procedure was kindly made available by Vassilis Hajivassiliou at his

London School of Economics internet site.  The Matlab version of this routine, as well as

programming code for the general estimation process are available from the authors upon

request.
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In other words, (vi
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*) and Giei have the same multivariate normal distribution.  Therefore, we

can re-write (A1) as:
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where lij is the ith row, jth column element of Γ, and e1 to ep are the components of the ei vector.

As a first step in the simulation process, we draw e1 such that:

( ) 11
*
111 /' luxe ii −−≤<∞− β (A5)

This can be accomplished using the integral transform theorem (see for example Greene, 1997):

( )( ){ },/' 111
*
11

1
1 zluxe ii ⋅−−ΦΦ= − β (A6)

where z1 is random uniform [0,1], and Φ is the standard normal cdf. For our analysis, we used

Halton sequences (Halton, 1960) to generate the z-terms.  This process yielded more efficient

probability estimates than uniformly random draws from the unit interval or antithetic

techniques.  Appendix B provides an outline of this procedure.  In passing, we note that

( ) ( )( )11
*
1111

*
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Given the shape of Γiei shown above, the process is recursive, i.e. e1 will figure in the drawing of

e2, both enter the drawing of e3, and so on.  This process is repeated until its final step, the

calculation of pp, given e1 through ep-1:
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Thus, the joint probability for our desired set of outcomes is:
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This simulation process is repeated R times,24  yielding a mean joint probability of
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This term is precisely the simulated proxy needed for our censored likelihood segment lic used in

(15),  i.e.
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24 We specify R = 1000.
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Appendix B: Halton Sequences

In recent studies Train (1999) and Feenberg and Skinner (1994) discuss the merits of

Halton sequences in the context of simulating high-order probabilities.  Specifically, they find

that Halton sequences provide for smaller standard errors of the simulator and a faster

convergence rate of the associated maximum likelihood algorithm than standard uniform draws

or antithetic variance reduction methods.  Our own Monte Carlo tests for GHK simulators based

on different drawing methods of zi in (A6) using original test specifications given in Börsch-

Supan and Hajivassiliou (1993) confirmed these findings.  The following brief outline of Halton

sequences follows closely the studies by Train and Feenberg and Skinner cited above.25

Halton sequences are designed to span most efficiently the unit interval [0,1].  As such,

they are often labeled as “pseudorandom” drawings.  Each sequence is calculated based on a

different prime number.  For prime number p, for example, the first step in the Halton procedure

is to divide the unit interval into p parts.  The dividing points become the first elements in the

sequence.  Each of the p sub-divisions of the unit interval is, in turn, divided into p parts.  The

new dividing points constitute the next elements of the sequence, and so forth.  Since early

elements in a given sequence tend to be correlated over sequences with different primes, the first

10 or so elements of each sequence are usually discarded.

For our GHK application we require a matrix of Halton terms with i rows and r columns,

where i is the dimension of the multivariate probability term to be simulated (i.e. between 1 and

6), and r equals the desired number of GHK repetitions (i.e. 1000).  For example, the estimation

                                                                
25 The GAUSS code for generating Halton sequences is kindly provided in the appendix of the

Feenberg and Skinner study.  The Matlab version is available from the authors of this study.
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of the likelihood contribution of a firm with 4 zero-cost observations requires the generation of

four Halton sequences, based on the prime numbers 3, 5, 7, and 11, respectively.
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Tables:

Table 1: Outage Scenarios
Scenario Duration (hrs) Day Time

1 1 Weekday 10:00 AM
2 Moment (1-2 seconds) Weekday 10:00 AM
3 4 Weekday 10:00 AM
4 12 Weekday 10:00 AM
5 1 Weekday Midnight
6 1 Weekend 10:00 AM
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Table 2: Sample Characteristics by Size Group
Group Group Mean No. of Firms No. of Firms No. of Precentage of

Annual Energy (original) (retained) Observations Zero Cost 
Consumption (MWH) (retained) Observations

1 12 933 671 4026 43%
2 131 189 132 792 29%
3 670 209 161 966 20%
4 3102 120 82 492 14%
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Table 3: Sample Statistics for Median and Mean Cost Estimates

Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean
Size

1 $135 $540 0 $44 432 $1,355 900 $2,553 0 $69 0 $178
2 $400 $1,280 0 $149 1000 $2,901 2650 $8,739 0 $323 162 $552
3 $1,000 $3,368 0 $915 4000 $8,272 7500 $18,501 150 $1,470 400 $2,086
4 $3,000 $8,078 100 $861 7775 $24,979 20000 $57,146 500 $3,498 900 $4,802

Scenario
1 2 3 4 5 6
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Table 4: Parameter Estimates From the Censored Random Coefficients Model

Parameter Estimate s.e Estimate s.e Estimate s.e. Estimate s.e.

Constant -12.861 a 0.650 -7.188 a 0.873 -2.860 a 0.520 0.200 0.678
Day 3.231 a 0.213 1.425 a 0.276 1.234 a 0.244 1.466 a 0.398
Time 7.973 a 0.515 5.886 a 0.636 2.770 a 0.273 1.224 a 0.318
Length 1.190 a 0.028 1.179 a 0.049 1.206 a 0.054 0.998 a 0.079

Var (const.) 111.543 a 11.420 73.937 a 14.158 40.361 a 5.366 34.094 a 6.364
Var (day) 17.908 a 1.442 8.421 a 1.537 7.621 a 1.257 10.965 a 2.195
Var (time) 31.916 a 4.592 28.334 a 6.526 10.006 a 1.550 6.603 a 1.355
Var (length) 0.220 a 0.021 0.202 a 0.034 0.342 a 0.054 0.415 a 0.081
Cov (const., day) -30.599 a 2.362 -16.425 a 2.844 -8.620 a 1.850 -11.951 a 2.553
Cov (const., time) -54.282 a 7.236 -40.693 a 9.475 -15.205 a 2.490 -8.080 a 2.386
Cov (const., length) -2.111 a 0.317 -2.069 a 0.468 -2.200 a 0.447 -1.865 a 0.537
Cov (day, time) 13.015 a 1.783 8.209 a 2.405 2.684 a 0.934 4.278 a 1.262
Cov (day, length) -0.045 0.112 -0.060 0.147 -0.317 0.171 -0.280 0.282
Cov (time, length) 0.887 a 0.162 0.797 a 0.289 0.393 b 0.193 -0.187 0.235

Var (eps.) 1.630 a 0.075 1.440 a 0.135 1.745 a 0.154 1.109 a 0.134

Sample size 4026 792 966 492
Log likelihood -6406.806 -1430.663 -1935.954 -1024.315
Ghk replications 1000 1000 1000 1000

aSignificant at the 1 percent level bSignificant at the 5 percent level

Size 1 Size 2 Size 3 Size 4
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Table 5: Predicted Average Outage Costs

Outage Type Size 1 Size 2 Size 3 Size 4
Weekday, daytime

Length (hrs)
Moments 44 149 915 861

1s 540 1280 3368 8078
2 907 2183 5989 14765
3 1174 2693 7556 20357
4s 1355 2901 8272 24979
5 1607 3682 10145 30173
6 1825 4455 11844 34995
7 2013 5216 13366 39466
8 2171 5961 14714 43603
9 2302 6687 15892 47424

10 2408 7393 16910 50944
11 2491 8077 17776 54179
12s 2553 8739 18501 57146

Weekday, night (1 hr) s 69 323 1470 3498

Weekend, daytime (1 hr) s 178 552 2086 4802

sSample statistic

Costs ($)


