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Abstract

This paper investigates a generalized method of moments (GMM) approach to
the estimation of autoregressive roots near unity with panel data. The two moment
conditions studied are obtained by constructing bias corrections to the score functions
under OLS and GLS detrending, respectively. It is shown that the moment condition
under GLS detrending corresponds to taking the projected score on the Bhattacharya
basis, linking the approach to recent work on projected score methods for models with
in..nite numbers of nuisance parameters (Waterman and Lindsay, 1998). Assuming
that the localizing parameter takes a nonp ositve value, we establish consistency of the
GMM estimator and ..nd its limiting distribution. A nogable new ..nding is that the
GMM estimator has convergence rate n*=; slower than ' n; when the true localizing
parameter is zero (i.e., when there is a panel unit root) and the deterministic trends
in the panel are linear. These results, which rely on boundary point asymptotics,
point to the continued di¢culty of distinguishing unit roots from local alternatives,
even when there is an in..nity of additional data.

JEL Classi..cation: C22 & C23
Keywords and Phrases: Bias, boundary point asymptotics, GMM estimation, local

to unity, moment conditions, nuisance parameters, panel data, pooled regression,
projected score.

1 Introduction

Recent years have seen the introduction of several important panel data sets where the
cross sectional dimension (say, n) and the time series dimension (say, T) are comparable
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in magnitude. Some of these panel data sets, like the Penn World Tables, have time series
components that are nonstationary. These features distinguish the new data from the
characteristics that are conventionally assumed in the analysis of panel data.

Since the beginning of the 1990’s, there has been ongoing theoretical and applied
research on the use of large n and T panels allowing for nonstationarity in the data over
time. The theoretical research includes the study of panel unit root tests (e:g:; Quah,
1994, Levin and Lin, 1993, Im et al; 1996, Maddala and Wu, 1997, and Choi, 1999), panel
cointegration tests (e:g:; Pedroni, 1999, Binder et al), and the development of linear
regression theories for panel estimators under nonstationarity (e:g:; Pesaran and Smith,
1995, and Phillips and Moon, 1999). Applied research includes tests of growth convergence
theories (Bernard and Jones, 1996), purchasing power parity relations (MacDonald, 1996,
Oh, 1996, Pedroni, 1996, Wu, 1996, and Wu, 1997), and studies of the international links
between savings and investment (Coakley et al, 1996 and Moon and Phillips, 1998).

Two recent papers by the authors (Moon and Phillips, 1999a & b) study panel re-
gression models that allow for both deterministic trends and stochastic trends. When the
deterministic trends in the nonstationary panel data are heterogeneous across individuals,
Moon and Phillips (1999a) show that the maximum likelihood estimator (MLE) of the lo-
cal to unity parameter in the stochastic trend is inconsistent. They call this phenomenon,
which arises because of the presence of an in..nite number of nuisance parameters, an
incidental trend problem because it is analogous to the well-known incidental parame-
ter problem in dynamic panels when T is ..xed*. To solve the incidental trend problem,
Moon and Phillips (1999b) propose various methods, including an iterative ordinary least
squares (OLS) procedure and a double bias corrected estimator, and establish limit the-
ories for these consistent estimators that can be used for statistical inference about the
localizing parameter.

As a continuation of the two studies just mentioned, the present paper investigates
a generalized method of moments (GMM) estimator of autoregressive roots near unity
with panel data. We establish two moment conditions that form the basis for inference.
The ..rst moment condition is obtained by adjusting for the bias of the score function
after conventional OLS detrending. The second moment condition is constructed by
adjusting for the bias of the score function following GLS (or quasi-diaerence - QD)
detrending. Interestingly, the second moment condition is shown to correspond to the
Gaussian projected score, where the projection is taken on the so-called Bhattacharya
basis that has been studied recently in the conventional incidental parameter problem by
Waterman and Lindsay (1996, 1998) and Hahn (1998).

Consistency of the GMM estimator is proved under the assumption that the local-
izing parameter takes a nonpositive value. This condition is not too restrictive because
most econometric models consider non-explosive autoregressive regression models. Nev-
ertheless, the restriction does matter in deriving the limiting distribution of the estimator
because it is possible that the true parameter lies on the boundary of the parameter set.
The most interesting case is, of course, the pure unit root case where the true localizing
parameter is zero. In this case, in establishing the limiting distribution we cannot use
the conventional approach that approximates the ..rst order condition because the true
parameter could be on the boundary of the parameter set. To avoid this di¢culty, we use
the approach that takes a quadratic approximation of the nonlinear objective function
and optimize it on the parameter set (c.f. Andrews, 1999, for some recent developments
of estimation and inference in boundary problems).

One of the most interesting ..ndings in the present paper is that the GMM estimator
has slower convergence rate than = n when the time series components in the panel have
unit roots (i.e., the true localizing parameter is zero), and the deterministic trends are

1Lancaster(1998) provides a recent general survey of the incidental parameter problem in econometrics.



linear. In this case the convergence rate is actually O(n*=®) rather than O(pﬁ). This
slow convergence rate arises because of lack of information in the moment conditions
when there is a unit root, i.e., at the point ¢ = 0 in the space of the localizing parameter.
It points to the continued di¢culty of distinguishing unit roots from local alternatives in
the presence of deterministic trends even when there is an in..nity of additional data from
a cross section.

The paper is organized as follows. Section 2 lays out the model and gives the ba-
sic assumptions that are maintained thought the paper. In section 3 we introduce two
moment conditions and prove that the second moment condition corresponds to a Gaus-
sian projected score on the Bhattacharya basis. In Section 4 we establish consistency of
the GMM estimator and obtain the limiting distributions of the GMM estimator when
the true parameter is less than zero and equal to zero. The appendix contains technical
derivations and proofs of the results in the main text.

2 Model and Assumptions
The model considered here is the panel system written in components form

Ziy = _?gpt+yit @
Vit = Witi1+ "iv

where the autoregressive coe@cient
s -
c c
h=exp = »1+—;
T T

is local to unity and the deterministic trend

Opt = (t; 5t (p£ 1) polynomial trend vector.

Let o and %y =1 +£T° denote the true parameters. The main interest of the paper is to
..nd a consistent estimation procedure for the localizing parameter co: A case of special
interest is the panel unit root model where ¢co = 0:

In practice, the most widely used trend in empirical applications is the linear trend,
when g;¢ = tin (1). Inlater sections of the paper as part of the asymptotic development we
need to verify some properties of complicated nonlinear functions of ¢ that depend on the
trend gpe: These functions are so complicated that it is very di¢cult to establish general
analytic results under the set up of the general polynomial trend function gpe = (t;:: stP)Y
Instead, we rely on numerical methods for this part of the analysis. And to assist the
analytic develo(meent we restrict our attention to the following two cases: (i) gyt = tand

(ii) goe = ;12 : The set up is formalized as follows:

Assumption 1 (Trend Formulation) ¢
The polynomial trend in model (1) is either (i) gyt =t or (ii) go¢ = t 2

Assumption 2 (Error Condition) "j; are linear processes satisfying the following condi-
tions. P
(a) "it = j1:0 CijUit;j; Where uj; are iid across i over t with Eujy = 0; Euizt =1;
and Eu = Yya < 1
Pl - b
(b) C.J are sequence of real numbers with C’: = sup;jCijj < 1 and j=oJ éj <1
for some b > 2:



Assumption 3 (Initial Condition)
(a) Vio = zjo for all i
(b) E sup; jyioj < A for some - > 4:

Assumption 4 (Parameter Set)

(a) The localizing parameter c takes a value in a compact subset C=[c ;0] % R;
where ¢ < 0.

(b) The true localizing parameter cq is in the set Co = (¢ ;0 1]:

Assumption 4(a) restricts the parameter set C=[ ¢ ; 0] to be non-positive. This
restriction is made because in most econometrics application, j%j < 1 or %= 0 is of most
interest. When the true parameter ¢ = 0; the model becomes nonstandard in the sense
that the true parameter is on the boundary of the parameter set. Section 5 explores the
implications OBhe boundary point aspect of tlw case.

Let C; = j_OC.J, -i = C?% and o; = j= 1 CioCij: —i and =; are the long-run
variance and the one-sided covariance of the error process "it; respectively. The next
assumption is about the limits of the averages of the individual long-run variances and
covariances.

Assumption 5 (Long Run Variances)
(a) infj —j > 0
(b) —= Ilmn o F;=1 i is .nite.
(c) & =limp 4 VTP =1 T 2 is ..nite.
(d) = =limy 2 L = is .nite.

In most applications, the long-run variances —; and @; are not known and consistent
estimates of —; and @; are required. A widely used method is to employ a kernel estimation
approach (c.f., Park and Phillips, 1988). Once we obtain consistent estimates of —; and
o;; we can average them to produce consistent estimates of the quantities & and -:
Speci..cally, suppose that N is a rlggressmn residual of model (1) or model (4): De..ne
the sample covariances |.(_|) = Mt Nt Where the summation is de..ned over 1 -

t;t+] - T: Then, the kernel estlmators for 8; and 2, are:

x M|

g, = w6 6]
K
b4 Hj'ﬂ

2= W TiG); 3)
J=iT

where w(¢) is a kernel functign with w(0) = 1 and K is a lag truncation parameter.
Truncation occurs whenw <t = 0for jjj . K: Averaging over cross section observations
now leads to consistent estimators of & and —; viz.,
A 1K, a_1X,
o == g;and - = — —i
N s N iza
We assume that the estimates 4; and Z; have the following desirable properties. Examples

of such estimates &; and Z; are found in Moon and Phillips (1999b), and we will not pursue
this aspect of the theory further here.



Assumption 6 (Long Run Variance Estimation) Assume? that as (n; T ¥ 1) with a4
Ol

1 K-, - 1 X, ‘

=id-i =0 (1)

3 Moment Conditions

This section develops two moment conditions that will be used in GMM estimation of cq:
The central idea is to correct for the biases in the OLS detrended regression and in GLS
detrended regression, a process that leads to two dicerent moment conditions. It turns
out that the second moment condition is equivalent to a particular form of projected score
in the Gaussian version of model (1) : The projection is on the Bhattarcharya basis (Bhat-
tacharyya, 1946 and Waterman and Lindsay, 1996) and this correspondence is explored
in the ..nal part of this section.

3.1 The First Moment Condition

We start by writing Model (1) in augmented regression format as

Zit = Y%oZit;1 + %io + 00pt + "it; “
where
tio = Yo iofp:
%0 = ;20"T (Co); B
o= LG G
"1 (co) = (p£p) matrix dedending on ¢y and T:

The augmented format (4) has the drawback that linear regression leads to ine¢cient
trend elimination, but it has the advantage that the detrended data is invariant to the
trend parameters in (1): The ..rst moment condition uses the augmented formation (4)
and the second moment condition uses model (1):

The following notation is de..ned to assist with the analysis of the trend function
asymptotics and it will be used subsequently throughout the paper. Let

Q. — +..- 00 0.
io — =i0» jo/ »
_ i G, e DY) _ .. 0%,
Gt = LGy 5 M=) g = "1g(@) ;
0 e 0 ¢0. 0 s 0 ¢0. 0 e 0 ¢0.
Gpr = gplv---vgp; ; C,;PT:ilz Opos =5 %pTi1 Gpt = Gp1i i GpT
il
MpT = It i GpT G(;)TGpT G(;J)T;
Dor = diag(T;.;TP); Dpr =diag (1;D1);
A !il
- 1 . . .
hor (9) = Difgpe T Difom@uDit 6D

t=1

2Usually, the lag truncation parameter K in (2) and 3 tends to in..nity as n; T increase to in..nity
together, under a certain regularity condition. For example, Moon and Phillips (1999b) impose the con-
dition that % T 0as(n;T ¥ 1A) with % ¥ 0: This regularity condition is required for the asymptotics
underlying Assumption 6.



A !il

ilg0 1 X il 0 il il
Aot (t;s) = Dyrope T Dyt pt8ptDpr 8psDpr
t=1
IJZ 1 ﬂil
hp(R9) = 6 6 g (n)'dr  gp(s);
HZ i
Mo (rs) = 6D () g ()'dr gy (s):
Write z; = (zi1; 15 2im) 3 Zisg1 = (Zios 15 zim 1)’ and " = (M i)' Let
Z =Mprzi;" = Mpr"i;Z. 1: MpTzi;5 1!
1 1 i

Then, it is straightforward to show that

z=y and z =Y ;

TioTi Tiil il
where

y_:MpTYi;y 1:MpTYi;il;

~i

TR |

z =z i 1
=Ziti1 1
il g T

be the tth element of z ; and assume z = Zio = Yio:
il il

One straightforward procedure of estimatinglco (equivalently %) is to ..rst eliminate
the unknown trends ;o + °%g; by taking OLS regression residuals and then apply pooled
least squares with an appropriate bias correction for the serial correlation of ", calling
this method iterative OLS. However, as noted by Moon and Phillips (1999b), this iterative
OLS procedure yields inconsistent estimation of ¢y due to a nondegenerating asymptotic
bias between the detrended regressor and the detrended error term.

The ..rst moment condition is obtained simply by subtraction of this asymptotic bias
term in an iterative OLS procedure. More speci..cally, we write Model (4) in vector
notation as

Zi = YgZi;i1 + Gpr %50 + i

Multiplying Myt to the both sides of the equation, we have

z=%1z +",
~i ~iil ~i

where z vz and " are OLS detrended versions of zj; zj.;1; and "j; respectively. In

i Tl ~i
general, the detrended regressor vector z and the detrended error vector " are corre-
il ~i

lated.

The ..rst moment condition is found by correcting for the bias due to the correlation
between z and " : We will use my.jt (¢) to denote the data moment that appears in

~ipil ~i

the ..rst moment condition. It is de..ned as follows:

1H 3 C’ Mo
myr(©) = 7 21 1+3 2 . E___li/—\illT(C)iei (5)



1 . 5
= =y i(cicO)—yo Yo imihr @0

T~i~i;i1 ~iilTiril
1 X 1 XX x0T
= 7 "itYiti1 0 T "itYisiihpr (GS) i (C i Co)ﬁ y
t=1 t=1s=1 t=1 Fil t
N

where
1 X 5 t,s.
e @ =i ey (1)
t=2 s=1
M il
and" and Y are the t'" elements of " andY ; respectively. Theterms A ©
Tit “iil ot ~i “iil

and 8; correct for the asymptotic bias that arises from the correlation between " and
K 11 it

Yy .

Tl ot

Since the bias correction terms Z; 1,1 (c) and B; are approximations of the mean of
T Ly K ; E (myit (o)) is not exactly zero but it is asymptotically zero, in general.

i
Howevle; my.it (c) has a simple limiting form that delivers an exact moment condition.
When T is large, it is easy to ..nd that the distribution of my.it (c) is close to that of
nz 4 Z, 1T
R CLUCRECHICYRI (N*dr i 11(0) ;

~coi ~co;i

R,
where Je;i (r) = eCOFgr i) dW; (s) is a diousion, W; (r) is st[gn ard Brownian Motion,

J () = i (0 i JCO.(s) fip (r;s) ds; and 14 (c) = 01 e iR, (r; s)dsdr:
~ o
E J  (NdWi(r) =11(co);
0 ~coii
it follows that when ¢ = ¢
(SR VYA Z, M1
E - J MdWiMiCic) JI Mdrili) =0
0 ~coii 0 ~cCoi

giving the moment condition directly for this limiting form of my.it (c) :

3.2 The Second Moment Condition

Before we discuss the second moment condition, we introduce the following notation. Let

3 3 -
¢c. = 1ij 1+% L ; where L is the lag operator,
. Lt .
For = diag LT;:5TPi ==Dpr; € = Fi Cegpe
¢ d i 16 ¢ ¢
Gp (N = S % (D= L2rzpr’ T Gpe (r) =gy (1) i o (N);
1 X 0 Z1, ¢ )
Ar(@ = T COmEIm: Ap© = Gpe (1) Gpe ()
t=1 0
1 z 1 0
Bor () = =  CMmGeiiDiri  Bp(@) = Gpe (Ngp(r) o
0

t=1



The second moment condition is obtained from the ed ciently detrended regression equa-
tion. According to Canjels and Watson (1997) and Phillips and Lee (1996), the trend
coeCcient in the model (1) can be ecciently estimated in the time domain by employing
a GLS procedure that amounts to quasi-dicerencing the data with the operator ¢.. That
is, when the localizing parameter c is known, the asymptotically e¢cient estimator of —;
in (1) is

A 1A
. X CoUTx
i (€)= ¢cgpt¢cgpt €Yot CcZit
t=1 t=1

Denoting yit (i) = Zit i 10pt, We NOW write

A 1, A |
0 ™ 0 x
i@ = i+ ¢cgpt¢cgpt € OptYit (_io)

t=1 t=1

De..ne "it (¢ i0) = CcZit i 1 CcOpt:
The second moment function my.jt (c) is de..ned as

15'( 3 - 3 -
mair €)= it 67 ©) Yigr i © 1St (© 1 8 (6)
t=1
where A X 5 1
1 s
O AT OF L ) T T
t=2 s=1

3 -~

Notice that Yitig, Ai (c) _is the GLS regression residual of the regression equation zj; =

_?gt +yjrand "j¢ ¢;™;(c) is the OLS regression residual of the quasi-dicerenced equation

¢.zZit = _?¢cgpt + C.yit. In the second moment function my.it (c) we correct for the

asymptotic bias of 2 _ "t ¢ (c) Vitz1 “i(c) by substracting on the estimates

2.7 (c) and &;:
Recently, Moon and Phillips (1999a) showed that the Gaussian MLE of the panel
regression model (2) with linear incidental trends is inconsistent. The main reason for

inconsistency of the MLE is that the ggncentrated scoge of the (standardized) Gaussian

. . . T u A A .
likelihood function, £~ L.+ . " i (C) Viez1 (0 ;hasnon-zero mean inthe

limit. In the second moment formulation of ma.it (c); by subtracting oo the estimates

2i.7 (c) and &;; we eliminate the asymptotic bias of the concentrated Gaussian score
function.

3.3 The Relationship between the Second Moment Condition and
the Projected Score

This section shows that the second moment function my.jt (¢) is a projected score of the
panel regression model (1) with Gaussian errors. Suppose that the error process "j¢ in
the model (1) is an iid standard normal process across i and over t: For convenience we
assume that zio = yio = 0 for all i:

Under general regularity conditions, it is well known that the asymptotic properties of
the MLE, and most notably its consistency, are closely related to the unbiasedness of the
score function at the true parameter. However, it is also well known that in dynamic panel
regression models with incidental parameters the MLE is not consistent (e:g:; see Neyman



and Scott, 1948, and Nickel, 1981) as n ¥ 1 with T ..xed. Recently, Moon and Phillips
(1999b) found that this incidental parameter problem also arises in the nonstationary
panel regression models with incidental trends when bothn ¥ 1. and T ¥ 1, to witin
models such as (1) :

The main reason for the inconsistency of the MLE is that the score function in an
incidental trend model has a bias at the true parameter. Therefore, in order to obtain a
consistent estimate, one needs to correct for the bias in the score function. One recently
investigated method to correct for this bias is to use a projected score function, where
the projection is taken onto the so-called Bhattacharyya basis. The resulting approach is
called “a projected score method”.

To de..ne a projected score in the present case, we introduce the following notation.
Let

A 1
~ Moy T+ 13X y ¢,
fi(zise; ) = P= exp ig CcZivi i CcOpt @)
2 2t=1

the joint density of z;,

- @fis@c, _ 0fi=@ ;.
Ull - fi ’ Vll— fi ’
_B2Fi |
v - Ta,enen Yoy .
a f; 0,0 ! Dy vecVyi

where D = lD(F’,Dp(t' ! D}, and Dy, is the duplication matrix. In the statistics literature,
Vi and Vy; are known as the Bhattacharyya basis of order 1 and 2, respectively (e:g:;
Bhattacharyya, 1946 and Waterman and Lindsay, 1996). The projected score Uy; is
de..ned as the residual in the L, j projection of U;; on the closed linear space spanned by
Vii and Vy;; ie:;

Uzi = Ui i »1Vai i 73Dy (vecVai): ()

Recently, using the projected score method, Waterman and Lindsay (1998) and Hahn
(1998) were able to solve similar nuisance parameter problems in the classical Neyman
and Scott panel regression model and in a simple dynamic panel regression model with
..Xed eoects, respectively.

When the joint density of z; is given in (7); Uj;; Vii; and Vy; are found to be

_ 1 X _ _
Ui (c; ) = ? i (C DYieir C )
t=1
— X —
Vi (e ) = "it € 1) € cOpts
t=1 - -
A ITA !
~ x oTx ~ > ~ :
Voi(C; ) = i ¢cgpt¢cgpt + " (C; ) €Yot "ie(C; ) €cOpt
t=1 t=1 t=1

After some algebra, we obtain
E (Vii —vecVyi) =0

and
EV4iUq = 0:



So, the two L, j projection coe@cients », and », in (8) are given by
il
» = [EVyiVyi]' EViiUg = 0;
and £ o,
», = DjE (vecVy) (vecVz)' Dy’ ' Dy E (vecVa) Uy
Also, after some lengthy calculation, we ..nd that
E (vecVyi) (vecVZi)O
X Xi 0 0 ¢ XX i 0 0 ¢
= ¢cgpt¢c9pt - ¢cgps¢cgps + ¢cgpt¢cgps - ¢cgps¢cgpt ;

t=1s=1 t=1s=1
and
E (vecVy;i) Uy
1 X
T

t=2s=1

.
[Eopt — Eolps + Cogps — Eegprl el T )

Therefore, the projected score Ui (c; ;) is

Uzi (C; 4)
1 X " . 0+ X
= T it (50 Yieg1 () +»2Dp (€ cOpt — Ccpt)
t=1 « ~t=1
A 1 A 1
0N+ X — —
i»sz "i;t (C; i) ¢cgpt - "i;s (C; i) ¢cgps ;
t=1 s=1
where
))2
" #.
Xj—( +©i 0 0¢ i 0 0 ai +¢U "
= Dp ¢cgpt¢cgpt - ¢cgps¢cgps + ¢cgpt¢cgps - ¢cgps¢cgpt Dp
t=1s=1
1 K . fiesd
£—- Dp [¢cgpt - ¢cgps + ¢cgps - ¢cgpt] e( T )C:
t=2s=1
Since ~; in Uy; is unknown, we replace it with the estimate
A 1A '
R 3 X . X
i - cYpt ¥ cYpt cYpt ¥ csit
© CcYpt ey Ceopt Tcz;
t=1 t=1
Then, we have the following concentrated projected score
3 - 3 - 3 -
1 X X
Uz ¢7(0) = T i i(0);c Yitil ) + »Osz (®cOpt — Cclpr);  (9)
t=1 t=1

3 -

P
because  _, "ix "i(C) CcGpe = 0.

10



Now, when the error process "¢ is iid(0; 1) across i and over t; the second moment

function my.it (C) is
3 - 3 -
1 X 2, A
ma;it (C) = T it ¢ () Yiez1 i(€) i.7(0):
t=1

The followin%emma states that the bias correction term j .t (c) in my.ir (C) is equiva-
lent to »%D; thl (€c9pt — CcOpt): Thus, we conclude that the second moment function
actually corresponds to the concentrated projected score function of the Gaussian model.

Lemma 1 (Equivalence) Suppose that the errors in model 1 are iid normal with mean
zero and variance 1 across i and over t and yjo = zjo = 0 for all i; Then, the sec-
ondgmoment-condition ma.it (c) is equivalent to the concentrated projected score function

Uz ¢;75() :

4 GMM Estimation and Asymptotics

This section investigates the asymptotic properties of a GMM estimator of ¢ that is based
on the two moment conditions introduced in the previous section. Let

1 X
Mnt (C):E mit (0);

i=1

where q
myit (€) .

m;t (C) = Morr ()

and where my.it (c) and my.i7 (c) are de..ned in (5) and (6); respectively. Let W be a
(2 £ 2) random weight matrix and Bt be a sequence of real numbers that converges to
in.nity as (n;T ¥ 1): The GMM estimator ¢ for the unknown parameter ¢ in (1) is
de..ned as the extremum estimator for which

i ..¢
Zar(€) - MiN Zoy © +o0p B2 ; (10)
C

where
Zat (€) = Mut (€)' WMar (0 :

Since the objective function Z,r (c) is continuous in ¢ and the parameter set C assumed
to be compact, itis possible to ..nd a global minimum of Z,r (c) over the parameter set C:
The main purpose in allowing for an o, Bn'Tl deviation bound from the global minimum
rg"nzig Znt (C) is to reduce the computatior]al burden and allow for potential numerical

. . i, N .
computational errors within a range of o, Bn'% . Later in this paper, depending on the
convergence order of € to co; we will determine the sequence Bpr:

4.1 Consistency of the GMM Estimator

De..ne v ©
_  m1(C .
MO= m@

where
my(c) = 11(co) i Y1(c) i (c i co)2(Co);

11



Z.2

(o = i rec(”s‘)ﬁp (r;s) dsdr;
R
() = i2_co 1+2_Co 1 e~
Z.,7 4 1 3 - -
i o e°°(r+s)a 1§ ei2%0”S) n(r;s)dsdr;
and
m (c) nz .z, q
= j(cico) e?colris)gsdr
VA 1OZ 1OZ rns A A
+(C i Co) er+sizv) g ()’ A, (¢) ¥ Gpe (1) dvdsdr
ZOlzor 0
+(c i Co) eori®) ¢ (n° A, ()i gp (s) dsdr
Zolzor ¢
+(C i o) eo(ris) g, (s)’ A, (¢) ' gp (r) dsdr
2.2.,7 .~ @ _
i (CicCo) eeor+si2v) g ()" Ap (0) P gp (r) dvdsdr
S ¢
i (CicCo) e0(ri®) goc (N° Ap (€) " Bp (€) Ap (0) 7 Gpe (s) dsdr
Zolzolr
i i co) eo(ri®) G (5)' A, (€)1 By (€)' Ap (€)1 Gy (1) dsdr
22 1212 e i ¢ 0 il il
*eic)’ eI g (5) Ap (€)' By (€) Ap (6) ' Upe (r) dvdsdr
Z.,Z
i s geo(ris) épc s)’A, © épc (r) dsdr
Zol Zor ¢ ¢
+ eri® goe ()" Ap (€)* ! gpe (r) dsdr:
0 0

The following lemma shows that the sample moment condition Mt () has a uniform
limitin c

Lemma 2 (Uniform Convergence) Under Assumptions 1-6,
Mpnr (€) ¥, =M (c; co) uniformly in ¢
as(m;T ¢ 1):
Assumption 7 As (n;T 1 1); W 1 p W, where W is positive de..nite.

Notice by inspection that the uniform limit function M (c;¢y) is continuous on the
compact parameter set C: Also, notice that M (c;cg) = 0 at the true parameter ¢ = cg.
In Appendix F, we prove numerically that M (c;cg) = 0 only when ¢ = ¢o: Then, by a
standard result (e.g., theorem 2.1 of Newey and McFadden (1994), the GMM estimator ¢
is consistent for the true parameter co: Summarizing, we have the following theorem.

Theorem 1 (Consistency) Suppose that Assumptions 1-6 and Assumption 7 hold. Then,
as (n;T ¢ 1);
€ ¥,co:
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4.2 Limiting Distribution of the GMM Estimator when ¢y < 0

By inspection the objective function Z,t (c) is dicerentiable in ¢ on the region c 2 (& 0);
and it has right and left derivatives at c = & and 0; respectively. To derive the limit dis-
tribution of the GMM estimator, we employ an approach that approximates the ob jective
function Z,t (c) uniformly in terms of a quadratic function in a shrinking neighborhood
of the true parameter.

For this purpose, we de..ne

1 X
dMpr () =h dm;r (C);
i=1

where dmjt (c) denotes the derivative of mir (c) with respect to ¢ when c 2 (¢, 0) and
the right and left derivatives when ¢ = ¢ and 0; respectively. By the mean value theorem,
for ¢ & co;

mit (¢) = Mjt (Co) +dmit (Co) (C i Co) + riT (C;Co) (C i Co);
where
rr (@) = (rur (6 co}irar (C; co))’;
rit (GCo) = dmyr ¢ i dmiit (Co);

and c; lies between ¢ and co for k = 1;2:
De..ne
= "Wm ;
Sht dMnr (CO) nT (CO),

and .
Hnt = dMnt (Co) WdMnT (co):

Then, we can write
ZnT (C) = MnT (CO)OWMnT (CO) + Z(C i CO) SnT + (C i CO)2 HnT

+(C i Co) RinT (¢;C0) + (€ i 0)*Rant (€;Co);
where A

1 X
Rint (C;C0) = 2Mnt (Co)’ W - it

and
A 1
o, 12X

Ront (G Co) = 2dMnat (G) W - rit (c; co)

A A = '
1 1

+ — it (Gco) W o hit(6co)

i=1 i=1

We now give some asymptotic results that are useful in establishing the limit distri-
bution of ¢

Lemma 3 Suppose that Assumptions 1-6 hold. When the true parameter is co;

1
H dMy (c; &)

dMnt () ¥y —dM (c;c0) = — dM, (c: co)

uniformly incas (n;T ¥ 1)
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for some continuous function dM (c) with

z,z2,
dM (co; o) = i Y2 (co) + e (r i s) My (r;s) dsdr;
0 0
and
dM2 (Co; Co)
7,7,
= e 20" 1) gsdr
0 0
Z 1Z lZ rns ¢ - ¢
" gCo(r+si2v) ngO (s)OAp (co) il ngo (r)dvdsdr
0 0 0
2.2, ¢
+ e®i%) gpe (r)' Ap (Co) ' * gp (5) dsdr
0 0
YA lZ r ¢
+ @i gucy (s)' Ap (Co) ' gp (1) dsdr
0 0
yARp A ; ¢
i eI gocy (1) Ap (o) ' By (Co) Ap (Co) ' Upc, (s) dsdr
0 0
72,7, ; ¢
i e 1) gocy (5)' Ap (€0) ' By (€)' Ap (€0) " Fpoo (1) dsdr
0 0
VA lZ r ¢ ¢
+ (r i s)e®Ci9 gy, (' Ay (co) ' Gpeo () dsdr:
0 0

Now we set Bt = pﬁ:

Lemma 4 Suppose that Assumptions 1-6 hold. Then, as (n; T ¥ 1) with & ¥ 0;

1 X i a2q0 ¢

BntMnt (Co):‘pﬁ Mir (Co) D N 0;2°J°©(co)J ;

i=1

H9 51 0 o0 o T
1

1 0 §1 it and © is de..ned in (45):

where J =

Remarks
(@) The proof is similar to that of Lemma 2 and is omitted.

(b) Flgurels ?3) a(pd (4) plot the graphs of dM; (cp; o) in the cases of ¢1¢ = (1; t) and
e = Lt 2" ; respectively. What we verify from the graphs is that dM; (co; co) <0
for ¢cg < 0: Therefore, Hyt = 0 for ¢y < O:

Figure 3. Graph of dM (co; Co) wWhen g1t = (1;t)°:
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i ¢
Figure 4. Graph of dMq (Co; Co) When gor = |1;t; 2"

(c) According to Moon and Phillips (1999b), when ¢, = 0; it always holds that dM1 (Co; Co) =
0 for all polynomial trends gpe = (1;::5; tP)": Also, for ¢, = 0; direct calcdg lations show
that dM; (cg; ¢p) = 0 for g;¢ = t and dM, (co;c%) =0 for gyt = lt;t2 . Therefore,
Har ¥, 0whenco =0, gir =t and gz = It;t2 U:

Notice from Lemma 3 and the following remarks and by Assumption 7, that H,t has
a positive limitas (n; T ¥ 1) when ¢y < 0: Thus, Hil = 0, (1). Then, we can write
BatZnt (€)
(BnTSnT)2
HnT
BnrSnt
HnT
+Bnr (C i %) Bar Rant (€;C0) + (Bnt (€ i C0)) Rant (CGi00):  (11)

= Mur (c0)' WMnt (o) i

K
+Hpt Bnt (Ci @) i

2

Lemma 5 Under Assumptions 1-6 and Assumption 7, for every sequence °,+ ¥ 0; we
have

(@) _ _
sup JBnt RinT (C; Co)j = 0p (1)
c2C:;jcicoj-° nr
and
(b)

sup iR2nT (C;Co)j = 0p (1):

c2Cijci coj - °nT
Theorem 2 Suppose that Assumptions 1-6 and Assumption 7 hold. Then,
Bnt (¢ i Co) =Op(1):

Lemma 5 establishes that two remainder terms B+ R1nT (C; Co) and Rant (C; Cp) con-
verge in probability to zero uniformly in the shrinking neighborhogo_l of the true parame-
ter. Also, Theorem 2 shows that the GMM estimator is B, ( = n) j consistent. This
implies that in the shrinking neighborhood of the true parameter, the scaled ob jective
function BﬁTZnT (c) is uniformly approximated by the following quadratic function

B%Tzq;nT © T
H 2

Bt Snt)? Bnr S

{Bur Sor ) = L 4 Hor Bar (€ o) § 20T

= Mnt (CO)U\/\\/ Mt (Co) i H
nT nT

15



The heuristic ideas of the limit theory are as follows. Let Bnt (€ i Co) =ar%2rr(1:ax Bf1T Zgnt (©) :

Then, we may expect that a maximizer of B2 Z, (c) will be close to the maximizer of
B2 Zg:nt (C); suggesting that the GMM estimator Bt (€ § Co) Will be close to

BntS & BntS "
Bt (Gg i Co) = ———if Bur (Cico) - —o— - iBarCo
HnT 1 HnT ¥,
A
. Bt S
= BnT(EiCO) if BnT(EiCO)>%
nT
1/zB S Y
= iBnrCoif ——"1 > {Bnr o
HnT
Notice that ﬁﬁ—nSTﬂI = Op (1) and recall that it is assumrged that the true paramgter c

Hnt

< ¢o < 0. In this case, the probabilities of the events Bnr (C i Co) > B2¥3= and
n )

eaad gl BnrCo  will be very smalland the scaled and centred estimator Bt (€4 i Co)
will therefore be close with high probability to the random variable

A _ BntShr
T =
HnT

In view of Lemmas 3 and 4 and Assumption 7,

i £ af
BnrSnt D S £ N '0;-222 dM (co; o)’ W 3°© (Co) IWAM (Co; Co)

and
Hnat ¥, H=-%dM (co: C0)’ WM (co; Co) > 0

as(n;T ¥ 1) with ¥ ¥ 0: Thus, when ¢y 2 Co=T0g;
n dyilc let .
nT D . =HI'S=2Z:
The proof of the following theorem veri..es the heuristic arguments given above.

Theorem 3 Suppose that Assumptions 1-6 and Assumption 7 hold. Suppose that ¢g 2
Co=10g and ¢ be the GMM estimator de..ned in (10): Then, as (n; T ¥ 1) with & ¥ 0;

Pheicd z;

where A ]
d 22 4M (co; Co)' WI'© (Co) IWAM (Co; Co)
Z=N 0;_2 £ 0 o5 .
- dM (co; o) W dM (co; Co)

Remarks

(&) When ¢y 2 Co=T0g and J°© (c) J is invertible, the optimal weight matrix is found
as
Wept = @%@ (©)J) '
The limiting distribution of pﬁ (¢ j co) is then
A

p—
n(¢j CO))Zopt%N 0;

a2

. 0 - (12)
-2 dM (co;Co) W dM (co; Co)
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(b) In Figures 5-6, we plot the graphs of the mir&imum eigenvalues of J'© (co)J as

functions of ¢g when gy = t and gor = |t;t2 " As we see through the graphs,
J°© (co) J is positive de..nite except for the case of co = 0 with gyt = t:

i ¢
Figure 6. Graph of the Minimum Eigenvalue of J'©(co) J When gy = It; 20

4.3 Limiting Distribution of the GMM Estimator when ¢, =0

An important special case of model 1 is when co = 0: In this case, the time series compo-
nents of y;¢ in (1) have a unit root (i.e., %, = 1) for all i: This section develops asymptotics
for the GMM estimator when the true localizing parameter is zero, so throughout this
section we set co = 0: In this case; according to the Remark (c) below Lemma 4, the
information from the moment conditions is zero because Hnr ¥, 0: We cannot then use
a conventional quadratic approximation approach, as in the previous section, and need
instead to employ a higher order approximation.
The model considered is

Zivr = jt+yie (13)
Yit = "Viti1t+ it 14)
where
Yo =1; iig; co =0
In model (13)-(14) the panel data zj; is generated by a heterogeneous deterministic trend,
~ 4t and has a nonstationary time series component yj; with a unit root. The analysis
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here is restricted to the linear trend case because it is the most widely used deterministic
speci..cation in empirical application and it facilitates what a complex series of calcula-
tions. Assumptions 2, 3, 4(a), 5, 6, and 7 are taken to hold.

Lemma 6 Under the assumptions stated above, the following hold as (n; T ¥ 1) with

4 % Q:

T 3 -

@ PAMinr @D N ;2 - 227 where Z 7 N (0;1) ;

(b) BRdMynr (0) = O, (1)

(¢) " nd®Mynt (0) = 0(1);

(d) &®Mint () ¥ p d*My (c;0) uniformly in ¢ with d®M; (0;0) = j 55; where d“Mynt (C)
isthe kt" left derivative of Mynt (€), and d®My (c; 0) is the third left derivative of M1 (c;0);
the probability limit of Myt (C):

The next lemma ..nds the limits of the second moment condition and its higher order
derivatives at ¢ = 0: As we willlgmw inlgme appendix, Ehe asymptotics of Man1 (0) depend
on the limiting behavior of 2~ 1 2" T2 3 =27 \which relies on how we estimate
the model and de..ne the residual ®;¢: The residual "¢ that will be used here is obtained

from a modi..ws least squares estimation of model (4) : In particular, we de..ne

H 1
Ne=z it oz ; (15)
~it I H
where A A
A 1 ileu q!
prr = 2z 2"z T8 i TS () (16)
j=1 BilThil
Then, we have the following lemma.

Lemma 7 Suppose that the assumptions in Lemma 6 hold. Assume that the residual ¢
in (15) is used in calculating £; and &; in Assumption 6. Then, when (n;T ¥ 1) with
o 10

() DiMant (0) = 0p (1)

(b) ;NdMoant (0) = Op (1) ;

(c) " nd?Mznt (0) = 0p (1);

(d) d*Maznt (¢) ¥ d®M; (c;0) uniformly in ¢ with d*M; (0;0) = j 5 ; where d“Man (0)
is the k™ left derivative of Myt (c) at ¢ = 0, and d®M (0;0) is the third left derivative
of d*M, (c; 0) at ¢ = 0:

Remarks. Since the higher order derivatives of Myt (0) are complicated and involve
very lengthy expressions, we omit the details of their derivation in the appendix. Instead,
we give a sketch of the proof in the appendix and here provide some simulation evidence
relating to the various parts of Lemmas 6 and 7. Using simulated data for z;; in (13) with
"it » iid N (0; 1) and yjo = 0; we estimate the means and the variances of = nd< Mjnt (0);
k =0;::2 j=1;2 and the means of d*Mjnt (0); j = 1;2: Table 1 reports the results.
The numbers in the table are conth_ent with th(ij'iheoretical resultsaw_the lemmas. No-
ticeably, the variance estimates of = NnMy,1 (0);  ndMgyn7 (0); and * ndMy,1 (0) are all
small. This is because their theoretical limit variances are S'BE" but not zﬁr_o. In fact, a
long I[Salculation shows that the theoretical limit variances of © nMy,1 (0);  ndMqnt (0);

and * ndMznt (0) are &; ga55; and ¢, respectively when " » iid N (0; 1).
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Table 13
P— P— P
NMy 7 (0) ndMin7 (0) nd*Minr (0)  d*Mynt (€)

Mean j 0:0019 j 0:0003 7:96 £1017 j0:0169
Variance 0:018 j 0:0017 0 0

PiMznr 0 PRdManr (00 PRdManr 00 d3Manr (©)

Mean 9:4 £1015 j 0:0001 i2:88 £10i6 j 0:06
Variance 0:0012 0:022 4:85 £10i6 4:039

Using the left derivatives of the moment condition mjt (c) at ¢ = 0; we approximate
mit (c) around the true parameter ¢, = 0 with a third order polynomial as follows,

mit (¢) = mir (0) + ¢ (dmir (0)) + %Cz idzmiT (0)¢ + %Cg idsmiT (0)¢ + it (60);

where
KT (6;0) = (Mt (c;0) ;{'ziT (C;O))O;
Rt (G0) = dPmgr 6 i d°mgr (0); k=1and 2
Then,
ZnT (C) = Mnt (C)OW Mnt (C)
X k
= C"Ax:nt + Nt (C;0) ;
k=0
where
Aont = Mar (0 WMt (0);
Aint = 2Mar (0)°WdMr (0);
Aznt = Mur (0)'Wd?Mpr (0) + dMpt (0)' W dM, 1 (0);
1
Agnt = Mt (0)' WdMnr (0) +dMat (0)' Wd*Mnt (0) ;
1 1
Aunt = Mot 0)' WMot (0) + 7d*Mor (0)' WMot (0);
1
Asnt = £&*Mur (' Wd*Mr (0);
1
Agnt = 58°Mnr 0’ Wd*Mar (0);
and
X k
Nnt (c;0) = ¢ Ng:nt (;0);
k=3

3 Notice that the second and the third derivatives of My, (c) are deterministic.
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2]

i 1
Nignt (60) = 20%I9Mar O'W ~ Fir (;0)  fork =3;45;¢
A Xizl A oA '
Nont (60) = 28°Mar O'W — mr@0) + - wmr(@0) W < fr(c0)
i=1 i=1 i=1

In view of Lemmas 6 and 7, it is easy to .nd thatas (n; T ¥ 1) with 2 ¥ (;

n°®Ainr = op (1); a7
I']2:3'6\2;nT = 0p 1); (18)
n*=Agnr = op (1); (19)
n'Ag,r = op (1); (20)
and K T
2
- Wy | 2Win Wy
Asnt ¥ — + + >0 21
&nT § 36 4900 1050 225 @1
N"PAsnr D AsZ (22)
NAgnt D AoZ? (23)
i ¢d= a
where Z ~ N (0;1) and Az = iglﬂﬁ‘ +42 = andAozwllﬁ—g:

Also, using Lemmas 6 and 7 and following similar lines of proof to Lemma 5, we can
show that - Z
sup nCIRTeNL L1 (6 0) =0, (1); (24)
c2C:jcj - ° 1
for any sequence °,r tending to zeroas (n;T ¥ 1): Then, we have the following limit
theory for € at the origin.

Theorem 4 Under the assumptions in Lemmas 6 and 7, as (n;T ¥ 1) with & ¥ Q;

n

=
n'=° (¢ i co) = Op (1);

where cg = 0:

So, when the true localizing parameter is ¢ =.0; the GMM estimator ¢ is n'76 j
consistent; which is slower than the regular case of = n that applies for ¢co < 0 as shown
in Section 4.

Next, we ..nd the limiting distribution of the GMM estimator ¢ The argument here
is similar to that of the previous section. So, the proof is omitted and we give only the
..nal result in Theorem 5 below.

In view of (17) i (23) and (24); the standardized objective function nZ,t (c) is ap-
proximated by

3 - 3 -
3

= P 6. °
Zg:nt (©) = NAg;nT + n'=6¢c NA3znT + n'=tc As:nt:

Notice that the probability limit of As.nT is positive, as shown in (21): Then, it is easy to
see that the approximate objective function Zq.nt () is minimized at

— T % — Y
1=6 _ _ Mprl'A\S;nT 1= - 1=6 _ pn'A\S;nT
nt=t¢, = § ——- if n=fe . j——1L . 0
2A6'nT 2A6'nT
% P Y4 '
. NAg:
= 0if j—"T >
2IA\G;nT 1 3
3 7 o3 Y p?]A Z
_ - 1=6 / - f 1=6 _ 3.nT
= n ¢ if n7°¢>
i (i8) I Agnr
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Using arguments similar to those in the proof of Theorem 3, we can prove that the starn-
dardized GMM estimator n'=%¢ is approximated by nlzGC‘q; the minimizer of Zg.nt (C);
that is,

n*=¢ = n'=¢, + 0, (1) ;

and the estimator nlzecq is approximated by

HP= M=z 2 p-— Ya
A NAz.nT . NAznT 0 -
.nT = -0

n 2A6;nT 2lA\G;nT

where 1fAg is the indicator of A: In view of (22) and (21); as (n;T ¥ 1) with & 1 0
it follows by the continuous mapping theorem that

Tar D i (i Zo) P12, - Og;
where

Zy = Vo<, (25)

Vo =

1w, 2w | oo (26)
3 4900 1050 225

and we have the following theorem.

Theorem 5 Under the assumptions in Lemmas 6 and 7, as (n; T ¥ 1) with £ ¥ 0;
n'ed i (iZo) T 1fZ - 0g;

where Zg is de..ned in (25):

Remarks

(@) Theorem 4 shows that when the true parameter co = 0, i:e:; in the case of a panel
unit root, the GMM estimator is n=®-consistent and that its limit distribution is
nonstandard, involving the cube root of a truncated normal. The truncation in the
limiting distribution arises because the true parameter is on the boundary of the
parameter set.

(b) The reason for the slower convergence rate in the panel unit root case is that ..rst
order information in the moment condition (from the ..rst derivative of the mo-
ment condition) is aymptotically zero at the true parameter. In order to obtain
nonneglible information from the moment condition, we need to pass to third order
derivatives of the moment condition. Taking the higher order approximation slows
down the convergence rate because the rate at which information in the moment
condition is passed to the estimator is slowed down at the origin because of the zero
lower derivatives.

(¢) Inview of Lemmas 6(a) and 7(a), we ..nd that pﬁMZnT (0) = 0p (1) ;while pﬁMlnT 0)
converges in distribution to a normal random vaB'gble with positi&_variance. Be-
cause of the convergence rate dicerence between = nMant (0) and = nManT (0) ; We
have only W;; and Wj, but not W5, in the limiting scale Vo of (26) : In this case,
setting W13 = Wj, = 0; i.e. not considering the ..rst moment condition, causes
the variance of the limit variate Zy to vanish, from which one might expect that

the GMM estimator from the second moment condition alone would have a faster

21



convergence rate than n'=®: In fact, under the assumptions in Lemma 7, it is pos-
sible to show that nMzn1 (0) =0p(1) as (M;T ¥ 1) with 2 ¥ 1 and the GMM
estimator from the second moment condition only could be n'=4-consistent; which
is faster than the GMM estimator de..ned by the two moment condition. However,
the reason for using the ..rst moment condition is to identify the true parameter
when cg < 0: As we discuss in Appendix F, the second moment condition cannot
identify the true parameter unless it is zero.

(d) When co = 0; in view of Lemma 7(b) and (c), one can explore higher derivatives as
moment conditions. If these higher derivative moment conditions are satis..ed only
at ¢o = 0, then it will be possible to use those moment conditions to distinguish the
presence of a unit root in the panel from local alternatives, an issue which is being
studied by the authors.

5 Monte Carlo Simulations

The purpose of this section is to compare the quantile dispersion of the GM M estimators
in a simple simulation design. The main focus is to compare the panel unit root model
with incidental trends with near unit root with incidental trends and panel unit root
without the incidental trends.

The panel data zj; is generated by the system

Ziv =  ot+vVvig “jo = iid Uniform[0; 3] 27
C
Yie = (1+2Wia+ " Co 2Fi20:i10; i5;0g;

where the "j; are iid N (0;1) across i and over t; and the initial values of yjo are zeros.
The sample size is (n; T) = (100; 200) : The autoregressive coe¢cients in the error process
for yj are taken to be 0:9; 0:95; 0:975; and 1: To calculate the GMM estimators we use
an identity weight matrix. This choice makes the estimation procedure for the co < 0
case comparable with the ¢ = 0 case, whereas the optimal weight matrix when ¢cg = 0
is to use only the second moment condition in which case we can not identify the true
parameter when ¢o < 0: The simulation employs 1000 repetitions each using grid search
optimization with the grid length of 0.02.

The simulation results are reported in Table 2. First, the median bias of the GMM
estimator ¢ becomes larger as the true co becomes larger. When ¢g = 0, the GMM
estimator of Model (27) has median bias of -0.26, which is much larger than other cases.
Also, when cg = 0; the GMM estimator is much more dispersed than the other cases. Both
results are to be expected from the asymptotic theory because of the slower convergence
rate and one sided limit distributin in the co = 0 case.

Table 2 compares the GMM estimator in the panel unit root model with incidental
trends with the truncated pooled OLS estimator of the panel unit root model without the
trends. For this we calculate

P, P P, P, )
ﬁ 1 e ]thZ|t|11 ﬁ 1 ﬁ 1 ZitZitg1 .
i=1 t 1Z|t 1 i=1 t 1Z|t.1

where zj; is generated by Model (27) with co =0 and ;, = 0: Then, the limting distri-
bution of ¢ is

Pre D pEZle - 0g;

Z 7 N(@O1;
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as(n;T ¥ 1); and so ¢ is pﬁ- consistent and has a normal limiting distribution. The
quantiles of ¢ when n = 100 and T = 200 are reported in the last row of Table 2.
Comparing these outcomes with the GMM estimator ¢ of Model (27) where incidental
trends are present, ¢ is much more concentrated on the true value and the median bias
of ¢ is much smaller than that of ¢: This comparison highlights the delimiting exects of
incidental trends on the estimation of roots near unity even in cases where there are long
stretches of time series and cross section data in the panel.

Table 2. Quantiles of the Centered GMM Estimators of Model (27)

co (%) 5% 10% 20% 30% 40% 50% 60% 70% 80%
-20 (0:9) -1.38 -1.14 -082 -0.60 -0.38 -0.22 0 0.18 0.36
-10 (0:95) -11 -0.86 -062 -0.44 -0.30 -0.16 0 0.16 0.34

-5 (0:975) -0.92 -0.74 -0.52 -0.38 -0.24 -0.12 0 0.14 0.30
0 (1) -1.64 -1.34 -0.96 -0.66 -0.42 -0.26  -0.1 0 0
0@1) -0.266 -0.197 -0.123 -0.075 -0.037 -0.003 0 0 0

No Trend

6 Conclusion

Part of the richness of panel data is that it can provide information about features of a
model on which time series and cross section data are uninformative when they are used on
their own. In the context of nonstationary panels with near unit roots, an interesting new
example of this ‘added information’ feature of panel data is that consistent estimation of
the common local to unity coeGcient becomes possible. This means that panel data help
to sharpen our capacity to learn from data about the precise form of nonstationarity where
time series data alone are insuccient to do so. However, as the authors have shown in
earlier work, the presence of individual deterministic trends in a panel model introduces a
serious complication in this nice result on the consistent estimation of a root local to unity.
The complication is that individual trends produce an incidental parameter problem as
n ¥ 1 that does not disappear as T ¥ 1.: The outcome is that common procedures
like pooled least squares and maximum likelihood are inconsistent. Thus, the presence
of deterministic trends continues to confabulate inference about stochastic trends even in
the panel data case.

One option is to adjust procedures like maximum likelihood to deal with the bias. The
present paper shows how to make these adjustments. The theory is cast in the context
of moment formulae that lead naturally to GMM based estimation. The paper has two
important ..ndings.

The ..rst is that bias correction in the moment formulae arising from GLS estima-
tion of the trend coeCcients corresponds to taking the projected score (under Gaussian
assumptions) on the Bhattacharya basis. This correspondence relates the approach we
take here to recent work on projected score methods by Waterman and Lindsay (1998)
that deals with models that have in..nite numbers of nuisance parameters like the original
incidental parameters problem.

The second is that our limit theory validates GMM-based inference about the localizing
coeCcient in near unit root pangls. A notable new result is that the GMM estimator has
a convergence rate slower than ' n when the true localizing parameter is zero (i.e., when
there is a panel unit root) and the deterministic trends in the panel are linear. The
asymptotic theory in this case provides a new example of limit theory on the boundary
of a parameter space. The results point to the continued di¢ culty of distinguishing unit
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roots from local alternatives when there are deterministic trends in the data even when
time series data is coupled with an in..nity of additional data from a cross section.

7 Appendix
7.1 Appendix A:

Before we start the proof of Lemma 1, we give some useful background results.

Lemma 8 Let K., denote the (m £ m) commutation matrix, D, denote the m2£;2Lm (m+1)
duplication matrix, and set D, = (D(}an)i1 DY,: Also, assume that x and y are m j
vectors and A is an (m £ m) invertible matrix. Then the following hold.

(@) xy" —yx' = Ky (yy' — xxX):
B) (Im +Kn)(X=Y)+ (Y —-x)=2(X-y)+2(y —X):
(©) Dy Dp = lypgapy:
(d) DpDy =3 (Ip +Kp): . ¢
(&) Dy (A-A)D, "' =DF 'Ail - Ail Dy
Proof

Parts (c), (d), and (e) are standard results (e.g., Magnus and Neudecker, 1988, pp.
49-50). Part (a) holds because

xy! —yx’ = (x—y) (" —x%) = vec (yx®) (vec (xy"))’
= (Kmvec (xy")) (vec (xy*)' = Km (y = X) (y = X)°
= Kmn(yy' - xx):

Part (b) holds because

(Im +Kn) (X =y)+ (y — X))
= (x=y)+(y - x) + Kpvec (yx’) + Kmvec (xy')
= (X -y)+(y - x) + vec(xy’) + vec (yx)
= 2(X=-Yy)+2(y—Xx): ¥
Proof of Lemma 1

In this proof we omit the subscript p that denotes the order of the polynomial trends
for notational simplicity. To complete the proof, it is engugh to show that j 1 (c) in

ma;ir (c) is equivalent to »}D w1 (Cc0e — €cge) in Uy ¢ 7, (c) : First, we de..ne

X o h i o
mor = 2710 G ol ol -l )

t=2 s=1

1 X1 X +n3 0 2 0 0 O <+
Aot = T T Dy digally —llg.llg, + gl - dlg. g D7

t=1 | s=1

1>T<S3 i
Azt = D;? dily, - olllg, :

Then, by de..nition, we write

X
»WDF (Cche — Coge) = A AL Agt:
t=1
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Notice by Lemma 8(a), (d), and (c) that

Ao
1X 1 X

= D; (|p + Kp) ? ?
uA S

= 2D} D,D;

"A

t=1 =1

1
— + =

= 2D} T
"~ A% 1 A 1 o#

By Lemma 8(e),

il
i
A2T

04 L
p
T t=1 s=1
Again, from Lemma 8(d) and (b), we have

Al RSt Rat

- i o

= 23T g - g+ ol - Ml ()

A !513
5

I ' e =



g, - g, (28)

1
T
Expanding (28) yields

1 X1 X
T T T

t=2 s=1 p=1

1 XK X

. h ih
e(™7) ofg. Alidlg, olfg, AL

e(.t..?._l )CG!ESOAFE.I}

— |
=

7.2 Appendix B: Useful Results for Joint Asymptotic Theories

This section consists of two subsections. The ..rst subsection introduces some useful results
for joint asymptotic theories. Many of these are modi..ed versions of results developed
in Phillips and Moon (1999) so we report them only briety here. The second subsection
introduces some useful results which will be used repeatedly in the following sections of
the proofs for the results in the main text.

7.2.1 Appendix Bl

The following two theorems provide convenient conditions to ..nd the joint probability
limit of double indexed processes.

Theorem 6 (Joint Probability Limits) Suppose the (m £ 1) random vectors Yt are
independent across i = |1=-,;:::; n for all T and inlgggrable. Assume thatYijt D YijasT ¥ 1
for alli. Let Xpr =2 (L Yir and Xp =2 L Vi
(a) Let the following hold:
- P i
(i) limsupp1 ﬁ ?:1 EjYir) < 1
(i) limsuppr & (L JEYir i EYijj = 0;
(i) limsup,t T i”:l EjjYirjji1fjjYiTjj > n"g =0 8" > 0;and
(iv) limsup, < EkYik1fkY;k>n"g=0 8">0:
F)
(b) If limyeq 2 L EYi(=2y) exists and Xp ¥, 25 as n ¥ 1; then Xpr
T,igas (T 1 A):

Theorem 7 Suppose that Yit = C;Qit, where the (m £ 1) random vectors Q;r are iid
across i = 1;:::;n for all T; and the C; are (m£m) nonrandom matrices for all i: Assume

that
M QTDQias T il Lforallias (n;T ¥ 1),

(ii) jiQirjj is uniformly integrable in T for all i°:

5That is,
SUpE kQiTkfkQjtk=>=Mg ¥ 0
T

asM I 71:
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P
(iii) sup;jiCiji < A; inf;jjCijj > 0; and C = Iimnﬁ i, GCi.
Then 4" L, Yir ¥,CE(Qi) as (n;T ¥ 1):

Theorem 8 (Joint Limit CLT for Scaled Variates) Suppose that Yit = CiQir,
where the (m £ 1) random vectors Q;r are iid(0; 81) across i = 1;::;;n for all T and the
C;j are (m £ m) nonzero and nonrandom matrices. Assume the following conditions hold:

(i) Let %2 = min(87) and liminfr %2 > 0;

. . i ¢
(i) jjQ;irji? are uniformly integrable in T,

P, P

(iv) limp.r f]' i=1Ci T Cio =->0:

Then,
X
Xnr == Yit D N©O;-)asn;T ¥ 1:
i=1

7.2.2 Appendix B2
Suppose that the panel process yi¢ is generated by

3

Co "
Yit = eXp T Yitir + it

where "j; satis..es Assumptions (2)-(5). Again, for notational simplicity, we omit the
indices n and T in the notation yijy:

(a) A particularly useful tool in treating the linear process "¢ is the BN decomposition
which decomposes the linear ..Iter into long-run and transitory elements. Phillips
and Solo (1992) give details of how this method can be used to derive a large number
of limit results. Under Assumption 2, the linear process "« is decomposed as

"it = Cilit + “iti1 i Yo (29)
pl Pl . .
where %t = j=o CijUit;j; and C; = Ke=j+1 Cik: Under the summability condi-
tion (c) in Assumption 2,
X
ici - ¢<1 (30)
j=o0
and
n2 X H 2 X H 2
E#2 - ( §C)? - ( "GP <1 (31)
j=0 j=o0

whereb _ 1 and éj = sup; jCijj (see Phillips and Solo, 1992).

(b) Next, recall that
Alx e
Dpt gptggtDpT GpsDpr:
t=1

AT (t;S) = Dpr 8t
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It is easy to see thatwhen t=[Trland s=[Tv];as T ¥ 1

HZ ﬂil
hr(t;s) T gp(r)  &p8p  8p(v) = Np(r;Vv)

uniformly in (r;p) 2 [0; 1] £ [0; 1]: The following limit also holds

sup RApr(t;s) ¥ sup hp(rv): (32)
1-ts-T 0-rv-1

(c) Using the BN decomposition of "i; we can decompose yj¢ into two terms - a long-run
component of yj; and a transitory component. By virtue of the de..nition of yi;

Xuts‘ﬂ Utﬂ

i "
Vit = eXp Co istT eXp CoT Vio:
=1 T T

Using the BN decomposition (29) of "i;, we can decompose yit as

Yit = CiXjt + Rijy; (33)
where
X Mgt
Xit = EXp Co T Uis
s=1
K T
_ ¢id . ..
and Rjy = exp ¢Co T Tio 1 it
X Hoisint ® %o He T
+ooeXp Gt “is( 1 §exp T texp TC Vi
s=1

For notational simplicity we also omit the indicesn and T in Xj¢ and Rj¢: Let Xjo =0
for all i:

Next we introduce bounds for the moments of some random variables that will be
frequently used in the following proofs. Throughout the paper we use K as a generic
constant independent of the localizing parameter cno. Lett=[Tr]: As(n;T ¥ 1)

HX_Z 1 1 X 81 t sﬂ Z,
E ?" = T exp 2c0$ T exp((ris)2o)ds<R; (34)
- 0
S—p 1 Y m T z.,p2 s
X 2 X X - 1 r i
i E il.t = i %i exp ZCot i S [ | e(ris)2c:odS dr < R;
T t=1 T T t=1 T s=1 T 0 0
(35)
and
lim sup sup ER?
AT 1tnaerr _ .
I i iU "
= - o0, P f:goL%_l sup; E*5, _'&SUpi-E~i2t
- lim sup sup 4 +'1-ex o2 t ex' iliVv oyp colilis CE(
";Tl-iPnl-tPT z 1 p T v=1 s=1 |p CO%'L-JFIJ p Co T sup; ( is |v)

+exp 2cot sup; Eyg
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IW@

¢ t"P 4
exp 2c0 +1 _ojé

¢¢,
+ 11 i exp %P SLignsupl vis -t EXP c()»—"-'—'—'j

- lim4 sup sup

WA ®

NT 1-i-n1-t-T c =
£ v=1 s=1 SupiJE("'is IV)J z
H ‘IT
+lim4 sup exp 200— supEy3
mT 1-t-T i
O)’( 1, "
. . UPp.¢-T exp 2Co +1
- 4@ jEA Iim 3 PN
ijJ (L h i exp sup1 vist.T EXp CoRHZRES Usup, o L
K t'IT
+4lim sup exp 2co— sup¥%,
Ti-t-T T
O 1,
X © a
- 4@ jEA 2+40C%FF +4sup¥i); because C=[c, 0]
i=0 '

- KR
, ¢
where %5, = E yIO :

Lemma 9 Assume that, for k = 1;:::; K; hy (c; €) is a real-valued continuous function on
the product of the parameter set C £ C with hy (c;c) = 0; and I (X;y) is a real-valued con-
tinuous function on [0;1] £ [0;1]. Also, assume that f (x;c) and g(x;c) are continuously
igperentlable functions from [0;1]£C to R suci‘hthat f(x oag(y;c) i F(x;e)g(y;e) =
w1 i (c; &) Ik (X;y) : Suppose that yi; = exp ‘=T° Yitz1 + "it; where "j; follows Assump-
tion 2. Assume that Assumption 3 holds for the initial condition yjo and Assumption 5
holds for the cross sectional limit of the long-run variances. Then, as (n;T ¥ 1); the

following |lgpld R,R,

1 n 1 2 i .
(a ) | 152 |51 |t 1 l' ¢ 03 " g2¢o(ri s)dsdr: -

Ya

(36)

p
i ¢ R,R
(b4 1 Pn 1&? e i e o Izlyitilg';t;c - 01 o eoring(r; c)f(s; c)dsdr

T T

unlformlylﬂ’n C:3 -3 -
L P, i ¢ P i ¢
(C) = |R]_ ™T t= ]_yltllf T! ?é? t= 1ylt lg -‘|";1C
LI F9 o;(r c)g(s ) 0 eCo(”; 2V)Igvdsdr unilforrELy inc: RiR,
(d) 2 &; 1 .tf = Mg i ¥p - f(ro)g(s; c)dsdr
unlformly inc:
Proof
Part (a) From the decomposition (33); we write
1 X X
= - 2
n T2 yitil
i=1 t=1
B l_xczij—(xz +21XC.AX R +1X1XR2 +1XX|2Q
= n i-|-2 itil n |T2 Xitj1Ritj1 n T2 itil n T2
i=1 t=2 i=1 t=2 i=1 t=2 i=1

= lg+21, + 1115 +1V,; say.

SlﬁceRsup,EyIO <A;I1Va * Oas(mT ¥ 1): In what follows we show that I, ¥,
o €200 i9dsdr and 1111, ¥,0as (n;T ¥ 1):
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For 1;; recall that

Iazix ?ij—(x?_ ;
n o iT2 - itjl
De..ne Qint = 75 PtTZZ xZ;1: Note that fQirgi=1..:.n are iid across i: Since
Z,
Tioxie D) Jei(r) = T 9aw;(s) (37)
0

as T ¥ 1 (see Phillips, 1987); where W; is standard Brownian motion, we have by the
continuous mapping theoremas (n;T ¥ 1);

Z,
Qir D Qi= . I i (ndr: (38)

Also,as T ¥ 1 for .xed n;
Z 1
Qit ) Qi = chno;i(r)dr: (39)
0

R,R
Notice that EQ; = 01 o ezgo(”s)dsdr:

We will claim 1, ¥, - 01 o €200 i9dsdr in joint limits as (n; T ¥ 1) by verifying
conditions (i) - (iii) in |?Eheorem 7. Condition (iv) holds because it is assumed in As-
sumption 2 that Iimnﬁ i”:l C2 = - and inf; jC;j > 0, and under Assumption 2, it holds
sup; jCij < A: Condition (i) is obvious in view of (38) and (39) : For condition (ii), observe
that

l5<i)(ex utiSZC1T

T t=2TS=1 P T °

z.,2,

| e(ris)2cogsdr = EQ;as (n;T ¥ 1):
0 0

EQir =

Since Qit (. 0) D Q; with EQjt ¥ EQjas (n;T ¥ 1); fQirgr are uniformly inte-
grable in T by Theorem 5.4 in Billingsley (1968).
Next, we prove that

1 X 1 X
o = Ciﬁ Xitj1Riti1 !pO;
i=1 t=2

and

1
i =~ Ri;1 ¥pOasmT ¥ 1;

by showing that Ejll5j;Ejlll;j ¥ Oasn;T ¥ A:
First, we have

L 1 X X .
Ejllyj = = Ci= Xitj1Ritj1-
i1 —-t=2 _) - -
1 Xt - X - 1 X -1 X -
- ?] - iCij E—E XitilRitil— - éﬁ - E—E Xi;tilRi;til—:
i=1 t=2 i=1 t=2
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Obserwve that

1 X -1 X
T] —ﬁ XitilRitil—
i=1 t=2 ~
11X 1 D Z
S = E B R
Tn i=1 t=1 _T _
11X 13X Iyt _ 1
- P=- = E——lg'——l‘ EJRiti1J2 = O(p=);
Tn i:lT t=1 T T

where the equality holds by (35) and (36). Similarly, we can show that 111, ¥, 0 as
(n;T ¥ 1) by proving that EjlIl,j ® 0 as (n;T ¥ 1): Therefore we have all the
required results to complete the proof of part (a). ¥

Part (b) Using the BN-decomposition in (33); we write

1XA1 X f”t A 1 X T
- P= "inf —;c —P= Yitj19
Nioy T T T T

= I+ +11,+ 1V,

where
A 1A 1
1 X x KT 1 X He T
I, = ?] i P= uf ?;C ?p? Xitj19 ?.C ;
i=1 A t=1 i:Al [ |
1 X 1 Hy 77 x Hy 17
I, = = C = (CGitizi "w)f —;c —H= Xi;j10 T:C
n._ T _ T T T, T
i=1 ~ t=1 ~ t=1
A H 1'[! A 1'[!
1 X 1 t 1 X t
i, = - Ci p= uitf =;c —p= Rit;19 =;¢C ;
n. T T T T T
I:lA t=1 ﬂ! ~t=1 ﬂ!
vy, = 1 161=)T((" )futc —é—XR gut'c
b = Titgl 1 it e = itjl e
n i=1 T t=1 ' T T T t=1 ' T
We will show that
Z.Z,
b ¥p— e i) g(r; c)f(s; c)dsdr uniformly in ¢
0 0
and
i g 1V, B, 0 uniformly in ¢
as(n;T ¢ 1):

First, we establish Part (b) for .xed ¢ (pointwise convergence). Now, as in Part (a),
we apply Theorem 7. Let

A 1A 1
1 < By T 1 X Hy T _
QiT (c) = 19? Ui T:C ?B? Xitj1 TiC
nz . t=1 Tuz , t=1 q
and Q;(c) = T(s;c)dW; (s) g(r;c)Jde:i(r)dr
0 0
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Using (37) and the continuous mapping theorem, we can show that

Qit (¢) > Qi(0) (40)
asT ¥ 1 for..xed n and c; which veri..es condltlonlg) in Theoremﬂ Condition (ii) holds
because it is assumed in Assumption 2 that limp, < N =i = 02 = - and inf; jCjj > 0,

and under Assumption 2, it holds sup; jC;j < A.: Condition (iii) holds for ..xed c if
A < VU | LY

1 t
Quit (€) = = uitf —=;c
T T
t=1
and x
Qit ()= —P=  Xjt;10 =€
T T =1 T

2 .
R
are uniformly integrablein T for ..xed c¢: Notice that Qi1 (¢) D) Qi (c) = Olf(r; c)dWi; (r)

1 PT i ¢2 R]_ 2 -
0;and EQiir (6) =3 =1 F %;c ¥ f(ro)’dr=EQui(c)asT ¥ 1 forall i: By

Theorem 5.4 in Billingsley (1968), it follows that Qijt (c) are uniformly integrable in T
for ..xed c: In a similar fashion, Qjt (c) is also uniformly integrable in T for ..xed c:
Therfore,as (n;T ¥ 1);
Z,Z,
b ¥p— ecoris)g(r; c)F(s; c)dsdr for ..xed c:
0 0
Next, de..ne X1 (¢c) = % P?=1QiT (c): To complete the proof, we need to show that
XnT (€) is stochastically equicontinuous. That is, for given "™ > 0 and = > 0; there exists
+ > 0 such that
C )

limsup P sup jXp1 (@ i Xar (®j>" <
(n;Tr 1) jciej<t;ce2C

7.

Then, since the parameter set C is compact, the pointwise convergence of Xt (c) and
the stochastic equicontinuity of Xt (¢) imply uniform convergence.
Now we show the stochastic equicontinuity of X1 (c) : First, notice that

sup jan (C) i an (6‘)]

jciej<t;ce2C_

- y - .
= sup :1)( lXXUX 2flvlt'Cﬂg?’S'C 'fut'eﬂgss'e 4:
- -- - ithisjl - '} 1 - ' -
jciej<¢;c;ezc_n i=1 T2 t=1s=1 ' ( T T )_T T
1 X g XX X My s
= sup -~ 3 UitXisj1 he (c;€) Ik TT -
jciej<t;ce2C n i=1 t=1s=1 _ k=1 -
. 1 X- g XX (x Hy sﬂ)f
- sup sup jhe (c;€)j = ppy UitXisj1 k == -
1-k-Kjcjej<t;c;e2C n i=1 T t=1 s=1 k=1 TT

Since hg (c;€) is continuous on the compact set with hy(c;c) = 0 for all k = 1;:;; K;
we can make sup; . .k SUPjc; ej<+ce2thk (c;e)j arbitrarily small by choosing a small
3 0 —Als&, un?:gr the assurmq'tl_gms in the Isgzma it is not di¢cult to show that

100 1 eoiUitXisit Ll 'E L, ~=0p(1): Therefore, Xnr (c) is stochas-

tically equicontinuous, and I, ¥, — 0 o "e%risg(r; c)f(s; c)dsdr uniformly in c:
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Next, for 11, notice that

< My 1
P= (itiri“i)f T:C
t=1
_oa = Mt T o M T
- ?t:1 it T 1 T ?uo T 1 ?IT ’
i i ¢ ¢
TR R L T L LT
= —PB= it £ +p="pf =;c ipP="rf(@0):
T T, T T T
For Il, ¥, 0 uniformly in ¢ if we show that Esup,cjll,j ¥ 0as (n;T ¥ 1): Let
sup; Ci = é: Under Assumption 2, & is ..nite. Now
E supjllpj
c2C _ _— —
-1 X oMy T, x he T
- CsupEsupiP= (N %i0f —ic IT0P= X0 TiC -
i c2Cc_ T 4 T LT = T -
- B H ¢ H ¢__ —
-1 DRl pplag- 1 X He T
- CsupEsupi—p= T TI—B=  Xit;10 =;C -
i c2c T T, T T T T
+ésupEsup:~|al=ﬂ-fui'cﬂ£:—é—Xx- gul'cﬂ:
2 T O T TToT YT
“1 - X my T
+CsupEsupp="7F (1;0)-"—P=  Xi;10 =:C - (41)
i c2c T TT ., T
The ..rst term on the RHS of (41) is less than or equal to
o - ¢  ¢10 . a2t
e R T A - Wy
@ sup : n A@ sup g =;c A
1-t-T T 1-t-T T
~ c2C ~ ~ c2C
A A 1A LI |
1 > 1 X
£ SUpE —p= il —P= Xitidd
i T T, T T,

Since T (x;c) and g{x;c) are continuously dicerentiable functions on the compact set
SR L) p (L) — — ¢-
[0;1] £C; supy -¢-T —f(T—’c_L'uT—'c)— and sup;-t-1 ¢ |#;c are bounded by a constant,
c2C T c2C
say K that is independent of c: Also,
A

A

X

1 o x
sSupE ?IS? Mid —PB= 0 Xl
1

t:l
A LI

1
it E —p? jXit;1J by Cauchy-Schwarz inequality
t=1 t=1

TxlEu_zigl x My T
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Similarly, we can show that the other terms in the RHS of (41) are less than equal to 15?
for some constant K independent of c: Therefore

oo K .
E supjllyj - -p? for some constant K independent of c; 42)
c2C

and so Il, ¥, 0 uniformly in c:
In a similar fashion, it is possible to show that

R
Esupjlllyj; EsupjlVpj - = for some constant K independent of c; (43)
c2C c2C T

which leads to I11,; 1V, ¥, 0 uniformly in c: We omit the details of the argument here.
¥

Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part (b)
and they are omitted. ¥

The following lemma is important in establishing asymptotic normality of the GMM
estimator € To simplify notation, let

lipT (t;S;0) = %OApT ©) " s
ot (t;S;0) = %OApT © it Opsi 1D-|i !
l3pr (t;s;0) = %OApT (€)1 Bpr (C)ApT () Todms;

and
¢ 0 1t
lip (r;s;0) = Gpe (N Ap ©)"' Upc (S)
b (15530 = Gpe (0'Ap (©)F 0p (8)
I3p (r;s;¢) = %wpc (r)OAp (C)il Bp(©Ap (C)il épc (s)
1
s = G () gp (r)'dr:

i ¢
Lemma 10 Suppose that xj; = expl-?ro Xitj1 + Uir; Where uje are iid (0; 1) with ..nite
fourth moments and xjo = 0 for all i: Then, as (n;T ¥ 71); the following hold.
Let

1 X
Quir = — Xit j 1Uit
T _
t=1
1 X ¢ X
Qxit = P= TP=  UiXisj1hpr (£8) + Tt (Co)
T T Ty
1 1
Qiir = P= —P=  UiXisjalpT (1S Co) + .7 (Co)
T t=1 T T s=1
1 1 X = 1 i
Qsir = 18? 15? UitUisl2pT (1;S:C0) i tr Apt (Co) '~ Bp (o)
t=1 s=1
1 X 1 X 2 o ]
Qsit = 13? = UitUislapT (t;8;C0) i tr At (Co) ' Bp (o)
t=1 s=1
and Qir = (Quir; Qzit; Qait; Qait; Qsit)’: (44)
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Then, as (n;T ¥ 1),

1 X i ¢
P —-iQit D N 0;2°©(co) ;
i=1

where 2 3
©11(Co) ©12(Co) ©13(co) ©14(co) ©15(Co)
©12(Co) ©22(Co) ©23(Co) ©24(co) ©25(Co)

©(co) =8 ©13(co) ©23(Co) ©33(Co) ©34(co) ©sz5(Co) (45)
©14(Co) ©24(Co) ©34(Co) ©g4(co) ©ss(Co)
©15(Co) ©25(Co) ©3z5(Co) ©ss5(co) ©Oss(Co)

and ler

©11 (Co) = 2o i9)gsdr;
0 0
21217 pns 2,2 .7«
©1 (Co) = e@USiZVR (1 s)dvdsdr + e iVR (v; r)dvdsdr;
0 0 0
Z.2,7. 21217 ins

©13 (Co) = gCo(r i")llp (r;v; co) dvdsdr+ glo(r*si2v) lo1 (r; S; Co) dvdsdr;

0 O 0

0 0 0
Z4Zy 24,2,
©14 (Co) = e®is) |, (r;s;¢0) dsdr + o i9)],, (s;1; o) dsdr;

z.2, Z,7,
©15 (Co) = e®is) g (r;s;¢0) dsdr + eeo(r i85, (s;1; o) dsdr;
0 0 0 0
z 1Z lZ r"s
©2 (Co) = o e@U™SiZVR | (r; s)dvdsdr
z220% .z,
+ e®o(iVecGi DR, (r;q) Ay (s; v) dgdvdsdr;
0 0 0 0

VA 1Z 1Z 1Z sNv
©x3(C) = e®CTVIZDR (1;5) Iy, (r; v; ¢o) dgdvdsdr
0Z loZ 10Z Ir0Z .
+ e("iVIgGIDR (r;q) Iy, (s; v; o) dqdvdsdr;
0 0 0 0

2.,2.,2,
©p4 (Co) = e® IR (r;v) Iy (v;S; Co) dvdsdr
0, loZ roZ .
+ e iR, (r;v) 12 (s; v; ¢o) dvdsdr;
0 0 0

Z 12,2,
©5(C) = e iR, (1;v) I3, (v; S; Co) dvdsdr
272 %z,

+ eco(ris)ﬁp (r; V) I3p (S; V; Go) dvdsdr;
0 0 o
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Z.2.2

rns
©33(Co) = P SI2 (1;'s; ) dvdsdr
202% .2,
+ geolriVgcoSi M, (r;q; o) l1p (S; V; Co) dgdvdsdr;
0 0 0 0
z.,7, z.,7.
©34 (Co) = e@ i, (r;s;c0) dsdr + %195, (r;s; co) dsdr;
0 0 0 0
z.,7, 2,7,
©s5 (Co) = e®@ i, (r;s;¢0) dsdr + e®" 195, (s; r; co) dsdr;
0 o _ ) _
3 0 3
©ua (Co) = VecAy (Co)*"  veclsp (Go) + tr Ap(co)* ' By (Co)' Ap (Co) By (o)
3 - 3 -
©as (Co) =tr Ap(co)™" By (Co) Ap (Co) " Bp(co)’ +tr Ap(Co)*" By (o) Ap (o) ' By (co)
3 - 3 -

©s5 (Co) =tr Ay (Co) " By (Co) Ap (o) 1 Bp (co)’ +tr Ap (o)™ Bp (o) Ap (co) M Bp (Co)

Proof
The proof uses Theorem 8, and we sketch the proof here. First, a direct calculation
shows that EQir = 0: Let ©nt (Co) = EQit QY : Notice that Qir are iid (0;©nt (Co))
across i: AsT ¥ 1
Qir D Qi;

where

Qi = (Qii;Q2i;Qsi; Qui; Qsi)
Z,

Qi = Jeoii (r) dW; (1)
Zol Z,
Qi = Jeo:i (M) Ap (r; 8)dW; (s)dr
2°, 2%,
Qsi = 11 (r;s;co) dW; (r)dW; (s) i . (Co)
2°, 2%, s .
Qi = o (r; s; Co) dW; (r) dW; (s) i tr Ap (o) H Bp (o)
2, 2° - .
1 1 .
Qsi = I3 (r;s;Co) AW; (r)dW; (s) j tr A (co) ** By (Co)
0 0

Also, a direct calculation shows that as T ¥ 1;

©nT (C0) = EQiTQir ¥ EQiQ} =©(co):

Let | be any (5 £ 1) vector with klk = 1. We consider two cases.

Case 1: IfI'© (¢co) | = 0:

To establish the desired result with a joint limit, we apply Theorem 7. Condition
(i) holq-_s, because it is assumed that 1°© (co) | > 0: Conditions (ii) and (iv) hold because
lim,< "~ ., —; = - > 0: Finally condition (iii), viz.

(IOQiT)2 are uniformly integrable in T;
holds because (I'Qit)*> ) (I’Q;)* as T ¥ 1 by the continuous mapping theorem with

E (I'Qit)?> = I'©n7 (co)! ¥ 1'©(co)l = E (I'Q;)?; and by applying Theorem 5.4 of
Billingsley (1968).
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Case 2: If '© (co) | = 0. Since I'©571 (cp) 1 ¥ I'©(co) | = 0;

A 1, A !
1 X 0 1)( 2 0
E o= -i('Qir) = PO I'©nt (co)! ¥ 0;
i=1 i=1
which leads to
1 X )
- -ilQim) 1,0
i=1

Therefore, by the Cramér-Wold device, it follows that

1 X i ¢
P= =iQit D N 0;2°0(co) : ¥
i=1

7.3 Appendix C: Proofs of Section 4

Proof of Lemma 2.
We show separately the following

1 X
7 (myiT () i =im1(c)) ¥, 0; (46)
i=1
and
1 X
a (mait () i —im2(c)) ¥, 0; 47
i=1

uniformly inc:
First, by de..nition and the triangle inequality, we have

-1 (myir (€) i —ima (c))-

Z 8 3 - 3
- P Pr Pr
Z S 7T S wiiti %ot 0iTE =1 "itYisi1Ppr (68) 1 —it1{Co)
= :lx A ° T K 112 -
n 3 i-i(tr©i'i@)iCic) Tz = YV ) i—il2(co)
_ _ _ _ ] t
s, Sy
+ Sii i Al ©@©F+ ii 9 -
- R i =t
X X , § -
- = - itYitj1 1 @i -
-i=1 :Ia-\tzl -
-1 X 1 X -
+ o i "itYisiiNpr (t;8) i —il1(Co) =
i=1 _ =1 s=1 _
5 x})‘ ;] XH T '-
+jci Coj- Tz ) i —il2(Cco) -
~ i—1 t=1 hil ¢ _ _ -
A i - oz - oz
1 X D1 X3 - o1 X*E -
= =i Jhr @i LW@Qj+= =ii-i JJhar@j+= 8 jo
N o Nzt !

I+11+11+1V +V +VI; say.
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Notice that two terms | and 11 are independent of ¢; and by Lemma 9 of Moon and

Phillips @.999b), ;11 2, 0as ;T !!E_L): Next, 111 ¥, 0 uniformly in ¢ because

L Ph 4 Pq H S - .

- )~/i__l i —il2(co) -interm Il is independent of ¢ and also by
] t

Lemma 9 of Moon and Phillips (1999b), it converges in probability to zeroas (n; T ¥ 1);
and jc j Coj is a continuous function on the compact parameter set C: Finally, since
jlir (©) i Y1 (c)i¥ O uniformly in ¢ (by pointwise convergence and continuity gn the com-

pact set)3and;"; _imy —i converges, IV ¥ Ouniformly in c: Also, since 2~ L, % j - ;
P
100 8iioe; =0p(1);and supgsc 't (€) < K for some ..nite K; terms V and V |

converges in probability to zero uniformly in c. Therefore, %] in:1 (MmaiT (©) i —im1 (c)) ¥p
0 uniformlyincas (n;T ¥ 1):
Next, to prove (47); we write by de..nition

= mMait (C)
i=1 ~
A 1
X X P ¢ X
1 1 " ) ) ) 1 1 2
= = T iYitg1 i @i i (Ci Co)ﬁ 72 Vit
N =1 t=1
A 1, 1
i 19? C™ic ApT (0 ?ﬂ? q:‘cQFtYitil
i=1 1 t=1 5
A 1 A 1
1 X4 1 X ’ -1 1 X 5
+(CiCo)= —H= iz At (' —B= CMinis
2~n =1 1 T ~ T T =1,
A 1 A 1
1 X, 1 X o a1 X o
i E P= ¢c it  Apt () = gptileT it
i=1 T t:]; T t=1 _ 3
A 1 A '
1 X, 1 X ’ L1 X s
+(ico) = Syitir  Apr (0) P=  GtaiDg e
i=1 t=1 t=1
2% 1, A 13
1 X 1 X - 1 X -
+(Ci Co)?] 4 p= CoOm"it Apr ©" —p= gptilD,;leitil S
i=1 o s T T NT t=1 5
A I A 1
Y. X4 1 X O il 1 X il
1(Cico)~ P SOyt Apr (©) PT pti 21Dyt Vitin
i=1 t=1 t=1
2A ' A 13
1 X 1 X ) ! - 1 XK .
+= 4 p= C'ic Apt (O Bpr () AT (O = Cowic D
Nioy T 1 L ~
A 1 A
1 X4 1 X ’ ‘1 ‘1 1 X .
i(Cico= —H=  TWwitiz Apt (€)' T Bpr (€)Apt (0) P= it
n i=1 2 T T t=1 T t=1
A | A
1 X4 1 X . ’ i1 i1 1 X
i (Cico)= o= COm"it  Apt (€)' Bpt () Apt (€) —B= it
n i=1 T t=1 T T t=1
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2R I A
1 X 1 X il il 1 X
+(C i Co) P 4 ?Ia? CMwyitin Apt (€)1 Byt (C)Apt (0)F ?ﬁ? Tryiei1
A li=1 t=1 t=1
1 X 1 X3 . 1 X3 .
i — -i .t(@©i-= =ii-i 7@ 1i= 8 io
L L Nt

Since each elementin d:‘cg'm and gpt; 1D|§Tl satis..es the conditions for T (x; c) anng (x;9 in

n N 1 n

Lemma9, the desired result in (47) follows by Lemma 9, i%] T B B - 8 j

0p (1) and boundedness of 1 (c) over the parameter set C. ¥

Proof of Lemma 3.
The proof is similar to that of Lemma 2 is omitted. ¥

Proof of Lemma 4.

Here we give only a sketch of the proof. The details of the calculation are quite similar
to the proof of Lemma 9(b) with a replacement of the standardizing factorﬁ by 1@% and
the proof of Theorem 14 of Moon and Phillips (1999b).

First, using the BN decomposition of "j; in (29) and of y;; in (33) ; we write

1 X
P= Mur (o)
i=1
1 1 X
L Quit i Q2iT)+15ﬁ Rair +0p (D) (48)
i=1 i=1
and
1 X
P=  myit (Co)
L
1 1 X
= Pz —i(Qur 1 Qair 1 Quit +QsiT) + Pz Rair +0p(1);

i=1 i=1

where Rijt and Ryt are relevant remainder terms generated by the BN decompositions
Yitj1 and "jz: The o, (1) terms above hold because it is assumed that

1 XSA 1 X3
P= SiiTioPe Bijio =0()):

Using similar arguments to those in the proof of Theorem 14 of Moon and Phillips
(1999b), it is possible to show that

1 X 3n,
P= Riir =0p = =0p(1); (49)
n._, T

and by applying arguments similar to those in the proof of (42) and (43) ; itis also possible

to show that _
1 X *n
P= Rt =0y, = =0,(1):
n._, T
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Then, it follows that

A

M 1 !
1 X" myr () ) X
= =J = -iQit J+o0,(D):
pﬁ - MoiT (CO) ‘Bﬁ - IQIT P ( )
Finally, applying Lemma 4 with ¢,g = cg (i:e:; - = 0), we obtain the desired result. ¥

Proof of Lemma 5.
Part (a).
By de..nition and by the Cauchy-Schwarz inequality,

sup iBnt RinT (C; C0)j
c2C:;jcicoj-°nT

22 21X 2
- 2kBnt Mnt (Co)k oW e sup o= rit (C;Co)3:
c2C:jcicoj-°nr n i=1
By Lemma 4 and Assumption 7, 2kBntMnT (Co)K °V’|§:/)° = Op (1) : Thus, to complete the
proof, it is enough to show that sUp;xc.jc ; c,j o °ﬁ iz Mt (G co)’ = = 0p (1) : Notice by
de..nition and the triangle inequality that
31 X s
sup o= rit (c;co)2
CZC:jcicoj-°nTon i=1 °
21 2
- sup 2= (dmjt (¢) i dmit (Co))2
c2C:jgicoj—°nT n i=1 o o °
21 X . 21 X °
- osup2—  (dmir () i —idm )+ 2= (dmir (Co) i —idm (Co))2
c2c N n._
- |::1 i=1
_1 X —
= —i_ sup kdm(c) § dm (co)k: (50)

n i=1 c2C:jcicCoj - ° vt

Then, the ..rst and the second terms in (50) are Op (1) by Lq_mma 3 and the last term
in (50) is also 0p (1) because dtig,(c) is contlnueus in ¢ and ﬁ i has a ..nite limit.
Therefore sup 5 c.jc ; coj - N rit (6 c)” =0p(1); as requnred
Part (b).

The proof of Part (b) is similar to that of Part (a) and is omitted. ¥

n

Proof of Theorem 2.
The proof is similar to the proof of Theorem 1 of Andrews (1999). De..ne #pt =
Bnr (€ co): Then,

Op (1) - Br21T (ZnT (CO) i ZnT (C))
= iHnT/'\fﬂ- + 2Hnt (BntSnT) 01
i “n7 Bnt RinT (6,C0) i A7 Rant (€:C0)

>From Lemmas 3 and 4 and Assumption 7, we have Hnt; Hn'T1 = O, (1) and positive
with probability one and Bnt Snt = Op (1) : Also, by Lemma 5, Bt Rint (€;¢0) = 0p (1)
and Ront (€;¢0) = 0p (1): Then,

0p (1) - i J%n7i® +20p (D)% + j%rjop (1) + j2Anti?0p (1) ;
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which is rearranged as
jAati? - 20p () (#nri +0p (1):
Then, the required result
“a1 = Op (€Y)
follows by relation (7.4) in Andrews (1999), page 1377. ¥

Proof of Theorem 3.

To complete the proof, it is enough to show (a) Bt (€ i Co) = Bnr (€4 i Co) +0p (1)
and (b) Bnt (6q i C) = ZnT +0p(1):

Part (a). Recall that Eﬂ%ﬂl Op (1) by Lemmas 3 and 4 and Assumption 7. Then,
it follows by the de..nition of Bt (€ i Co) that

8} . H 1
BntS Bnr S
Bar (& iC) i —p— - ——  =0p(1);
HnT HnT
which leads to B..S
Bnr (6 i Co) = —— +0p (1) = Op (1) :
HnT
So, we ..nd that ¢y is also Bt ( = pﬁ) i consistent. Then, by de..nition, we have
op(1) - B%TZnT (€) i Br21T Znt (©)
H BorS Tﬂz H BorS Tﬂz
= BnT(C‘quO)i% i BnT(ciCO)i% +0p (1)
nT nT
- 0p(1);
where the o, (1) in the second line holds because Bt (€5 i Co); BnT (¢ico)=0p(1):
So, - z
Hu B -S T H B -S 11,z
T Bt (6 iCo) i o i Bar(CiG) it T=0,(1):  (51)

HnT HnT

Now, for given = > 0; set "= +2: Then, since Bt (€q i Co) achieves the minimum of the

2
quadraticfunctionf () = . i§ Bnlj:’-nsf'- on the closedinterval f, : Byt (CiCo) - . - iBnrCo0;
it follows that jBnt (€ i Co) i Bnt (6 i Co)j = £ implies

o M1, K 11,-
Z BntS B,rS -
_BnT(C‘qico)i—': it BnT(ﬁiCo)i% -
nT nT
Therefore
denT (€ic)iBnr(Cgico)i>=g -
S 1. H B.-S M D
- P I Bnr(&ico)i % i Bar(Cic)i o o>
nT nT
T 0

where the last convergence holds by (51); and we have completed the proof of Part (a).
Part (b). First We_consider the case Co 2 Co=10g: For any = > 0;

n- - (o}
_ N _
P Bar(CicCo)i.nT =%
) Y % Ya
B,tS BntS
HnT HnT
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Since ﬁ';fn—STﬂI = Op (1) ; for given " = 0; we can choose K and (ng; To) such that

[T
p —0=0L-> K <“foralln_ngand T _ To:
HnT
Yoz 37, 3
Choose ¢y =max 25, ; & no : Then, whenevern _ nyand T _ To;
1/ZB S % 1/25 S ¥
P —LT L <Bnr(cic) +P % > § Bnr Co
1/2:B”TS - ¥, nT
_oop BotSnto o
HnT
and therefore, n- - °

P Bnr(CicCo)int >t -2

as required. ¥

7.4 Appendix D: Proofs of Section 5

Proof of Lemma 6
Part (a).

Part (a) holds by Lem 4 with cg = 0 and by considering the marginal limiting
distribution distribution of =~ NMy 1 (0). ¥
Part (b).

The proof of Part (b) is similar to the proof of Lemma 4, and we give only a sketch of
the proof. By de..nition and by Assumption 6,

" #

- pxopox M T 1 XMt
ndMynr (0) = i P y i - — Rt (t;s) +0p(1);

T2 7 T2
i=1 T t=1 Hil ¢ T

p

because of Assumption 6. Using the BN-decomposition of "j¢; we can decompose

ij—(uy ﬂz- _ixutisilﬂh s
T2 - ST 1 I-I-zt=1 1T \4L
= -iQsit +* RiT;

P, .
where Xjt = ._; Ujs With Xjo = 0;

15(2 1 XX

Qsit = 75 Xiu1iTs Xitj 1Xisj1M17 (4;S)
t=1 t=1s=1
M 1
1 KXXFPrg) i1
i % Ryt (6S);
t=1s=1

and Rt is the remainder term. The speci..c forms of R1jt can be found in the proof of

Lemma 9 in Moon and Phillips (1999b). Then, by modifying the proof of Lemma 9 in

Moon and Phillips (1999b) with the results in Appendix B2, it is possible to show that
X pr—9

1 n
P= Ry =0 = =0, ();
ni:l 1T P T p(),
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since & ¥ 0: Also, it is not dic¢cult to prove that Var (Qeit) ¥ 6300 as(n;T) ¥ 1 for
all i: Therefore, Part (b) holds. ¥

Part (c).
Notice that
A !
P—i ¢ 1 X
n'PMur () = 0 24 i (0)
~ i=1 ~
A g "A psen T '
_ 1 N 1 tisil .
= - i Tz —T Rt (ts)
i=1 t=2 s=1
From STIC A
sup sup - — jr<==0() for all ..nite k;
1ot-Tad oz T T
we have
1X§4Htisil'"2 Z1Zy s 1
= ———— hip (t;s) X (rijs)"h(r;s)dsdr+ =0 (1):
T T 0o 0 T

t=2 s=1

Also, a direct calculation shows that

Z,7Z,
(r i s)?h(r;s)dsdr = 0:
0 0
o Pn A
Therefore, since it is assumed that £ ¥ 0and 4~ L, = ¥, —;
¢}

— i ¢
n dlenT (O) 1 p 0;

which is required. ¥

Part (d).
By de..nition,
A 1
1 X
®*Mint (€) = i PO d*1y7 ()
A iR ) '
_ X, TR M ™
= - 5 e T it (t58)
i=1 t=2 s=1

Notice that d®My,t (c) is continuous on the compact parameter set. Since

e o koo T
% () —tl.T_ll Ry (t;s)

t=2 s=1
z.,z,

T d3My(c;0) = e i) (r § s)*h (r;s)dsdr
0 0
P
and 3 Ly % By -
d*Mint () ¥p —d*My(c;0)

uniformly in ¢ 2 C; and we have the required result. ¥

Before we prove Lemmal-_Y, we |qgoduce the fo&lowmg lemma which is helpful in de-

riving the asymptotics of £~ " 45 T a2 52",

43



Lemma 11 Suppose that assumptions in Lemmas 6 and 7 hold. Then; as (n;T ¥ 1)

with & 1 0; P | ¢
nT 27" j %y = Op(1);

where %% is de..ned in (16):

Proof of Lemma 11

By de..nition,
— i ¢
Por et jug
Alx g xH The
= - ; Yy
nAizl =1 Bil ot -
1 XX H 1 ol
£ = T Y i @i —ilir(0)  +o0p(2);
Nz t=1 't Thil ¢t
P 3 I = T ]
where the o, (1) order holds because 1&; A T ;-,slE o Sii-i o =o0p();
and
1 X 1 x H 11,
A Tz Y =0,(1)=0:
i=1 t=1 il ¢
Using Lemma 9(a) and (c), it is possible to show that
1 X 1 X K 12 _
= = y 1, -1,0)=—; 52
ni=lT2t=1 Thil ot P 2 ©) 15 ©2
as (n;T ¥ 1): Next, notice that as (n;T ¥ 1) with & ¥ 0;
A !
1 XX H 1
P= T "y i%ii-ilir (0)
n =1 gt LI H t
N S T ]
- ﬁ - ? itYitg1 1 ~i
i=1 A t=1 ]
1 X 1 XX
iP= p— "itYisi1har (6s) + —ila7 (0)
n i=1 t=1s=1
1 X
= Ps i (Q1int i QainT) +0p(1); (53)

i=1

where the last equality holds by (48) and (49) with ¢ = 0 and p = 1; and Qi and
Q2inT are the same in (44): In view of the proof of Lemma 10, the following holds

A L]
> 2

. 1
lim sup E P= - (Q1inT i Q2inT) <1. (54)
n; T H

i=1

Therefore, from (52), (53); and (54) the desired result follows. ¥

Proof of Lemma 7
Part (a).



By de..nition, we can write

Mant (0) = =

™

o
==

™

>From the de..nitions of ﬁi and éi; the last two terms in (55) are

A a . s o
1 1
i - Sii-i L1+ &;
i=1 Nt
1 X
? it 1
1

>
-
=

Noticing that

>

tjl t=1

and

p_
n'VIZnT (0)
1 X1 X 1 X1 X ¢
= i_|5=2 o T "Hi %R +§|3ﬁ T i %Zi +0p (1)
i=1 t=1 i=1  t=1
1 XX, ¢
= b= = Mei e Fop(D):
2'n i=1 T t=1
To show
1 XX, _
Epﬁ T it i it = 0p(1);
i=1 t=1
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we write

" #
1 XX, ¢ 11 X X, ¢
ﬁ T it 1 it — T Eﬁﬁ T it 1 it
i=1 t=1 i=1 t=1
By de..nition of "j;
1 X X5,
2pﬁ 13? it 1 it >
i=1 " t=1 q
= 1_ > e gl g 2-|s1= pﬁT i%** iy — "ty
2 nT =g 70 v T 0 i i
A 1
1 iP=_ i 44 6, 1 X
+p= nT % i% —_ y'y
n 0 nTZI:l ~“iiltiil
1 )(HO : T K 1 1 H 1 1
= = Mg 40 = +0 =
2 nT =1 i ! P -p? P -p;
1 K |
= p= i +op();
2 nT =, ~i%i
. . _l_Pn nl _Lpn 0
where the third line holds because &+ =, "Y 712 =Y Y =0p,()and
TiTiil “hilTiil

— i ¢
S i % =Op (1) by Lemma 11,

Notice by de..nition that
1

—
. xH _,,0,,ﬂ 1 n 11X XX L
= U B e - it"ishir (;s)
2 nT o, im i=1  t=1s=1
. i . 1 Pn 1 IDT PT "o . —
?)nd(lu)smsg Lemmang(:j)blt is possible to show that ; ;7 (=1  o=p it ishiT (£S) =
p(1): So, since ¢ 1 0;
> B T pur—q
; W =0 I =y 1);
Epn——Ti:1 R PT p(1);
and * P
1 X1 X ot N
oPn T iR = T 0% D =0p(1);
i=1 t=1

and we have desired result. ¥

Next, we sketch proofs for Parts (b) — (d). The details of the proofs for Part (b),
(c), and (d) are similar to those of Part (b) of Lemma 6, Part (a) above, and Lemma 2,
respectively, and we omit the details.

Part (b).

Taking the ..rst derivative of My, () with respect to the parameter c; considering

Assumption 6, and rearranging terms using the relations

M T
1 Xt iT 1 X 1 Yio j Vit
p= = E =P v+ AT 58
Ttil T it %?IT Tt:1y|t.1 T n ( )
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and

1 X ) )
p= =BT P (59)
T =1 T T
it is possible to ..nd that
20 Py 2 o 1Pron 13
;X U = e el = S S
P Mont (= P= §§ 2B b= i 25T g §Z
ie 2
- i3 B+

M "'F'IT
+0p ? +0,(1):

Using the BN decomposition of yjt; 1 and the results in Appendix B2 with ¢co = 0; it is
possible to show that

pﬁouvlz,éT (%

I Ny T - .
T Ptzl itjl T tzllj' R ¢ ul"_
1 X ; T tily. g T gyt n
= P= E-B 28T Ter t=1§x'9i21 127 =T §Z+0p T +top(D)
i=1 -1 i a1
13 é% +3
1 X

= ‘Bﬁ Qzit +0p(1);
i=1
where Xit = Xit;1 + Uit With Xjo = 0: Then, direct calculations show that EQ7ir = 0 and
Var (Qir) ¥ 7 Therefore .
ndMznt (¢) = Op (1) ;
as required. ¥
Part (c) and Part (d).

The proof of Part (c) is similar to that of Part (b). Taking the second order derivative
of Mzt (€) with respect to the parameter c; considering Assumption 6, and rearranging
terms using the relations of (58) and (59) ; it is possible to show that
pr—9
P— n

nd?>Mznt (¢) = Op T =0 1):
The proof of Part (d) is similar to the proof of Lemma 2. After taking the third order
derivative of Myt (¢) with respect to ¢ and using the results in Lemma 9, it is possible
to show the required result. ¥

Proof of Theorem 4

De..ne A,t = n=8¢: First, we consider the case where fj*,1j > 1g: By the de..nition
of the GMM estimator, we have

0p (1) - n(ZnT (O) i ZnT (C))
X 3 B X 3 B
= i nGOAG A A nGEEONLr (6,0)
k=1 k=3

In view of (17) j (24) and from Assumption 7, A, satis..es

0p (1) = i J%nr I +i%nTi® 0p (1)+j%nr|* 0p (1) +20, (1) j2n1i® +ifnr % 0p () +i%nri0p (1):
(60)
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Since, jAnTj > 1;

The right hand side of (60)
- i faTi® @ +0p (1) +20, (1) jonTi’:

Then, . .
JAari - 20p (1) jAnr) +0p (1)
Following by relation (7.4) in Andrews (1999), page 1377, we can deduce that

j*ati® - Op (1) +0p (1):

Therefore, when fj2,1j > 19;
JAnti - Op (1): (61)
Finally, let the Op (1) random variable in (61) be » 1 : Then,

j/'\nTj = j/'\nTj 1 fJ /'\nTj - 19 + j/'\nTj 1fj/'\nTj > lg
- aTi i Rar] - 1o+ oy
- 1+ =0(1): ¥

Proof of Theorem 5
The proof of the theorem is similar to that of Theorem 3 and is omitted. ¥

7.5 Appendix F: Numerical Validation of the Identi..cation Con-
dition of m(c)®

In this section we provide a numerical validation that the uniform limit of the moment
conditions, m(c) = (mqy(c); m; (c))O has a root only at the true parameter ¢ = ¢o: We
restrict the parameter set to C = [ j 10; 0]: The choice of the lower limit ¢ = 10 is made
for computational convenience, and the results hold for all ..nite values of 8 < 0. All
the numerical analysis in this section is done with Mathematica and with Maple using
Scienti..c Workplace Version 3.0.

7.5.1 When gt =t

The procedure we apply is to .nd all the roots of m; (c) and verify whether these roots
are also the roots of m; (c) : We ..rst notice that for given cy; the function m; (c) is simply
the ratio of two polynomials - the denominator and the numerator of m; (c) ; say mg2 (¢)
and mp; (c) ; respectively, are a fourth degree polynomial and a ..fth degree polynomial
in c; respectively.

Case A: When ¢ &0

Step 1: Numerical Calculation of the roots of m; (c):

By a direct calculation, we ..nd that the denominator 8f m; () ; mqy2 (¢); equals to
4c3 'e2 i 3c+3 2 when ¢y & 0: Since ¢2 j 3¢ +3 = ‘e i i 2 + 2 > 0; the denominator
of my (¢) has no real roots for all cg & 0: Thus, if we concerned with the roots of m, (c);
it succes to consider only the numerator of m; (c), mn2 (c): By de..nition of m; (c), we
..nd that the true value ¢ = ¢q is always a root of my, (¢). Also, by inspection, we ..nd
that ¢ = 0 is always a root of mp, (c): Thus, we can write

Mn2(€) =c(C i Co)Mn2 (C);

6We are in debt to John Owens for the numerical analysis in this section.
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where mp; (¢) is a third degree polynomial. Using Mathematica, we solve the third degree
polynomial m,2 (¢) and ..nd three roots of m, () as a function of the true parameter co:
For the numerical calculation we choose 8 = 10; and so we assume that the parameter
set C =1 j 10;0]: The Figures A.1 and A.2 plot the graphs of these roots on C only when
the roots are real numbers. As we see through the graphs, for cg < 0; the roots of mn; (¢)
are all positive, and so m, (¢) does not have a root in the parameter set C:

Step 2: Plug the bad root ¢ =0 of m;(c) to m; (c)

We now investigate, for given ¢ 2 C=f0g; whether m;(c) = 0 when ¢ = 0: By
matching the given true parameter cg with mj (0); we can de..ne the function m;_ 0 (cq)

of ¢o: Using Maple, we calculate

il
1 H jc3 +48e° j 8ec? j 824

M 0(C0) =77 43¢ ; 8e?oc? + 24ce®  24e% j 24c

and plot the graph of m;__0(co): Figure A.3 plotsm;__0(cg) on the range of cg 2 [ 10; 0:4]
and Figure A.4 plots the same function on the range of ¢ 2 [0:4;0]: Through these graphs,
we can verify that m;_0(cg) is positive but very close to zero when the true value cq is
close to zero.

Figure A.3 Graph of m;_0(co) Figure A.4 Graph of m;_0(co)
To investigate further the behavior of m;__0(cg) around ¢o = 0; in Figure A.5 we plot

the graphs of the ..rst derivatives of numerator of m;__0(cg) on the range cq 2 [§0:05;0]:

Figure A.5. Graph of the ..rst derivative of the Numerator of m;__ 0 (cp)

The graph shows that the ..rst derivative of the numerator of m;_0(cp) is nega-
tive around zero, and so mi1_ 0(co) is strictly decreasing. Therefore, we conclude that
m;__0(co) is not zero for all ¢y 2 Cp:

Case B: When ¢g =0:

Using Maple, we calculate m (¢c) when ¢o = 0; and plot the graph in Figures A.6 and
A.7. From these ..gures, it is apparent that m;, (c) = 0 only when ¢ =cg = 0:
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Figure A.6 Graph of m, (c) when ¢co =0 Figure A.7 Graph of m; (c) when ¢co =0

i ¢
7.5.2 When gy = t;t?

Although the expressions involved in m, (¢) in this case are far more complex, the analysis
is simpler. Like the case of gt = t; we ..nd that the denominator of m, (c) does not
change sign over C = [j10;0]; and so we focus on the numerator of m, (c): Similar to
the case of g;¢ = t; we numerically calculate the real roots of the numerator of m, (c) for
Co 2 C =[i10;0]; and we ..nd that there exists only one root in the.range of co; which
implies that m, (c) = 0 only at the true c. Therefore, when g, = t;t? ; the limit of
moment condition m (c) identi..es the true parameter ¢y in C:
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Figure A.1. Graph of Roots of mp; ()

Figure A.2. Graph of Roots of mp; ()
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