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Abstract
This paper investigates a generalized method of moments (GMM) approach to

the estimation of autoregressive roots near unity with panel data. The two moment
conditions studied are obtained by constructing bias corrections to the score functions
under OLS and GLS detrending, respectively. It is shown that the moment condition
under GLS detrending corresponds to taking the projected score on the Bhattacharya
basis, linking the approach to recent work on projected score methods for models with
in…nite numbers of nuisance parameters (Waterman and Lindsay, 1998). Assuming
that the localizing parameter takes a nonpositve value, we establish consistency of the
GMM estimator and …nd its limiting distribution. A notable new …nding is that the
GMM estimator has convergence rate n1=6; slower than

p
n; when the true localizing

parameter is zero (i.e., when there is a panel unit root) and the deterministic trends
in the panel are linear. These results, which rely on boundary point asymptotics,
point to the continued di¢culty of distinguishing unit roots from local alternatives,
even when there is an in…nity of additional data.

JEL Classi…cation: C22 & C23

Keywords and Phrases: Bias, boundary point asymptotics, GMM estimation, local
to unity, moment conditions, nuisance parameters, panel data, pooled regression,
projected score.

1 Introduction
Recent years have seen the introduction of several important panel data sets where the
cross sectional dimension (say, n) and the time series dimension (say, T) are comparable

¤The authors thank J. Owens for excellent research assistance, J. Hahn for helpful discussions, and
R. Waterman for sharing with us his recent joint papers with B. Lindsay. Moon thanks the Academic
Research Committee of UCSB for research support and Phillips thanks the NSF for research support
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in magnitude. Some of these panel data sets, like the Penn World Tables, have time series
components that are nonstationary. These features distinguish the new data from the
characteristics that are conventionally assumed in the analysis of panel data.

Since the beginning of the 1990’s, there has been ongoing theoretical and applied
research on the use of large n and T panels allowing for nonstationarity in the data over
time. The theoretical research includes the study of panel unit root tests (e:g:; Quah,
1994, Levin and Lin, 1993, Im et al; 1996, Maddala and Wu, 1997, and Choi, 1999), panel
cointegration tests (e:g:; Pedroni, 1999, Binder et al), and the development of linear
regression theories for panel estimators under nonstationarity (e:g:; Pesaran and Smith,
1995, and Phillips and Moon, 1999). Applied research includes tests of growth convergence
theories (Bernard and Jones, 1996), purchasing power parity relations (MacDonald, 1996,
Oh, 1996, Pedroni, 1996, Wu, 1996, and Wu, 1997), and studies of the international links
between savings and investment (Coakley et al, 1996 and Moon and Phillips, 1998).

Two recent papers by the authors (Moon and Phillips, 1999a & b) study panel re-
gression models that allow for both deterministic trends and stochastic trends. When the
deterministic trends in the nonstationary panel data are heterogeneous across individuals,
Moon and Phillips (1999a) show that the maximum likelihood estimator (MLE) of the lo-
cal to unity parameter in the stochastic trend is inconsistent. They call this phenomenon,
which arises because of the presence of an in…nite number of nuisance parameters, an
incidental trend problem because it is analogous to the well-known incidental parame-
ter problem in dynamic panels when T is …xed1 . To solve the incidental trend problem,
Moon and Phillips (1999b) propose various methods, including an iterative ordinary least
squares (OLS) procedure and a double bias corrected estimator, and establish limit the-
ories for these consistent estimators that can be used for statistical inference about the
localizing parameter.

As a continuation of the two studies just mentioned, the present paper investigates
a generalized method of moments (GMM) estimator of autoregressive roots near unity
with panel data. We establish two moment conditions that form the basis for inference.
The …rst moment condition is obtained by adjusting for the bias of the score function
after conventional OLS detrending. The second moment condition is constructed by
adjusting for the bias of the score function following GLS (or quasi-di¤erence - QD)
detrending. Interestingly, the second moment condition is shown to correspond to the
Gaussian projected score, where the projection is taken on the so-called Bhattacharya
basis that has been studied recently in the conventional incidental parameter problem by
Waterman and Lindsay (1996, 1998) and Hahn (1998).

Consistency of the GMM estimator is proved under the assumption that the local-
izing parameter takes a nonpositive value. This condition is not too restrictive because
most econometric models consider non-explosive autoregressive regression models. Nev-
ertheless, the restriction does matter in deriving the limiting distribution of the estimator
because it is possible that the true parameter lies on the boundary of the parameter set.
The most interesting case is, of course, the pure unit root case where the true localizing
parameter is zero. In this case, in establishing the limiting distribution we cannot use
the conventional approach that approximates the …rst order condition because the true
parameter could be on the boundary of the parameter set. To avoid this di¢culty, we use
the approach that takes a quadratic approximation of the nonlinear objective function
and optimize it on the parameter set (c.f. Andrews, 1999, for some recent developments
of estimation and inference in boundary problems).

One of the most interesting …ndings in the present paper is that the GMM estimator
has slower convergence rate than

p
n when the time series components in the panel have

unit roots (i.e., the true localizing parameter is zero), and the deterministic trends are

1 Lancaster(1998) provides a recent general survey of the incidental parameter problem in econometrics.
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linear. In this case the convergence rate is actually O(n1=6) rather than O(
p

n). This
slow convergence rate arises because of lack of information in the moment conditions
when there is a unit root, i.e., at the point c = 0 in the space of the localizing parameter.
It points to the continued di¢culty of distinguishing unit roots from local alternatives in
the presence of deterministic trends even when there is an in…nity of additional data from
a cross section.

The paper is organized as follows. Section 2 lays out the model and gives the ba-
sic assumptions that are maintained thought the paper. In section 3 we introduce two
moment conditions and prove that the second moment condition corresponds to a Gaus-
sian projected score on the Bhattacharya basis. In Section 4 we establish consistency of
the GMM estimator and obtain the limiting distributions of the GMM estimator when
the true parameter is less than zero and equal to zero. The appendix contains technical
derivations and proofs of the results in the main text.

2 Model and Assumptions
The model considered here is the panel system written in components form

zit = ¯0
igpt + yit (1)

yit = ½yit¡1 + "it;

where the autoregressive coe¢cient

½ = exp
³ c

T

´
» 1 +

c
T

;

is local to unity and the deterministic trend

gpt = (t; :::; tp)0 : (p £ 1) polynomial trend vector.

Let ¯i0 and ½0 = 1 + c0
T denote the true parameters. The main interest of the paper is to

…nd a consistent estimation procedure for the localizing parameter c0: A case of special
interest is the panel unit root model where c0 = 0:

In practice, the most widely used trend in empirical applications is the linear trend,
when g1t = t in (1). In later sections of the paper as part of the asymptotic development we
need to verify some properties of complicated nonlinear functions of c that depend on the
trend gpt : These functions are so complicated that it is very di¢cult to establish general
analytic results under the set up of the general polynomial trend function gpt = (t; :::; tp)0 :
Instead, we rely on numerical methods for this part of the analysis. And to assist the
analytic development, we restrict our attention to the following two cases: (i) g1t = t and
(ii) g2t =

¡
t; t2

¢0 : The set up is formalized as follows:

Assumption 1 (Trend Formulation)
The polynomial trend in model (1) is either (i) g1t = t or (ii) g2t =

¡
t; t2

¢0 :

Assumption 2 (Error Condition) "it are linear processes satisfying the following condi-
tions.

(a) "it =
P1

j=0 Cijuit¡j ; where uit are iid across i over t with Euit = 0; Eu2
it = 1;

and Eu4
it = ¾u;4 < 1:

(b) Cij are sequence of real numbers with ¹Cj = supi jCij j < 1 and
P1

j=0 j b ¹Cj < 1
for some b > 2:
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Assumption 3 (Initial Condition)
(a) yi0 = zi0 for all i
(b) E supi jyi0j· < 1 for some · > 4:

Assumption 4 (Parameter Set)
(a) The localizing parameter c takes a value in a compact subset C = [ c̄ ; 0 ] ½ R;

where c̄ < 0.
(b) The true localizing parameter c0 is in the set C0 = ( c̄ ; 0 ]:

Assumption 4(a) restricts the parameter set C = [ c̄ ; 0 ] to be non-positive. This
restriction is made because in most econometrics application, j½j < 1 or ½ = 0 is of most
interest. When the true parameter c0 = 0; the model becomes nonstandard in the sense
that the true parameter is on the boundary of the parameter set. Section 5 explores the
implications of the boundary point aspect of this case.

Let Ci =
P1

j=0 Cij , ­i = C2
i ; and ¤i =

P1
j=1 Ci0Cij : ­i and ¤i are the long-run

variance and the one-sided covariance of the error process "it; respectively. The next
assumption is about the limits of the averages of the individual long-run variances and
covariances.

Assumption 5 (Long Run Variances)
(a) infi ­i > 0
(b) ­ = limn

1
n

Pn
i=1 ­i is …nite.

(c) ª2 = limn
1
n

Pn
i=1 ­2

i is …nite.
(d) ¤ = limn

1
n

Pn
i=1 ¤i is …nite.

In most applications, the long-run variances ­i and ¤i are not known and consistent
estimates of ­i and ¤i are required. A widely used method is to employ a kernel estimation
approach (c.f., Park and Phillips, 1988). Once we obtain consistent estimates of ­i and
¤i; we can average them to produce consistent estimates of the quantities ¤ and ­:
Speci…cally, suppose that "̂it is a regression residual of model (1) or model (4) : De…ne
the sample covariances ¡̂i(j) = 1

T
P

"̂it "̂it+j ; where the summation is de…ned over 1 ·
t; t + j · T: Then, the kernel estimators for ¤̂i and ­̂i are:

¤̂i =
TX

j=1

w
µ

j
K

¶
¡̂i(j ); (2)

­̂i =
TX

j=¡T

w
µ

j
K

¶
¡̂i(j ); (3)

where w(¢) is a kernel function with w (0) = 1 and K is a lag truncation parameter.
Truncation occurs when w

¡ j
K

¢
= 0 for jj j ¸ K: Averaging over cross section observations

now leads to consistent estimators of ¤ and ­; viz.,

¤̂ =
1
n

nX

i=1

¤̂i and ­̂ =
1
n

nX

i=1

­̂i:

We assume that the estimates ¤̂i and ­̂i have the following desirable properties. Examples
of such estimates ¤̂i and ­̂i are found in Moon and Phillips (1999b), and we will not pursue
this aspect of the theory further here.
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Assumption 6 (Long Run Variance Estimation) Assume2 that as (n; T ! 1) with n
T !

0,
1p
n

nX

i=1

¯̄
¯¤̂i ¡ ¤i

¯̄
¯and

1p
n

nX

i=1

¯̄
¯­̂i ¡ ­i

¯̄
¯ = op (1) :

3 Moment Conditions
This section develops two moment conditions that will be used in GMM estimation of c0:
The central idea is to correct for the biases in the OLS detrended regression and in GLS
detrended regression, a process that leads to two di¤erent moment conditions. It turns
out that the second moment condition is equivalent to a particular form of projected score
in the Gaussian version of model (1) : The projection is on the Bhattarcharya basis (Bhat-
tacharyya, 1946 and Waterman and Lindsay, 1996) and this correspondence is explored
in the …nal part of this section.

3.1 The First Moment Condition
We start by writing Model (1) in augmented regression format as

zit = ½0zit¡1 + ±i0 + ° 0
i0gpt + "it ; (4)

where

±i0 = ½0¯
0
i0¶p ;

°i0 = ¯0
i0¨T (c0) ;

¶p =
³
¡1; (¡1)2 ; :::; (¡1)p

´0

¨T (c0) = (p £ p) matrix dedending on c0 and T:

The augmented format (4) has the drawback that linear regression leads to ine¢cient
trend elimination, but it has the advantage that the detrended data is invariant to the
trend parameters in (1) : The …rst moment condition uses the augmented formation (4)
and the second moment condition uses model (1) :

The following notation is de…ned to assist with the analysis of the trend function
asymptotics and it will be used subsequently throughout the paper. Let

~° i0 = (±i0; °0
i0)

0 ;

~gpt =
¡
1; g0

pt
¢ 0 ; gp (r) = (r; :::; rp)0 ; ~gp (r) =

¡
1; gp (r)0¢0 ;

GpT =
¡
g0

p1; :::; g0
pT

¢0 ; GpT;¡1 =
¡
g0

p0; :::; g0
pT¡1

¢ 0 ; ~GpT =
¡
~g0
p1; :::; ~g0

pT
¢0 ;

~MpT = IT ¡ ~GpT

³
~G0

pT
~GpT

´¡1
~G0

pT ;

DpT = diag (T; :::; Tp ) ; ~DpT = diag (1; DT ) ;

hpT (t; s) = D¡1
pT g0

pt

Ã
1
T

TX

t=1

D¡1
pT gptg0

ptD
¡1
pT

!¡1

gpsD¡1
pT ;

2 Usually, the lag truncation parameter K in (2) and 3 tends to in…nity as n;T increase to in…nity
together, under a certain regularity condition. For example, Moon and Phillips (1999b) impose the con-
dition that nKT ! 0 as (n;T !1) with nT ! 0: This regularity condition is required for the asymptotics
underlying Assumption 6.
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~hpT (t; s) = ~D¡1
pT ~g0

pt

Ã
1
T

TX

t=1

~D¡1
pT ~gpt~g0

pt
~D¡1

pT

!¡1

~gps ~D¡1
pT ;

hp (r; s) = g0
p (r)

µZ 1

0
gp (r) gp (r)0 dr

¶¡1

gp (s) ;

~hp (r; s) = ~g0
p (r)

µZ 1

0
~gp (r) ~gp (r)0 dr

¶¡1

~gp (s) :

Write zi = (zi1; :::; ziT )0 ; zi;¡1 = (zi0; :::; ziT ¡1)
0 ; and "i = ("i1; :::; "iT )0 : Let

z
~i

= ~MpT zi ; "
~i

= ~MpT "i ;z
~i;¡1

= ~MpT zi;¡1:

Then, it is straightforward to show that

z
~ i

=y
~i

and z
~i;¡1

=y
~ i;¡1

;

where
y
~ i

= ~MpT yi ; y
~ i;¡1

= ~MpT yi;¡1;

yi = (y1; :::; yT )0 ; and yi;¡1 = (y0; :::;yT ¡1)
0 : For t ¸ 2 we let

µ
z
~i;¡1

¶

t
= zit¡1 ¡ 1

T

TX

s=1

~hpT (t; s) zis¡1

be the tth element of z
~i;¡1

; and assume
µ

z
~i;¡1

¶

1
= zi0 = yi0:

One straightforward procedure of estimating c0 (equivalently ½0) is to …rst eliminate
the unknown trends ± i0 +° 0

i0gt by taking OLS regression residuals and then apply pooled
least squares with an appropriate bias correction for the serial correlation of "it, calling
this method iterative OLS. However, as noted by Moon and Phillips (1999b), this iterative
OLS procedure yields inconsistent estimation of c0 due to a nondegenerating asymptotic
bias between the detrended regressor and the detrended error term.

The …rst moment condition is obtained simply by subtraction of this asymptotic bias
term in an iterative OLS procedure. More speci…cally, we write Model (4) in vector
notation as

zi = ½0zi;¡1 + ~GpT ~°i0 + "i :

Multiplying ~MpT to the both sides of the equation, we have

z
~i

= ½0 z
~ i;¡1

+ "
~i

;

where z
~ i

; z
~ i;¡1

; and "
~i

are OLS detrended versions of zi; zi;¡1; and "i; respectively. In

general, the detrended regressor vector z
~i;¡1

and the detrended error vector "
~i

are corre-

lated.
The …rst moment condition is found by correcting for the bias due to the correlation

between z
~ i;¡1

and "
~i

: We will use m1;iT (c) to denote the data moment that appears in

the …rst moment condition. It is de…ned as follows:

m1;iT (c) =
1
T

µ
z
~ i

¡
³
1 +

c
T

´
z
~i;¡1

¶0
z
~i;¡1

¡­̂i!1T (c) ¡ ¤̂i (5)
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=
1
T

"
~

0
i
y
~i;¡1

¡ (c ¡ c0)
1

T 2
y
~

0
i;¡1

y
~i;¡1

¡­̂i!1T (c) ¡ ¤̂i

=
1
T

TX

t=1

"ityi;t¡1 ¡ 1
T2

TX

t=1

TX

s=1

"ityi;s¡1~hpT (t; s) ¡ (c ¡ c0)
1

T 2

TX

t=1

µ
y
~ i;¡1

¶2

t

¡­̂i!1T (c) ¡ ¤̂i ;

where

!1T (c) = ¡ 1
T2

TX

t=2

t¡1X

s=1

e(
t¡s¡1

T )c~hpT (t; s) ;

and "
~it

and
µ

y
~i;¡1

¶

t
are the tth elements of "

~i
and y

~ i;¡1
; respectively. The terms ­̂i!1T (c)

and ¤̂i correct for the asymptotic bias that arises from the correlation between "
~it

and
µ

y
~i;¡1

¶

t
.

Since the bias correction terms ­̂i!1T (c) and ¤̂i are approximations of the mean of
1
T "

~
0
i
y
~ i;¡1

; E (m1;iT (c0)) is not exactly zero but it is asymptotically zero, in general.

However, m1;iT (c) has a simple limiting form that delivers an exact moment condition.
When T is large, it is easy to …nd that the distribution of m1;iT (c) is close to that of

­i

µZ 1

0
J
~ c0;i

(r)dWi (r) ¡ (c ¡ c0)
Z 1

0
J
~ c0;i

(r)2 dr ¡ !1 (c)
¶

;

where Jc0;i (r) =
R r

0 ec0(r¡s)dWi (s) is a di¤usion, Wi (r) is standard Brownian Motion,

J
~ c0;i

(r) = Jc0;i (r) ¡
R 1
0 Jc0;i (s) ~hp (r; s) ds; and !1 (c) = ¡

R 1
0

R r
0 ec0(r¡s)~hp (r; s)dsdr:

Since

E
µZ 1

0
J
~ c0 ;i

(r) dWi (r)
¶

= !1 (c0) ;

it follows that when c = c0

E
µ

­i

µZ 1

0
J
~ c0 ;i

(r) dWi (r) ¡ (c ¡ c0)
Z 1

0
J
~ c0 ;i

(r)2 dr ¡ !1 (c)
¶¶

= 0;

giving the moment condition directly for this limiting form of m1;iT (c0) :

3.2 The Second Moment Condition
Before we discuss the second moment condition, we introduce the following notation. Let

¢c =
³
1 ¡

³
1 +

c
T

´
L

´
; where L is the lag operator,

FpT = diag
¡
1; T ; :::; T p¡1¢ =

1
T

DpT ; \¢cgpt = F¡1
pT ¢cgpt

¢gp (r) =
d
dr

gp (r) =
¡
1; 2r; :::; prp¡1¢0 ;

¢gpc (r) = ¢gp (r) ¡ cgp (r) ;

ApT (c) =
1
T

TX

t=1

\¢cgpt \¢cgpt
0
; Ap (c) =

Z 1

0

¢
gpc (r)

¢
gpc (r) 0 dr;

BpT (c) =
1
T

TX

t=1

\¢cgptg0
pt¡1D

¡1
pT ; Bp (c) =

Z 1

0

¢gpc (r) gp (r) 0 dr:
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The second moment condition is obtained from the e¢ciently detrended regression equa-
tion. According to Canjels and Watson (1997) and Phillips and Lee (1996), the trend
coe¢cient in the model (1) can be e¢ciently estimated in the time domain by employing
a GLS procedure that amounts to quasi-di¤erencing the data with the operator ¢c . That
is, when the localizing parameter c is known, the asymptotically e¢cient estimator of ¯i
in (1) is

^̄
i (c) =

Ã
TX

t=1

¢cgpt¢cg0
pt

!¡1 Ã
TX

t=1

¢cgpt¢czit

!
:

Denoting yit (¯i) = zit ¡ ¯0
igpt , we now write

^̄
i (c) = ¯i0 +

Ã
TX

t=1

¢cgpt¢cg0
pt

!¡1 Ã
TX

t=1

¢cgptyit (¯i0)

!
:

De…ne "it (c; ¯i0) = ¢czit ¡ ¯ 0
i¢cgpt :

The second moment function m2;iT (c) is de…ned as

m2;iT (c) =
1
T

TX

t=1

"it

³
c; ^̄

i (c)
´

yit¡1

³
^̄

i (c)
´

¡ ­̂i¸T (c) ¡ ¤̂i; (6)

where

¸T (c) = ¡tr

Ã
ApT (c)¡1 1

T2

TX

t=2

t¡1X

s=1

e(
t¡s¡1

T )c\¢cgpt \¢cgps
0
!

:

Notice that yit¡1

³
^̄

i (c)
´

is the GLS regression residual of the regression equation zit =

¯ 0
igt +yit and "it

³
c; ^̄ i (c)

´
is the OLS regression residual of the quasi-di¤erenced equation

¢czit = ¯ 0
i¢cgpt + ¢cyit. In the second moment function m2;iT (c) we correct for the

asymptotic bias of 1
T

PT
t=1 "it

³
c; ^̄

i (c)
´

yit¡1

³
^̄

i (c)
´

by substracting o¤ the estimates

­̂i¸T (c) and ¤̂i :
Recently, Moon and Phillips (1999a) showed that the Gaussian MLE of the panel

regression model (2) with linear incidental trends is inconsistent. The main reason for
inconsistency of the MLE is that the concentrated score of the (standardized) Gaussian
likelihood function, 1

n
Pn

i=1
1
T

PT
t=1 "it

³
c; ^̄

i (c)
´

yit¡1

³
^̄

i (c)
´

; has non-zero mean in the
limit. In the second moment formulation of m2;iT (c) ; by subtracting o¤ the estimates
­̂i¸T (c) and ¤̂i ; we eliminate the asymptotic bias of the concentrated Gaussian score
function.

3.3 The Relationship between the Second Moment Condition and
the Projected Score

This section shows that the second moment function m2;iT (c) is a projected score of the
panel regression model (1) with Gaussian errors. Suppose that the error process "it in
the model (1) is an iid standard normal process across i and over t: For convenience we
assume that zi0 = yi0 = 0 for all i:

Under general regularity conditions, it is well known that the asymptotic properties of
the MLE, and most notably its consistency, are closely related to the unbiasedness of the
score function at the true parameter. However, it is also well known that in dynamic panel
regression models with incidental parameters the MLE is not consistent (e:g:; see Neyman
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and Scott, 1948, and Nickel, 1981) as n ! 1 with T …xed. Recently, Moon and Phillips
(1999b) found that this incidental parameter problem also arises in the nonstationary
panel regression models with incidental trends when both n ! 1 and T ! 1, to wit in
models such as (1) :

The main reason for the inconsistency of the MLE is that the score function in an
incidental trend model has a bias at the true parameter. Therefore, in order to obtain a
consistent estimate, one needs to correct for the bias in the score function. One recently
investigated method to correct for this bias is to use a projected score function, where
the projection is taken onto the so-called Bhattacharyya basis. The resulting approach is
called “a projected score method”.

To de…ne a projected score in the present case, we introduce the following notation.
Let

fi(zi ;c; ¯i) =
µ

1p
2¼

¶T

exp

Ã
¡1

2

TX

t=1

¡
¢czit ¡ ¯0

i¢cgpt
¢2

!
(7)

: the joint density of zi,

U1i =
@fi=@c

fi
; V1i =

@fi=@¯i
fi

;

V2i =
@2fi

@¯i@ ¯0
i

fi
+

@fi

@¯i

@fi

@¯0
i
; Vi =

µ
V1i

D+
p vecV2i

¶
;

where D+
p =

¡
D0

pDp
¢¡1 D0

p and Dp is the duplication matrix. In the statistics literature,
V1i and V2i are known as the Bhattacharyya basis of order 1 and 2, respectively (e:g:;
Bhattacharyya, 1946 and Waterman and Lindsay, 1996). The projected score U2i is
de…ned as the residual in the L2¡ projection of U1i on the closed linear space spanned by
V1i and V2i ; i:e:;

U2i = U1i ¡ » 0
1V1i ¡ » 0

2D
+
p (vecV2i) : (8)

Recently, using the projected score method, Waterman and Lindsay (1998) and Hahn
(1998) were able to solve similar nuisance parameter problems in the classical Neyman
and Scott panel regression model and in a simple dynamic panel regression model with
…xed e¤ects, respectively.

When the joint density of zi is given in (7) ; U1i ; V1i; and V2i are found to be

U1i (c; ¯i) =
1
T

TX

t=1

"i;t (c;¯ i) yi;t¡1 (¯i) ;

V1i (c; ¯i) =
TX

t=1

"i;t (c;¯ i)¢cgpt;

V2i (c; ¯i) = ¡
TX

t=1

¢cgpt¢cg0
pt +

Ã
TX

t=1

"i;t (c; ¯i)¢cgpt

! Ã
TX

t=1

"i;t (c; ¯i) ¢cgpt

!0

:

After some algebra, we obtain

E (V1i ­ vecV2i) = 0

and
EV1iU1i = 0:

9



So, the two L2¡ projection coe¢cients »1 and »2 in (8) are given by

»1 = [EV1iV 0
1i]

¡1 EV1iU1i = 0;

and
»2 =

£
D+

p E (vecV2i) (vecV2i)
0 D+0

p
¤¡1

D+
p E (vecV2i)U1i:

Also, after some lengthy calculation, we …nd that

E (vecV2i) (vecV2i)
0

=
TX

t=1

TX

s=1

¡
¢cgpt¢cg0

pt ­ ¢cgps¢cg0
ps

¢
+

TX

t=1

TX

s=1

¡
¢cgpt¢cg0

ps ­ ¢cgps¢cg0
pt

¢
;

and

E (vecV2i)U1i

=
1
T

TX

t=2

t¡1X

s=1

[¢cgpt ­ ¢cgps + ¢cgps ­ ¢cgpt ] e(
t¡s¡1

T )c :

Therefore, the projected score U2i (c; ¯i) is

U2i (c; ¯i)

=
1
T

TX

t=1

"i;t (¯ i; c) yi;t¡1 (¯i) + » 0
2D+

p

TX

t=1

(¢cgpt ­ ¢cgpt)

¡» 0
2D

+
p

Ã
TX

t=1

"i;t (c; ¯i) ¢cgpt

!
­

Ã
TX

s=1

"i;s (c; ¯i)¢cgps

!
;

where

»2

=

"
TX

t=1

TX

s=1

D+
p

©¡
¢cgpt¢cg0

pt ­ ¢cgps¢cg0
ps

¢
+

¡
¢cgpt¢cg0

ps ­ ¢cgps¢cg0
pt

¢ª ¡
D+

p
¢0

#¡1

£ 1
T

TX

t=2

t¡1X

s=1

D+
p [¢cgpt ­ ¢cgps + ¢cgps ­ ¢cgpt] e(

t¡s¡1
T )c:

Since ¯i in U2i is unknown, we replace it with the estimate

^̄
i (c) =

Ã
TX

t=1

¢cgpt¢cg0
pt

!¡1 Ã
TX

t=1

¢cgpt¢czit

!
:

Then, we have the following concentrated projected score

U2i

³
c; ^̄

i (c)
´

=
1
T

TX

t=1

"i;t

³
^̄

i (c) ; c
´

yi;t¡1

³
^̄

i (c)
´

+ » 0
2D+

p

TX

t=1

(¢cgpt ­ ¢cgpt) ; (9)

because
PT

t=1 "i;t

³
c; ^̄ i (c)

´
¢cgpt = 0.

10



Now, when the error process "it is iid(0; 1) across i and over t; the second moment
function m2;iT (c) is

m2;iT (c) =
1
T

TX

t=1

"it

³
c; ^̄

i (c)
´

yit¡1

³
^̄

i (c)
´

¡ ¸T (c) :

The following lemma states that the bias correction term ¡¸T (c) in m2;iT (c) is equiva-
lent to » 0

2D+
p

PT
t=1 (¢cgpt ­ ¢cgpt) : Thus, we conclude that the second moment function

actually corresponds to the concentrated projected score function of the Gaussian model.

Lemma 1 (Equivalence) Suppose that the errors in model 1 are iid normal with mean
zero and variance 1 across i and over t and yi0 = zi0 = 0 for all i: Then, the sec-
ond moment condition m2;iT (c) is equivalent to the concentrated projected score function
U2i

³
c; ^̄

i (c)
´

:

4 GMM Estimation and Asymptotics
This section investigates the asymptotic properties of a GMM estimator of c that is based
on the two moment conditions introduced in the previous section. Let

MnT (c) =
1
n

nX

i=1

miT (c) ;

where

miT (c) =
µ

m1;iT (c)
m2;iT (c)

¶
;

and where m1;iT (c) and m2;iT (c) are de…ned in (5) and (6) ; respectively. Let Ŵ be a
(2 £ 2) random weight matrix and BnT be a sequence of real numbers that converges to
in…nity as (n; T ! 1) : The GMM estimator ĉ for the unknown parameter c0 in (1) is
de…ned as the extremum estimator for which

ZnT (ĉ) · min
c2C

ZnT (c) + op
¡
B¡2

nT

¢
; (10)

where
ZnT (c) = MnT (c)0 ŴMnT (c) :

Since the objective function ZnT (c) is continuous in c and the parameter set C assumed
to be compact, it is possible to …nd a global minimum of ZnT (c) over the parameter set C:
The main purpose in allowing for an op

¡
B¡1

nT

¢
deviation bound from the global minimum

min
c2C

ZnT (c) is to reduce the computational burden and allow for potential numerical

computational errors within a range of op
¡
B¡1

nT

¢
: Later in this paper, depending on the

convergence order of ĉ to c0; we will determine the sequence BnT :

4.1 Consistency of the GMM Estimator
De…ne

M (c) =
µ

m1 (c)
m2 (c)

¶
;

where
m1 (c) = !1 (c0) ¡ !1 (c) ¡ (c ¡ c0) !2 (c0) ;
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!1 (c) = ¡
Z 1

0

Z r

0
ec(r¡s)~hp (r; s) dsdr;

!2 (c0) = ¡ 1
2c0

µ
1 +

1
2c0

¡
1 ¡ e2c0

¢¶

¡
Z 1

0

Z 1

0
ec0(r+s) 1

2c0

³
1 ¡ e¡2c0 (r^s)

´
~hp (r; s)dsdr;

and

m2 (c)

= ¡ (c ¡ c0)
µZ 1

0

Z r

0
e2c0(r¡s)dsdr

¶

+(c ¡ c0)
Z 1

0

Z 1

0

Z r^s

0
ec0(r+s¡2v) ¢gpc (s)0 Ap (c)¡1 ¢gpc (r) dvdsdr

+(c ¡ c0)
Z 1

0

Z r

0
ec0(r¡s) ¢gpc (r) 0 Ap (c)¡1 gp (s)dsdr

+(c ¡ c0)
Z 1

0

Z r

0
ec0(r¡s) ¢gpc (s)0 Ap (c)¡1 gp (r)dsdr

¡ (c ¡ c0)2
Z 1

0

Z 1

0

Z r^s

0
ec0(r+s¡2v) ¢

gpc (s)0 Ap (c)¡1 gp (r) dvdsdr

¡ (c ¡ c0)
Z 1

0

Z r

0
ec0(r¡s) ¢

gpc (r) 0 Ap (c)¡1 Bp (c)Ap (c)¡1 ¢
gpc (s) dsdr

¡ (c ¡ c0)
Z 1

0

Z r

0
ec0(r¡s) ¢gpc (s)0 Ap (c)¡1 Bp (c)0 Ap (c)¡1 ¢gpc (r)dsdr

+(c ¡ c0)
2
Z 1

0

Z 1

0

Z r^s

0
ec0(r+s¡2v) ¢gpc (s)0 Ap (c)¡1 Bp (c) Ap (c)¡1 ¢gpc (r)dvdsdr

¡
Z 1

0

Z r

0
ec0(r¡s) ¢gpc (s)0 Ap (c)¡1 ¢gpc (r) dsdr

+
Z 1

0

Z r

0
ec(r¡s) ¢

gpc (s)0 Ap (c)¡1 ¢
gpc (r) dsdr:

The following lemma shows that the sample moment condition MnT (c) has a uniform
limit in c:

Lemma 2 (Uniform Convergence) Under Assumptions 1-6,

MnT (c) !p ­M (c; c0) uniformly in c

as (n;T ! 1) :

Assumption 7 As (n; T ! 1) ; Ŵ !p W , where W is positive de…nite.

Notice by inspection that the uniform limit function M (c; c0) is continuous on the
compact parameter set C: Also, notice that M (c; c0) = 0 at the true parameter c = c0.
In Appendix F, we prove numerically that M (c; c0) = 0 only when c = c0: Then, by a
standard result (e.g., theorem 2.1 of Newey and McFadden (1994), the GMM estimator ĉ
is consistent for the true parameter c0: Summarizing, we have the following theorem.

Theorem 1 (Consistency) Suppose that Assumptions 1-6 and Assumption 7 hold. Then,
as (n;T ! 1) ;

ĉ !p c0:
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4.2 Limiting Distribution of the GMM Estimator when c0 < 0
By inspection the objective function ZnT (c) is di¤erentiable in c on the region c 2 (¹c; 0) ;
and it has right and left derivatives at c = ¹c and 0; respectively. To derive the limit dis-
tribution of the GMM estimator, we employ an approach that approximates the ob jective
function ZnT (c) uniformly in terms of a quadratic function in a shrinking neighborhood
of the true parameter.

For this purpose, we de…ne

dMnT (c) =
1
n

nX

i=1

dmiT (c) ;

where dmiT (c) denotes the derivative of miT (c) with respect to c when c 2 (c̄ , 0) and
the right and left derivatives when c = c̄ and 0; respectively. By the mean value theorem,
for c 6= c0;

miT (c) = miT (c0) + dmiT (c0) (c ¡ c0) + riT (c; c0) (c ¡ c0) ;

where

riT (c; c0) = (r1iT (c; c0) ; r2iT (c; c0))
0 ;

rkiT (c; c0) = dmkiT
¡
c+

k

¢
¡ dmkiT (c0) ;

and c+
k lies between c and c0 for k = 1; 2:

De…ne
SnT = dMnT (c0)0 ŴMnT (c0) ;

and
HnT = dMnT (c0)

0 ŴdMnT (c0) :

Then, we can write

ZnT (c) = MnT (c0)0 ŴMnT (c0) + 2 (c ¡ c0)SnT + (c ¡ c0)2 HnT

+ (c ¡ c0) R1nT (c; c0) + (c ¡ c0)
2 R2nT (c; c0) ;

where

R1nT (c; c0) = 2MnT (c0)0 Ŵ

Ã
1
n

nX

i=1

riT (c; c0)

!
;

and

R2nT (c; c0) = 2dMnT (c0)
0 Ŵ

Ã
1
n

nX

i=1

riT (c; c0)

!

+

Ã
1
n

nX

i=1

riT (c; c0)

!0

Ŵ

Ã
1
n

nX

i=1

riT (c; c0)

!
:

We now give some asymptotic results that are useful in establishing the limit distri-
bution of ĉ:

Lemma 3 Suppose that Assumptions 1-6 hold. When the true parameter is c0;

dMnT (c) !p ­dM (c; c0) = ­
µ

dM1 (c; c0)
dM2 (c; c0)

¶
uniformly in c as (n; T ! 1)
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for some continuous function dM (c) with

dM1 (c0; c0) = ¡!2 (c0) +
Z 1

0

Z r

0
ec0(r¡s) (r ¡ s) ~hp (r;s)dsdr;

and

dM2 (c0; c0)

= ¡
Z 1

0

Z r

0
e2c0(r¡s)dsdr

+
Z 1

0

Z 1

0

Z r^s

0
ec0(r+s¡2v) ¢gpc0 (s) 0 Ap (c0)

¡1 ¢gpc0 (r)dvdsdr

+
Z 1

0

Z r

0
ec0 (r¡s) ¢

gpc0 (r)0 Ap (c0)¡1 gp (s)dsdr

+
Z 1

0

Z r

0
ec0 (r¡s) ¢

gpc0 (s)0 Ap (c0)
¡1 gp (r)dsdr

¡
Z 1

0

Z r

0
ec0 (r¡s) ¢gpc0 (r)0 Ap (c0)

¡1 Bp (c0)Ap (c0)
¡1 ¢gpc0 (s)dsdr

¡
Z 1

0

Z r

0
ec0 (r¡s) ¢gpc0 (s)0 Ap (c0)

¡1 Bp (c0)
0 Ap (c0)

¡1 ¢gpc0 (r) dsdr

+
Z 1

0

Z r

0
(r ¡ s) ec0(r¡s) ¢gpc0 (r)0 Ap (c0)

¡1 ¢gpc0 (s)dsdr:

Now we set BnT =
p

n:

Lemma 4 Suppose that Assumptions 1-6 hold. Then, as (n; T ! 1) with n
T ! 0;

BnT MnT (c0) =
1p
n

nX

i=1

miT (c0) ) N
¡
0; ª2J 0© (c0)J

¢
;

where J =
µ

1 ¡1 0 0 0
1 0 ¡1 ¡1 1

¶0
and © is de…ned in (45) :

Remarks

(a) The proof is similar to that of Lemma 2 and is omitted.

(b) Figures (3) and (4) plot the graphs of dM1 (c0; c0) in the cases of ~g1t = (1; t)0 and
~g2t =

¡
1; t; t2

¢0 ; respectively. What we verify from the graphs is that dM1 (c0; c0) < 0
for c0 < 0: Therefore, HnT > 0 for c0 < 0:

Figure 3. Graph of dM1 (c0; c0) when ~g1t = (1; t)0 :
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Figure 4. Graph of dM1 (c0; c0) when ~g2t =
¡
1; t; t2

¢0 :

(c) According to Moon and Phillips (1999b), when c0 = 0; it always holds that dM1 (c0; c0) =
0 for all polynomial trends ~gpt = (1; :::; tp)0 : Also, for c0 = 0; direct calculations show
that dM2 (c0; c0) = 0 for g1t = t and dM2 (c0; c0) = 0 for g2t =

¡
t; t2

¢0 : Therefore,
HnT !p 0 when c0 = 0, g1t = t; and g2t =

¡
t; t2

¢0 :

Notice from Lemma 3 and the following remarks and by Assumption 7, that HnT has
a positive limit as (n; T ! 1) when c0 < 0: Thus, H¡1

nT = Op (1). Then, we can write

B2
nT ZnT (c)

= MnT (c0)
0 ŴMnT (c0) ¡ (BnT SnT )2

HnT

+HnT

µ
BnT (c ¡ c0) ¡ BnT SnT

HnT

¶2

+BnT (c ¡ c0) BnT R1nT (c; c0) + (BnT (c ¡ c0))
2 R2nT (c; c0) : (11)

Lemma 5 Under Assumptions 1-6 and Assumption 7, for every sequence °nT ! 0; we
have

(a)
sup

c2C:jc¡c0j·° nT

jBnT R1nT (c; c0)j = op (1)

and
(b)

sup
c2C:jc¡c0j·°nT

jR2nT (c; c0)j = op (1) :

Theorem 2 Suppose that Assumptions 1-6 and Assumption 7 hold. Then,

BnT (ĉ ¡ c0) = Op (1) :

Lemma 5 establishes that two remainder terms BnT R1nT (c; c0) and R2nT (c; c0) con-
verge in probability to zero uniformly in the shrinking neighborhood of the true parame-
ter. Also, Theorem 2 shows that the GMM estimator is BnT ( =

p
n)¡ consistent. This

implies that in the shrinking neighborhood of the true parameter, the scaled ob jective
function B2

nT ZnT (c) is uniformly approximated by the following quadratic function

B2
nT Zq;nT (c)

= MnT (c0)0 Ŵ MnT (c0) ¡ (BnT SnT )2

HnT
+ HnT

µ
BnT (c ¡ c0) ¡ BnT SnT

HnT

¶2

:
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The heuristic ideas of the limit theory are as follows. Let BnT ( ĉq ¡ c0) =arg max
c2C

B2
nT Zq;nT (c) :

Then, we may expect that a maximizer of B2
nT ZnT (c) will be close to the maximizer of

B2
nT Zq;nT (c) ; suggesting that the GMM estimator BnT (ĉ ¡ c0) will be close to

BnT (ĉq ¡ c0) =
BnT SnT

HnT
if

½
BnT (c̄ ¡ c0) · BnT SnT

HnT
· ¡BnT c0

¾

= BnT (c̄ ¡ c0) if
½

BnT (c̄ ¡ c0) >
BnT SnT

HnT

¾

= ¡BnT c0 if
½

BnT SnT

HnT
> ¡BnT c0

¾
:

Notice that BnT SnT
HnT

= Op (1) and recall that it is assumed that the true parameter c̄

< c0 < 0. In this case, the probabilities of the events
n

BnT (̄c ¡ c0) > BnTSnT
HnT

o
andn

BnTSnT
HnT

> ¡BnT c0
o

will be very small and the scaled and centred estimator BnT (ĉq ¡ c0)
will therefore be close with high probability to the random variable

^̧nT =
BnT SnT

HnT
:

In view of Lemmas 3 and 4 and Assumption 7,

BnT SnT ) S d= N
¡
0; ­2ª2

£
dM (c0; c0)0 W J0© (c0)JWdM (c0;c0)

¤¢

and
HnT !p H = ­2dM (c0; c0)

0 WdM (c0; c0) > 0

as (n; T ! 1) with n
T ! 0: Thus, when c0 2 C0= f0g ;

^̧nT ) ¸ d= H¡1S let= Z:

The proof of the following theorem veri…es the heuristic arguments given above.

Theorem 3 Suppose that Assumptions 1-6 and Assumption 7 hold. Suppose that c0 2
C0= f0g and ĉ be the GMM estimator de…ned in (10) : Then, as (n; T ! 1) with n

T ! 0;
p

n (ĉ ¡ c0) ) Z ;

where

Z d= N

Ã
0;

ª2

­2
dM (c0; c0)

0 WJ 0© (c0)JWdM (c0; c0)£
dM (c0; c0)

0 W dM (c0; c0)
¤2

!
:

Remarks

(a) When c0 2 C0= f0g and J 0© (c0)J is invertible, the optimal weight matrix is found
as

Ŵopt = (J 0© (ĉ)J )¡1 :

The limiting distribution of
p

n (ĉ ¡ c0) is then

p
n (ĉ ¡ c0) ) Zopt

d= N

Ã
0;

ª2

­2
£
dM (c0;c0)

0 W dM (c0; c0)
¤2

!
: (12)
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(b) In Figures 5-6, we plot the graphs of the minimum eigenvalues of J0© (c0)J as
functions of c0 when g1t = t and g2t =

¡
t; t2

¢ 0 : As we see through the graphs,
J0© (c0)J is positive de…nite except for the case of c0 = 0 with g1t = t:

Figure 6. Graph of the Minimum Eigenvalue of J 0©(c0) J When g2t =
¡
t; t2

¢0 :

4.3 Limiting Distribution of the GMM Estimator when c0 = 0
An important special case of model 1 is when c0 = 0: In this case, the time series compo-
nents of yit in (1) have a unit root (i.e., ½0 = 1) for all i: This section develops asymptotics
for the GMM estimator when the true localizing parameter is zero, so throughout this
section we set c0 = 0: In this case; according to the Remark (c) below Lemma 4, the
information from the moment conditions is zero because HnT !p 0: We cannot then use
a conventional quadratic approximation approach, as in the previous section, and need
instead to employ a higher order approximation.

The model considered is

zit = ¯i1t + yit (13)
yit = ½0yit¡1 + "it; (14)

where
½0 = 1; i:e; c0 = 0:

In model (13)-(14) the panel data zit is generated by a heterogeneous deterministic trend,
¯ i1t; and has a nonstationary time series component yit with a unit root. The analysis
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here is restricted to the linear trend case because it is the most widely used deterministic
speci…cation in empirical application and it facilitates what a complex series of calcula-
tions. Assumptions 2, 3, 4(a), 5, 6, and 7 are taken to hold.

Lemma 6 Under the assumptions stated above, the following hold as (n; T ! 1) with
n
T ! 0:

(a)
p

nM1nT (0) ) N
³
0; ª2

60

´
´

q
ª2

60 Z; where Z ´ N (0; 1) ;

(b)
p

ndM1nT (0) = Op (1) ;
(c)

p
nd2M1nT (0) = o (1) ;

(d) d3M1nT (c) !p d3M1 (c; 0) uniformly in c with d3M1 (0; 0) = ¡ 1
70 ; where dkM1nT (c)

is the kth left derivative of M1nT (c), and d3M1 (c; 0) is the third left derivative of M1 (c; 0) ;
the probability limit of M1nT (c) :

The next lemma …nds the limits of the second moment condition and its higher order
derivatives at c = 0: As we will show in the appendix, the asymptotics of M2nT (0) depend
on the limiting behavior of 1

n

Pn
i=1

1
T

PT
t=1

¡
"̂2

it ¡ "2
it
¢
; which relies on how we estimate

the model and de…ne the residual "̂it: The residual "̂it that will be used here is obtained
from a modi…ws least squares estimation of model (4) : In particular, we de…ne

"̂it =z
~ it

¡½̂++
µ

z
~ i;¡1

¶

t
; (15)

where

½̂++ =

Ã
nX

i=1

z
~

0
i;¡1

z
~i;¡1

!¡1 Ã
nX

i=1

µ
z
~

0
i
z
~i;¡1

¡T ¤̂i ¡ T ­̂i!1T (0)
¶!

: (16)

Then, we have the following lemma.

Lemma 7 Suppose that the assumptions in Lemma 6 hold. Assume that the residual "̂it
in (15) is used in calculating ­̂i and ¤̂i in Assumption 6. Then, when (n; T ! 1) with
n
T ! 0;

(a)
p

nM2nT (0) = op (1) ;
(b)

p
ndM2nT (0) = Op (1) ;

(c)
p

nd2M2nT (0) = op (1) ;
(d) d3M2nT (c) !p d3M2 (c; 0) uniformly in c with d3M2 (0; 0) = ¡ 1

15 ; where dkM2nT (0)
is the k th left derivative of M2nT (c) at c = 0, and d3M2 (0; 0) is the third left derivative
of d3M2 (c; 0) at c = 0:

Remarks. Since the higher order derivatives of M2nT (0) are complicated and involve
very lengthy expressions, we omit the details of their derivation in the appendix. Instead,
we give a sketch of the proof in the appendix and here provide some simulation evidence
relating to the various parts of Lemmas 6 and 7. Using simulated data for zit in (13) with
"it » iid N (0; 1) and yi0 = 0; we estimate the means and the variances of

p
ndkMjnT (0) ;

k = 0; :::; 2; j = 1; 2 and the means of d3MjnT (0) ; j = 1; 2: Table 1 reports the results.
The numbers in the table are consistent with the theoretical results in the lemmas. No-
ticeably, the variance estimates of

p
nM1nT (0) ;

p
ndM1nT (0) ; and

p
ndM2nT (0) are all

small. This is because their theoretical limit variances are small but not zero. In fact, a
long calculation shows that the theoretical limit variances of

p
nM1nT (0) ;

p
ndM1nT (0) ;

and
p

ndM2nT (0) are 1
60 ; 11

6300; and 1
45 , respectively when "it » iid N (0; 1).
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Table 13p
nM1nT (0)

p
ndM1nT (0)

p
nd2M1nT (0) d3M1nT (c)

Mean
Variance

¡0:0019
0:018

¡0:0003
¡0:0017

7:96 £ 10¡7

0
¡0:0169

0

p
nM2nT (0)

p
ndM2nT (0)

p
nd2M2nT (0) d3M2nT (c)

Mean
Variance

9:4 £ 10¡5

0:0012
¡0:0001
0:022

¡2:88 £ 10¡6

4:85 £ 10¡6
¡0:06
4:039

Using the left derivatives of the moment condition miT (c) at c = 0; we approximate
miT (c) around the true parameter c0 = 0 with a third order polynomial as follows,

miT (c) = miT (0) + c (dmiT (0)) +
1
2
c2 ¡

d2miT (0)
¢

+
1
6
c3 ¡

d3miT (0)
¢

+ c3~riT (c;0) ;

where

~riT (c; 0) = (~r1iT (c; 0) ; ~r2iT (c; 0))0 ;
~rkiT (c; 0) = d3mkiT

¡
c+k

¢
¡ d3mkiT (0) ; k = 1 and 2:

Then,

ZnT (c) = MnT (c)0 Ŵ MnT (c)

=
6X

k=0

ckAk;nT + NnT (c; 0) ;

where

A0;nT = MnT (0)0 ŴMnT (0) ;

A1;nT = 2MnT (0) 0 ŴdMnT (0) ;

A2;nT = MnT (0)0 Ŵd2MnT (0) + dMnT (0)0 Ŵ dMnT (0) ;

A3;nT =
1
3
MnT (0)0 Ŵd3MnT (0) + dMnT (0)0 Ŵd2MnT (0) ;

A4;nT =
1
3
MnT (0)0 Ŵd3MnT (0) +

1
4
d2MnT (0)0 Ŵd2MnT (0) ;

A5;nT =
1
6
d2MnT (0) 0 Ŵd3MnT (0) ;

A6;nT =
1
36

d3MnT (0)0 Ŵ d3MnT (0) ;

and

NnT (c; 0) =
6X

k=3

ckNk;nT (c; 0) ;

3 Notice that the second and the third derivatives of M1nT (c) are deterministic.
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Nk;nT (c; 0) = 2d(k¡3)MnT (0)0 Ŵ

Ã
1
n

nX

i=1

~riT (c; 0)

!
for k = 3; 4;5; 4

N6;nT (c; 0) = 2d3MnT (0) 0 Ŵ

Ã
1
n

nX

i=1

~riT (c; 0)

!
+

Ã
1
n

nX

i=1

~riT (c; 0)

!0

Ŵ

Ã
1
n

nX

i=1

~riT (c; 0)

!
:

In view of Lemmas 6 and 7, it is easy to …nd that as (n; T ! 1) with n
T ! 0;

n5=6A1;nT = op (1) ; (17)

n2=3A2;nT = op (1) ; (18)

n1=3A4;nT = op (1) ; (19)

n1=6A5;nT = op (1) ; (20)

and

A6;nT !
p

­2

36

µ
W11

4900
+

2W12

1050
+

W22

225

¶
> 0; (21)

n1=2A3;nT ) A3Z; (22)
nA0;nT ) A0Z2; (23)

where Z ´ N (0; 1) and A3 = ¡­
3

¡ W11
70 + W12

15

¢q
ª2

60 and A0 = W11
ª2

60 :
Also, using Lemmas 6 and 7 and following similar lines of proof to Lemma 5, we can

show that
sup

c2C:jcj·°nT

¯̄
¯n(6¡k)=6Nk;nT (c; 0)

¯̄
¯ = op (1) ; (24)

for any sequence °nT tending to zero as (n; T ! 1) : Then, we have the following limit
theory for ĉ at the origin.

Theorem 4 Under the assumptions in Lemmas 6 and 7, as (n; T ! 1) with n
T ! 0;

n1=6 (ĉ ¡ c0) = Op (1) ;

where c0 = 0:

So, when the true localizing parameter is c0 = 0; the GMM estimator ĉ is n1=6¡
consistent; which is slower than the regular case of

p
n that applies for c0 < 0 as shown

in Section 4.
Next, we …nd the limiting distribution of the GMM estimator ĉ: The argument here

is similar to that of the previous section. So, the proof is omitted and we give only the
…nal result in Theorem 5 below.

In view of (17) ¡ (23) and (24); the standardized objective function nZnT (c) is ap-
proximated by

Zq;nT (c) = nA0;nT +
³
n1=6c

´3 p
nA3;nT +

³
n1=6c

´6
A6;nT :

Notice that the probability limit of A6;nT is positive, as shown in (21): Then, it is easy to
see that the approximate objective function Zq;nT (c) is minimized at

n1=6 ĉq = ¡
µp

nA3;nT

2A6;nT

¶1=3

if
½

n1=6¹c · ¡
p

nA3;nT

2A6;nT
· 0

¾

= 0 if
½

¡
p

nA3;nT

2A6;nT
> 0

¾

= ¡
³
n1=6 (¡¹c)

´1=3
if

½
n1=6¹c > ¡

p
nA3;nT

2A6;nT

¾
:
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Using arguments similar to those in the proof of Theorem 3, we can prove that the starn-
dardized GMM estimator n1=6ĉ is approximated by n1=6 ĉq ; the minimizer of Zq ;nT (c) ;
that is,

n1=6 ĉ = n1=6 ĉq + op (1) ;

and the estimator n1=6 ĉq is approximated by

^̧
nT = ¡

µp
nA3;nT

2A6;nT

¶1=3

1
½

¡
p

nA3;nT

2A6;nT
· 0

¾
;

where 1fAg is the indicator of A: In view of (22) and (21); as (n; T ! 1) with n
T ! 0;

it follows by the continuous mapping theorem that

^̧
nT ) ¡ (¡Z0)

1=3 1 fZ0 · 0g ;

where

Z0 = V0Z ; (25)

V0 =
ª
­

¯̄
¯̄
¯̄

¡
¡

W11
70 + W12

15

¢q
1
15

1
3

¡ W11
4900 + 2W12

1050 + W22
225

¢

¯̄
¯̄
¯̄ (26)

and we have the following theorem.

Theorem 5 Under the assumptions in Lemmas 6 and 7, as (n; T ! 1) with n
T ! 0;

n1=6 ĉ ) ¡ (¡Z0)
1=3 1 fZ0 · 0g ;

where Z0 is de…ned in (25) :

Remarks

(a) Theorem 4 shows that when the true parameter c0 = 0, i:e:; in the case of a panel
unit root, the GMM estimator is n1=6-consistent and that its limit distribution is
nonstandard, involving the cube root of a truncated normal. The truncation in the
limiting distribution arises because the true parameter is on the boundary of the
parameter set.

(b) The reason for the slower convergence rate in the panel unit root case is that …rst
order information in the moment condition (from the …rst derivative of the mo-
ment condition) is aymptotically zero at the true parameter. In order to obtain
nonneglible information from the moment condition, we need to pass to third order
derivatives of the moment condition. Taking the higher order approximation slows
down the convergence rate because the rate at which information in the moment
condition is passed to the estimator is slowed down at the origin because of the zero
lower derivatives.

(c) In view of Lemmas 6(a) and 7(a), we …nd that
p

nM2nT (0) = op (1) ; while
p

nM1nT (0)
converges in distribution to a normal random variable with positive variance. Be-
cause of the convergence rate di¤erence between

p
nM2nT (0) and

p
nM1nT (0) ; we

have only W11 and W12 but not W22 in the limiting scale V0 of (26) : In this case,
setting W11 = W12 = 0; i.e. not considering the …rst moment condition, causes
the variance of the limit variate Z0 to vanish, from which one might expect that
the GMM estimator from the second moment condition alone would have a faster
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convergence rate than n1=6: In fact, under the assumptions in Lemma 7, it is pos-
sible to show that nM2nT (0) = op (1) as (n; T ! 1) with n

T ! 1 and the GMM
estimator from the second moment condition only could be n1=4-consistent; which
is faster than the GMM estimator de…ned by the two moment condition. However,
the reason for using the …rst moment condition is to identify the true parameter
when c0 < 0: As we discuss in Appendix F, the second moment condition cannot
identify the true parameter unless it is zero.

(d) When c0 = 0; in view of Lemma 7(b) and (c), one can explore higher derivatives as
moment conditions. If these higher derivative moment conditions are satis…ed only
at c0 = 0, then it will be possible to use those moment conditions to distinguish the
presence of a unit root in the panel from local alternatives, an issue which is being
studied by the authors.

5 Monte Carlo Simulations
The purpose of this section is to compare the quantile dispersion of the GMM estimators
in a simple simulation design. The main focus is to compare the panel unit root model
with incidental trends with near unit root with incidental trends and panel unit root
without the incidental trends.

The panel data zit is generated by the system

zit = ¯ i0t + yit; ¯i0 = iid Uniform[0; 3] (27)

yit = (1 +
c0

T
)yit¡1 + "it ; c0 2 f¡20;¡10; ¡5; 0g;

where the "it are iid N (0; 1) across i and over t; and the initial values of yi0 are zeros.
The sample size is (n; T) = (100; 200) : The autoregressive coe¢cients in the error process
for yit are taken to be 0:9; 0:95; 0:975; and 1: To calculate the GMM estimators we use
an identity weight matrix. This choice makes the estimation procedure for the c0 < 0
case comparable with the c0 = 0 case, whereas the optimal weight matrix when c0 = 0
is to use only the second moment condition in which case we can not identify the true
parameter when c0 < 0: The simulation employs 1000 repetitions each using grid search
optimization with the grid length of 0.02.

The simulation results are reported in Table 2. First, the median bias of the GMM
estimator ĉ becomes larger as the true c0 becomes larger. When c0 = 0, the GMM
estimator of Model (27) has median bias of -0.26, which is much larger than other cases.
Also, when c0 = 0; the GMM estimator is much more dispersed than the other cases. Both
results are to be expected from the asymptotic theory because of the slower convergence
rate and one sided limit distributin in the c0 = 0 case.

Table 2 compares the GMM estimator in the panel unit root model with incidental
trends with the truncated pooled OLS estimator of the panel unit root model without the
trends. For this we calculate

·c =
Pn

i=1
PT

t=1 zitzit¡1Pn
i=1

PT
t=1 z2

it¡1

1

( Pn
i=1

PT
t=1 zitzit¡1Pn

i=1
PT

t=1 z2
it¡1

· 0

)
;

where zit is generated by Model (27) with c0 = 0 and ¯i0 = 0: Then, the limting distri-
bution of ·c is

p
n·c )

p
2Z1 fZ · 0g ;

Z ´ N (0; 1) ;
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as (n;T ! 1) ; and so ·c is
p

n- consistent and has a normal limiting distribution. The
quantiles of ·c when n = 100 and T = 200 are reported in the last row of Table 2.
Comparing these outcomes with the GMM estimator ĉ of Model (27) where incidental
trends are present, ·c is much more concentrated on the true value and the median bias
of ·c is much smaller than that of ĉ: This comparison highlights the delimiting e¤ects of
incidental trends on the estimation of roots near unity even in cases where there are long
stretches of time series and cross section data in the panel.

Table 2. Quantiles of the Centered GMM Estimators of Model (27)

c0 (½0) 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%
-20 (0:9) -1.38 -1.14 -0.82 -0.60 -0.38 -0.22 0 0.18 0.36 0.72 0.90
-10 (0:95) -1.1 -0.86 -0.62 -0.44 -0.30 -0.16 0 0.16 0.34 0.54 0.80
-5 (0:975) -0.92 -0.74 -0.52 -0.38 -0.24 -0.12 0 0.14 0.30 0.53 0.70

0 (1) -1.64 -1.34 -0.96 -0.66 -0.42 -0.26 -0.1 0 0 0 0
0 (1)

No Trend -0.266 -0.197 -0.123 -0.075 -0.037 -0.003 0 0 0 0 0

6 Conclusion
Part of the richness of panel data is that it can provide information about features of a
model on which time series and cross section data are uninformative when they are used on
their own. In the context of nonstationary panels with near unit roots, an interesting new
example of this ‘added information’ feature of panel data is that consistent estimation of
the common local to unity coe¢cient becomes possible. This means that panel data help
to sharpen our capacity to learn from data about the precise form of nonstationarity where
time series data alone are insu¢cient to do so. However, as the authors have shown in
earlier work, the presence of individual deterministic trends in a panel model introduces a
serious complication in this nice result on the consistent estimation of a root local to unity.
The complication is that individual trends produce an incidental parameter problem as
n ! 1 that does not disappear as T ! 1: The outcome is that common procedures
like pooled least squares and maximum likelihood are inconsistent. Thus, the presence
of deterministic trends continues to confabulate inference about stochastic trends even in
the panel data case.

One option is to adjust procedures like maximum likelihood to deal with the bias. The
present paper shows how to make these adjustments. The theory is cast in the context
of moment formulae that lead naturally to GMM based estimation. The paper has two
important …ndings.

The …rst is that bias correction in the moment formulae arising from GLS estima-
tion of the trend coe¢cients corresponds to taking the projected score (under Gaussian
assumptions) on the Bhattacharya basis. This correspondence relates the approach we
take here to recent work on projected score methods by Waterman and Lindsay (1998)
that deals with models that have in…nite numbers of nuisance parameters like the original
incidental parameters problem.

The second is that our limit theory validates GMM-based inference about the localizing
coe¢cient in near unit root panels. A notable new result is that the GMM estimator has
a convergence rate slower than

p
n when the true localizing parameter is zero (i.e., when

there is a panel unit root) and the deterministic trends in the panel are linear. The
asymptotic theory in this case provides a new example of limit theory on the boundary
of a parameter space. The results point to the continued di¢culty of distinguishing unit
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roots from local alternatives when there are deterministic trends in the data even when
time series data is coupled with an in…nity of additional data from a cross section.

7 Appendix
7.1 Appendix A:
Before we start the proof of Lemma 1, we give some useful background results.

Lemma 8 Let Km denote the (m £ m) commutation matrix, Dm denote the m2£ 1
2m (m + 1)

duplication matrix, and set D+
m = (D0

mDm)¡1 D0
m: Also, assume that x and y are m ¡

vectors and A is an (m £ m) invertible matrix. Then the following hold.
(a) xy0 ­ yx0 = Km (yy0 ­ xx0) :
(b) (Im + Km) ((x ­ y) + (y ­ x)) = 2 (x ­ y) + 2 (y ­ x) :
(c) D+

p Dp = I 1
2p(1+p):

(d) DpD+
p = 1

2 (Ip + Kp) :
(e)

¡
D+

p (A ­ A)Dp
¢¡1 = D+

p
¡
A¡1 ­ A¡1

¢
Dp:

Proof
Parts (c), (d), and (e) are standard results (e.g., Magnus and Neudecker, 1988, pp.

49-50). Part (a) holds because

xy0 ­ yx0 = (x ­ y) (y0 ­ x0) = vec (yx0) (vec (xy0))0

= (Kmvec (xy0)) (vec (xy0))0 = Km (y ­ x) (y ­ x) 0

= Km (yy0 ­ xx0) :

Part (b) holds because

(Im + Km) ((x ­ y) + (y ­ x))
= (x ­ y) + (y ­ x) + Kmvec (yx0) + Kmvec (xy0)
= (x ­ y) + (y ­ x) + vec (xy0) + vec (yx0)
= 2 (x ­ y) + 2 (y ­ x) : ¥

Proof of Lemma 1
In this proof we omit the subscript p that denotes the order of the polynomial trends

for notational simplicity. To complete the proof, it is enough to show that ¡¸T (c) in
m2;iT (c) is equivalent to » 0

2D+
p

PT
t=1 (¢cgt ­ ¢cgt) in U2i

³
c; ^̄

i (c)
´

: First, we de…ne

~A1T =
1
T

TX

t=2

1
T

t¡1X

s=1

D+
p

h
[¢cgt ­ [¢cgs + [¢cgs ­ [¢cgt

i
e(

t¡s¡1
T )c ;

~A2T =
1
T

TX

t=1

1
T

TX

s=1

D+
p

n³
[¢cgt [¢cgt

0
­ [¢cgs [¢cgs

0´
+

³
[¢cgt [¢cgs

0
­ [¢cgs[¢cgt

0´o ¡
D+

p
¢0 ;

~A3T = D+
p

1
T

TX

t=1

³
[¢cgt ­ [¢cgt

´
:

Then, by de…nition, we write

»0
2D+

p

TX

t=1

(¢cgt ­ ¢cgt) = ~A0
1T

~A¡1
2T

~A3T :
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Notice by Lemma 8(a), (d), and (c) that

~A2T

= D+
p (Ip + Kp)

1
T

TX

t=1

1
T

TX

s=1

³
[¢cgt [¢cgt

0 ­ [¢cgs [¢cgs
0´ ¡

D+
p

¢0

= 2D+
p DpD+

p

"Ã
1
T

TX

t=1

[¢cgt [¢cgt
0
!

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!#

¡
D+

p
¢0

= 2D+
p

"Ã
1
T

TX

t=1

[¢cgt [¢cgt
0
!

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!#

¡
D+

p

¢ 0

= 2

"
D+

p

Ã
1
T

TX

t=1

[¢cgt[¢cgt
0
!

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!

Dp

#
¡
D0

pDp
¢¡1 :

By Lemma 8(e),

~A¡1
2T

=
1
2

¡
D0

pDp
¢

D+
p

2
4

Ã
1
T

TX

t=1

[¢cgt[¢cgt
0
!¡1

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!¡1

Dp

3
5

=
1
2

D0
p

2
4

Ã
1
T

TX

t=1

[¢cgt [¢cgt
0
!¡1

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!¡13

5 Dp:

Again, from Lemma 8(d) and (b), we have

~A0
1T

~A¡1
2T

~A3T

=
1
T

TX

t=2

1
T

t¡1X

s=1

h
[¢cgt ­ [¢cgs + [¢cgs ­ [¢cgt

i0
e(

t¡s¡1
T )c ¡

D+
p

¢0

£1
2

D0
p

2
4

Ã
1
T

TX

t=1

[¢cgt [¢cgt

!¡1

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!¡13

5 Dp

£D+
p

1
T

TX

t=1

³
[¢cgt ­ [¢cgt

´

=
1
8

"
1
T

TX

t=2

1
T

t¡1X

s=1

h
[¢cgt ­ [¢cgs + [¢cgs ­ [¢cgt

i0
e(t¡s¡1

T )c

#
(Ip + Kp)

£

2
4

Ã
1
T

TX

t=1

[¢cgt [¢cgt

!¡1

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!¡13

5

£ (Ip + Kp)

"
1
T

TX

t=1

³
[¢cgt ­ [¢cgt

´#

=
1
2

"
1
T

TX

t=2

1
T

t¡1X

s=1

h
[¢cgt ­ [¢cgs + [¢cgs ­ [¢cgt

i0
e(t¡s¡1

T )c

#

£

2
4

Ã
1
T

TX

t=1

[¢cgt [¢cgt

!¡1

­
Ã

1
T

TX

s=1

[¢cgs [¢cgs
0
!¡13

5
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£
"

1
T

TX

t=1

³
[¢cgt ­ [¢cgt

´#
: (28)

Expanding (28) yields

1
T

TX

t=2

1
T

t¡1X

s=1

1
T

TX

p=1

e(t¡s¡1
T )c

h
[¢cgs

0
A¡1

pT
[¢cgp

i h
[¢cgp

0
A¡1

pT
[¢cgt

i

=
1
T

TX

t=2

1
T

t¡1X

s=1

e(
t¡s¡1

T )c [¢cgs
0
A¡1

pT
[¢cgt

= tr

Ã
A¡1

pT
1
T

TX

t=2

1
T

t¡1X

s=1

e(
t¡s¡1

T )c[¢cgt [¢cgs
0
!

= ¡¸T (c) : ¥

7.2 Appendix B: Useful Results for Joint Asymptotic Theories
This section consists of two subsections. The …rst subsection introduces some useful results
for joint asymptotic theories. Many of these are modi…ed versions of results developed
in Phillips and Moon (1999) so we report them only brie‡y here. The second subsection
introduces some useful results which will be used repeatedly in the following sections of
the proofs for the results in the main text.

7.2.1 Appendix B1

The following two theorems provide convenient conditions to …nd the joint probability
limit of double indexed processes.

Theorem 6 (Joint Probability Limits) Suppose the (m £ 1) random vectors YiT are
independent across i = 1; :::; n for all T and integrable. Assume that YiT ) Yi as T ! 1
for al l i. Let XnT = 1

n

Pn
i=1 YiT and Xn = 1

n

Pn
i=1 Yi :

(a) Let the following hold:

(i) lim supn;T
1
n

Pn
i=1 E jjYiT jj < 1;

(ii) lim supn;T
1
n

Pn
i=1 jjEYiT ¡ EYi jj = 0;

(iii) lim supn;T
1
n

Pn
i=1 E jjYiT jj1fjjYiT jj > n"g = 0 8" > 0;and

(iv) lim supn
1
n

Pn
i=1 E kYik1fkYik > n"g = 0 8" > 0:

(b) If limn!1 1
n

Pn
i=1 EYi (:= ~¹X ) exists and Xn !p ~¹X as n ! 1; then XnT

!p ~¹X as (n; T ! 1):

Theorem 7 Suppose that YiT = CiQiT , where the (m £ 1) random vectors QiT are iid
across i = 1; :::; n for all T; and the Ci are (m £m) nonrandom matrices for all i: Assume
that

(i) QiT ) Qi as T ¡! 1 for all i as (n; T ! 1),

(ii) jjQiT jj is uniformly integrable in T for all i5 :
5 That is,

sup
T
E kQiT kfkQiT k>Mg ! 0

as M !1:
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(iii) supi jjCi jj < 1; inf i jjCi jj > 0; and C = limn
1
n

Pn
i=1 Ci .

Then 1
n

Pn
i=1 YiT !p CE(Qi) as (n; T ! 1):

Theorem 8 (Joint Limit CLT for Scaled Variates) Suppose that YiT = CiQiT ,
where the (m £ 1) random vectors QiT are iid(0; §T ) across i = 1; :::; n for all T and the
Ci are (m £ m) nonzero and nonrandom matrices. Assume the following conditions hold:

(i) Let ¾2
T = ¸min(§T ) and lim infT ¾2

T > 0;

(ii) maxi·nkCik2

¸min(
P n

i=1 CiC0
i)

= O
¡

1
n

¢
as n ! 1;

(iii) jjQiT jj2 are uniformly integrable in T ,

(iv) limn;T
1
n

Pn
i=1 Ci

P
nT C 0

i = ­ > 0:

Then,

XnT = 1p
n

nX

i=1

YiT ) N (0; ­) as n; T ! 1:

7.2.2 Appendix B2

Suppose that the panel process yit is generated by

yit = exp
³c0

T

´
yit¡1 + "it ;

where "it satis…es Assumptions (2)-(5). Again, for notational simplicity, we omit the
indices n and T in the notation yit :

(a) A particularly useful tool in treating the linear process "it is the BN decomposition
which decomposes the linear …lter into long-run and transitory elements. Phillips
and Solo (1992) give details of how this method can be used to derive a large number
of limit results. Under Assumption 2, the linear process "i;t is decomposed as

"it = Ciuit + ~"it¡1 ¡ ~"it ; (29)

where ~"i;t =
P1

j=0
~Cijuit¡j ; and ~Cij =

P1
k=j+1 Cik: Under the summability condi-

tion (c) in Assumption 2,

jCij ·
1X

j=0

¹Cj < 1 (30)

and

E~"2
it · (

1X

j=0

j ¹Cj)2 · (
1X

j=0

jb ¹Cj)2 < 1; (31)

where b ¸ 1 and ¹Cj = supi jCijj (see Phillips and Solo, 1992).

(b) Next, recall that

~hpT (t; s) = ~DpT ~g0
pt

Ã
1
T

TX

t=1

~DpT ~gpt~g0
pt

~DpT

!¡1

~gps ~DpT :
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It is easy to see that when t = [T r] and s = [Tv]; as T ! 1

~hT (t; s) ! ~g0
p(r)

µZ
~gp~g0

p

¶¡1

~gp(v) = ~hp(r; v)

uniformly in (r; p) 2 [0; 1] £ [0; 1]: The following limit also holds

sup
1·t;s·T

~hpT (t; s) ! sup
0·r;v·1

~hp (r; v): (32)

(c) Using the BN decomposition of "it ; we can decompose yit into two terms - a long-run
component of yit and a transitory component. By virtue of the de…nition of yit;

yit =
tX

s=1

exp
µ

c0
(t ¡ s)

T

¶
"is + exp

µ
c0

t
T

¶
yi0:

Using the BN decomposition (29) of "it , we can decompose yit as

yit = Cixit + Rit ; (33)

where

xit =
tX

s=1

exp
µ

c0
(t ¡ s)

T

¶
uis

and Rit = exp
µ

c0
(t ¡ 1)

T

¶
~"i0 ¡ ~"it

+
tX

s=1

exp
µ

c0
(t ¡ s ¡ 1)

T

¶
~"is(

³
1 ¡ exp

³ c0

T

´´
+ exp

µ
t
T

c0

¶
yi0:

For notational simplicity we also omit the indices n and T in xit and Rit: Let xi0 = 0
for all i:

Next we introduce bounds for the moments of some random variables that will be
frequently used in the following proofs. Throughout the paper we use ¹K as a generic
constant independent of the localizing parameter cn0. Let t = [T r]: As (n; T ! 1)

E
µ

x2
it

T

¶
=

1
T

tX

s=1

exp
µ

2c0
t ¡ s

T

¶
!

Z r

0
exp((r ¡ s)2c0)ds < ¹K; (34)

1
T

TX

t=1

s
E

µ
x2

it
T

¶
=

1
T

TX

t=1

vuut 1
T

tX

s=1

exp
µ

2c0
t ¡ s

T

¶
!

Z 1

0

µZ r

0
e(r¡s)2c0ds

¶ 1
2

dr < ¹K;

(35)

and

lim
n;T

sup
1·i·n

sup
1·t·T

ER2
it

· lim
n;T

sup
1·i·n

sup
1·t·T

4

8
<
:

exp
¡
2c0

t¡1
T

¢
supi E~"2

i0 + supi E~"2
it

+
¡
1 ¡ exp

¡
c0
T

¢¢2 Pt
v=1

Pt
s=1 exp

¡
c0 t¡1¡v

T

¢
exp

¡
c0

t¡1¡s
T

¢
supi E(~"is~"iv)

+ exp
¡
2c0

t
T

¢
supi Ey2

i0

9
=
;
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· lim
n;T

4 sup
1·i·n

sup
1·t·T

8
>><
>>:

¡
exp

¡
2c0

t¡1
T

¢
+ 1

¢³P1
j=0 j ¹Cj

´2

+
¡
1 ¡ exp

¡ c0
T

¢¢2 ¡
supn sup1·v;s·t exp

¡
c0

2t¡2¡v¡s
T

¢¢

£
³Pt

v=1
Pt

s=1 supi jE(~"is~"iv)j
´

9
>>=
>>;

+lim
n;T

4 sup
1·t·T

exp
µ

2c0
t
T

¶
sup

i
Ey2

i0

· 4

0
@

1X

j=0

j ¹Cj

1
A

2

lim
n;T

½
sup1·t·T

¡
exp

¡
2c0

t¡1
T

¢
+ 1

¢

+T 2
¡
1 ¡ exp

¡c0
T

¢¢2 ¡
sup1·v;s;t·T exp

¡
c0

2t¡2¡v¡s
T

¢¢
sup1·t·T

t2
T 2

¾

+4 lim
n;T

sup
1·t·T

exp
µ

2c0
t
T

¶
sup

i
¾2

i0

· 4

0
@

1X

j=0

j ¹Cj

1
A

2
©
2 + c̄2e¡3c̄ª + 4 sup

i
¾ 2

i0; because C = [̄c , 0]

· ¹K; (36)

where ¾2
i0 = E

¡
y2

i0
¢

:

Lemma 9 Assume that, for k = 1; :::; K; hk (c; ~c) is a real-valued continuous function on
the product of the parameter set C £ C with hk (c; c) = 0; and lk (x; y) is a real-valued con-
tinuous function on [0; 1] £ [0; 1]. Also, assume that f (x; c) and g(x; c) are continuously
di¤erentiable functions from [0; 1] £ C to R such that f (x; c) g(y; c) ¡ f (x; ~c) g(y; ~c) =PK

k=1 hk (c; ~c) lk (x;y) : Suppose that yit = exp
¡

c0
T

¢
yit¡1 + "it; where "it follows Assump-

tion 2. Assume that Assumption 3 holds for the initial condition yi0 and Assumption 5
holds for the cross sectional limit of the long-run variances. Then, as (n; T ! 1) ; the
following hold.

(a) 1
n

Pn
i=1

1
T 2

PT
t=1 y2

it¡1 !p ­
R 1
0

R r
0 e2c0(r¡s)dsdr:

(b) 1
n

Pn
i=1

³
1p
T

PT
t=1 "itf

¡ t
T ; c

¢´ ³
1

T
p

T

PT
t=1 yit¡1g

¡ t
T ; c

¢´ !p ­
R 1

0

R r
0 ec0(r¡s)g(r; c)f (s; c)dsdr

uniformly in c:
(c) 1

n
Pn

i=1

³
1

T
p

T

PT
t=1 yit¡1f

¡
t
T ; c

¢´ ³
1

T
p

T

PT
t=1 yit¡1g

¡
t
T ; c

¢´

!p ­
R 1

0

R 1
0 f (r; c)g(s; c)

R r^s
0 ec0(r+s¡2v)dvdsdr uniformly in c:

(d) 1
n

Pn
i=1

³
1p
T

PT
t=1 "itf

¡ t
T ; c

¢´ ³
1p
T

PT
t=1 "itg

¡ t
T ; c

¢´ !p ­
R 1

0

R 1
0 f (r; c)g(s; c)dsdr

uniformly in c:

Proof
Part (a) From the decomposition (33) ; we write

1
n

nX

i=1

1
T2

TX

t=1

y2
it¡1

=
1
n

nX

i=1

C 2
i

1
T 2

TX

t=2

x2
it¡1 + 2

1
n

nX

i=1

Ci
1
T2

TX

t=2

xit¡1Rit¡1 +
1
n

nX

i=1

1
T2

TX

t=2

R2
it¡1 +

1
n

nX

i=1

y2
i0

T2

= Ia + 2IIa + IIIa + IVa; say.

Since supi Ey2
i0 < 1; IVa ! 0 as (n; T ! 1) : In what follows we show that Ia !p

­
R 1

0

R r
0 e2c0 (r¡s)dsdr and IIa; IIIa !p 0 as (n; T ! 1):
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For Ia; recall that

Ia =
1
n

nX

i=1

C 2
i

1
T 2

TX

t=2

x2
it¡1:

De…ne QinT = 1
T 2

PT
t=2 x2

it¡1: Note that fQiT gi=1;:::;n are iid across i: Since

T ¡ 1
2 xit ) Jc0 ;i(r) =

Z r

0
ec0(r¡s)dWi(s) (37)

as T ! 1 (see Phillips, 1987); where Wi is standard Brownian motion, we have by the
continuous mapping theorem as (n; T ! 1) ;

QiT ) Qi =
Z 1

0
J 2

c0;i(r)dr: (38)

Also, as T ! 1 for …xed n;

QiT ) Qi =
Z 1

0
J 2

cn0;i(r)dr: (39)

Notice that EQi =
R 1
0

R r
0 e2c0 (r¡s)dsdr:

We will claim Ia !p ­
R 1
0

R r
0 e2c0(r¡s)dsdr in joint limits as (n; T ! 1) by verifying

conditions (i) - (iii) in Theorem 7. Condition (iv) holds because it is assumed in As-
sumption 2 that limn

1
n

Pn
i=1 C2

i = ­ and infi jCi j > 0, and under Assumption 2, it holds
supi jCi j < 1: Condition (i) is obvious in view of (38) and (39) : For condition (ii), observe
that

EQiT =
1
T

TX

t=2

1
T

tX

s=1

exp
µ

t ¡ s
T

2c0

¶

!
Z 1

0

Z r

0
e(r¡s)2c0dsdr = EQi as (n; T ! 1) :

Since QiT (¸ 0) ) Qi with EQiT ! EQi as (n; T ! 1) ; fQiT gT are uniformly inte-
grable in T by Theorem 5.4 in Billingsley (1968).

Next, we prove that

IIa =
1
n

nX

i=1

Ci
1
T 2

TX

t=2

xit¡1Rit¡1 !p 0;

and

IIIa =
1
n

nX

i=1

1
T 2

TX

t=2

R2
it¡1 !p 0 as n; T ! 1;

by showing that E jIIa j ; E jIIIaj ! 0 as n; T ! 1:
First, we have

E jIIa j = E

¯̄
¯̄
¯
1
n

nX

i=1

Ci
1
T2

TX

t=2

xit¡1Rit¡1

¯̄
¯̄
¯

· 1
n

nX

i=1

(
jCij E

¯̄
¯̄
¯

1
T2

TX

t=2

xit¡1Rit¡1

¯̄
¯̄
¯

)
· ¹C

1
n

nX

i=1

E

¯̄
¯̄
¯

1
T 2

TX

t=2

xi;t¡1Ri;t¡1

¯̄
¯̄
¯ :
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Observe that

1
n

nX

i=1

E

¯̄
¯̄
¯

1
T2

TX

t=2

xit¡1Rit¡1

¯̄
¯̄
¯

· 1p
T

1
n

nX

i=1

1
T

TX

t=1

E
¯̄
¯̄xit¡1p

T
Rit¡1

¯̄
¯̄

· 1p
T

1
n

nX

i=1

1
T

TX

t=1

s
E

¯̄
¯̄xit¡1p

T

¯̄
¯̄
2

E jRit¡1j2 = O(
1p
T

);

where the equality holds by (35) and (36). Similarly, we can show that IIIa !p 0 as
(n; T ! 1) by proving that E jIIIaj ! 0 as (n; T ! 1): Therefore we have all the
required results to complete the proof of part (a). ¥

Part (b) Using the BN-decomposition in (33) ; we write

1
n

nX

i=1

Ã
1p
T

TX

t=1

"itf
µ

t
T

; c
¶! Ã

1
T

p
T

TX

t=1

yit¡1g
µ

t
T

;c
¶!

= Ib + IIb + IIIb + IVb;

where

Ib =
1
n

nX

i=1

­i

Ã
1p
T

TX

t=1

uitf
µ

t
T

; c
¶! Ã

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶!

;

IIb =
1
n

nX

i=1

Ci

Ã
1p
T

TX

t=1

(~"it¡1 ¡ ~"it) f
µ

t
T

; c
¶!Ã

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶!

;

IIIb =
1
n

nX

i=1

Ci

Ã
1p
T

TX

t=1

uitf
µ

t
T

;c
¶! Ã

1
T

p
T

TX

t=1

Rit¡1g
µ

t
T

; c
¶!

;

IVb =
1
n

nX

i=1

Ã
1p
T

TX

t=1

(~"it¡1 ¡ ~"it) f
µ

t
T

; c
¶! Ã

1
T

p
T

TX

t=1

Rit¡1g
µ

t
T

;c
¶!

:

We will show that

Ib !p ­
Z 1

0

Z r

0
ec0(r¡s)g(r; c)f (s; c)dsdr uniformly in c

and
IIb; IIIb; IVb !p 0 uniformly in c

as (n; T ! 1) :
First, we establish Part (b) for …xed c (pointwise convergence). Now, as in Part (a),

we apply Theorem 7. Let

QiT (c) =

Ã
1p
T

TX

t=1

uitf
µ

t
T

; c
¶! Ã

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶!

;

and Qi (c) =
µZ 1

0
f (s; c)dWi (s)

¶ µZ 1

0
g (r; c)Jc0 ;i (r)dr

¶
:
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Using (37) and the continuous mapping theorem, we can show that

QiT (c) ) Qi (c) (40)

as T ! 1 for …xed n and c; which veri…es condition (i) in Theorem 7. Condition (ii) holds
because it is assumed in Assumption 2 that limn

1
n

Pn
i=1 ­i

¡
= C2

i

¢
= ­ and infi jCij > 0,

and under Assumption 2, it holds supi jCi j < 1: Condition (iii) holds for …xed c if

Q1iT (c) =

Ã
1p
T

TX

t=1

uitf
µ

t
T

;c
¶!2

and

Q2iT (c) =

Ã
1

T
p

T

TX

t=1

xit¡1g
µ

t
T

;c
¶!2

are uniformly integrable in T for …xed c: Notice that Q1iT (c) ) Q1i (c) =
³R 1

0 f (r; c)dWi (r)
´2

>

0; and EQ1iT (c) = 1
T

PT
t=1 f

¡ t
T ;c

¢2 ! R 1
0 f (r; c)2 dr = EQ1i (c) as T ! 1 for all i: By

Theorem 5.4 in Billingsley (1968), it follows that Q1iT (c) are uniformly integrable in T
for …xed c: In a similar fashion, Q2iT (c) is also uniformly integrable in T for …xed c:
Therfore, as (n; T ! 1) ;

Ib !p ­
Z 1

0

Z r

0
ec0(r¡s)g(r; c)f (s; c)dsdr for …xed c:

Next, de…ne XnT (c) = 1
n

Pn
i=1 QiT (c) : To complete the proof, we need to show that

XnT (c) is stochastically equicontinuous. That is, for given " > 0 and ´ > 0; there exists
± > 0 such that

lim sup
(n;T!1)

P

(
sup

jc¡~cj<±;c;~c2C
jXnT (c) ¡ XnT (~c)j > "

)
< ´:

Then, since the parameter set C is compact, the pointwise convergence of XnT (c) and
the stochastic equicontinuity of XnT (c) imply uniform convergence.

Now we show the stochastic equicontinuity of XnT (c) : First, notice that

sup
jc¡~cj<±;c;~c2C

jXnT (c) ¡ XnT (~c)j

= sup
jc¡~cj<±;c;~c2C

¯̄
¯̄
¯
1
n

nX

i=1

1
T 2

TX

t=1

TX

s=1

uitxis¡1

½
f

µ
t
T

; c
¶

g
³ s

T
; c

´
¡ f

µ
t
T

; ~c
¶

g
³ s

T
; ~c

´¾¯̄
¯̄
¯

= sup
jc¡~cj<±;c;~c2C

¯̄
¯̄
¯
1
n

nX

i=1

1
T 2

TX

t=1

TX

s=1

uitxis¡1

(
KX

k=1

hk (c; ~c) lk

µ
t
T

;
s
T

¶)¯̄
¯̄
¯

· sup
1·k·K

sup
jc¡~cj<±;c;~c2C

jhk (c; ~c)j 1
n

nX

i=1

¯̄
¯̄
¯

1
T 2

TX

t=1

TX

s=1

uitxis¡1

(
KX

k=1

lk

µ
t
T

;
s
T

¶)¯̄
¯̄
¯ :

Since hk (c; ~c) is continuous on the compact set with hk (c; c) = 0 for all k = 1; ::; K;
we can make sup1·k·K supjc¡~cj<±;c;~c2C jhk (c; ~c)j arbitrarily small by choosing a small
± > 0: Also, under the assumptions in the lemma, it is not di¢cult to show that
1
n

Pn
i=1

¯̄
¯ 1

T2

PT
t=1

PT
s=1 uitxis¡1

nPK
k=1 lk

¡
t
T ; s

T

¢o¯̄
¯ = Op (1) : Therefore, XnT (c) is stochas-

tically equicontinuous, and Ib !p ­
R 1

0

R r
0 ec0 (r¡s)g(r; c)f (s; c)dsdr uniformly in c:
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Next, for IIb notice that

1p
T

TX

t=1

(~"it¡1 ¡ ~"it) f
µ

t
T

; c
¶

=
1p
T

T¡1X

t=1

~"it

µ
f

µ
t + 1

T
;c

¶
¡ f

µ
t
T

; c
¶¶

+
1p
T

~"i0f
µ

1
T

; c
¶

¡ 1p
T

~"iT f (1; c)

=
1

T
p

T

T ¡1X

t=1

~"it
f

¡ t+1
T ; c

¢ ¡ f
¡ t

T ; c
¢

1
T

+
1p
T

~"i0f
µ

1
T

; c
¶

¡ 1p
T

~"iT f (1; c) :

For IIb !p 0 uniformly in c if we show that E supc2C jIIbj ! 0 as (n; T ! 1) : Let
supi Ci = ¹C: Under Assumption 2, ¹C is …nite. Now

E sup
c2C

jIIbj

· ¹C sup
i

E sup
c2C

¯̄
¯̄
¯

1p
T

TX

t=1

(~"it¡1 ¡ ~"it) f
µ

t
T

; c
¶¯̄

¯̄
¯

¯̄
¯̄
¯

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶¯̄

¯̄
¯

· ¹C sup
i

E sup
c2C

¯̄
¯̄
¯

1
T

p
T

T ¡1X

t=1

~"it
f

¡ t+1
T ; c

¢
¡ f

¡ t
T ; c

¢
1
T

¯̄
¯̄
¯

¯̄
¯̄
¯

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶¯̄

¯̄
¯

+ ¹C sup
i

E sup
c2C

¯̄
¯̄ 1p

T
~"i0f

µ
1
T

; c
¶¯̄

¯̄
¯̄
¯̄
¯

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶¯̄

¯̄
¯

+ ¹C sup
i

E sup
c2C

¯̄
¯̄ 1p

T
~"iT f (1; c)

¯̄
¯̄
¯̄
¯̄
¯

1
T

p
T

TX

t=1

xit¡1g
µ

t
T

; c
¶¯̄

¯̄
¯ : (41)

The …rst term on the RHS of (41) is less than or equal to

¹C

0
@ sup

1·t·T
c2C

¯̄
¯̄
¯
f

¡
t+1
T ; c

¢
¡ f

¡
t
T ; c

¢

1
T

¯̄
¯̄
¯

1
A

0
@ sup

1·t·T
c2C

¯̄
¯̄g

µ
t
T

; c
¶¯̄

¯̄
1
A

£
Ã

sup
i

E

Ã
1

T
p

T

T ¡1X

t=1

j~"it j
! Ã

1
T

p
T

TX

t=1

jxit¡1j
!!

:

Since f (x; c) and g (x;c) are continuously di¤erentiable functions on the compact set

[0; 1] £ C; sup1·t·T
c2C

¯̄
¯̄ f( t+1

T ;c)¡f( t
T ;c)

1
T

¯̄
¯̄ and sup1·t·T

c2C

¯̄
g

¡
t
T ; c

¢¯̄
are bounded by a constant,

say ¹K; that is independent of c: Also,

sup
i

E

Ã
1

T
p

T

T¡1X

t=1

j~"itj
! Ã

1
T

p
T

TX

t=1

jxit¡1j
!

· 1p
T

sup
i

vuutE

Ã
1
T

T ¡1X

t=1

j~"it j
!2

vuutE

Ã
1

T
p

T

TX

t=1

jxit¡1j
!2

by Cauchy-Schwarz inequality

· 1p
T

sup
i

vuut 1
T

T¡1X

t=1

E~"2
it

vuut 1
T

TX

t=1

E
µ

xit¡1p
T

¶2

·
¹Kp
T

for some constant ¹K independent of c by (31) and (35) :
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Similarly, we can show that the other terms in the RHS of (41) are less than equal to ¹Kp
T

for some constant ¹K independent of c: Therefore

E sup
c2C

jIIbj ·
¹Kp
T

for some constant ¹K independent of c; (42)

and so IIb !p 0 uniformly in c:
In a similar fashion, it is possible to show that

E sup
c2C

jIIIbj ; E sup
c2C

jIVb j ·
¹Kp
T

for some constant ¹K independent of c; (43)

which leads to IIIb ; IVb !p 0 uniformly in c: We omit the details of the argument here.
¥
Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part (b)
and they are omitted. ¥

The following lemma is important in establishing asymptotic normality of the GMM
estimator ĉ: To simplify notation, let

l1pT (t; s; c) = \¢cgpt
0
ApT (c)¡1 \¢cgps

l2pT (t; s; c) = \¢cgpt
0
ApT (c)¡1 gps¡1D¡1

T

l3pT (t; s; c) = \¢cgpt
0
ApT (c)¡1 BpT (c)ApT (c)¡1 \¢cgps ;

and

l1p (r;s; c) =
¢gpc (r) 0 Ap (c)¡1 ¢gpc (s)

l2p (r;s; c) =
¢gpc (r) 0 Ap (c)¡1 gp (s)

l3p (r;s; c) =
¢gpc (r) 0 Ap (c)¡1 Bp (c)Ap (c)¡1 ¢gpc (s)

l4p =
Z 1

0
gp (r) gp (r)0 dr:

Lemma 10 Suppose that xit = exp
¡

c0
T

¢
xit¡1 + uit; where uit are iid (0; 1) with …nite

fourth moments and xi0 = 0 for all i: Then, as (n; T ! 1) ; the following hold.
Let

Q1iT =
1
T

TX

t=1

xit¡1uit

Q2iT =
1p
T

TX

t=1

1
T

p
T

TX

s=1

uitxis¡1
~hpT (t; s) + !1T (c0)

Q3iT =
1p
T

TX

t=1

1
T

p
T

TX

s=1

uitxis¡1l1pT (t; s; c0) + ¸T (c0)

Q4iT =
1p
T

TX

t=1

1p
T

TX

s=1

uituisl2pT (t; s; c0) ¡ tr
³
ApT (c0)

¡1 Bp (c0)
´

Q5iT =
1p
T

TX

t=1

1p
T

TX

s=1

uituisl3pT (t; s; c0) ¡ tr
³
ApT (c0)¡1 Bp (c0)

´

and QiT = (Q1iT ; Q2iT ; Q3iT ; Q4iT ; Q5iT )0 : (44)
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Then, as (n; T ! 1),

1p
n

nX

i=1

­iQiT ) N
¡
0; ª2© (c0)

¢
;

where

©(c0) =

2
66664

©11 (c0) ©12 (c0) ©13 (c0) ©14 (c0) ©15 (c0)
©12 (c0) ©22 (c0) ©23 (c0) ©24 (c0) ©25 (c0)
©13 (c0) ©23 (c0) ©33 (c0) ©34 (c0) ©35 (c0)
©14 (c0) ©24 (c0) ©34 (c0) ©44 (c0) ©45 (c0)
©15 (c0) ©25 (c0) ©35 (c0) ©45 (c0) ©55 (c0)

3
77775

(45)

and

©11 (c0) =
Z 1

0

Z r

0
e2c0(r¡s)dsdr;

©12 (c0) =
Z 1

0

Z 1

0

Z r^s

0
ec0 (r+s¡2v)~hp (r; s)dvdsdr +

Z 1

0

Z r

0

Z s

0
ec0(r¡v)~hp (v; r)dvdsdr;

©13 (c0) =
Z 1

0

Z r

0

Z s

0
ec0(r¡v)l1p (r; v; c0) dvdsdr+

Z 1

0

Z 1

0

Z r^s

0
ec0(r+s¡2v)lp1 (r; s; c0)dvdsdr;

©14 (c0) =
Z 1

0

Z r

0
ec0 (r¡s)l2p (r; s;c0) dsdr +

Z 1

0

Z r

0
ec0(r¡s)l2p (s; r; c0)dsdr;

©15 (c0) =
Z 1

0

Z r

0
ec0 (r¡s)l3p (r; s;c0) dsdr +

Z 1

0

Z r

0
ec0(r¡s)l3p (s; r; c0)dsdr;

©22 (c0) =
Z 1

0

Z 1

0

Z r^s

0
ec0 (r+s¡2v)~hp (r; s)dvdsdr

+
Z 1

0

Z 1

0

Z r

0

Z s

0
ec0(r¡v)ec0(s¡q)~hp (r;q) ~hp (s; v) dqdvdsdr;

©23 (c0) =
Z 1

0

Z 1

0

Z 1

0

Z s^v

0
ec0(s+v¡2q )~hp (r; s) l1p (r; v; c0)dqdvdsdr

+
Z 1

0

Z 1

0

Z r

0

Z s

0
ec0(r¡v)ec0(s¡q)~hp (r; q) l1p (s; v; c0)dqdvdsdr;

©24 (c0) =
Z 1

0

Z r

0

Z 1

0
ec0 (r¡s)~hp (r; v) l2p (v; s; c0)dvdsdr

+
Z 1

0

Z r

0

Z 1

0
ec0(r¡s)~hp (r; v) l2 (s; v; c0)dvdsdr;

©25 (c0) =
Z 1

0

Z r

0

Z 1

0
ec0(r¡s)~hp (r; v) l3p (v; s; c0)dvdsdr

+
Z 1

0

Z r

0

Z 1

0
ec0(r¡s)~hp (r; v) l3p (s; v; c0) dvdsdr;
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©33 (c0) =
Z 1

0

Z 1

0

Z r^s

0
ec0(r+s¡2v)l1p (r; s; c0)dvdsdr

+
Z 1

0

Z 1

0

Z r

0

Z s

0
ec0(r¡v)ec0(s¡q)l1p (r; q; c0) l1p (s; v; c0)dqdvdsdr;

©34 (c0) =
Z 1

0

Z r

0
ec0 (r¡s)l2p (r; s;c0) dsdr +

Z 1

0

Z r

0
ec0(r¡s)l3p (r; s; c0)dsdr;

©35 (c0) =
Z 1

0

Z r

0
ec0 (r¡s)l3p (r; s;c0) dsdr +

Z 1

0

Z r

0
ec0(r¡s)l3p (s; r; c0)dsdr;

©44 (c0) =
³
vecAp (c0)

¡1
´0

vecl4p (c0) + tr
³
Ap (c0)

¡1 Bp (c0)
0 Ap (c0)

¡1 Bp (c0)
´

;

©45 (c0) = tr
³
Ap (c0)

¡1 Bp (c0)Ap (c0)
¡1 Bp (c0)

0
´
+tr

³
Ap (c0)

¡1 Bp (c0)Ap (c0)
¡1 Bp (c0)

´
;

©55 (c0) = tr
³
Ap (c0)

¡1 Bp (c0)Ap (c0)
¡1 Bp (c0)

0
´
+tr

³
Ap (c0)

¡1 Bp (c0)Ap (c0)
¡1 Bp (c0)

´
:

Proof
The proof uses Theorem 8, and we sketch the proof here. First, a direct calculation

shows that EQiT = 0: Let ©nT (c0) = EQiT Q0
iT : Notice that QiT are iid (0; ©nT (c0))

across i: As T ! 1;
QiT ) Qi;

where

Qi = (Q1i; Q2i ;Q3i ; Q4i ; Q5i)0

Q1i =
Z 1

0
Jc0;i (r) dWi (r)

Q2i =
Z 1

0

Z 1

0
Jc0;i (r) ~hp (r; s)dWi (s)dr

Q3i =
Z 1

0

Z 1

0
l1 (r; s; c0)dWi (r)dWi (s) ¡ ¸ (c0)

Q4i =
Z 1

0

Z 1

0
l2 (r; s; c0)dWi (r)dWi (s) ¡ tr

³
Ap (c0)¡1 Bp (c0)

´

Q5i =
Z 1

0

Z 1

0
l3 (r; s; c0)dWi (r)dWi (s) ¡ tr

³
Ap (c0)¡1 Bp (c0)

´
:

Also, a direct calculation shows that as T ! 1;

©nT (c0) = EQiT Q0
iT ! EQiQ0

i = © (c0) :

Let l be any (5 £ 1) vector with klk = 1: We consider two cases.
Case 1: If l0© (c0) l > 0:
To establish the desired result with a joint limit, we apply Theorem 7. Condition

(i) holds because it is assumed that l0© (c0) l > 0: Conditions (ii) and (iv) hold because
limn

1
n

Pn
i=1 ­i = ­ > 0: Finally condition (iii), viz.

(l 0QiT )2 are uniformly integrable in T;

holds because (l 0QiT )2 ) (l0Qi)
2 as T ! 1 by the continuous mapping theorem with

E (l 0QiT )2 = l0©nT (c0) l ! l0© (c0) l = E (l0Qi)2 ; and by applying Theorem 5.4 of
Billingsley (1968).
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Case 2: If l0© (c0) l = 0. Since l0©nT (c0) l ! l0©(c0) l = 0;

E

Ã
1p
n

nX

i=1

­i (l0QiT )

!2

=

Ã
1
n

nX

i=1

­2
i

!
l0©nT (c0) l ! 0;

which leads to
1p
n

nX

i=1

­i (l 0QiT ) !p 0:

Therefore, by the Cramér-Wold device, it follows that

1p
n

nX

i=1

­iQiT ) N
¡
0; ª2© (c0)

¢
: ¥

7.3 Appendix C: Proofs of Section 4
Proof of Lemma 2.

We show separately the following

1
n

nX

i=1

(m1iT (c) ¡ ­im1 (c)) !p 0; (46)

and
1
n

nX

i=1

(m2iT (c) ¡ ­im2 (c)) !p 0; (47)

uniformly in c:
First, by de…nition and the triangle inequality, we have

¯̄
¯̄
¯
1
n

nX

i=1

(m1iT (c) ¡ ­im1 (c))

¯̄
¯̄
¯

=

¯̄
¯̄
¯̄
¯̄
1
n

nX

i=1

8
>><
>>:

³
1
T

PT
t=1 "ityit¡1 ¡ ¤i

´
+

³
¡ 1

T2

PT
t=1

PT
s=1 "ityis¡1~hpT (t; s) ¡ ­i!1 (c0)

´

¡­i (!1T (c) ¡ !1 (c)) ¡ (c ¡ c0)

Ã
1

T 2

PT
t=1

µ
y
~i;¡1

¶2

t
¡ ­i!2 (c0)

!
9
>>=
>>;

¯̄
¯̄
¯̄
¯̄

+

¯̄
¯̄
¯
1
n

nX

i=1

³
­̂i ¡ ­i

´¯̄
¯̄
¯ j!1T (c)j +

¯̄
¯̄
¯
1
n

nX

i=1

³
¤̂i ¡ ¤i

´¯̄
¯̄
¯

·
¯̄
¯̄
¯
1
n

nX

i=1

Ã
1
T

TX

t=1

"ityit¡1 ¡ ¤i

!¯̄
¯̄
¯

+

¯̄
¯̄
¯
1
n

nX

i=1

Ã
¡ 1

T2

TX

t=1

TX

s=1

"ityis¡1~hpT (t;s) ¡ ­i!1 (c0)

!¯̄
¯̄
¯

+ jc ¡ c0j
¯̄
¯̄
¯
1
n

nX

i=1

Ã
1
T2

TX

t=1

µ
y
~i;¡1

¶2

t
¡ ­i!2 (c0)

!¯̄
¯̄
¯

+

Ã
1
n

nX

i=1

­i

!
j!1T (c) ¡ !1 (c)j +

¯̄
¯̄
¯
1
n

nX

i=1

³
­̂i ¡ ­i

´¯̄
¯̄
¯ j!1T (c)j +

¯̄
¯̄
¯
1
n

nX

i=1

³
¤̂i ¡ ¤i

´¯̄
¯̄
¯

= I + II + III + IV + V + V I; say.
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Notice that two terms I and II are independent of c; and by Lemma 9 of Moon and
Phillips (1999b), I; II !p 0 as (n; T ! 1) : Next, III !p 0 uniformly in c because¯̄
¯̄
¯

1
n

Pn
i=1

Ã
1

T 2

PT
t=1

µ
y
~i;¡1

¶2

t
¡ ­i!2 (c0)

!¯̄
¯̄
¯ in term III is independent of c and also by

Lemma 9 of Moon and Phillips (1999b), it converges in probability to zero as (n; T ! 1) ;
and jc ¡ c0j is a continuous function on the compact parameter set C: Finally, since
j!1T (c) ¡ !1 (c)j ! 0 uniformly in c (by pointwise convergence and continuity on the com-
pact set) and 1

n

Pn
i=1 ­i converges, IV ! 0 uniformly in c: Also, since 1

n

Pn
i=1

³
­̂i ¡ ­i

´
;

1
n

Pn
i=1

³
¤̂i ¡ ¤i

´
= op (1) ; and supc2C !1T (c) < K for some …nite K; terms V and V I

converges in probability to zero uniformly in c. Therefore, 1
n

Pn
i=1 (m1iT (c) ¡ ­im1 (c)) !p

0 uniformly in c as (n; T ! 1) :
Next, to prove (47) ; we write by de…nition

1
n

nX

i=1

m2iT (c)

=
1
n

nX

i=1

Ã
1
T

TX

t=1

"ityit¡1 ¡ ¤i

!
¡ (c ¡ c0)

1
n

nX

i=1

1
T 2

TX

t=1

y2
it¡1

¡ 1
n

nX

i=1

2
4

Ã
1p
T

TX

t=1

\¢cgpt"it

!0

ApT (c)¡1

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!3
5

+ (c ¡ c0)
1
n

nX

i=1

2
4

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!0

ApT (c)¡1

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!3
5

¡ 1
n

nX

i=1

2
4

Ã
1p
T

TX

t=1

\¢cgpt"it

!0

ApT (c)¡1

Ã
1p
T

TX

t=1

gpt¡1D¡1
pT "it

!3
5

+ (c ¡ c0)
1
n

nX

i=1

2
4

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!0

ApT (c)¡1

Ã
1p
T

TX

t=1

gpt¡1D¡1
pT "it

!3
5

+ (c ¡ c0)
1
n

nX

i=1

2
4

Ã
1p
T

TX

t=1

\¢cgpt"it

!0

ApT (c)¡1

Ã
1

T
p

T

TX

t=1

gpt¡1D¡1
pT yit¡1

!3
5

¡(c ¡ c0)2
1
n

nX

i=1

2
4

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!0

ApT (c)¡1

Ã
1

T
p

T

TX

t=1

gpt¡1D¡1
pT yit¡1

!3
5

+
1
n

nX

i=1

2
4

Ã
1p
T

TX

t=1

\¢cgpt"it

!0

ApT (c)¡1 BpT (c)ApT (c)¡1

Ã
1p
T

TX

t=1

\¢cgpt"it

!3
5

¡ (c ¡ c0)
1
n

nX

i=1

2
4

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!0

ApT (c)¡1 BpT (c)ApT (c)¡1

Ã
1p
T

TX

t=1

\¢cgpt"it

!3
5

¡ (c ¡ c0)
1
n

nX

i=1

2
4

Ã
1p
T

TX

t=1

\¢cgpt"it

!0

ApT (c)¡1 BpT (c) ApT (c)¡1

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!3
5
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+ (c ¡ c0)2
1
n

nX

i=1

2
4

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!0

ApT (c)¡1 BpT (c)ApT (c)¡1

Ã
1

T
p

T

TX

t=1

\¢cgptyit¡1

!3
5

¡
Ã

1
n

nX

i=1

­i

!
¸T (c) ¡ 1

n

nX

i=1

³
­̂i ¡ ­i

´
¸T (c) ¡ 1

n

nX

i=1

³
¤̂i ¡ ¤i

´
:

Since each element in \¢cgpt and gpt¡1D¡1
pT satis…es the conditions for f (x; c) and g (x; c) in

Lemma 9, the desired result in (47) follows by Lemma 9, ¡ 1
n

Pn
i=1

³
­̂i ¡ ­i

´
; 1

n

Pn
i=1

³
¤̂i ¡ ¤i

´
=

op (1) and boundedness of ¸T (c) over the parameter set C. ¥

Proof of Lemma 3.
The proof is similar to that of Lemma 2 is omitted. ¥

Proof of Lemma 4.
Here we give only a sketch of the proof. The details of the calculation are quite similar

to the proof of Lemma 9(b) with a replacement of the standardizing factor 1
n by 1p

n and
the proof of Theorem 14 of Moon and Phillips (1999b).

First, using the BN decomposition of "it in (29) and of yit in (33) ; we write

1p
n

nX

i=1

m1iT (c0)

=
1p
n

nX

i=1

­i (Q1iT ¡ Q2iT ) +
1p
n

nX

i=1

R1iT + op (1) (48)

and

1p
n

nX

i=1

m2iT (c0)

=
1p
n

nX

i=1

­i (Q1iT ¡ Q3iT ¡ Q4iT + Q5iT ) +
1p
n

nX

i=1

R2iT + op (1) ;

where R1iT and R2iT are relevant remainder terms generated by the BN decompositions
yit¡1 and "it : The op (1) terms above hold because it is assumed that

1p
n

nX

i=1

³
­̂i ¡ ­i

´
;

1p
n

nX

i=1

³
¤̂i ¡ ¤i

´
= op (1) :

Using similar arguments to those in the proof of Theorem 14 of Moon and Phillips
(1999b), it is possible to show that

1p
n

nX

i=1

R1iT = Op

³ n
T

´
= op (1) ; (49)

and by applying arguments similar to those in the proof of (42) and (43) ; it is also possible
to show that

1p
n

nX

i=1

R2iT = Op

³ n
T

´
= op (1) :
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Then, it follows that

1p
n

nX

i=1

µ
m1iT (c0)
m2iT (c0)

¶
= J0

Ã
1p
n

nX

i=1

­iQiT

!
J + op (1) :

Finally, applying Lemma 4 with cn0 = c0 (i:e:; · = 0), we obtain the desired result. ¥

Proof of Lemma 5.
Part (a).

By de…nition and by the Cauchy-Schwarz inequality,

sup
c2C:jc¡c0j·°nT

jBnT R1nT (c; c0)j

· 2 kBnT MnT (c0)k
°°°Ŵ

°°° sup
c2C:jc¡c0 j·°nT

°°°°°
1
n

nX

i=1

riT (c; c0)

°°°°° :

By Lemma 4 and Assumption 7, 2 kBnT MnT (c0)k
°°°Ŵ

°°° = Op (1) : Thus, to complete the

proof, it is enough to show that supc2C:jc¡c0j·° nT

°° 1
n

Pn
i=1 riT (c; c0)

°° = op (1) : Notice by
de…nition and the triangle inequality that

sup
c2C:jc¡c0j·°nT

°°°°°
1
n

nX

i=1

riT (c;c0)

°°°°°

· sup
c2C:jc¡c0j·°nT

°°°°°
1
n

nX

i=1

(dmiT (c) ¡ dmiT (c0))

°°°°°

· sup
c2C

°°°°°
1
n

nX

i=1

(dmiT (c) ¡ ­idm (c))

°°°°° +

°°°°°
1
n

nX

i=1

(dmiT (c0) ¡ ­idm (c0))

°°°°°
¯̄
¯̄
¯
1
n

nX

i=1

­i

¯̄
¯̄
¯ sup

c2C:jc¡c0j·° nT

kdm (c) ¡ dm (c0)k : (50)

Then, the …rst and the second terms in (50) are op (1) by Lemma 3 and the last term
in (50) is also op (1) because dm (c) is continuous in c and 1

n
Pn

i=1 ­i has a …nite limit.
Therefore supc2C:jc¡c0j·°nT

°° 1
n

Pn
i=1 riT (c; c0)

°° = op (1) ; as required.
Part (b).

The proof of Part (b) is similar to that of Part (a) and is omitted. ¥

Proof of Theorem 2.
The proof is similar to the proof of Theorem 1 of Andrews (1999). De…ne ·̂nT =

BnT (ĉ ¡ c0) : Then,

op (1) · B2
nT (ZnT (c0) ¡ ZnT (ĉ))

= ¡HnT ·̂2
nT + 2HnT (BnT SnT ) ·̂nT

¡·̂nT BnT R1nT ( ĉ; c0) ¡ ·̂2
nT R2nT (ĉ; c0) :

>From Lemmas 3 and 4 and Assumption 7, we have HnT ; H¡1
nT = Op (1) and positive

with probability one and BnT SnT = Op (1) : Also, by Lemma 5, BnT R1nT (ĉ; c0) = op (1)
and R2nT (ĉ; c0) = op (1) : Then,

op (1) · ¡ j·̂nT j2 + 2Op (1) j·̂nT j + j·̂nT j op (1) + j·̂nT j2 op (1) ;
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which is rearranged as
j·̂nT j2 · 2Op (1) j·̂nT j + op (1) :

Then, the required result
·̂nT = Op (1)

follows by relation (7.4) in Andrews (1999), page 1377. ¥

Proof of Theorem 3.
To complete the proof, it is enough to show (a) BnT (ĉ ¡ c0) = BnT (ĉq ¡ c0) + op (1)

and (b) BnT (ĉq ¡ c0) = ^̧nT + op (1) :
Part (a). Recall that BnT SnT

HnT
= Op (1) by Lemmas 3 and 4 and Assumption 7. Then,

it follows by the de…nition of BnT (ĉq ¡ c0) that
µ

BnT ( ĉq ¡ c0) ¡ BnT SnT

HnT

¶2

·
µ

BnT SnT

HnT

¶2

= Op (1) ;

which leads to
BnT (ĉq ¡ c0) =

BnT SnT

HnT
+ Op (1) = Op (1) :

So, we …nd that ĉq is also BnT ( =
p

n)¡ consistent. Then, by de…nition, we have

op (1) · B2
nT ZnT ( ĉq) ¡ B2

nT ZnT (ĉ)

=
µ

BnT (ĉq ¡ c0) ¡ BnT SnT

HnT

¶2

¡
µ

BnT ( ĉ ¡ c0) ¡ BnT SnT

HnT

¶2

+ op (1)

· op (1) ;

where the op (1) in the second line holds because BnT (ĉq ¡ c0) ; BnT (ĉ ¡ c0) = Op (1) :
So, ¯̄

¯̄
¯

µ
BnT (ĉq ¡ c0) ¡ BnT SnT

HnT

¶2

¡
µ

BnT (ĉ ¡ c0) ¡ BnT SnT

HnT

¶2
¯̄
¯̄
¯ = op (1) : (51)

Now, for given ± > 0; set " = ±2: Then, since BnT (ĉq ¡ c0) achieves the minimum of the

quadratic function f (¸) =
³
¸ ¡ BnT SnT

HnT

´2
on the closed interval f¸ : BnT (c̄ ¡ c0) · ¸ · ¡BnT c0g ;

it follows that jBnT (ĉ ¡ c0) ¡ BnT (ĉq ¡ c0)j > ± implies
¯̄
¯̄
¯

µ
BnT (ĉq ¡ c0) ¡ BnT SnT

HnT

¶2

¡
µ

BnT ( ĉ ¡ c0) ¡ BnT SnT

HnT

¶2
¯̄
¯̄
¯ > ":

Therefore

P fjBnT (ĉ ¡ c0) ¡ BnT (ĉq ¡ c0)j > ±g

· P

(¯̄
¯̄
¯

µ
BnT (ĉq ¡ c0) ¡ BnT SnT

HnT

¶2

¡
µ

BnT ( ĉ ¡ c0) ¡ BnT SnT

HnT

¶2
¯̄
¯̄
¯ > "

)

! 0;

where the last convergence holds by (51) ; and we have completed the proof of Part (a).
Part (b). First we consider the case c0 2 C0= f0g : For any ± > 0;

P
n¯̄
¯BnT (ĉ ¡ c0) ¡ ^̧nT

¯̄
¯ > ±

o

· P
½

BnT SnT

HnT
< BnT (c

¯
¡ c0)

¾
+ P

½
BnT SnT

HnT
> ¡BnT c0

¾
:
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Since BnTSnT
HnT

= Op (1) ; for given " > 0; we can choose K and (n0; T0) such that

P
½¯̄

¯̄BnT SnT

HnT

¯̄
¯̄ > K

¾
< " for all n ¸ n0 and T ¸ T0:

Choose n1 = max
½³

K
c0¡c

¯

´2
;
³

K
c0

´2
; n0

¾
: Then, whenever n ¸ n1 and T ¸ T0;

P
½

BnT SnT

HnT
< BnT (c

¯
¡ c0)

¾
+ P

½
BnT SnT

HnT
> ¡BnT c0

¾

· 2P
½¯̄

¯̄BnT SnT

HnT

¯̄
¯̄ > K

¾
· 2";

and therefore,
P

n¯̄
¯BnT ( ĉ ¡ c0) ¡ ^̧nT

¯̄
¯ > ±

o
· 2";

as required. ¥

7.4 Appendix D: Proofs of Section 5
Proof of Lemma 6
Part (a).

Part (a) holds by Lemma 4 with c0 = 0 and by considering the marginal limiting
distribution distribution of

p
nM1nT (0). ¥

Part (b).
The proof of Part (b) is similar to the proof of Lemma 4, and we give only a sketch of

the proof. By de…nition and by Assumption 6,

p
ndM1nT (0) = ¡ 1p

n

nX

i=1

"
1
T 2

TX

t=1

µ
y
~i;¡1

¶2

t
¡ ­i

1
T 2

TX

t=1

µ
t ¡ s ¡ 1

T

¶
~h1T (t; s)

#
+ op (1) ;

because of Assumption 6. Using the BN-decomposition of "it ; we can decompose

1
T2

TX

t=1

µ
y
~i;¡1

¶2

t
¡ ­i

1
T 2

TX

t=1

µ
t ¡ s ¡ 1

T

¶
~h1T (t; s)

= ­iQ6iT + RiT ;

where xit =
Pt

s=1 uis with xi0 = 0;

Q6iT =
1
T2

TX

t=1

x2
it¡1 ¡ 1

T3

TX

t=1

TX

s=1

xit¡1xis¡1~h1T (t; s)

¡ 1
T2

TX

t=1

TX

s=1

µ
(t ^ s) ¡ 1

T

¶
~h1T (t; s) ;

and RiT is the remainder term. The speci…c forms of R1iT can be found in the proof of
Lemma 9 in Moon and Phillips (1999b). Then, by modifying the proof of Lemma 9 in
Moon and Phillips (1999b) with the results in Appendix B2, it is possible to show that

1p
n

nX

i=1

R1iT = Op

µr
n
T

¶
= op (1) ;
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since n
T ! 0: Also, it is not di¢cult to prove that V ar (Q6iT ) ! 11

6300 as (n; T ) ! 1 for
all i: Therefore, Part (b) holds. ¥
Part (c).

Notice that

p
n

¡
d2M1nT (0)

¢
= ¡

Ã
1
n

nX

i=1

­̂i

!
d2!1T (0)

=

Ã
1
n

nX

i=1

­̂i

! Ã
1
T2

TX

t=2

t¡1X

s=1

µ
t ¡ s ¡ 1

T

¶2
~h1T (t; s)

!
:

From

sup
1·t·T

sup
t¡1
T ·r· t

T

¯̄
¯̄
¯

µ
t
T

¶k

¡ rk

¯̄
¯̄
¯ =

1
T

O (1) for all …nite k;

we have

1
T 2

TX

t=2

t¡1X

s=1

µ
t ¡ s ¡ 1

T

¶2
~h1T (t; s) !

Z 1

0

Z r

0
(r ¡ s)2 ~h (r; s)dsdr +

1
T

O (1) :

Also, a direct calculation shows that
Z 1

0

Z r

0
(r ¡ s)2 ~h (r;s)dsdr = 0:

Therefore, since it is assumed that n
T ! 0 and 1

n

Pn
i=1 ­̂i !p ­;

p
n

¡
d2M1nT (0)

¢ !p 0;

which is required. ¥
Part (d).

By de…nition,

d3M1nT (c) = ¡
Ã

1
n

nX

i=1

­̂i

!
d3!1T (c)

=

Ã
1
n

nX

i=1

­̂i

!Ã
1

T 2

TX

t=2

t¡1X

s=1

ec(t¡s¡1
T )

µ
t ¡ s ¡ 1

T

¶3
~h1T (t;s)

!
:

Notice that d3M1nT (c) is continuous on the compact parameter set. Since

1
T 2

TX

t=2

t¡1X

s=1

ec( t¡s¡1
T )

µ
t ¡ s ¡ 1

T

¶3
~h1T (t; s)

! d3M1(c; 0) =
Z 1

0

Z r

0
ec(r¡s) (r ¡ s)3 ~h (r; s)dsdr

and 1
n

Pn
i=1 ­̂i !p ­;

d3M1nT (c) !p ­d3M1(c; 0)

uniformly in c 2 C; and we have the required result. ¥

Before we prove Lemma 7, we introduce the following lemma which is helpful in de-
riving the asymptotics of 1

n

Pn
i=1

1
T

PT
t=1

¡̂
"2

it ¡ "2
it
¢
:
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Lemma 11 Suppose that assumptions in Lemmas 6 and 7 hold. Then; as (n; T ! 1)
with n

T ! 0; p
nT

¡
½̂++ ¡ ½0

¢
= Op(1);

where ½̂++ is de…ned in (16) :

Proof of Lemma 11
By de…nition,

p
nT

¡
½̂++ ¡ ½0

¢

=

Ã
1
n

nX
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1
T 2

TX
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µ
y
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£
Ã
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Ã
1
T
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t=1

"
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µ
y
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¶

t
¡ ¤i ¡ ­i!1T (0)

!!
+ op (1) ;

where the op (1) order holds because 1p
n

Pn
i=1

³
~¤i ¡ ¤i

´
; 1p

n

Pn
i=1

³
~­i ¡ ­i

´
= op (1) ;

and
1
n

nX

i=1

1
T2

TX

t=1

µ
y
~i;¡1

¶2

t
= Op (1) > 0:

Using Lemma 9(a) and (c), it is possible to show that

1
n

nX

i=1

1
T 2

TX

t=1

µ
y
~ i;¡1

¶2

t
!p ­!2 (0) =

­
15

; (52)

as (n; T ! 1) : Next, notice that as (n; T ! 1) with n
T ! 0;

1p
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Ã
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µ
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t
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!

=
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nX
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Ã
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=
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n

nX

i=1

­i (Q1inT ¡ Q2inT ) + op (1) ; (53)

where the last equality holds by (48) and (49) with c0 = 0 and p = 1; and Q1inT and
Q2inT are the same in (44) : In view of the proof of Lemma 10, the following holds

lim sup
n;T

E

Ã
1p
n

nX

i=1

­i (Q1inT ¡ Q2inT )

!2

< 1. (54)

Therefore, from (52), (53) ; and (54) the desired result follows. ¥

Proof of Lemma 7
Part (a).
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By de…nition, we can write

M2nT (0) = 1
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>From the de…nitions of ­̂i and ¤̂i ; the last two terms in (55) are
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Noticing that
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the other terms in (55) equal
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Putting (56) and (57) together, we have
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we write
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By de…nition of "̂it ;
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where the third line holds because 1
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= Op (1) by Lemma 11.

Notice by de…nition that
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and using Lemma 9(d), it is possible to show that 1
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T ! 0;

1
2
p

nT

nX

i=1

µ
"
~

0
i
"
~i

¡"0
i"i

¶
= Op

µr
n
T

¶
= op (1) ;

and
1

2
p

n

nX

i=1

1
T

TX

t=1

¡
"̂2

it ¡ "2
it

¢
=

p
n

T
op (1) = op (1) ;

and we have desired result. ¥

Next, we sketch proofs for Parts (b) – (d). The details of the proofs for Part (b),
(c), and (d) are similar to those of Part (b) of Lemma 6, Part (a) above, and Lemma 2,
respectively, and we omit the details.
Part (b).

Taking the …rst derivative of M2nT (c) with respect to the parameter c; considering
Assumption 6, and rearranging terms using the relations
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and
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it is possible to …nd that
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Using the BN decomposition of yit¡1 and the results in Appendix B2 with c0 = 0; it is
possible to show that
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=
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where xit = xit¡1 + uit with xi0 = 0: Then, direct calculations show that EQ7iT = 0 and
V ar (Q7iT ) ! 1

45: Therefore p
ndM2nT (c) = Op (1) ;

as required. ¥
Part (c) and Part (d).

The proof of Part (c) is similar to that of Part (b). Taking the second order derivative
of M2nT (c) with respect to the parameter c; considering Assumption 6, and rearranging
terms using the relations of (58) and (59) ; it is possible to show that

p
nd2M2nT (c) = Op

µr
n
T

¶
= op (1) :

The proof of Part (d) is similar to the proof of Lemma 2. After taking the third order
derivative of M2nT (c) with respect to c and using the results in Lemma 9, it is possible
to show the required result. ¥

Proof of Theorem 4
De…ne ·̂nT = n1=6 ĉ: First, we consider the case where fj·̂nT j > 1g : By the de…nition

of the GMM estimator, we have

op (1) · n (ZnT (0) ¡ ZnT (ĉ))

= ¡
6X

k=1

³
n(1¡k=6)Ak;nT

´
·̂k

nT ¡
6X

k=3

·̂k
nT

³
n(1¡k=6)Nk;nT (ĉ; 0)

´
:

In view of (17) ¡ (24) and from Assumption 7, ·̂nT satis…es

op (1) · ¡j·̂nT j6+j·̂nT j5 op (1)+j·̂nT j4 op (1)+2Op (1) j·̂nT j3+j·̂nT j2 op (1)+j·̂nT j op (1) :
(60)
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Since, j·̂nT j > 1;

The right hand side of (60)

· ¡j·̂nT j6 (1 + op (1)) + 2Op (1) j·̂nT j3 :

Then,
j·̂nT j6 · 2Op (1) j·̂nT j3 + op (1) :

Following by relation (7.4) in Andrews (1999), page 1377, we can deduce that

j·̂nT j3 · Op (1) + op (1) :

Therefore, when fj·̂nT j > 1g ;
j·̂nT j · Op (1) : (61)

Finally, let the Op (1) random variable in (61) be »nT : Then,

j·̂nT j = j·̂nT j 1 fj·̂nT j · 1g + j·̂nT j 1 fj·̂nT j > 1g
· j·̂nT j 1 fj·̂nT j · 1g + »nT

· 1 + »nT = Op (1) : ¥

Proof of Theorem 5
The proof of the theorem is similar to that of Theorem 3 and is omitted. ¥

7.5 Appendix F: Numerical Validation of the Identi…cation Con-
dition of m (c) 6

In this section we provide a numerical validation that the uniform limit of the moment
conditions, m (c) = (m1 (c) ; m2 (c))0 has a root only at the true parameter c = c0: We
restrict the parameter set to C = [ ¡ 10; 0]: The choice of the lower limit ¹c = ¡10 is made
for computational convenience, and the results hold for all …nite values of ¹c < 0. All
the numerical analysis in this section is done with Mathematica and with Maple using
Scienti…c Workplace Version 3.0.

7.5.1 When g1t = t

The procedure we apply is to …nd all the roots of m2 (c) and verify whether these roots
are also the roots of m1 (c) : We …rst notice that for given c0; the function m2 (c) is simply
the ratio of two polynomials - the denominator and the numerator of m2 (c) ; say md2 (c)
and mn2 (c) ; respectively, are a fourth degree polynomial and a …fth degree polynomial
in c; respectively.

Case A: When c0 6= 0
Step 1: Numerical Calculation of the roots of m2 (c) :
By a direct calculation, we …nd that the denominator of m2 (c) ; md2 (c) ; equals to

4c5
0
¡
c2 ¡ 3c + 3

¢2 when c0 6= 0: Since c2 ¡ 3c + 3 =
¡
c ¡ 3

2

¢2 + 3
4 > 0; the denominator

of m2 (c) has no real roots for all c0 6= 0: Thus, if we concerned with the roots of m2 (c) ;
it su¢ces to consider only the numerator of m2 (c), mn2 (c) : By de…nition of m2 (c), we
…nd that the true value c = c0 is always a root of mn2 (c). Also, by inspection, we …nd
that c = 0 is always a root of mn2 (c) : Thus, we can write

mn2 (c) = c (c ¡ c0) ~mn2 (c) ;
6 We are in debt to John Owens for the numerical analysis in this section.
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where ~mn2 (c) is a third degree polynomial. Using Mathematica, we solve the third degree
polynomial ~mn2 (c) and …nd three roots of ~mn2 (c) as a function of the true parameter c0:
For the numerical calculation we choose ¹c = ¡10; and so we assume that the parameter
set C = [ ¡ 10; 0]: The Figures A.1 and A.2 plot the graphs of these roots on C only when
the roots are real numbers. As we see through the graphs, for c0 < 0; the roots of ~mn2 (c)
are all positive, and so ~mn2 (c) does not have a root in the parameter set C:

Step 2: Plug the bad root c = 0 of m2 (c) to m1 (c)
We now investigate, for given c0 2 C=f0g ; whether m1 (c) = 0 when c = 0: By

matching the given true parameter c0 with m1 (0) ; we can de…ne the function m1_0 (c0)
of c0: Using Maple, we calculate

m1_0 (c0) =
1

4c4

µ
¡c3 + 48ec ¡ 8ecc2 ¡ 8c2 ¡ 24

+c3e2c ¡ 8e2cc2 + 24ce2c ¡ 24e2c ¡ 24c

¶
;

and plot the graph of m1_0 (c0) : Figure A.3 plots m1_0 (c0) on the range of c0 2 [¡10; 0:4]
and Figure A.4 plots the same function on the range of c0 2 [0:4; 0] : Through these graphs,
we can verify that m1_0 (c0) is positive but very close to zero when the true value c0 is
close to zero.

Figure A.3 Graph of m1_0 (c0) Figure A.4 Graph of m1_0 (c0)
To investigate further the behavior of m1_0 (c0) around c0 = 0; in Figure A.5 we plot

the graphs of the …rst derivatives of numerator of m1_0 (c0) on the range c0 2 [¡0:05; 0] :

Figure A.5. Graph of the …rst derivative of the Numerator of m1_0 (c0)

The graph shows that the …rst derivative of the numerator of m1_0 (c0) is nega-
tive around zero, and so m1_0 (c0) is strictly decreasing. Therefore, we conclude that
m1_0 (c0) is not zero for all c0 2 C0:

Case B: When c0 = 0:
Using Maple, we calculate m2 (c) when c0 = 0; and plot the graph in Figures A.6 and

A.7. From these …gures, it is apparent that m2 (c) = 0 only when c = c0 = 0:
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Figure A.6 Graph of m2 (c) when c0 = 0 Figure A.7 Graph of m2 (c) when c0 = 0

7.5.2 When g2t =
¡
t; t2

¢

Although the expressions involved in m2 (c) in this case are far more complex, the analysis
is simpler. Like the case of g1t = t; we …nd that the denominator of m2 (c) does not
change sign over C = [¡10; 0]; and so we focus on the numerator of m2 (c) : Similar to
the case of g1t = t; we numerically calculate the real roots of the numerator of m2 (c) for
c0 2 C = [¡10; 0]; and we …nd that there exists only one root in the range of c0; which
implies that m2 (c) = 0 only at the true c0. Therefore, when g2t =

¡
t; t2

¢
; the limit of

moment condition m (c) identi…es the true parameter c0 in C:
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Figure A.1. Graph of Roots of ~mn2 (c)

Figure A.2. Graph of Roots of ~mn2 (c)
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