GM M Estimation of Autoregressive Roots Near Unity with Panel Data

Hyungsik Roger Moon ${ }^{\text {区 }}$
Department of Economics
University of Southern California
\&
Peter C.B. P hillips
Cowles Foundation for Research in E conomics
Yale University
University of Auckland and University of York

August, 2000

Abstract

This paper investigates a generalized method of moments (GMM) approach to the estimation of autoregressive roots near unity with panel data. T he two moment conditions studied are obtained by constructing bias corrections to the scorefunctions under OLS and GLS detrending, respectively. It is shown that themoment condition under GLS detrending corresponds to taking the projected score on the B hattacharya basis, linking the approach to recent work on projected score methodsfor models with in..nite numbers of nuisance parameters (W aterman and Lindsay, 1998). A ssuming that the localizing parameter takes a nonp ositve value, we establ ish consistency of the GM M estimator and ..nd its limiting distribution. A nofable new ..nding is that the GM M estimator has convergence rate $n^{1=6}$; slower than \bar{n}; when the truelocalizing parameter is zero (i.e., when there is a panel unit root) and the deterministic trends in the panel are linear. These results, which rely on boundary point asymptotics, point to the continued did culty of distinguishing unit roots from local alternatives, even when there is an in..nity of additional data.

JEL Classi..cation: C22 \& C23
Keywords and Phrases: Bias, boundary point asymptotics, GMM estimation, local to unity, moment conditions, nuisance parameters, panel data, pooled regression, projected score.

1 Introduction

Recent years have seen the introduction of several important panel data sets where the cross sectional dimension (say, n) and the time series dimension (say, T) are comparable

[^0]in magnitude. Some of these panel data sets, like the P enn W orld Tables, have time series components that are nonstationary. These features distinguish the new data from the characteristics that are conventionally assumed in the analysis of panel data.

Since the beginning of the 1990's, there has beon ongoing theoretical and applied research on the use of large n and T panels allowing for nonstationarity in the data over time. The theoretical research includes the study of panel unit root tests (eg; Q uah, 1994, Levin and Lin, 1993, Im et al ; 1996, M addala and Wu, 1997, and Choi, 1999), panel cointegration tests (e:g:; Pedroni, 1999, B inder et al), and the development of linear regression theories for panel estimators under nonstationarity (e:g.; P esaran and Smith, 1995, and Phillips and M oon, 1999). A pplied research includes tests of growth convergence theories (Bernard and J ones, 1996), purchasing power parity relations (M acDonald, 1996, Oh, 1996, Pedroni, 1996, Wu, 1996, and Wu, 1997), and studies of the international links between savings and investment (Coakley et al, 1996 and M oon and Phillips, 1998).

T wo recent papers by the authors (M oon and Phillips, 1999a \& b) study panel re gression models that allow for both deterministic trends and stochastic trends. W hen the deterministic trends in the nonstationary panel data are heterogen eous across individuals, M oon and Phillips (1999a) show that the maximum likelihood estimator (MLE) of the Iocal to unity parameter in the stoch ast ic trend is inconsistent. They call this phenomenon, which arises because of the presence of an in..nite number of nuisance parameters, an incidental trend problem because it is analogous to the well-known incidental parame ter problem in dynamic panels when T is ..xed ${ }^{1}$. To solve the incidental trend problem, M oon and P hillips (1999b) propose various methods, including an iterative ordinary least squares (OLS) procedure and a double bias corrected estimat or, and establish limit the ories for these consistent estimators that can be used for statistical inference about the localizing parameter.

As a continuation of the two studies just mentioned, the present paper investigates a generalized method of moments (GM M) estimator of autoregressive roots near unity with panel data. We establish two moment conditions that form the basis for inference. The ..rst moment condition is obtained by adjusting for the bias of the score function after conventional OLS detrending. The second moment condition is constructed by adjusting for the bias of the score function following GLS (or quasi-dixerence-QD) detrending. Interestingly, the second moment condition is shown to correspond to the Gaussian projected score, where the projection is taken on the so-called B hattacharya basis that has been studied recently in the conventional incidental parameter problem by W aterman and Lindsay $(1996,1998)$ and Hahn (1998).

Consistency of the GMM estimator is proved under the assumption that the localizing parameter takes a nonpositive value. This condition is not too restrictive because most econometric models consider non-explosive autoregressive regression models. Nevertheless, the restriction does matter in deriving the limiting distribution of the estimator because it is possible that the true parameter lies on the boundary of the parameter set. The most interesting case is, of course, the pure unit root case where the true localizing parameter is zero. In this case, in establishing the limiting distribution we cannot use the conventional approach that approximates the ..rst order condition because the true parameter could be on the boundary of the parameter set. To avoid this dit culty, we use the approach that takes a quadratic approximation of the nonlinear objective function and optimize it on the parameter set (c.f. A ndrews, 1999, for some recent developments of estimation and inference in boundary problems).

One of the most interesting ..ndings in the present paper is that the GMM estimator has slower convergence rate than \bar{n} when the time series components in the panel have unit roots (i.e., the true localizing parameter is zero), and the deterministic trends are

[^1]linear. In this case the convergence rate is actually $\mathrm{O}\left(\mathrm{n}^{1=6}\right)$ rather than $\mathrm{O}\left({ }^{\mathrm{P}} \overline{\mathrm{n}}\right)$. This slow convergence rate arises because of lack of information in the moment conditions when there is a unit root, i.e, at the point $c=0$ in the space of the localizing parameter. It points to the continued di ϕ culty of distinguishing unit roots from local alternatives in the presence of deter ministic trends even when there is an in..nity of additional data from a cross section.

The paper is organized as follows. Section 2 lays out the model and gives the basic assumptions that are maintained thought the paper. In section 3 we introduce two moment conditions and prove that the second moment condition corresponds to a Gaussian projected score on the Bhattacharya basis. In Section 4 we establish consistency of the GMM estimator and obtain the limiting distributions of the GMM estimator when the true parameter is less than zero and equal to zero. The appendix contains technical derivations and proofs of the results in the main text.

2 M odel and A ssumptions

The model considered here is the panel system written in components form

$$
\begin{align*}
z_{i t} & =-0{ }_{i} g_{\mathrm{pt}}+y_{\mathrm{it}} \tag{1}\\
\mathrm{y}_{\mathrm{it}} & =1 / 夕_{\mathrm{it}}{ }_{\mathrm{i}}+{ }^{2} \mathrm{it} ;
\end{align*}
$$

where the autoregressive coed cient

$$
1 / 2=\exp \frac{c^{\prime}}{T} \gg 1+\frac{c}{T} ;
$$

is local to unity and the deterministic trend

$$
g_{p t}=\left(t ;:: \cdot ; t^{p}\right)^{0}:(p £ 1) \text { polynomial trend vector. }
$$

Let ${ }^{-}{ }_{i 0}$ and $1 / 8=1+\frac{c_{0}}{T}$ denote the true parameters. The main int erest of the paper is to ..nd a consistent estimation procedure for the localizing parameter c_{0} : A case of special interest is the panel unit root model where $\mathrm{c}_{0}=0$:

In practice, the most widely used trend in empirical applications is the linear trend, when $g_{l t}=t$ in (1). In later sections of the paper as part of the asymptotic development we need to verify some properties of complicated nonlinear functions of cthat depend on the trend $g_{p t}$: These functions are so complicated that it is very di¢ cult to establish general analytic results under the set up of the general polynomial trend function $g_{p t}=\left(t ;::: t^{p}\right)^{0}$: Instead, we rely on numerical methods for this part of the analysis. And to assist the analytic development, we restrict our attention to the following two cases: (i) $g_{i t}=t$ and (ii) $g_{2 t}={ }^{1} t ; \mathrm{t}^{2}$: T he set up is formalized as follows:

A ssumption 1 (Trend Formulation)
T he polynomial trend in model (1) is either (i) $g_{t t}=t$ or (ii) $g_{2 t}={ }_{i} t ; t^{2}{ }^{\phi_{0}}$:
A ssumption 2 (Error Condition) "it are linear processes satisfying the following conditions.
(a) it $_{i t}=P_{j=0}^{1} C_{i j} u_{i t}{ }_{j}$; where $u_{i t}$ are iid across i over t with $E u_{i t}=0 ; E u_{i t}^{2}=1$; and $E u_{i t}^{4}=3 / 4 ; 4<1$:
(b) $\mathrm{C}_{i j}$ are sequence of real numbers with $\mathcal{C}_{j}=\sup _{i} j_{i j} j<1$ and ${ }^{P}{ }_{j=0} j^{b} C_{j}<1$ for some $b>2$:

A ssumption 3 (Initial Condition)
(a) $y_{i 0}=z_{i 0}$ for all i
(b) E sup ${ }_{i} \mathrm{j}_{\mathrm{i}} \mathrm{oj}^{j}<1$ for some $\cdot>4$:

A ssumption 4 (P arameter Set)
(a) The localizing parameter ctakes a value in a compact subset $C=[\bar{C} ; 0] 1 / 2 R$; where $\bar{c}<0$.
(b) T he true localizing parameter C_{0} is in the set $\mathrm{C}_{0}=(\overline{\mathrm{c}} ; 0$]:

A ssumption 4(a) restricts the parameter set $C=[\bar{c} ; 0]$ to be non-positive. This restriction is made because in most econometrics application, $\mathrm{j}^{1} / \mathrm{k}<1$ or $1 / 2=0$ is of most interest. W hen the true parameter $c_{0}=0$; the model becomes nonstandard in the sense that the true parameter is on the boundary of the parameter set. Section 5 explores the implications ofthe boundary point aspect of this case.

Let $C_{i}={ }_{j=0}^{1} C_{i j},-i=C_{i}^{2}$; and $\alpha_{i}={ }_{j=1}^{1} C_{i 0} C_{i j}:-i$ and α_{i} are the long-run variance and the one-sided covariance of the error process " ${ }_{i t}$; respectively. The next assumption is about the limits of the averages of the individual long-run variances and covariances.

A ssumption 5 (Long Run Variances)
(a) $\inf _{\mathrm{i}}{ }^{-} \gg 0 \mathrm{P}$
(b) $-=\lim _{n} \frac{1}{n} P_{1}^{n} \mathrm{Pi}_{\mathrm{n}^{-}}$; is ..nite.
(c) $\mathfrak{a} 2=\lim _{n} \frac{1}{n P} \sum_{n=1}^{n}-2$ is ..nite.
(d) $\alpha=\lim _{n} \frac{1}{n}{ }_{i=1}^{n} \alpha_{i}$ is ..nite.

In most applications, the long-run variances - i and x_{i} are not known and consistent estimates of - $;$ and x_{i} are required. A widely used method is to employ a kernel estimation approach (c.f., Park and Phillips, 1988). Once we obtain consistent estimates of - i and α_{i}; we can average them to produce consistent estimates of the quantities α and - : Speci..cally, suppose that ${ }^{n}$ it is a regression residual of model (1) or model (4) : De..ne the sample covariances $\hat{i_{i}}(j)=\frac{1}{T} \quad u_{i t} n_{i t+j}$; where the summation is de..ned over 1 . $\mathrm{t} ; \mathrm{t}+\mathrm{j} \cdot \mathrm{T}: \mathrm{T}$ hen, the kernel estimators for $\hat{\alpha}_{i}$ and $\hat{\mathrm{C}}_{\mathrm{i}}$ are:

$$
\begin{align*}
& \hat{\alpha}_{i}=X_{j=1}^{\top} w \frac{\mu}{K} \hat{i} \hat{i}_{i}(j) ; \tag{2}\\
& \hat{-}_{i}=X_{j=i T}^{\top} w^{\mu} \frac{j}{K} \hat{i}_{i}(j) \text {; } \tag{3}
\end{align*}
$$

where $w(\phi$ is a kernel functign with $w(0)=1$ and K is a lag truncation parameter. Truncat ion occurs when $w^{\prime} \frac{i^{4}}{K}=0$ for $j j \mathrm{j}, \mathrm{K}$: A veraging over cross section observations now leads to consistent estimators of α and - ; viz.,

$$
\hat{\alpha}=\frac{1}{n}{ }_{i=1}^{\mathrm{n}} \hat{\alpha}_{i} \text { and } \hat{-}=\frac{1}{n}_{i=1}^{X^{n}} \hat{-}_{i}:
$$

W e assume that the est imates ${\hat{x_{i}}}_{i}$ and $\hat{-}_{i}$ have the following desirable properties. Examples of such estimates \hat{x}_{i} and $\hat{-}_{i}$ are found in M oon and P hillips (1999b), and we will not pursue this aspect of the theory further here.

A ssumption 6 (Long Run Variance Estimation) A ssume ${ }^{2}$ that as ($\mathrm{n} ; \mathrm{T}$! 1) with $\frac{\mathrm{n}}{\mathrm{T}}$! 0 ,

3 Moment Conditions

This section develops two moment conditions that will be used in G M M estimation of c_{0} : The central idea is to correct for the biases in the OLS detrended regression and in GLS detrended regression, a process that leads to two dixerent moment conditions. It turns out that the second moment condition is equivalent to a particular form of projected score in the G aussian version of model (1): The projection is on the Bhattarcharya basis (Bhattacharyya, 1946 and Waterman and Lindsay, 1996) and this correspondence is explored in the ..nal part of this section.

3.1 The First M oment Condition

We start by writing M odel (1) in augmented regression format as

$$
\begin{equation*}
z_{i t}=1 / 8 z_{i t_{i} 1}+\not+0+{ }_{i 0}^{0} g_{p t}+"_{i t} ; \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \pm 0=1 /)_{0}^{-0}{ }^{-10} \text { 中; }
\end{aligned}
$$

$$
\begin{aligned}
& q_{b}=i 1 ;(i 1)^{2} ;: \ldots ;(i 1)^{p^{0}} \\
& T\left(c_{0}\right)=(p £ p) \text { matrix dedending on } c_{0} \text { and } T \text { : }
\end{aligned}
$$

The augmented format (4) has the drawback that linear regression leads to ined cient trend elimination, but it has the advantage that the detrended data is invariant to the trend parameters in (1): The ..rst moment condition uses the augmented formation (4) and the second moment condition uses model (1):

The following notation is de..ned to assist with the analysis of the trend function asymptotics and it will be used subsequently throughout the paper. Let

$$
\begin{aligned}
& \stackrel{\circ}{i 0}=\left(\ddagger_{0} ; 0_{i 0}^{0}\right)^{0} ; \\
& g_{p t}={ }^{i} 1 ; g_{p t}^{0}{ }^{\phi_{0}} ; \quad g_{p}(r)=\left(r ;:: ; r^{p}\right)^{0} ; \quad g_{p}(r)={ }^{i} 1 ; g_{p}(r)^{0^{\Phi_{0}}} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& M_{p T}=I_{T} i G_{p T} G_{p T}^{0} G_{p T}{ }^{i}{ }^{1} G_{p T}^{0} \text {; } \\
& \mathrm{D}_{\mathrm{pT}}=\operatorname{diag}\left(\mathrm{T} ; ;: . ; \mathrm{T}^{\mathrm{p}}\right) ; \quad \mathrm{D}_{\mathrm{p} T}=\underset{\mathrm{A}_{\mathrm{i}}}{\operatorname{diag}}\left(1 ; \mathrm{D}_{\mathrm{T}}\right) ; \\
& h_{p T}(t ; s)=D_{p T}^{i 1} g_{p t}^{0} \frac{1}{T}_{t=1}^{X^{T}} D_{p T}^{i} g_{p t} g_{p t}^{0} D_{p T}^{i 1}{ }^{{ }_{i}^{i 1}} g_{p s} D_{p T}^{i 1} \text {; }
\end{aligned}
$$

[^2]\[

$$
\begin{aligned}
& h_{p}(r ; s)=g_{p}^{0}(r)^{\mu Z_{1}^{0}} g_{p}(r) g_{p}(r)^{0} d r \underbrace{\text { II }_{i}}_{i 1} g_{p}(s) \text {; } \\
& h_{p}(r ; s)=G_{p}^{0}(r) \quad G_{p}(r) \Phi_{p}(r)^{0} d r \quad \Theta_{p}(s): \\
& W \text { rite } z_{i}=\left(z_{i 1} ;::: ; z_{i T}\right)^{0} ; z_{i ; i 1}=\left(z_{i 0} ;::: ; z_{i T_{i} 1}\right)^{0} ; \text { and } "_{i}=\left({ }^{i 1} ;\right. \\
& \underset{\sim}{z}=M_{p T} z_{i} ;{ }_{\sim}^{\prime}=M_{p T}{ }_{i} ;{\underset{\sim}{i} ; i 1}^{z}=M_{p T} z_{i ; i 1}:
\end{aligned}
$$
\]

Then, it is straightforward to show that

$$
\underset{\sim}{\sim_{i}}=\underset{\sim}{y} \text { and } \underset{\sim}{z}{ }_{i ; i 1}=\underset{\sim}{y}{\underset{\sim}{i ; i}} ;
$$

where

$$
\underset{\sim}{\mathrm{y}} \underset{\mathrm{i}}{ }=\mathrm{M}_{p T} \mathrm{y}_{\mathrm{i}} ; \underset{\sim}{\mathrm{i} ; \mathrm{y}_{i} 1} \underset{\mathrm{MT}}{ }=\mathrm{M}_{\mathrm{i} ; \mathrm{i} 1} ;
$$

$y_{i}=\left(y_{1} ;:: ; y_{T}\right)^{0}$; and $y_{i ; i 1}=\left(y_{0} ;:: ; y_{T_{i} 1}\right)^{0}:$ For $t, 2$ we let

$$
{\underset{\sim}{i ; i 1} 1}^{z_{t}}=z_{i t_{i} 1} 1 \frac{1}{T}_{s=1}^{X^{\top}} \kappa_{p T}(t ; s) z_{i s_{i} 1}
$$

$\mu \quad$ ๆ
be the $t^{\text {th }}$ element of $\underset{\sim_{i ; i} 1}{z_{i}}$; and assume $\underset{\sim_{i ; i} 1}{z_{1}}=z_{i 0}=y_{i 0}$:
O ne straightforward procedure of estimating c_{0} (equivalently $1 / 8$) is to ..rst eliminate the unknown trends $\pm_{0}+{ }^{\circ}{ }_{i 0} g_{t}$ by taking OLS regression residuals and then apply pooled least squares with an ap propriate bias correction for the serial correlation of "it, calling this method it erative OLS. However, as noted by Moon and Phillips(1999b), this iterative OLS procedure yields inconsistent estimation of c_{0} due to a nondegenerating asymptotic bias between the detrended regressor and the detrended error term.

The ..rst moment condition is obtained simply by subtraction of this asymptotic bias term in an iterative OLS procedure. More speci..cally, we write Model (4) in vector notation as

$$
z_{i}=1 / \not z_{i ; i 1}+\mathcal{G}_{p T} \stackrel{\circ}{i 0}+"_{i}:
$$

M ultiplying M_{pt} to the both sides of the equation, we have
where $\underset{\sim}{z} ; \underset{\sim}{z} z_{i j} ;$ and " $\underset{\sim}{i}$ are OLS detrended versions of $z_{i} ; z_{i ; i} ;$ and ${ }_{i} ;$ respectively. In general, the detrended regressor vector $\underset{\sim_{i ; i 1}}{z_{i}}$ and the det rended error vector " are corre lated.

The ..rst moment condition is found by correcting for the bias due to the correlation between $\underset{\sim_{i ; i}}{z_{i}}$ and ${ }_{\sim_{i}}$: We will use $m_{1 ; i T}(c)$ to denote the data moment that appears in the ..rst moment condition. It is de.ned as follows:

$$
\begin{aligned}
& \hat{i}^{-\hat{i}!}{ }_{1 T}(c) i \hat{x_{i}} ;
\end{aligned}
$$

where

$$
!_{1 T}(c)=i{\frac{1}{T^{2}}}_{t=2 s=1}^{X^{\top} X^{1} e^{\left(\frac{t_{i} s_{i} 1}{T}\right)} c} \mathrm{~K}_{\mathrm{p} T}(\mathrm{t} ; \mathrm{s}) ;
$$

 and $\hat{\alpha}_{i}$ correct for the asymptotic bias that arises from the correlation between " and ${\underset{\sim}{i ; i} 1} \quad$ t
Since the bias correction terms $\hat{-}_{i}!_{1 T}(c)$ and $\hat{\alpha}_{i}$ are approximations of the mean of $\stackrel{1}{\mathrm{~T}} \mathrm{MO}_{\substack{ \\\sim_{i} ; \mathrm{i} 1}}$; $\mathrm{E}\left(\mathrm{m}_{1 ; \mathrm{i} \mathrm{T}}\left(\mathrm{c}_{0}\right)\right.$) is not exactly zero but it is asymptotically zero, in general. However, $\mathrm{m}_{1 ; i \mathrm{it}}(\mathrm{c})$ has a simple limiting form that delivers an exact moment condition. When T is large, it is easy to ..nd that the distribution of $m_{1 ; i T}(c)$ is close to that of
where $J c_{0} ; i(r)={ }_{0}^{R_{r}}{ }_{e^{c_{0}}\left(r_{i} s\right)}^{R_{1}} d W_{i}(s)$ is a dixusion, $W_{i}(r)$ is st andard Brownian M otion,
 Since

$$
E^{\mu Z_{1}} \underset{\sim}{\mathcal{\sim}_{c_{0} ; i}}(r) d W_{i}(r)^{\text {の }}=!_{1}\left(c_{0}\right) ;
$$

it follows that when $\mathrm{c}=\mathrm{c}_{0}$
giving the moment condition directly for this limiting form of $m_{1 ; i T}\left(c_{0}\right)$:

3.2 The Second M oment Condition

B efore we discuss the second moment condition, we introduce the following not ation. Let

$$
\begin{aligned}
& \phi_{\mathrm{c}}={ }^{3} 1_{\mathrm{i}}{ }^{3} 1+\frac{\mathrm{c}^{\prime}}{\mathrm{T}} \mathrm{~L} \text {; where } \mathrm{L} \text { is the lag operator, } \\
& F_{p T}=\operatorname{diag}{ }^{i} 1 ; T ;::: ; T^{p_{i} 1^{\Phi}}=\frac{1}{T} D_{p T} ; \quad \phi_{c} g_{p t}=F_{p T}^{i}{ }^{1} \${ }_{c} g_{p t}
\end{aligned}
$$

The second moment condition is obtained from the eq ciently detrended regression equation. According to Canjels and Watson (1997) and Phillips and Lee (1996), the trend coeф cient in the model (1) can be eq ciently estimated in the time domain by employing a GLS procedure that amounts to quasi-dixerencing the data with the operator $\$ \mathrm{c}$. That is, when the localizing parameter c is known, the asymptotically ed cient estimator of ${ }^{-}{ }^{\text {i }}$ in (1) is

D enoting $y_{i t}\left({ }^{-}{ }_{i}\right)=z_{i t} i^{-}{ }_{i} g_{p t}$, we now write

$$
\hat{i}_{i}(c)={ }_{i 0}+{ }_{t=1}^{\tilde{A}} X^{\top} g_{p t} \not g_{c} g_{p t}^{0}{ }_{i 11} \tilde{A}_{X^{\top}}^{t=1} \nmid c g_{p t} Y_{i t}\left({ }^{-}{ }_{i 0}\right):
$$

D e..ne " ${ }_{i t}\left(c_{;}{ }^{-}{ }_{i 0}\right)=\phi_{c} z_{i t} i^{-}{ }_{i} \phi_{c} g_{p t}$:
The second moment function $\mathrm{m}_{2 ; \mathrm{iT}}(\mathrm{c})$ is de.ned as

$$
\begin{equation*}
m_{2 ; i T}(c)=\frac{1}{T}{ }_{t=1}^{X^{\top}} "_{i t} c_{i} \hat{i}_{i}(c) y_{i t_{i} 1} \hat{i}_{i}(c) \hat{i} \hat{-i}_{i, T}(c) i \hat{\alpha}_{i} \tag{6}
\end{equation*}
$$

where

Notice that $y_{i t_{i} \frac{7}{3}} \hat{i_{i}}(c)$, is the GLS regression residual of the regression equation $z_{i t}=$ ${ }^{-}{ }_{i} g_{t}+y_{i t}$ and ${ }_{i t} \quad c_{;}{ }^{\wedge}{ }_{i}(c)$ is the OLS regression residual of the quasi-dixerenced equation $\phi c z_{i t}={ }_{i}^{-}{ }_{i} \phi c g_{p t}+4 p_{i}^{y} y_{i t}$. In the second moment function $m_{2 ; i T}(c)$ we correct for the asymptotic bias of $\frac{1}{T}{ }_{\mathrm{t}=1}^{\mathrm{T}} \mathrm{"it}_{\mathrm{it}} \mathrm{c}_{\mathrm{i}}(\mathrm{c}) \mathrm{y}_{\mathrm{it} \boldsymbol{i} 1} \hat{\mathrm{i}}$ (c) by substracting ow the estimates $\hat{-}_{i, T}(c)$ and \hat{x}_{i} :

Recently, Moon and Phillips (1999a) showed that the Gaussian MLE of the panel regression model (2) with linear incidental trends is inconsistent. The main reason for inconsistency of the MLE is that the goncentrated score of the (standardized) Gaussian
 limit. In the second moment formulation of $m_{2 ; i T}(c)$; by subtracting ow the estimates $\hat{-}_{\mathrm{i}, \mathrm{T}}(\mathrm{c})$ and ${\hat{x_{i}}}$; we eliminate the asymptotic bias of the concentrated Gaussian score function.

3.3 The R elationship between the Second M oment Condition and the Projected Score

This section shows that the second moment function $m_{2 ; i T}(c)$ is a projected score of the panel regression model (1) with Gaussian errors. Suppose that the error process "it in the model (1) is an iid standard normal process across i and over t: For convenience we assume that $z_{i 0}=y_{i 0}=0$ for all i :

Under general regularity conditions, it is well known that the asymptotic properties of the MLE, and most not ably its consistency, are closely related to the unbiasedness of the score function at the true parameter. However, it is also well known that in dynamic panel regression models with incidental parameters the M LE is not consistent (e:g:; see Neyman
and Scott, 1948, and Nickel, 1981) as n! 1 with T ...xed. Recently, M oon and Phillips (1999b) found that this incidental parameter problem also arises in the nonstationary panel regression models with incidental trends when both $n!1$ and $T!1$, to wit in models such as (1) :

The main reason for the inconsistency of the MLE is that the score function in an incidental trend model has a bias at the true parameter. Therefore, in order to obtain a consistent estimate, one needs to correct for the bias in the score function. One recently investigated method to correct for this bias is to use a projected score function, where the projection is taken onto the so-called Bhattacharyya basis. T he resulting approach is called "a projected score method".

To de..ne a projected score in the present case, we introduce the following notation. Let

$$
\begin{align*}
& \text { : the joint density of } \mathrm{z}_{\mathrm{i}} \text {, } \tag{7}\\
& U_{1 i}=\frac{@_{i}=@}{\mathrm{f}_{\mathrm{i}}} ; \quad \mathrm{V}_{1 \mathrm{i}}=\frac{@_{\mathrm{i}}=@_{i}}{\mathrm{f}_{\mathrm{i}}} \text {; }
\end{align*}
$$

 $V_{1 i}$ and $V_{2 i}$ are known as the B hattacharyya basis of order 1 and 2, respectively (e:g:; B hattacharyya, 1946 and Waterman and Lindsay, 1996). The projected score $U_{2 i}$ is de..ned as the residual in the $L_{2 i}$ projection of $U_{1 i}$ on the closed linear space spanned by $V_{1 i}$ and $V_{2 i}$; i:e;

$$
\begin{equation*}
U_{2 i}=U_{1 i} i \quad>_{1}^{0} V_{1 i} i>{ }_{2}^{0} D_{p}^{+}\left(\operatorname{vec} V_{2 i}\right): \tag{8}
\end{equation*}
$$

Recently, using the projected score method, Waterman and Lindsay (1998) and Hahn (1998) were able to solve similar nuisance parameter problems in the classical Neyman and Scott panel regression model and in a simple dynamic panel regression model with ..xed exects, respectively.
W hen the joint density of z_{i} is given in (7) ; $U_{1 i} ; V_{1 i} ;$ and $V_{2 i}$ are found to be

$$
\begin{aligned}
& V_{1 i}\left(c_{;}^{-}{ }_{i}\right)={ }^{\top}{ }^{\top}{ }_{i j ; t}\left(c_{;}^{-}{ }_{i}\right) \phi c g_{p t} \text {; }
\end{aligned}
$$

A fter some algebra, we obtain

$$
E\left(V_{1 i}-\operatorname{vech}_{2 i}\right)=0
$$

and

$$
E V_{1 i} U_{1 i}=0:
$$

So, the two $L_{2 i}$ projection coed cients $>_{1}$ and \geqslant_{2} in (8) are given by

$$
>_{1}=\left[E V_{1 i} V_{1 i}^{0}\right]^{i 1} E V_{1 i} U_{1 i}=0 ;
$$

and

$$
>_{2}={ }^{f} D_{p}^{+} E\left(\operatorname{vecV}_{2 i}\right)\left(\operatorname{vecV}_{2 i}\right)^{0} D_{p}^{+0^{0}{ }^{1}} D_{p}^{+} E\left(\operatorname{vecV}_{2 i}\right) U_{1 i}:
$$

Also, after some lengthy calculation, we ..nd that

$$
\begin{aligned}
& E\left(\operatorname{vec}_{2 i}\right)\left(\operatorname{vech}_{2 i}\right)^{0}
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(\operatorname{vec} V_{2 i}\right) U_{1 i} \\
= & \frac{1}{T}{ }_{t=2 s=1}^{X X}\left[\phi_{c} g_{p t}-\phi c g_{p s}+\phi c g_{p s}-\phi c g_{p t}\right] e^{\left(\frac{(i-c i-1}{T}\right) c}:
\end{aligned}
$$

Therefore, the projected score $\mathrm{U}_{2 \mathrm{i}}\left(\mathrm{C}_{;}{ }^{-}{ }_{i}\right)$ is

$$
\begin{aligned}
& \mathrm{U}_{2 \mathrm{i}}\left(\mathrm{C}^{-}{ }^{-}{ }_{\mathrm{i}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& £ \frac{1}{T}_{t=2 s=1}^{X X 1} D_{p}^{+}\left[\phi c g_{p t}-\phi c g_{p s}+\phi c g_{p s}-\phi c g_{p t}\right] e^{\left(\frac{t, s_{s}-1}{T}\right) c}:
\end{aligned}
$$

Since ${ }^{-}{ }_{i}$ in $U_{2 i}$ is unknown, we replace it with the estimate

Then, we have the following concentrated projected score
because ${ }^{P}{ }_{t=1} "_{i ; t}{ }^{3} c_{i} \hat{i}_{i}(c) \quad \phi c g_{p t}=0$.

Now, when the error process "it is iid $(0 ; 1)$ across i and over t; the second moment function $\mathrm{m}_{2 \text {; } i T}$ (c) is

The followinglemma states that the bias correction term $\mathrm{i}_{,} \mathrm{T}$ (c) in $\mathrm{m}_{2 ; i T}$ (c) is equivalent to $»_{2}^{0} D_{p}^{+}{ }_{t=1}^{T}\left(\$ c g_{p t}-\phi c g_{p t}\right)$: Thus, we conclude that the second moment function actually corresponds to the concentrated projected score function of the G aussian model.

Lemma 1 (Equivalence) Suppose that the er rors in model 1 are iid normal with mean zero and variance 1 across i and over t and $y_{i 0}=z_{i 0}=0$ for all $i: T$ hen, the second ${ }_{3}$ moment condition $\mathrm{m}_{2 \text {; }}$ (c) is equivalent to the concentrated projected score function $\mathrm{U}_{2 \mathrm{i}} \mathrm{C}_{\mathrm{i}} \hat{\mathrm{i}}$ (c):

4 GMM Estimation and Asymptotics

This section investigates the asymptotic properties of a G M M estimator of cthat is based on the two moment conditions introduced in the previous section. Let

$$
M_{n T}(c)=\frac{1}{n}_{i=1}^{X^{n}} m_{i T}(c) ;
$$

where

$$
\mathrm{m}_{\mathrm{iT}}(\mathrm{c})=\stackrel{\mu}{\mathrm{m}_{1 ; i T} \text { (c) }} \mathrm{m}_{2 ; \mathrm{TT}}(\mathrm{c}) \quad \text {; }
$$

and where $m_{1 ; i T}$ (c) and $m_{2 ; i T}$ (c) are de..ned in (5) and (6) ; respectively. Let \mathcal{W} be a $(2 £ 2)$ random weight matrix and $B_{n T}$ be a sequence of real numbers that converges to in..nity as ($n ; T$! 1): The GMM estimator \mathcal{C} for the unknown parameter c_{0} in (1) is de..ned as the extremum estimator for which

$$
\begin{equation*}
Z_{n T}(c) \cdot \min _{c 2 C} Z_{n T}(c)+o_{p}{ }^{i} B_{n T}^{i} 2^{q} ; \tag{10}
\end{equation*}
$$

where

$$
Z_{n T}(c)=M_{n T}(c)^{0} W M_{n T}(c):
$$

Since the objective function $Z_{n T}$ (c) is continuous in c and the parameter set C assumed to be compact, it is possible to ..nd a global minimum of $Z_{n T}$ (c) over the parameter set C : The main purpose in allowing for an ${o_{p}}^{\prime} \mathrm{B}_{n T}^{i{ }^{14}}$ deviation bound from the global minimum $\min _{C 2 C} Z_{n T}(c)$ is to reduce the computational burden and allow for potential numerical
 convergence order of \mathcal{e} to c_{0}; we will determine the sequence B_{nt} :

4.1 Consistency of the GMMEstimator

De.ne

$$
\mathrm{M}(\mathrm{c})={ }^{\mu} \mathrm{m}_{1}(\mathrm{c})^{\boldsymbol{q}} \mathrm{m}_{2}(\mathrm{c}) \quad \text {; }
$$

where

$$
m_{1}(c)=!_{1}\left(c_{0}\right) ;!_{1}(c) \text { i }\left(c ; c_{0}\right)!{ }_{2}\left(c_{0}\right) \text {; }
$$

$$
\begin{aligned}
& Z_{1} Z_{r} \\
& !_{1}(c)=i^{Z_{1} Z_{r}} e^{c(r i s)} \Pi_{p}(r ; s) d s d r ;
\end{aligned}
$$

$$
\begin{aligned}
& i_{0} Z_{0} \mathrm{Z}^{\mathrm{c}_{0}(r+s)} \frac{1}{2 c_{0}}{ }^{3} 1_{i} e^{i 2 c_{0}(r \wedge s)} h_{p}(r ; s) d s d r ;
\end{aligned}
$$

and

$$
\begin{aligned}
& m_{2}(c) \\
& =i\left(c i c_{0}\right)^{\mu Z_{1} Z_{r}} e^{2 c_{0}(r i s)} d s d r \\
& \mathrm{Z}_{1}{ }^{0} \mathrm{Z}_{1}^{0} \mathrm{Z}_{\mathrm{r}}{ }^{\text {s }} \\
& +\left(c_{i} c_{0}\right) \quad e^{c_{0}\left(r+s_{i} 2 v\right)} g_{p c}^{d}(s)^{0} A_{p}(c)^{i 1} g_{p c}^{d}(r) d v d s d r \\
& Z_{1}^{0} Z_{r}^{0} \quad{ }^{0} \\
& +\left(c_{i} c_{0}\right) \quad e^{c_{0}(r i s)} \stackrel{\Phi}{p c}_{d}(r)^{0} A_{p}(c)^{i 1} g_{p}(s) d s d r \\
& Z_{1}^{0} Z_{r}^{0} \\
& +\left(c_{i} c_{0}\right) \quad e^{c_{0}(r i s)} g_{p c}^{d}(s)^{0} A_{p}(c)^{i 1} g_{p}(r) d s d r \\
& z_{1} z_{1} Z_{r} \wedge_{s} \\
& \text { i }\left(c_{i} c_{0}\right)^{2} \quad e^{c_{0}(r+s i 2 v)} \stackrel{g}{g c}^{c}(s)^{0} A_{p}(c)^{i 1} g_{p}(r) d v d s d r \\
& Z_{1}^{0} Z_{r}^{0} \quad{ }^{0} \\
& i\left(c ; c_{0}\right) \quad e^{c_{0}(r i s)}{ }_{\rho_{p c}}^{d}(r)^{0} A_{p}(c)^{11} B_{p}(c) A_{p}(c)^{i 1}{ }^{d}{ }_{p c c}(s) d s d r \\
& z_{1}^{0} Z_{r}^{0} \\
& i\left(c_{i} c_{0}\right) \quad e^{c_{0}(r i s)}{ }_{9}^{d}(s)^{0} A_{p}(c)^{i 1} B_{p}(c)^{0} A_{p}(c)^{i 1}{ }^{d} g_{p c}(r) d s d r \\
& \left.+\left(c i c_{0}\right)^{2} \hat{Z}_{1} \hat{Z}_{1} Z_{r \wedge s} e^{c_{0}\left(r+s_{i}\right.} 2 v\right) g_{p c}^{d}(s)^{0} A_{p}(c)^{i 1} B_{p}(c) A_{p}(c)^{i 1} g_{p c}^{d}(r) d v d s d r \\
& Z_{1} Z_{r}
\end{aligned}
$$

T he following lemma shows that the sample moment condition $M_{n T}(c)$ has a uniform limit in c

Lemma 2 (U niform Convergence) Under A ssumptions 1-6,

$$
M_{n T}(c)!p-M\left(c ; c_{0}\right) \text { uniformly in } c
$$

as (n ; T ! 1):
A ssumption 7 As $(n ; T!1) ; W!{ }_{p} W$, where W is positive de..nite.
Notice by inspection that the uniform limit function $M\left(c ; c_{0}\right)$ is continuous on the compact parameter set C: Also, notice that $\mathrm{M}\left(\mathrm{c}, \mathrm{c}_{0}\right)=0$ at the true parameter $\mathrm{c}=\mathrm{c}_{0}$. In Appendix F, we prove numerically that $M\left(c, c_{0}\right)=0$ only when $c=c_{0}$: Then, by a standard result (e.g., theorem 2.1 of Newey and M CFadden (1994), the GMM estimator E is consistent for the true parameter C_{0} : Summarizing, we have the following theorem.

Theorem 1 (C onsistency) Suppose that A ssumptions 1-6 and Assumption 7 hold. Then, as (n;T! 1);

$$
\text { C! p } C_{0} \text { : }
$$

4.2 Limiting Distribution of the GM M Estimator when $\mathrm{c}_{0}<0$

$B y$ inspection the objective function $Z_{n T}(c)$ is dixerentiable in c on the region $c 2(\varepsilon ; 0)$; and it has right and left derivatives at $\mathrm{c}=\varepsilon$ and 0 ; respectively. To derive the limit distribution of the GM M est imator, we employ an approach that approximates the objective function $Z_{n T}$ (c) uniformly in terms of a quadratic function in a shrinking neighborhood of the true parameter.

For this purpose, we de..ne

$$
\mathrm{dM}_{\mathrm{nT}}(\mathrm{c})=\frac{1}{\mathrm{n}}_{\mathrm{i}=1}^{\mathrm{X}} \mathrm{dm}_{\mathrm{iT}}(\mathrm{c}) ;
$$

where $\mathrm{dm}_{\mathrm{iT}}$ (c) denotes the derivative of m_{iT} (c) with respect to c when $\mathrm{c} 2(\bar{c}, 0)$ and the right and left derivatives when $c=\bar{c}$ and 0 ; respectively. By the mean value theorem, for cG C_{0};

$$
m_{i T}(c)=m_{i T}\left(c_{0}\right)+d m_{i T}\left(c_{0}\right)\left(c_{i} c_{0}\right)+r_{i T}\left(c ; c_{0}\right)(c i c c
$$

where

$$
\begin{aligned}
r_{\mathrm{iT}}\left(c, c_{0}\right) & =\left(r_{1 i \mathrm{~T}}\left(\mathrm{c} ; \mathrm{c}_{0}\right)_{\mathrm{d}} ; \mathrm{r}_{2 \mathrm{it}}\left(\mathrm{c} ; \mathrm{c}_{0}\right)\right)^{0} ; \\
\mathrm{r}_{\mathrm{kiT}}\left(\mathrm{c}, \mathrm{c}_{0}\right) & =\operatorname{dm}_{\mathrm{kiT}} \mathrm{c}_{\mathrm{k}}^{+} \mathrm{C} \operatorname{dm}_{\mathrm{kiT}}\left(\mathrm{c}_{0}\right) ;
\end{aligned}
$$

and c_{k}^{+}lies between c and c_{0} for $k=1 ; 2$:
De.ne

$$
\mathrm{S}_{\mathrm{nT}}=\mathrm{d} \mathrm{M}_{\mathrm{nT}}\left(\mathrm{c}_{0}\right)^{0} \hat{\mathrm{~W}} \mathrm{M}_{\mathrm{nT}}\left(\mathrm{c}_{0}\right) ;
$$

and

$$
\mathrm{H}_{\mathrm{nT}}=\mathrm{d} \mathrm{M}_{\mathrm{nT}}\left(\mathrm{c}_{0}\right)^{0} \hat{\mathrm{~W}} \mathrm{dM} \mathrm{M}_{\mathrm{nT}}\left(\mathrm{c}_{0}\right):
$$

Then, we can write

$$
\begin{aligned}
Z_{n T}(c)= & M_{n T}\left(c_{0}\right)^{0} \hat{W} M_{n T}\left(c_{0}\right)+2\left(c_{i} c_{0}\right) S_{n T}+\left(c i c_{0}\right)^{2} H_{n T} \\
& +\left(\begin{array}{ll}
c_{i} & \left.c_{0}\right)
\end{array}\right) R_{1 n T}\left(c, c_{0}\right)+\left(\begin{array}{cc}
c_{i} & c_{0}
\end{array}\right)^{2} R_{2 n T}\left(c, c_{0}\right)
\end{aligned}
$$

where

$$
R_{1 n T}\left(c ; c_{0}\right)=2 M_{n T}\left(c_{0}\right)^{0} \hat{W} \frac{1}{n}_{i=1}^{X^{n}} r_{i T}\left(c ; c_{0}\right) ;
$$

and

We now give some asymptotic results that are useful in establishing the limit distribution of C.

Lemma 3 Suppose that Assumptions 1-6 hold. When the true parameter is c_{0};

$$
d M_{n T}(c)!p-d M\left(c ; c_{0}\right)=-\quad \begin{aligned}
& \mu \\
& d M_{1}\left(c ; c_{0}\right)^{\text {l }} \\
& d M_{2}\left(c ; c_{0}\right)
\end{aligned} \text { uniformly in } c a s(n ; T!\quad 1)
$$

for some continuous function $d M$ (c) with

$$
\mathrm{dM} \mathrm{M}_{1}\left(c_{0} ; c_{0}\right)=i!_{2}\left(c_{0}\right)+{ }_{0}^{Z_{1} Z_{r}} \mathrm{e}^{\mathrm{col}_{0}\left(r_{i}\right)}\left(r ; \text { s) } h_{p}(r ; s) d s d r ;\right.
$$

and

$$
\begin{array}{rl}
& \mathrm{dM}_{2}\left(c_{0} ; c_{0}\right) \\
Z_{1} Z_{r} & \mathrm{i} \quad \mathrm{e}^{2 c_{0}\left(r_{i} s\right)} \mathrm{dsdr}
\end{array}
$$

$$
Z_{1}^{0} Z_{1}^{0} Z_{r}
$$

$$
\begin{aligned}
& Z_{1} Z_{1} Z_{r \wedge_{s}} Z_{1}^{0} Z_{r}^{0} e^{c_{0}\left(r+s_{i} 2 v\right)} g_{p c_{0}}(s)^{0} A_{p}\left(c_{0}\right)^{i 1}{\stackrel{g}{g} c_{0}}(r) d v d s d r
\end{aligned}
$$

$$
+\quad Z_{1}^{0} Z_{r}^{0} e^{c_{0}(r ; s)} g_{p_{c_{0}}}(r)^{0} A_{p}\left(c_{0}\right)^{i 1} g_{p}(s) d s d r
$$

$$
z_{1}^{0} z_{r}^{0}
$$

$$
+e^{c o(r i s)}{\stackrel{q}{g} c_{0}(s)^{0} A_{p}\left(c_{0}\right)^{i 1} g_{p}(r) d s d r}_{r}
$$

$$
z_{1}^{0} z_{r}^{0}
$$

$$
z_{1}^{0} z_{r}^{0}
$$

$$
+\int_{0}^{L L_{0}^{L} r}(r ; s) e^{c_{0}(r i s)} g_{p c_{0}}^{d}(r)^{0} A_{p}\left(c_{0}\right)^{11} g_{g_{p c_{0}}}(s) d s d r:
$$

Now we set $B_{n T}={ }^{\mathrm{p}} \overline{\mathrm{n}}$:
Lemma 4 Suppose that Assumptions $1-6$ hold. T hen, as ($n ; T!1$) with $\frac{n}{T}!0$;
where J $=\begin{array}{ccccccc}\mu \\ 1 & i & 1 & 0 & 0 & 0^{\boldsymbol{q}_{0}} \\ 1 & 0 & i & 1 & i 1 & 1\end{array} \quad$ and \odot is de..ned in (45) :
Remarks
(a) The proof is similar to that of Lemma 2 and is omitted.
(b) Figures (3) and (4) plot the graphs of $d M_{1}\left(c_{0} ; c_{0}\right)$ in the cases of $g_{1 t}=(1 ; t)^{0}$ and $g_{2 t}={ }^{1} 1 ; t ; t^{2+0} ;$ respectively. W hat we verify from the graphs is that $\mathrm{dM}_{1}\left(c_{0} ; c_{0}\right)<0$ for $\mathrm{c}_{0}<0$: T herefore, $\mathrm{H}_{\mathrm{nT}}>0$ for $\mathrm{c}_{0}<0$:

Figure 3. $G r a p h$ of $d M_{1}\left(c_{0} ; c_{0}\right)$ when $G_{1 t}=(1 ; t)^{0}$:

Figure 4. Graph of $\mathrm{dM}_{1}\left(\mathrm{c}_{0} ; \mathrm{c}_{0}\right)$ when $\mathrm{g}_{2 \mathrm{t}}={ }^{\mathrm{i}} 1 ; \mathrm{t}_{\mathrm{t}} \mathrm{t}^{{ }^{\Phi_{0}}}$:
(c) A ccording to M oon and P hillips (1999b), when $c_{0}=0$; it al ways holds that $d M_{1}\left(c_{0} ; c_{0}\right)=$ 0 for all polynomial trends $\mathrm{s}_{\mathrm{pt}}=\left(1 ;:: ; \mathrm{t}^{\mathrm{p}}\right)^{0}:$ A Iso, for $\mathrm{C}_{0}=0$; direct calculations show that $d M_{2}\left(c_{0} ; c_{0}\right)=0$ for $g_{1 t}=t$ and $d M_{2}\left(c_{0} ; c_{0}\right)=0$ for $g_{2 t}={ }_{t} ; \mathrm{t}^{{ }^{2}}{ }^{0}$: Therefore, $H_{n T}!{ }_{p} 0$ when $c_{0}=0, g_{1 t}=t$ and $g_{2 t}=t ; t^{2}{ }^{4_{0}}$:
Notice from Lemma 3 and the following remarks and by Assumption 7, that $H_{n T}$ has a positive limit as $(n ; T!1)$ when $c_{0}<0$: Thus, $H_{n T}^{i}=O_{p}(1)$. Then, we can write

$$
\begin{align*}
& B_{n T}^{2} Z_{n T}(c) \\
= & M_{n T}\left(c_{0}\right)^{0} \hat{W} M_{n T}\left(c_{0}\right) i \frac{\left(B_{n T} S_{n T}\right)^{2}}{H_{n T}} \\
\mu & +H_{n T} B_{n T}\left(c_{i} c_{0}\right) i \frac{B_{n T} S_{n T}}{H_{n T}} \\
& +B_{n T}\left(c_{i} \quad c_{0}\right) B_{n T} R_{1 n T}\left(c, c_{0}\right)+\left(B_{n T}\left(c_{i} c_{0}\right)\right)^{2} R_{2 n T}\left(c ; c_{0}\right): \tag{11}
\end{align*}
$$

Lemma 5 Under Assumptions 1-6 and A ssumption 7, for every sequence ${ }^{\circ}{ }_{n T}$! 0 ; we have
(a)

$$
\sup _{c 2 c: j c_{i} c_{0 j} \cdot \circ{ }_{n T}} j B_{n T} R_{1 n T}\left(c ; c_{0}\right) j=o_{p}(1)
$$

and
(b)

$$
\sup _{c 2 c: j c_{i} c_{0 j} \cdot \circ_{n T}} j R_{2 n T}\left(c ; c_{0}\right) j=o_{p}(1):
$$

Theorem 2 Suppose that A ssumptions 1-6 and Assumption 7 hold. Then,

$$
B_{n T}\left(\hat{c}_{i} C_{0}\right)=O_{p}(1):
$$

Lemma 5 establishes that two remainder terms $B_{n T} R_{1 n T}\left(c ; c_{0}\right)$ and $R_{2 n T}\left(c ; c_{0}\right)$ converge in probability to zero uniformly in the shrinking neighborhood of the true parame ter. Also, Theorem 2 shows that the GMM estimator is $B_{n T}(=\bar{n})$; consistent. This implies that in the shrinking neighborhood of the true parameter, the scaled objective function $B_{n T}^{2} Z_{n T}$ (c) is uniformly approximated by the following quadratic function

$$
\begin{aligned}
& B_{n T}^{2} Z_{q ; n T}(c) \\
&= M_{n T}\left(c_{0}\right)^{0} \hat{W} M_{n T}\left(c_{0}\right) i \frac{\left(B_{n T} S_{n T}\right)^{2}}{H_{n T}}+H_{n T} \quad \mu \\
& B_{n T}\left(c i c_{0}\right) i{\frac{B_{n T} S_{n T}}{H_{n T}}}^{\boldsymbol{q}_{2}}:
\end{aligned}
$$

The heuristic ideas of the limit theory are as follows. Let $B_{n T}\left(C_{q} i \quad c_{0}\right)=\underset{c 2 C}{\arg \max } B_{n T}^{2} Z_{q ; n T}$ (c): Then, we may expect that a maximizer of $B_{n T}^{2} Z_{n T}(c)$ will be close to the maximizer of $B_{n T}^{2} Z_{q ; n T}(c)$; suggesting that the $G M M$ estimator $B_{n T}$ ($C_{i} c_{0}$) will be close to

$$
\begin{aligned}
B_{n T}\left(C_{q} i c_{0}\right) & =\frac{B_{n T} S_{n T}}{H_{n T}} \text { if } B_{n T}^{1 / 2}\left(\bar{c} ; c_{0}\right) \cdot \frac{B_{n T} S_{n T}}{H_{n T}} \cdot i_{n T} C_{0}^{3 / 4} \\
& =B_{n T}\left(\bar{c} i c_{0}\right) \text { if } B_{n T}\left(\bar{c} ; c_{0}\right)>\frac{B_{n T} S_{n T}}{H_{n T}} \\
& =i_{n T} c_{0} \text { if } \frac{B_{n T} S_{n T}}{H_{n T}}>B_{n T} C_{0}:
\end{aligned}
$$

Notice that $\frac{B_{n T} S_{n T}}{H_{n T}}=O_{p}(1)$ and recall that it is assumed that the true parameter \bar{C} $\underset{n}{ } c_{0}<0$. In this case, the probabilities of the events $B_{n T}\left(\bar{c} ; C_{0}\right)>\frac{B_{n T} S_{n T}}{H_{n T}}$ and $\frac{B_{n T} S_{n T}}{H_{n T}}>i B_{n T} C_{0}$ will be very small and the scaled and centred estimator $B_{n T}\left(C_{q} i C_{0}\right)$ will therefore be close with high probability to the random variable

$$
\hat{, n T}^{n T}=\frac{B_{n T} S_{n T}}{H_{n T}}:
$$

In view of Lemmas 3 and 4 and Assumption 7,

$$
\left.B_{n T} S_{n T}\right) S \stackrel{d}{=} N^{i} 0 ;-2 \underline{a} 2^{f} d M\left(c_{0} ; c_{0}\right)^{0} W J{ }^{0}\left(c_{0}\right) J W d M\left(c_{0} ; c_{0}\right)^{a d}
$$

and

$$
\mathrm{H}_{\mathrm{nT}}!{ }_{\mathrm{p}} \mathrm{H}=-{ }^{2} \mathrm{dM}\left(\mathrm{c}_{0} ; c_{0}\right)^{0} \mathrm{WdM}\left(c_{0} ; \mathrm{c}_{0}\right)>0
$$

as ($\mathrm{n} ; \mathrm{T}!1$) with $\frac{\mathrm{n}}{\mathrm{T}}$! 0 : Thus, when $c_{0} 2 \mathrm{C}_{0}=\mathrm{f} 0 \mathrm{~g}$;

$$
\hat{\lrcorner n T}), \stackrel{d}{=} H^{i}{ }^{1} \mathrm{~S} \stackrel{\text { let }}{=} Z:
$$

T he proof of the following theorem veri..es the heuristic arguments given above.
Theorem 3 Suppose that Assumptions 1-6 and Assumption 7 hold. Suppose that $c_{0} 2$ $\mathrm{C}_{0}=\mathrm{f} 0 \mathrm{~g}$ and c be the GMM estimator de..ned in (10): Then, as ($\mathrm{n} ; \mathrm{T}!1$) with $\frac{\mathrm{n}}{\mathrm{T}}!0$;

$$
\left.\mathrm{P} \overline{\mathrm{n}}\left(\hat{\mathrm{c}}_{\mathrm{i}} \mathrm{c}_{0}\right)\right) \quad \mathrm{Z}
$$

where

R emarks
(a) W hen $c_{0} 2 C_{0}=f 0 g$ and $J^{0} ®\left(c_{0}\right) J$ is invertible, the optimal weight matrix is found as

$$
\widehat{W}_{\text {opt }}=\left(J^{0} ®(C) J\right)^{i^{1}}:
$$

The limiting distribution of ${ }^{\mathrm{P}} \overline{\mathrm{n}}\left(\hat{c}_{\mathrm{i}} \mathrm{c}_{0}\right)$ is then
Ã

$$
\begin{equation*}
\mathrm{p}_{\left.\overline{\mathrm{n}}\left(\mathrm{C}_{\mathrm{i}} \quad c_{0}\right)\right)} \mathrm{Z}_{\text {opt }} \stackrel{\mathrm{d}}{=} \mathrm{N} \quad 0 ; \frac{\underline{a} 2}{-2^{f} \mathrm{dM}\left(c_{0} ; \mathrm{c}_{0}\right)^{0} \mathrm{WdM}\left(\mathrm{c}_{0} ; \mathrm{c}_{0}\right)^{\alpha_{2}}}: \tag{12}
\end{equation*}
$$

(b) In Figures 5-6, we plot the graphs of the minimum eigenvalues of $J{ }^{0} \bigcirc\left(c_{0}\right) J$ as functions of c_{0} when $g_{1 t}=t$ and $g_{2 t}={ }^{i} ; t^{2}{ }^{20}$: As we see through the graphs, $J^{0} \Theta\left(c_{0}\right) J$ is positive de..nite except for the case of $c_{0}=0$ with $g_{1 t}=t$:

Figure 6. Graph of the Minimum Eigenvalue of $J 00\left(c_{0}\right) J$ When $g_{2 t}={ }^{i}{ }_{t ; t^{2}}{ }^{\Phi_{0}}$:

4.3 Limiting Distribution of the GMMEstimator when $C_{0}=0$

An important special case of model 1 is when $c_{0}=0$: In this case, the time series components of $y_{i t}$ in (1) have a unit root (i.e., $1 / 8=1$) for all i : This section develops asymptotics for the GMM estimator when the true localizing parameter is zero, so throughout this section we set $c_{0}=0$: In this case; according to the Remark (c) below Lemma 4, the information from the moment conditions is zero because $H_{n T}$! 0 : We cannot then use a conventional quadratic approximation approach, as in the previous section, and need instead to employ a higher order approximation.

The model considered is

$$
\begin{align*}
& z_{i t}=-{ }_{i 1} t+y_{i t} \tag{13}\\
& y_{i t}=1 / 2 y_{i t_{i} 1}+"_{i t} ; \tag{14}
\end{align*}
$$

where

$$
1 / 3=1 ; i: e ; c_{0}=0:
$$

In model (13)-(14) the panel data $z_{i t}$ is generated by a heterogeneous deterministic trend, ${ }^{-}{ }_{i 1} \mathrm{t}$; and has a nonstationary time series component $y_{i t}$ with a unit root. The analysis
here is restricted to the linear trend case because it is the most widely used deterministic speci..cation in empirical application and it facilitates what a complex series of calculations. Assumptions 2, 3, 4(a), 5, 6, and 7 are taken to hold.

Lemma 6 Under the assumptions stated above, the following hold as ($\mathrm{n} ; \mathrm{T}$! 1) with $\frac{n}{T}!0$:
(a) $p_{\left.\bar{n} M_{1 n T}(0)\right)} N^{3} 0 ; \frac{\frac{\partial}{2}^{\prime}}{60}, ~ q^{\frac{\underline{\underline{a}}}{60}} Z_{\text {; where }} Z^{\prime} N(0 ; 1)$;
(b) $\mathrm{p}_{\mathrm{p}}^{\bar{n} d M_{1 n T}(0)=\mathrm{O}_{\mathrm{p}}(1) \text {; }}$
(c) $\mathrm{p}_{\overline{\mathrm{n}} \mathrm{d}^{2} \mathrm{M}_{\text {InT }}(0)=\mathrm{o}(1) \text {; } ; ~}^{\text {a }}$
(d) $d^{3} M_{1 n T}(c)!{ }_{p} d^{3} M_{1}(c, 0)$ uniformly in c with $d^{3} M_{1}(0 ; 0)=i \frac{1}{70}$; where $d^{k} M_{1 n T}(c)$ is the $k^{\text {th }}$ left derivative of $M_{1 n T}(c)$, and $d^{3} M_{1}(c ; 0)$ is the third left derivative of $M_{1}(c ; 0)$; the probability limit of $M_{1 n T}$ (c):

The next lemma ..nds the limits of the second moment condition and its higher order derivatives at $c=0$: As we will show in the appendix, the asymptotics of $M_{2 n T}(0)$ depend on the limiting behavior of $\frac{1}{n} P_{i=1}^{n} \frac{1}{T} P_{t=1}^{T} i_{i t}^{2} i_{i t}^{2}$; which relies on how we estimate the model and de..ne the residual $m_{i t}$: The residual $m_{i t}$ that will be used here is obtained from a modi..ws least squares estimation of model (4) : In particular, we de..ne
where

Then, we have the following lemma.
Lemma 7 Suppose that the assumptions in Lemma 6 hold. A ssume that the residual ${ }^{\text {it }}$ in (15) is used in calculating $\hat{\hat{\mathrm{F}}_{\mathrm{i}}}$ and $\hat{\mathrm{x}_{\mathrm{i}}}$ in A ssumption 6 . Then, when ($\mathrm{n} ; \mathrm{T}!1$) with n! 0;
(a) $p_{\bar{n} M_{2 n T}(0)=o_{p}(1) \text {; } ; ~}^{\text {in }}$
(b) $\mathrm{p}_{\overline{\mathrm{n}}} \mathrm{dM}_{2 \mathrm{nT}}(0)=\mathrm{O}_{\mathrm{p}}(1)$;
(c) $\bar{p}_{\bar{n} d^{2} M_{2 n T}(0)}=o_{p}(1)$;
(d) $d^{3} M_{2 n T}(c)!{ }_{p} d^{3} M_{2}(c, 0)$ uniformly in c with $d^{3} M_{2}(0 ; 0)=i \frac{1}{15}$; where $d^{k} M_{2 n T}(0)$ is the $k^{\text {th }}$ left derivative of $M_{2 n T}$ (c) at $c=0$, and $d^{3} M_{2}(0 ; 0)$ is the third left derivative of $d^{3} M_{2}(c ; 0)$ at $c=0$:

Remarks. Since the higher order derivatives of $\mathrm{M}_{2 \mathrm{nT}}(0)$ are complicated and involve very lengthy expressions, we omit the details of their derivation in the appendix. Instead, we give a sketch of the proof in the appendix and here provide some simulation evidence relating to the various parts of Lemmas 6 and 7 . Using simulated data for $\mathcal{z}_{i t}$ in (13) with "it » iid $N(0 ; 1)$ and $y_{i 0}=0$; we estimate the means and the variances of $\bar{n}^{k} M_{j n T}(0)$; $\mathrm{k}=0 ; \ldots ; 2 ; \mathrm{j}=1 ; 2$ and the means of $\mathrm{d}^{3} \mathrm{M}_{\mathrm{jnT}}(0) ; \mathrm{j}=1 ; 2$: Table 1 reports the results. The numbers in the table are consjstent with the theoretical resultsjp_ the lemmas. Noticeably, the variance estimates of ${ }^{\rho} \overline{\mathrm{n}} \mathrm{M}_{1 n T}(0)$; ${ }^{\bar{n} d M_{1 n T}(0) \text {; and }}{ }^{\rho} \bar{n} d M_{2 n T}(0)$ are all small. This is because their theoretical limit variances are spall but not zero. In fact, a long palculation shows that the theoretical limit variances of ${ }_{\bar{n}} M_{1 n T}(0) ;{ }^{-} \bar{n} M_{1 n T}(0)$; and $\overline{\mathrm{n}} \mathrm{dM}_{2 \mathrm{TT}}(0)$ are $\frac{1}{60} ; \frac{11}{6300}$; and $\frac{1}{45}$, respectively when "it 》iid $\mathrm{N}(0 ; 1)$.

	$\mathrm{p}_{\overline{\mathrm{n}} \mathrm{M}_{1 \mathrm{nT}} \text { (0) }}$	$\mathrm{p}_{\overline{\mathrm{ndm}} \mathrm{InT}^{\text {Table }} \mathrm{I}^{3}}$	$\mathrm{P}_{\bar{n} d^{2} M_{\text {lnT }}(0)}$	$\mathrm{d}^{3} \mathrm{M}_{1 \mathrm{nT}}$ (c)
M ean	i 0:0019	i 0:0003	7:96£ $10^{\text {i }}$	i 0:0169
Variance	0:018	i 0:0017	0	0
	$\mathrm{p}_{\overline{\mathrm{n}} \mathrm{M}_{2 n T} \text { (0) }}$	$\mathrm{p}_{\overline{\mathrm{nd}} \mathrm{M}_{2 \mathrm{LT}}(0)}$	$\mathrm{p}_{\bar{n} d^{2} M_{2 n T}}(0)$	$\mathrm{d}^{3} \mathrm{M}_{2 \mathrm{nT}}$ (c)
M ean	9:4£ $40{ }^{\text {i }}$	i 0:0001	- $2: 88 \pm 10{ }^{1} 6$	- 0:06
Variance	0:0012	0:022	$4: 85 \pm 10^{\text {i }}$	4:039

Using the left derivatives of the moment condition $\mathrm{m}_{\mathrm{iT}}(\mathrm{c})$ at $\mathrm{c}=0$; we approximate $\mathrm{m}_{\mathrm{it}}(\mathrm{c})$ around the true parameter $\mathrm{c}_{0}=0$ with a third order polynomial as follows,

$$
m_{i T}(c)=m_{i T}(0)+c\left(d m_{i T}(0)\right)+\frac{1}{2} c^{2} d^{2} m_{i T}(0)^{\Phi}+\frac{1}{6} c^{3} d^{3} m_{i T}(0)^{\Phi}+c^{3} F_{T T}(c ; 0) ;
$$

where

$$
\begin{aligned}
F_{T T}(c ; 0) & =\left(F_{1 i T}(c ; 0) ; F_{2 i T}(c ; 0)\right)^{0} ; \\
F_{k i T}(c ; 0) & =d^{3} m_{k i T}{ }^{2} c_{k}^{+}{ }^{2} d^{3} m_{k i T}(0) ; k=1 \text { and } 2:
\end{aligned}
$$

Then,

$$
\begin{aligned}
Z_{n T}(c) & =M_{n T}(c)^{0} \hat{W} M_{n T}(c) \\
& =X^{6} c^{k} A_{k ; n T}+N_{n T}(c ; 0) ;
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{0 ; n T}=M_{n T}(0)^{0} \hat{W} M_{n T}(0) ; \\
& A_{1 ; n T}=2 M_{n T}(0)^{0} \hat{W} d M_{n T}(0) ; \\
& A_{2 ; n T}=M_{n T}(0)^{0} \hat{W} d^{2} M_{n T}(0)+d M_{n T}(0)^{0} \hat{W} d M_{n T}(0) ; \\
& A_{3 ; n T}=\frac{1}{3} M_{n T}(0)^{0} \hat{W} d^{3} M_{n T}(0)+d M_{n T}(0)^{0} \hat{W} d^{2} M_{n T}(0) ; \\
& A_{4 ; n T}=\frac{1}{3} M_{n T}(0)^{0} \hat{W} d^{3} M_{n T}(0)+\frac{1}{4} d^{2} M_{n T}(0)^{0} \hat{W} d^{2} M_{n T}(0) ; \\
& A_{5 ; n T}=\frac{1}{6} d^{2} M_{n T}(0){ }^{0} \hat{W} d^{3} M_{n T}(0) ; \\
& A_{6 ; n T}=\frac{1}{36} d^{3} M_{n T}(0)^{0} \hat{W} d^{3} M_{n T}(0) ;
\end{aligned}
$$

and

$$
N_{n T}(c ; 0)=X_{k=3}^{6} c^{k} N_{k ; n T}(c ; 0) ;
$$

[^3]\[

$$
\begin{aligned}
& N_{k ; n T}(c ; 0)=2 d^{\left(k_{i} 3\right)} M_{n T}(0)^{0} \hat{W} \hat{A}^{\tilde{A}} \frac{1}{n}_{i=1}{ }^{n} \quad k_{i T}(c ; 0) \quad \text { for } k=3 ; 4 ; 5 ;{ }^{4}
\end{aligned}
$$
\]

In view of Lemmas 6 and 7, it is easy to ..nd that as ($\mathrm{n} ; \mathrm{T}!1$) with $\frac{\mathrm{n}}{\mathrm{T}}$! 0 ;

$$
\begin{align*}
& n^{5=6} \mathrm{~A}_{1 ; n T}=o_{p}(1) ; \tag{17}\\
& \mathrm{n}^{2=3} \mathrm{~A}_{2 ; \mathrm{n} T}=o_{p}(1) ; \tag{18}\\
& \mathrm{n}^{1=3} \mathrm{~A}_{4 ; n \mathrm{n}}=o_{p}(1) ; \tag{19}\\
& \mathrm{n}^{1=6} \mathrm{~A}_{5 ; n T}=o_{p}(1) ; \tag{20}
\end{align*}
$$

and

$$
\begin{gather*}
A_{6 ; n T}!_{p} \frac{-2}{36}^{\mu} \frac{W_{11}}{4900}+\frac{2 W_{12}}{1050}+{\frac{W_{22}}{225}}^{q}>0 ; \tag{21}\\
\left.n^{1=2} A_{3 ; n T}\right) \quad A_{3} Z \tag{22}\\
\left.n A_{0 ; n T}\right) \quad A_{0} Z^{2} ; \tag{23}
\end{gather*}
$$

where $Z^{\prime} N(0 ; 1)$ and $A_{3}=i i^{i} \frac{W_{11}}{70}+\frac{W_{11}}{15} 4^{9} \frac{\overline{\frac{3}{2}}}{60}$ and $A_{0}=W_{11} \frac{{ }^{\frac{2}{2}}}{60}$:
Also, using Lemmas 6 and 7 and following similar lines of proof to Lemma 5 , we can show that

$$
\begin{equation*}
\sup _{c 2 C: j \mathrm{cj}: \cdot{ }_{n T}} \overline{\mathrm{n}}^{-}{ }^{\left(6_{i} k\right)=6} \mathrm{~N}_{\mathrm{k} ; \mathrm{nT}}(\mathrm{c}, 0)^{\overline{-}}=o_{p}(1) ; \tag{24}
\end{equation*}
$$

for any sequence ${ }^{\circ}{ }_{n T}$ tending to zero as ($\mathrm{n} ; \mathrm{T}$! 1): Then, we have the following limit theory for e at the origin.
Theorem 4 Under the assumptions in Lemmas 6 and 7, as ($\mathrm{n} ; \mathrm{T}!1$) with $\frac{\mathrm{T}}{\mathrm{T}}$! 0 ;

$$
\mathrm{n}^{1=6}\left(\hat{c}_{i} \quad c_{0}\right)=\mathrm{O}_{\mathrm{p}}(1) ;
$$

where $\mathrm{c}_{0}=0$:
So, when the true localizing parameter is $c_{0}=p \underline{0}$; the GMM estimator \mathcal{C} is $\mathrm{n}^{1=6} \mathrm{i}$ consistent; which is slower than the regular case of $\frac{\rho}{n}$ that applies for $c_{0}<0$ as shown in Section 4.

Next, we ..nd the limiting distribution of the GM M estimator C . The argument here is similar to that of the previous section. So, the proof is omitted and we give only the ..nal result in Theorem 5 below.

In view of (17) i (23) and (24); the standardized objective function $n Z_{n T}$ (c) is approximated by

$$
Z_{q ; n T}(c)=n A_{0 ; n T}+{ }^{3} n^{1=6} C^{\prime}{ }^{3} p_{\bar{n}} A_{3 ; n T}+{ }^{3} n^{1=6} C^{\prime}{ }^{6} A_{6 ; n T}:
$$

Notice that the probability limit of $A_{6 ; n T}$ is positive, as shown in (21): T hen, it is easy to see that the approximate objective function $Z_{q ; n T}(c)$ is minimized at

$$
\begin{aligned}
& =0 \text { if } \quad{ }_{3}^{1 / 2} \frac{\mathrm{P}_{\overline{\mathrm{n}}} \mathrm{~A}_{3 ; n \mathrm{nT}}}{2 \mathrm{~A}_{6 ; \mathrm{nT}}}>0_{1 / 2}^{3 / 2}
\end{aligned}
$$

Using arguments similar to those in the proof of T heorem 3, we can prove that the starndardized GMM estimator $n^{1=6} C$ is approximated by $n^{1=6} \hat{C}_{q}$; the minimizer of $Z_{q ; n T}(c)$; that is,

$$
\mathrm{n}^{1=6} \mathrm{C}=\mathrm{n}^{1=6} \mathrm{C}_{\mathrm{q}}+\mathrm{o}_{\mathrm{p}}(1)
$$

and the estimator $n^{1=6} \mathrm{C}_{\mathrm{q}}$ is approximated by

$$
\hat{, n T}=i \frac{\mu p_{\bar{n} A_{3 ; n T}}}{2 A_{6 ; n T}}{ }^{9} 1 \frac{1 / 2}{} \frac{p_{\bar{n} A_{3 ; n T}}}{2 A_{6 ; n T}} \cdot 0^{3 / 4} ;
$$

where 1 ff g is the indicator of A : In view of (22) and (21); as ($\mathrm{n} ; \mathrm{T}!1$) with $\frac{\mathrm{n}}{\mathrm{T}}$! 0 ; it follows by the continuous mapping theorem that

$$
\hat{, \mathrm{nT}}) \mathrm{i}\left(\mathrm{i} Z_{0}\right)^{1=3} 1 \mathrm{f} Z_{0} \cdot 0 \mathrm{~g}
$$

where

$$
\begin{align*}
& Z_{0}=V_{0} Z ; \tag{25}\\
& V_{0}=\frac{\underline{a}}{-\frac{i^{\prime}}{-\frac{W_{11}}{70}+\frac{W_{12}}{15}} \Varangle^{q} \frac{\overline{1}}{\frac{1}{15}} \frac{W_{11}}{4900}+\frac{2 W_{12}}{1050}+\frac{W_{22}}{225}} \overline{-} \tag{26}
\end{align*}
$$

and we have the following theorem.
Theorem 5 Under the assumptions in Lemmas 6 and 7 , as ($n ; T!1$) with $\frac{n}{T}!0$;

$$
\left.n^{1=6} C\right) \quad i \quad\left(i Z_{0}\right)^{1=3} 1 f Z_{0} \cdot 0 g
$$

where Z_{0} is de..ned in (25) :
R emarks
(a) Theorem 4 shows that when the true parameter $c_{0}=0$, $i: e: ;$ in the case of a panel unit root, the GMM estimator is $n^{1=6}$-consistent and that its limit distribution is nonstandard, involving the cube root of a truncated normal. T he truncation in the limiting distribution arises because the true parameter is on the boundary of the parameter set.
(b) The reason for the slower convergence rate in the panel unit root case is that ..rst order information in the moment condition (from the ..rst derivative of the moment condition) is aymptotically zero at the true parameter. In order to obtain nonneglible information from the moment condition, we need to pass to third order derivatives of the moment condition. Taking the higher order approximation slows down the convergence rate because the rate at which information in the moment condition is passed to the estimator is slowed down at the origin because of the zero lower derivatives.
(c) In view of Lemmas 6(a) and 7(a), we..nd that ${ }^{p_{\bar{n}}} M_{2 n T}(0)=o_{p}(1)$; while ${ }^{p_{\bar{n}}} M_{1 n T}$ (0) converges in distribution to a normal random vapiable with positipe variance. Be cause of the convergence rate dixerence between $\bar{n} M_{2 n T}(0)$ and $p \bar{n} M_{1 n T}$ (0) ; we have only W_{11} and W_{12} but not W_{22} in the limiting scale V_{0} of (26) : In this case, setting $W_{11}=W_{12}=0$; i.e not considering the ..rst moment condition, causes the variance of the limit variate Z_{0} to vanish, from which one might expect that the GMM estimator from the second moment condition alone would have a faster
convergence rate than $\mathrm{n}^{1=6}$: In fact, under the assumptions in Lemma 7, it is possible to show that $n M_{2 n T}(0)=O_{p}(1)$ as $(n ; T!1)$ with $\frac{n}{T}!1$ and the GMM estimat or from the second moment condition only could be $n^{1=4}$-consistent; which is faster than the GMM estimator de..ned by the two moment condition. However, the reason for using the ..rst moment condition is to identify the true parameter when $c_{0}<0$: As we discuss in Appendix F, the second moment condition cannot identify the true parameter unless it is zero.
(d) W hen $c_{0}=0$; in view of Lemma 7(b) and (c), one can explore higher derivatives as moment conditions. If these higher derivative moment conditions are satis..ed only at $c_{0}=0$, then it will be possible to use those moment conditions to distinguish the presence of a unit root in the panel from local alternatives, an issue which is being studied by the authors.

5 M onte Carlo Simulations

T he purpose of this section is to compare the quantile dispersion of the GM M estimators in a simple simulation design. The main focus is to compare the pane unit root model with incidental trends with near unit root with incidental trends and panel unit root without the incidental trends.

The panel data $z_{i t}$ is generated by the system

$$
\begin{align*}
& z_{i t}={ }_{i 0} t+y_{i t} ; \quad-{ }_{i 0}=\text { iid Unif orm} m[0 ; 3] \tag{27}\\
& y_{i t}=\left(1+\frac{c_{0}}{T}\right) y_{i t_{i} 1}+{ }_{i t} ; \quad c_{0} 2 \mathrm{f}_{\mathrm{i}} 20 ; i 10 ; i 5 ; 0 \mathrm{~g} ;
\end{align*}
$$

where the "it are iid $N(0 ; 1)$ across i and over t; and the initial values of $y_{i 0}$ are zeros. The sample size is $(n ; T)=(100 ; 200)$: The autoregressive coed cients in the error process for $y_{i t}$ are taken to be 0:9; 0:95; 0:975; and 1: To calculate the GMM estimators we use an identity weight matrix. This choice makes the estimation procedure for the $\mathrm{c}_{0}<0$ case comparable with the $c_{0}=0$ case, whereas the optimal weight matrix when $c_{0}=0$ is to use only the second moment condition in which case we can not identify the true parameter when $c_{0}<0$: The simulation employs 1000 repetitions each using grid search optimization with the grid length of 0.02 .

The simulation results are reported in Table 2. First, the median bias of the GMM estimator e becomes larger as the true c_{0} becomes larger. When $c_{0}=0$, the GMM estimator of M odel (27) has median bias of -0.26 , which is much larger than other cases. Also, when $\mathrm{c}_{0}=0$; the GM M estimator is much more dispersed than the other cases. B oth results are to be expected from the asymptotic theory because of the slower convergence rate and one sided limit distributin in the $c_{0}=0$ case.

Table 2 compares the GMM estimator in the panel unit root model with incidental trends with the truncated pooled OLS estimator of the panel unit root model without the trends. For this we calculate

where $z_{i t}$ is generated by Model (27) with $c_{0}=0$ and ${ }^{-}{ }_{i 0}=0: T$ hen, the limting distribution of c is

$$
\begin{array}{cl}
\left.\mathrm{p}_{\overline{\mathrm{n}} \mathrm{c}}\right) & \mathrm{P}_{\overline{2} Z 1 \mathrm{Z}}, \\
Z & \mathrm{~N}(0 ; 1) ;
\end{array}
$$

as ($\mathrm{n} ; \mathrm{T}!1$) ; and so c is ${ }^{\mathrm{p}} \overline{\mathrm{n}}$ - consistent and has a normal limiting distribution. The quantiles of c when $\mathrm{n}=100$ and $\mathrm{T}=200$ are reported in the last row of Table 2. Comparing these outcomes with the GMM estimator E of Model (27) where incidental trends are present, c is much more concentrated on the true value and the median bias of c is much smaller than that of e . This comparison highlights the delimiting exects of incidental trends on the estimation of roots near unity even in cases where there are long stretches of time series and cross section dat a in the panel.

Table 2. Quantiles of the C entered G M M Estimators of M odel (27)

$\mathrm{c}_{0}(1 / 2)$	5%	10%	20%	30%	40%	50%	60%	70%	80%	90%	95%
$-20(0: 9)$	-1.38	-1.14	-0.82	-0.60	-0.38	-0.22	0	0.18	0.36	0.72	0.90
$-10(0: 95)$	-1.1	-0.86	-0.62	-0.44	-0.30	-0.16	0	0.16	0.34	0.54	0.80
$-5(0: 975)$	-0.92	-0.74	-0.52	-0.38	-0.24	-0.12	0	0.14	0.30	0.53	0.70
$0(1)$	-1.64	-1.34	-0.96	-0.66	-0.42	-0.26	-0.1	0	0	0	0
$0(1)$	-0.266	-0.197	-0.123	-0.075	-0.037	-0.003	0	0	0	0	0

6 Conclusion

Part of the richness of pand data is that it can provide information about features of a model on which time series and cross section data are uninformative when they are used on their own. In the context of nonstationary panels with near unit roots, an interesting new example of this 'added information' feature of pand data is that consistent estimation of the common local to unity coed cient becomes possible. This means that panel data help to sharpen our capacity to learn from data about the precise form of nonstationarity where time series data alone are insut cient to do so. However, as the authors have shown in earlier work, the presence of individual deterministic trends in a panel model introduces a serious complication in this nice result on the consistent estimation of a root local to unity. The complication is that individual trends produce an incidental parameter problem as $\mathrm{n}!1$ that does not disappear as $\mathrm{T}!1:$ The outcome is that common procedures like pooled least squares and maximum likelihood are inconsistent. Thus, the presence of deterministic trends continues to confabulate inference about stochastic trends even in the panel data case.

O ne option is to adjust procedures like maximum likelihood to deal with the bias. The present paper shows how to make these adjustments. The theory is cast in the context of moment formulae that lead naturally to GMM based estimation. The paper has two important ..ndings.

The ..rst is that bias correction in the moment formulae arising from GLS estimation of the trend coed cients corresponds to taking the projected score (under Gaussian assumptions) on the Bhattacharya basis. This correspondence relates the approach we take here to recent work on projected score methods by Waterman and Lindsay (1998) that deals with models that have in..nite numbers of nuisance parameters like the original incidental parameters problem.

The second is that our limit theory validates G M M -based inference about the localizing coed cient in near unit root pands. A notable new result is that the GMM estimator has a convergence rate slower than \bar{n} when the true localizing parameter is zero (i.e., when there is a panel unit root) and the deterministic trends in the panel are linear. The asymptotic theory in this case provides a new example of limit theory on the boundary of a parameter space. The results point to the continued di申 culty of distinguishing unit
roots from local alternatives when there are deterministic trends in the data even when time series data is coupled with an in..nity of additional data from a cross section.

7 A ppendix

7.1 Appendix A:

B efore we start the proof of Lemma 1, we give some useful background results.
Lemma 8 Let K_{m} denotethe $\left(m £ m\right.$) commutation matrix, D_{m} denote the $m^{2} £ \frac{1}{2} m(m+1)$ duplication matrix, and set $D_{m}^{+}=\left(D_{m}^{0} D_{m}\right)^{i 1} D_{m}^{0}$: Also, assume that x and y are m_{i} vectors and A is an (mf m) invertible matrix. Then the following hold.
(a) $x y^{0}-y x^{0}=K_{m}\left(y y^{0}-x x^{0}\right)$:
(b) $\left(I_{m}+K_{m}\right)((x-y)+(y-x))=2(x-y)+2(y-x)$:
(c) $D_{p}^{+} D_{p}=I_{\frac{1}{2} p(1+p)}$:
(d) $D_{p} D_{p}^{+}=\frac{1}{2}\left(I_{p}+K_{p}\right)$:
(e) $D_{p}^{+}(A-A) D_{p}{ }^{\Phi_{i}}{ }^{1}=D_{p}^{+}{ }^{i} A^{1}{ }^{1}-A^{i}{ }^{1}{ }^{\dagger} D_{p}$:

Proof
Parts (c), (d), and (e) are standard results (e.g., M agnus and Neudecker, 1988, pp. 49-50). Part (a) holds because

$$
\begin{aligned}
x y^{0}-y x^{0} & =(x-y)\left(y^{0}-x^{9}=\operatorname{vec}\left(y x ^ { 9 } \left(\operatorname{vec}\left(x y^{9}\right)^{0}\right.\right.\right. \\
& =\left(K_{m} \operatorname{vec}\left(x y^{9}\right)\left(\operatorname{vec}\left(x y^{9}\right)\right)^{0}=K_{m}(y-x)(y-x)^{0}\right. \\
& =K_{m}\left(y y^{0}-x x^{9}\right):
\end{aligned}
$$

Part (b) holds because

$$
\begin{aligned}
& \left(I_{m}+K_{m}\right)((x-y)+(y-x)) \\
= & (x-y)+(y-x)+K_{m} \operatorname{vec}\left(y x^{9}\right)+K_{m} \operatorname{vec}\left(x y^{9}\right) \\
= & (x-y)+(y-x)+\operatorname{vec}\left(x y^{9}+\operatorname{vec}\left(y x^{9}\right)\right. \\
= & 2(x-y)+2(y-x): \neq
\end{aligned}
$$

Proof of Lemma 1
In this proof we omit the subscript p that denotes the order of the polynomial trends for notational simplicity. To complete the proof, it is enough to show that $\mathbf{i}, \mathrm{T}(\mathrm{c})$ in

$$
\begin{aligned}
& \kappa_{1 T}=\frac{1}{T}_{t=2}^{X^{\top}} \frac{1}{T}_{s=1}^{\chi^{1}} D_{p}^{+}{ }_{s}^{h_{c}} g_{t}-\oint_{c} g_{s}+\oint_{c g_{s}}-\oint_{c} g^{i} e^{\left(\frac{t_{i} s_{i} 1}{T}\right)} c ;
\end{aligned}
$$

$$
\begin{aligned}
& A_{3 T}=D_{p}^{+} \frac{1}{T}_{t=1}^{X^{T}}{ }_{c}{ }_{c} g t-\$_{c}{ }^{\prime} \text { : }
\end{aligned}
$$

Then, by de..nition, we write

$$
»_{2}^{0} D_{p}^{+}{ }_{t=1}^{\top}\left(\phi c g t-\phi c g_{t}\right)=A_{1 T}^{0} A_{2 T}^{i} A^{1} A_{3 T}:
$$

Notice by Lemma 8(a), (d), and (c) that

$$
\begin{aligned}
& \hat{A}_{\text {2t }}
\end{aligned}
$$

By Lemma 8(e),

A gain, from Lemma 8(d) and (b), we have

$$
\begin{aligned}
& A_{1 T}^{0} A_{2 T}^{1} A^{1} F_{3 T}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{fD}_{\mathrm{p}}^{+} \frac{1}{\mathrm{~T}}_{\mathrm{t}=1}^{\mathrm{X}^{\top}{ }^{3} \oint_{\mathrm{c}} \mathrm{~g}-\oint_{\mathrm{c}} \mathrm{~g}}
\end{aligned}
$$

Expanding (28) yields

$$
\begin{aligned}
& =\frac{1}{T}_{A=2}^{X^{\top}} \frac{1}{T}_{s=1}^{X^{1}} e^{\left(\frac{t_{i}, s_{i}-1}{T}\right) c} \oint_{c} g_{s} A_{p T}^{i}{ }^{1} \not \oint_{c g t}
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{i}, \mathrm{~T}(\mathrm{c}): \neq
\end{aligned}
$$

7.2 A ppendix B: Useful Results for J oint Asymptotic Theories

T his sect ion consists of two subsect ions. The ..rst subsection introduces some useful results for joint asymptotic theories. M any of these are modi..ed versions of results developed in Phillips and M oon (1999) so we report them only brieły here. The second subsection introduces some useful results which will be used repeatedly in the following sections of the proofs for the results in the main text.

7.2.1 A ppendix B 1

The following two theorems provide convenient conditions to ..nd the joint probability limit of double indexed processes.

Theorem 6 (J oint Probability Limits) Suppose the ($\mathrm{m} £ 1$) random vectors Y_{iT} are independent across $i=\beta ;::: ; n$ for all T and infegrable. A ssume that $Y_{i T}$) Y_{i} as T ! 1 for all i. Let $X_{n T}=\frac{1}{n} \sum_{i=1}^{n} Y_{i T}$ and $X_{n}=\frac{1}{n}{ }_{i=1}^{n} Y_{i}$:
(a) Let the following hold:
(i) $\lim \sup _{n ; T} \frac{1}{n}{ }_{P}^{P}{ }_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{E} j \mathrm{j} Y_{i T} \mathrm{jj}<1$;
(ii) $\limsup _{n ; T}{\underset{n}{1}}_{P}^{P}{ }_{n=1}^{n} j j E Y_{i T} \quad$ i $E Y_{i j j}=0$;
(iii) $\lim _{\sup }^{n ; T} \frac{1}{B}^{P}{ }_{i=1}^{n} E j j Y_{i T} j j 1 f j j Y_{i T} j j>n " g=08^{\prime \prime}>0$;and
(iv) $\lim \sup _{n} \frac{1}{n}{ }_{i=1}^{n} E k Y_{i} k 1 f k Y_{i} k>n " g=08^{\prime \prime}>0$:
(b) If $\lim _{n!1} \frac{1}{n}^{P}{ }_{i=1}^{n} E Y_{i}\left(:=\mathcal{L}_{x}\right)$ exists and $X_{n}!{ }_{p}{ }_{x}$ as n ! 1 ; then $X_{n T}$! $\mathrm{p}^{2} \mathrm{x}$ as ($\mathrm{n} ; \mathrm{T}$! 1):

Theorem 7 Suppose that $Y_{i T}=C_{i} \mathrm{Q}_{\mathrm{iT}}$, where the ($\mathrm{m} £ 1$) random vectors Q_{it} are iid across $\mathrm{i}=1$; :.:.; n for all T ; and the C_{i} are ($\mathrm{m} £ \mathrm{~m}$) nonrandom matrices for all i : A ssume that
(i) Q_{it}) Q_{i} as T_{i} ! 1 for all i as ($\mathrm{n} ; \mathrm{T}$! 1),
(ii) $\mathrm{jj} \mathrm{Q}_{\mathrm{iT}} \mathrm{jj}$ is uniformly integrable in T for all i^{5} :

[^4]as M ! 1:
(iii) $\sup _{i} j j C_{i} j j<1 ; \inf _{i} j j C_{i} j j>0$; and $C=\lim _{n} \frac{1}{n}{ }^{P}{ }_{i=1}^{n} C_{i}$.

Then $\frac{1}{n}{ }^{\mathrm{P}} \underset{\mathrm{i}=1}{\mathrm{n}} \mathrm{Y}_{\mathrm{i} T}!{ }_{\mathrm{p}} \mathrm{CE}\left(\mathrm{Q}_{\mathrm{i}}\right)$ as $(\mathrm{n} ; \mathrm{T}!1$):
Theorem 8 (J oint Limit CLT for Scaled Variates) Suppose that $Y_{i T}=C_{i} Q_{i T}$, where the $(\mathrm{m} £ 1)$ random vectors Q_{it} are $\mathrm{iid}\left(0 ; \S_{\mathrm{T}}\right)$ across $\mathrm{i}=1 ;::: \mathrm{n}$ for all T and the C_{i} are ($\mathrm{m} £ \mathrm{~m}$) nonzero and nonrandom matrices. A ssume the following conditions hold:
(i) Let $3 / \neq, \min \left(\S_{T}\right)$ and $\liminf _{T} 3 / \not$ 年 >0;
(ii) $\frac{\max _{j} \cdot n k C_{i} k^{2}}{\min \left(\sum_{i=1}^{n} C_{i} C_{i}^{0}\right)}=O^{i_{1}}{ }^{\dagger}$ as $n!1$;
(iii) $\mathrm{jj}_{\mathrm{it}} \mathrm{jj}^{2}$ are uniformly integrable in T ,
(iv) $\lim _{n ; T} \frac{1}{n} P_{i=1}^{n} C_{i}^{P}{ }_{n T} C_{i}^{0}=->0$:

Then,

$$
\left.X_{n T}={ }_{i=1}^{X_{n}^{n}} Y_{i T}\right) N(0 ;-) \text { as } n ; T!1:
$$

7.2.2 A ppendix B2

Suppose that the pane process $y_{i t}$ is generated by

$$
y_{i t}=\exp \frac{c_{0}^{\prime}}{T} y_{i t_{i} 1}+"_{i t}
$$

where "it sat is..es A ssumptions (2)-(5). A gain, for notational simplicity, we omit the indices n and T in the notation y_{it} :
(a) A particularly useful tool in treating the linear process "it is the $B N$ decomposition which decomposes the linear ..Iter into long-run and transitory elements. Phillips and Solo (1992) give details of how this method can be used to derive a large number of limit results. Under A ssumption 2, the linear process " ${ }_{i ; t}$ is decomposed as
where ${\underset{T}{1 ; t}}=P_{j=0}^{1} C_{i j} u_{i t_{i j}}$; and $C_{i j}=P_{k=j+1}^{1} C_{i k}$: Under the summability condition (c) in A ssumption 2,

$$
\begin{equation*}
j C_{i j} j \cdot{ }_{j=0}^{\lambda} C_{j}<1 \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
E \underset{i t}{\text { L_ }_{2}^{2}} \cdot\left({ }_{j=0}^{X} j C_{j}\right)^{2} \cdot\left({ }_{j=0}^{X} j^{b} C_{j}\right)^{2}<1 ; \tag{31}
\end{equation*}
$$

where b, 1 and $\mathrm{C}_{\mathrm{j}}=\sup _{\mathrm{i}} \mathrm{j}_{\mathrm{ij}} \mathrm{j}$ (see Phillips and Solo, 1992).
(b) Next, recall that

$$
\kappa_{p T}(t ; s)=\sigma_{p T} \xi_{p t}^{0} \frac{1}{T}_{t=1}^{\tilde{A}}{ }^{\top} \sigma_{p T} \xi_{p t} \xi_{p t}^{0} \sigma_{p T} \quad{ }_{i} 1
$$

It is easy to see that when $t=[T r]$ and $s=[T v] ;$ as $T!1$

$$
K_{T}(t ; s)!G_{p}^{0}(r)^{\mu Z} G_{p} G_{p}^{0} \text { II }_{i} G_{p}(v)=K_{p}(r ; v)
$$

uniformly in $(r ; p) 2[0 ; 1] £[0 ; 1]$: The following limit also holds

$$
\begin{equation*}
\sup _{1 \cdot t ; s \cdot T} \pi_{p T}(t ; s)!\sup _{0 \cdot \operatorname{r} ; v \cdot 1} \hbar_{p}(r ; v) \text { : } \tag{32}
\end{equation*}
$$

(c) Using the BN decomposition of "it; we can decompose $y_{i t}$ into two terms-a long-run component of $y_{i t}$ and a transitory component. By virtue of the de..nition of $y_{i t}$;

$$
y_{i t}=x_{s=1}^{x^{t}} \exp ^{\mu} c_{0}{\frac{\left(t_{i} s\right)}{T}}^{\text {q }}{ }_{i s}+\exp c_{0} \frac{t}{T}^{\text {q }} y_{i 0}:
$$

Using the BN decomposition (29) of "it, we can decompose yit as

$$
\begin{equation*}
y_{i t}=C_{i} x_{i t}+R_{i t} \tag{33}
\end{equation*}
$$

where

$$
\begin{aligned}
& x_{i t}=x_{s=1}^{x^{t}} \exp ^{\mu} c_{0}{\frac{\left(t_{i} s\right)}{T}}^{T^{\text {I }}} \mathrm{u}_{i \mathrm{~s}}
\end{aligned}
$$

For notational simplicity we also omit the indices n and T in $x_{i t}$ and $R_{i t}$: Let $x_{i 0}=0$ for all i:

Next we introduce bounds for the moments of some random variables that will be frequently used in the following proofs. Throughout the paper we use K^{2} as a generic constant independent of the localizing parameter $\mathrm{c}_{\mathrm{n} 0}$. Let $\mathrm{t}=[\mathrm{Tr}]$: As (n;T! 1)

$$
\begin{align*}
& E^{\mu} \frac{x_{i t}^{2}}{T}=\frac{1}{T}_{s=1}^{X^{t}} \exp ^{\mu} 2 c_{0} \frac{t_{i} s^{\text {d }}}{T}!Z_{r} \quad \exp \left(\left(r_{i} s\right) 2 c_{0}\right) d s<K^{k} ; \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
& 4 @_{j=0}^{X L} j c_{j}^{1} A^{2} @_{2}+\bar{c}^{2} e^{i c^{a}}+4 \sup _{i}^{3 / 4} \mathbf{q}_{0} ; \text { because } C=[\bar{c}, 0] \\
& \text { - }{ }^{k} \text {; } \tag{36}
\end{align*}
$$

where $3 /{ }_{0}=E^{i} y_{i 0}^{2}{ }^{\$}$:
Lemma 9 A ssume that, for $k=1 ;: .: ; K ; h_{k}(c \in)$ is a real-valued continuous function on the product of the parameter set $C £ C$ with $h_{k}(c ; c)=0$; and $I_{k}(x ; y)$ is a real-valued continuous function on $[0 ; 1] £[0 ; 1]$. Also, assume that $f(x ; c)$ and $g(x ; c)$ are continuously $\phi_{k}{ }_{k}$.
 tion 2. A ssume that Assumption 3 holds for the initial condition $y_{i 0}$ and Assumption 5 holds for the cross sectional limit of the long-run variances. Then, as ($n ; T!1$); the following pold.
(a) $\frac{1}{n} p{ }_{i=1 \frac{1}{T^{2}}} P_{T=1} y_{i t_{i} 1}^{2}!p-{ }_{p}^{R_{1} R_{r}}{ }_{0^{3}} e^{2 c_{0}\left(r_{i} s\right)} d s d r$:

 uniformly in c:

Proof
Part (a) From the decomposition (33); we write

$$
\begin{aligned}
& \frac{1}{n}_{i=1}^{X n}{\frac{1}{T^{2}}}_{t=1}^{X^{\top}} y_{i t_{i} 1}^{2} \\
= & \frac{1}{n}^{X^{n}} C_{i=1}^{2}{\frac{1}{T^{2}}}_{t=2}^{X} x_{i t_{i} 1}^{2}+2 \frac{1}{n}_{i=1}^{X n} C_{i}{\frac{1}{T^{2}}}_{t=2}^{X^{\top}} x_{i t_{i} 1} R_{i t_{i} 1}+\frac{1}{n}_{i=1}^{X^{n}}{\frac{1}{T^{2}}}_{t=2}^{X^{\top}} R_{i t_{i} 1}^{2}+\frac{1}{n}_{i=1}^{X^{n}} \frac{y_{i 0}^{2}}{T^{2}} \\
= & I_{a}+2 I I_{a}+I I I_{a}+I V_{a} \text { say. }
\end{aligned}
$$

$\operatorname{Since}_{R_{1}}$ sup $_{\mathrm{r}} \mathrm{E} y_{i 0}^{2}<1 ; I V_{a}!0$ as $(\mathrm{n} ; \mathrm{T}!1)$: In what follows we show that $\mathrm{I}_{\mathrm{a}}!\mathrm{p}$ $-\mathrm{R}_{1} \mathrm{R}_{\mathrm{r}} \mathrm{e}^{2 \mathrm{col}_{(}\left(\mathrm{r}_{\mathrm{i}}\right)} \mathrm{dsdr}$ and $\mathrm{I} \mathrm{I}_{\mathrm{a}} ; \| I_{\mathrm{a}}!\mathrm{p} 0$ as $(\mathrm{n} ; \mathrm{T}!1)$:

For I_{a}; recall that

$$
I_{a}=\frac{1}{n}_{i=1}^{X} C_{i}^{2}{\frac{1}{T^{2}}}_{t=2}^{X^{\top}} X_{i t_{i} 1}^{2}
$$

D e.ne $Q_{i n T}={\frac{1}{T^{2}}}^{P}{ }_{t=2} x_{i t_{i} 1}^{2}$: Note that $f Q_{i T} g_{i=1 ;:: ; ; n}$ are iid across i : Since

$$
\begin{equation*}
\left.T^{i \frac{1}{2}} x_{i t}\right) J_{c_{0} ; i}(r)=Z_{0}^{Z_{r}} e^{c_{0}\left(r_{i} s\right)} d W_{i}(s) \tag{37}
\end{equation*}
$$

as T ! 1 (see Phillips, 1987); where W_{i} is standard Brownian motion, we have by the continuous mapping theorem as ($\mathrm{n} ; \mathrm{T}$! 1);

$$
\begin{equation*}
\left.Q_{i T}\right) Q_{i}=Z_{0}^{Z_{c_{0} ; i}}{ }_{c_{i}}^{2}(r) d r: \tag{38}
\end{equation*}
$$

Also, as T ! 1 for ..xed n;

$$
\begin{equation*}
\left.\mathrm{Q}_{\mathrm{it}}\right) \mathrm{Q}_{\mathrm{i}}=\mathrm{Z}_{0}^{1} \mathrm{~J}_{\mathrm{c}_{\mathrm{n} 0} ; i}^{2}(r) \mathrm{dr}: \tag{39}
\end{equation*}
$$

Notice that $E Q_{i}=\begin{array}{cc}R_{1} R_{r} \\ 0 & 0\end{array} e^{2 c_{0}\left(r_{i} s\right)} R_{1} R_{r} d s d r$:
 conditions (i) - (iii) in Theorem 7. Condition (iv) holds because it is assumed in A ssumption 2 that $\lim _{n} \frac{1}{n} \quad{ }_{i=1}^{n} C_{i}^{2}=-$ and $\inf _{i} j C_{i} j>0$, and under A ssumption 2, it holds $\sup _{\mathrm{i}} \mathrm{j}_{\mathrm{i}} \mathrm{j}<1$: Condition (i) is obviousin view of (38) and (39) : For condition (ii), observe that

$$
\begin{aligned}
& \text { ! } \quad 0_{0} \mathrm{e}^{\left(\mathrm{r}_{\mathrm{i}} \mathrm{~s}\right) 2 \mathrm{C}_{0}} \mathrm{dsdr}=E Q_{i} \text { as }(\mathrm{n} ; \mathrm{T}!1 \text {): }
\end{aligned}
$$

Since $\left.Q_{i T}(, 0)\right) \quad Q_{i}$ with $E Q_{i T}$! $E Q_{i}$ as ($n ; T$! 1); $f Q_{i T} g_{T}$ are uniformly inte grable in T by T heorem 5.4 in B illingsley (1968).

Next, we prove that

$$
I I_{a}=\frac{1}{n}_{i=1}^{X n} C_{i}{\frac{1}{T^{2}}}_{t=2}^{X^{\top}} x_{i t_{i} 1} R_{i t_{i} 1}!{ }_{p} 0 ;
$$

and

$$
\| I_{a}=\frac{1}{n}_{i=1}^{X^{n}}{\frac{1}{T^{2}}}_{t=2}^{X^{\top}} R_{i t_{i} 1}^{2}!{ }_{p} 0 \text { as } n ; T!1 \text {; }
$$

by showing that $E j l_{a} j ; E \operatorname{jll} I_{a} j!10$ as $n ; T$! 1 :
F irst, we have

O bserve that

$$
\begin{aligned}
& \rho_{\bar{T}}^{1} \frac{1}{n}_{i=1}^{X^{n}} \frac{1}{\top}_{t=1}^{X} E \frac{\overline{-} x_{i t_{i} 1}^{\rho}}{T} R_{i t_{i} 1^{-}}^{\overline{-}}
\end{aligned}
$$

where the equality holds by (35) and (36). Similarly, we can show that $\mathrm{III}_{\mathrm{a}}!_{\mathrm{p}} 0$ as ($\mathrm{n} ; \mathrm{T}$! 1) by proving that $E j I_{\mathrm{a}} \mathrm{j}$! 0 as ($\mathrm{n} ; \mathrm{T}$! 1): Therefore we have all the required results to complete the proof of part (a). \neq

Part (b) Using the BN-decomposition in (33) ; we write

$$
\begin{aligned}
& \frac{1}{n}^{X^{n}}{ }^{\tilde{A}} \stackrel{1}{\bar{T}}_{t=1}^{X^{\top}}{ }_{i t} f^{\mu} \frac{t}{T} ; c \quad c^{q!\tilde{A}}{\frac{1}{T^{\rho \bar{T}}}}_{t=1}^{X^{\top}} y_{i t_{i} 1} g^{\mu} \frac{t}{T} ; c \\
= & I_{b}+I I_{b}+I I I_{b}+I V_{b} ;
\end{aligned}
$$

where

We will show that

$$
I_{b}!p^{-} Z_{0} Z_{1} Z_{r}^{c_{0}(r i s)} g(r ; c) f(s ; c) d s d r \text { uniformly in } c
$$

and

$$
I I_{b} ; I I I_{b} ; I V_{b}!{ }_{p} 0 \text { uniformly in } c
$$

as ($\mathrm{n} ; \mathrm{T}$! 1) :
First, we establish Part (b) for ..xed c (pointwise convergence). Now, as in Part (a), we apply Theorem 7. Let

$$
\begin{aligned}
& \text { and } Q_{i}(c)=0_{0} f(s ; c) d W_{i}(s) \quad g(r ; c) J_{c_{0} ; i}(r) d r:
\end{aligned}
$$

Using (37) and the continuous mapping theorem, we can show that

$$
\begin{equation*}
\left.\mathrm{Q}_{\mathrm{it}}(\mathrm{c})\right) \quad \mathrm{Q}_{\mathrm{i}}(\mathrm{c}) \tag{40}
\end{equation*}
$$

as T! 1 for .. xed n and c, which veri..es condition (i) in T heorem ${ }_{¢} 7$. Condition (ii) holds because it is assumed in A ssumption 2 that $\lim _{n} \frac{1}{n}_{i=1^{-}} i^{\prime}=C_{i}^{2+}=-$ and $\inf _{i} j C_{i j}>0$, and under A ssumption 2, it holds $\sup _{\mathrm{i}} \mathrm{j} \mathrm{C}_{\mathrm{i}} \mathrm{j}<1$: Condition (iii) holds for ..xed cif
and
are uniformly integrablein T for ..xed c: N ot ice that $\left.Q_{1 i T}(c)\right) Q_{1 i}(c)={ }_{0}^{3} R_{1} f(r ; c) d W_{i}(r)^{2}>$ 0 ; and $E Q_{1 i T}(c)=\frac{1}{T}^{P}{ }_{t=1}^{T} f^{i} \frac{t}{T} ; c^{\dagger_{2}}!{ }_{0}^{R_{1}} f(r ; c)^{2} d r=E Q_{1 i}(c)$ as T ! 1 for all i: By Theorem 5.4 in Billingsley (1968), it follows that $\mathrm{Q}_{1 i T}(\mathrm{c})$ are uniformly integrable in T for ..xed c : In a similar fashion, $\mathrm{Q}_{2 \mathrm{i}}(\mathrm{c})$ is also uniformly integrable in T for ..xed c : Therfore, as (n;T! 1);

$$
I_{b}!p_{0} \quad Z_{1} Z_{r} e^{c_{0}\left(r_{i} s\right)} g(r ; c) f(s ; c) d s d r \text { for ..xed } c:
$$

Next, de..ne $X_{n T}(c)=\frac{1}{n}^{P}{ }_{i=1}^{n} Q_{i T}(c)$: To complete the proof, we need to show that $X_{n T}(c)$ is stochastically equicontinuous. That is, for given " >0 and ${ }^{\prime}>0$; there exists $\pm>0$ such that

$$
\lim _{(n ; T!1)} P \sup _{j c_{i} \in \dot{\varepsilon}< \pm c ; \in 2 C} j X_{n T}(c) i \quad X_{n T}(\epsilon) j>"<^{\prime}:
$$

Then, since the parameter set C is compact, the pointwise convergence of $X_{n T}$ (c) and the stoch astic equicontinuity of $X_{n T}$ (c) imply uniform conver gence.

Now we show the stochastic equicontinuity of $X_{n T}(c)$: First, notice that

$$
\begin{aligned}
& \sup _{j c_{i} \in \dot{j}< \pm ; \in \mathcal{C} C} j X_{-}(c) i X_{n T}(E) j
\end{aligned}
$$

Since $h_{k}(c ; \epsilon)$ is continuous on the compact set with $h_{k}(c, c)=0$ for all $k=1 ;: ; K$;
 $\pm P^{>} 0$: -Also, under the assumptions in the leoma, it is not di¢ cult to show that
 tically equicontinuous, and $I_{b}!p^{-} \begin{gathered}R_{1} \\ 0\end{gathered} R^{R_{0}(r i s)} g(r ; c) f(s ; c) d s d r$ uniformly in c :

Next, for $1 \mathrm{I}_{\mathrm{b}}$ notice that

For $I_{b}!p 0$ uniformly in c if we show that $E \sup _{c 2 c} j I_{b j}!0$ as $(n ; T!1)$: Let $\sup _{i} C_{i}=C^{\prime}$: Under Assumption 2, C is ..nite. Now

The ..rst term on the RHS of (41) is less than or equal to

Since $f(x ; c)$ and $g-x ; c)$ are continuously dixerentiable functions on the compact set
 say \mathcal{K}^{k}; that is independent of C : Also,
$\stackrel{\mathrm{K}^{\mathrm{P}}}{\overline{\mathrm{T}}}$ for some constant K^{K} independent of c by (31) and (35):

$$
\begin{aligned}
& \text { E supjll } \mathrm{Ib}_{\mathrm{b}}
\end{aligned}
$$

Similarly, we can show that the other terms in the RHS of (41) are less than equal to $\frac{k^{k}}{T}$ for some constant \mathcal{K} independent of c Therefore
and so $I_{b}!{ }_{p} 0$ uniformly in c
In a similar fashion, it is possible to show that
which leads to $I I I_{b} ; I V_{b}!{ }_{p} 0$ uniformly in c : We omit the details of the argument here. \neq
Part (c) and Part (d) The proofs of Parts (c) and (d) are similar to that of Part (b) and they are omitted. \neq

The following lemma is important in establishing asymptotic normality of the GMM estimator C. To simplify notation, let

$$
\begin{aligned}
& I_{1 p T}(t ; s ; c)=\psi_{c} g_{p t}{ }^{0} A_{p T}(c)^{i}{ }^{1} \phi_{c} g_{p s} \\
& I_{2 p T}(t ; s ; c)=\oint_{c} g_{p t}{ }^{0} A_{p T}(c)^{i 1} g_{p s i} D^{i}{ }^{1}{ }^{1} \\
& I_{3 p T}(t ; s ; c)=\oint_{c} g_{p t}{ }^{0} A_{p T}(c)^{i 1} B_{p T}(c) A_{p T}(c)^{i}{ }^{1} \oint_{c} g_{p s} ;
\end{aligned}
$$

and

$$
\begin{aligned}
I_{1 p}(r ; s ; c) & =g_{p c}^{G}(r)^{0} A_{p}(c)^{i 1} \stackrel{G}{g}_{p c}(s) \\
I_{2 p}(r ; s ; c) & =g_{p c}^{q}(r)^{0} A_{p}(c)^{i}{ }^{1} g_{p}(s) \\
I_{3 p}(r ; s ; c) & =g_{p c}^{G}(r)^{0} A_{p}(c)^{i 1} B_{p}(c) A_{p}(c)^{i 1} \stackrel{q}{g}_{p c}(s) \\
I_{4 p} & =0 g_{p}(r) g_{p}(r)^{0} d r:
\end{aligned}
$$

Lemma 10 Suppose that $x_{i t}=\exp ^{i} \frac{{ }_{c 0}^{T}}{T}{ }^{\Phi} x_{i t_{i} 1}+u_{i t}$; where $u_{i t}$ are iid(0;1) with ..nite fourth moments and $x_{i 0}=0$ for all i : Then, as ($n ; T!1$) ; the following hold.

Let

$$
\begin{align*}
& Q_{1 i T}=\frac{1}{T}_{t=1}^{X} x_{i t}{ }_{i} u_{i t} \\
& Q_{2 i T}=\stackrel{1}{\bar{T}}_{t=1}^{X^{\top}}{\frac{1}{T^{\top}}}_{\bar{T}}^{X^{\top}} u_{i t} x_{i s_{i} 1} \hbar_{p T}(t ; s)+!{ }_{1 T}\left(c_{0}\right) \\
& Q_{3 i T}=\rho_{\bar{T}}^{\rho_{t=1}}{ }_{T^{\top}}^{\frac{1}{\rho^{\top}}}{ }_{s=1}^{X^{\top}} u_{i t} x_{i s_{i} 1} l_{1 p T}\left(t ; s ; c_{0}\right)+, T\left(c_{0}\right) \\
& Q_{4 i T}=\stackrel{p}{\bar{T}}_{1}^{X^{\top}} \stackrel{p}{\bar{T}}_{\bar{T}_{s=1}^{1}}^{X^{\top}} u_{i t} u_{i s} I_{2 p T}\left(t ; s ; c_{0}\right) i \operatorname{tr}^{3} A_{p T}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) \\
& Q_{5 i T}=\rho_{\bar{T}}^{1}{ }_{t=1}^{X^{\top}}{ }^{1}{ }_{s=1}^{X^{\top}} u_{i t} u_{i s} l_{3 p T}\left(t ; s ; c_{0}\right) i \operatorname{tr}^{3} A_{p T}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) \\
& \text { and } \mathrm{Q}_{\mathrm{iT}}=\left(\mathrm{Q}_{1 \mathrm{iT}} ; \mathrm{Q}_{2 \mathrm{iT}} ; \mathrm{Q}_{3 \mathrm{iT}} ; \mathrm{Q}_{4 \mathrm{~T}} ; \mathrm{Q}_{5 \mathrm{~T}}\right)^{0} \text { : } \tag{44}
\end{align*}
$$

Then, as ($\mathrm{n} ; \mathrm{T}$! 1),

$$
\left.\stackrel{\rightharpoonup}{\bar{n}}_{i=1}^{X^{n}}-i Q_{i T}\right) \quad N^{i} 0 ; \underline{a} 2 \Omega\left(c_{0}\right)^{\phi} ;
$$

where
and

$$
\bigodot_{12}\left(c_{0}\right)=Z_{1} Z_{1} Z_{r \wedge s} e^{c_{0}\left(r+s_{i} 2 v\right)} \hbar_{p}(r ; s) d v d s d r+Z_{1} Z_{r} Z_{s} e^{c_{0}\left(r_{i} v\right)} \hbar_{p}(v ; r) d v d s d r ;
$$

$$
C_{14}\left(c_{0}\right)=e^{c_{0}(r i s)} l_{2 p}\left(r ; s ; c_{0}\right) d s d r+\quad e^{c_{0}(r ; s)} I_{2 p}\left(s ; r ; c_{0}\right) d s d r ;
$$

$$
\bigodot_{15}\left(c_{0}\right)=Z_{0}^{Z_{1}^{0} Z_{r}^{0}} e^{c_{0}(r i s)} I_{3 p}\left(r ; s ; c_{0}\right) d s d r+Z_{0}^{Z_{1}^{0} Z_{r}^{0}} e^{c_{0}(r ; s)} I_{3 p}\left(s ; r ; c_{0}\right) d s d r ;
$$

$$
\bigodot_{22}\left(c_{0}\right)=Z_{1} Z_{1} Z_{r \wedge s} e^{c_{0}(r+s ; 2 v)} \hbar_{p}(r ; s) d v d s d r
$$

$$
{ }^{0} \mathrm{Z}_{1} \mathrm{Z}_{1}{ }^{0} \mathrm{Z}_{\mathrm{r}} \mathrm{Z}_{\mathrm{s}}
$$

$$
+0 \quad 0 \quad 0 \quad e^{c_{0}(r i v)} e^{c_{0}(s ; q)} \hbar_{p}(r ; q) \kappa_{p}(s ; v) \text { dqdvdsdr; }
$$

$$
\begin{aligned}
\Theta_{23}\left(c_{0}\right)= & Z_{1} Z_{1} Z_{1} Z_{s^{\wedge} v} \\
& { }^{0} Z_{1}{ }_{1}^{0} Z_{1}^{0} Z_{r}^{0} Z_{s} e^{c_{0}(s+v ;}{ }^{2 q)} \kappa_{p}(r ; s) I_{1 p}\left(r ; v ; c_{0}\right) \text { dqdvdsdr } \\
& +{ }_{0} \quad 0 \quad 0 \quad 0 \quad e^{c_{0}(r i v)} e^{c_{0}(s ; q)} \kappa_{p}(r ; q) I_{1 p}\left(s ; v ; c_{0}\right) d q d v d s d r ;
\end{aligned}
$$

$$
\begin{aligned}
\bigcirc_{24}\left(c_{0}\right)= & Z_{1} Z_{r} Z_{1} \\
& { }^{0} Z_{1}{ }_{1}^{0} Z_{r}{ }^{0} \mathrm{e}^{c_{0}\left(r_{i} s\right)} \hbar_{p}(r ; v) I_{2 p}\left(v ; s ; c_{0}\right) d v d s d r \\
& +{ }_{0} \quad 0 \quad 0 \quad e^{c_{0}\left(r_{i} s\right)} n_{p}(r ; v) I_{2}\left(s ; v ; c_{0}\right) d v d s d r
\end{aligned}
$$

$$
\begin{aligned}
& \Theta_{25}\left(c_{0}\right)= Z_{1} Z_{r} Z_{1} \\
&{ }^{0} Z_{1}{ }_{1}^{0} Z_{r}{ }_{r}^{0} \mathrm{Z}_{1} \mathrm{c}_{0}\left(r_{i} s\right) \\
& n_{p}(r ; v) I_{3 p}\left(v ; s ; c_{0}\right) d v d s d r \\
&+{ }_{0} \quad 0 \quad 0 \quad e^{c_{0}\left(r_{i} s\right)} \hbar_{p}(r ; v) I_{3 p}\left(s ; v ; c_{0}\right) d v d s d r
\end{aligned}
$$

$$
\begin{aligned}
& \Theta_{34}\left(c_{0}\right)=Z_{1} Z_{r} e^{c_{0}(r ; s)} I_{2 p}\left(r ; s ; c_{0}\right) d s d r+Z_{1} Z_{r} e^{c_{0}(r ; s)} l_{3 p}\left(r ; s ; c_{0}\right) d s d r ;
\end{aligned}
$$

$$
\begin{aligned}
& \Theta_{44}\left(c_{0}\right)={ }_{3}^{3} \operatorname{vec}_{p}\left(c_{0}\right)^{i 1}{ }^{0} \operatorname{vecl}_{4 p}\left(c_{0}\right)+\operatorname{tr}^{3} \mathrm{~A}_{\mathrm{p}}\left(c_{0}\right)_{3}^{i 1} \mathrm{~B}_{\mathrm{p}}\left(\mathrm{c}_{0}\right)^{0} \mathrm{~A}_{\mathrm{p}}\left(c_{0}\right)^{i 1} \mathrm{~B}_{\mathrm{p}}\left(c_{0}\right) \text {; } \\
& \Theta_{45}\left(c_{0}\right)=\operatorname{tr}{ }_{3} A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right)^{0},+\operatorname{tr}_{3} A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) \text {; } \\
& \mathcal{O}_{55}\left(c_{0}\right)=\operatorname{tr} \quad A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right)^{0}+\operatorname{tr} A_{p}\left(c_{0}\right)^{11} B_{p}\left(c_{0}\right) A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right):
\end{aligned}
$$

Proof
The proof uses Theorem 8, and we sketch the proof here. First, a direct calculation shows that $E Q_{i T}=0$: Let $\Theta_{n T}\left(c_{0}\right)=E Q_{i T} Q_{i T}^{0}$: Notice that $Q_{i T}$ are iid $\left(0 ; O_{n T}\left(c_{0}\right)\right)$ across i:AsT! 1;

$$
\left.\mathrm{Q}_{\mathrm{it}}\right) \mathrm{Q}_{\mathrm{i}} ;
$$

where

$$
\begin{aligned}
& Q_{1 i}=J_{c_{0} ; i}(r) d W_{i}(r) \\
& Z_{1}^{0} Z_{1} \\
& Q_{2 i}=\quad J_{c_{0} ; i}(r) \hbar_{p}(r ; s) d W_{i}(s) d r \\
& Z_{1}^{0} Z_{1}^{0} \\
& Q_{3 i}=\quad I_{1}\left(r ; s ; c_{0}\right) d W_{i}(r) d W_{i}(s) i,\left(c_{0}\right) \\
& Z_{1}^{0} Z_{1}^{0}{ }_{1} \\
& Q_{4 i}=\quad I_{2}\left(r ; s ; c_{0}\right) d W_{i}(r) d W_{i}(s) i \operatorname{tr} A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right) \\
& Z_{1}^{0} Z_{1}^{0}{ }_{1} \\
& Q_{5 i}=0_{0} I_{3}\left(r ; s ; c_{0}\right) d W_{i}(r) d W_{i}(s) i \operatorname{tr} A_{p}\left(c_{0}\right)^{i 1} B_{p}\left(c_{0}\right):
\end{aligned}
$$

Also, a direct calculation shows that as T! 1;

$$
\mathscr{O}_{n T}\left(c_{0}\right)=E Q_{i T} Q_{i T}^{0}!E Q_{i} Q_{i}^{0}=\mathbb{O}\left(c_{0}\right):
$$

Let I be any ($5 £ 1$) vector with $\mathrm{klk}=1$: We e consider two cases.
Case 1: $\left|f l^{0} \bigcirc\left(c_{0}\right)\right|>0$:
To establish the desired result with a joint limit, we apply Theorem 7. Condition (i) holds because it is assumed that $I^{0} \bigcirc\left(c_{0}\right) I>0$: Conditions (ii) and (iv) hold because $\lim _{n} \frac{1}{n}{ }_{i=1^{-}}^{n}=->0$: Finally condition (iii), viz.
$\left(1 Q_{i T}\right)^{2}$ are uniformly integrable in T;
holds because $\left.\left(I Q_{i T}\right)^{2}\right) \quad\left(I^{0} Q_{i}\right)^{2}$ as T ! 1 by the continuous mapping theorem with $E\left(I^{\circ} Q_{i T}\right)^{2}=1^{0} O_{n T}\left(C_{0}\right)\left|!I^{0} O\left(c_{0}\right)\right|=E\left(I^{0} Q_{i}\right)^{2}$; and by applying Theorem 5.4 of Billingsley (1968).

Case 2: If $I^{0} \bigcirc\left(c_{0}\right) I=0$. Since $I^{0} ๑_{n T}\left(c_{0}\right)|!| I^{0} \circlearrowleft\left(c_{0}\right) \mid=0$;
which leads to

$$
\stackrel{p}{\bar{n}}_{i=1}^{X n}-{ }_{i}\left(1 Q_{i T}\right)!{ }_{p} 0:
$$

Therefore, by the Cramér-W old device, it follows that

$$
\left.\stackrel{1}{\bar{n}}_{i=1}^{X^{n}}-{ }_{i} Q_{i T}\right) N^{i} 0 ; \underline{a} \odot\left(c_{0}\right)^{\Phi}: \neq
$$

7.3 A ppendix C: Proofs of Section 4

Proof of Lemma 2.
We show separately the following

$$
\begin{equation*}
\frac{1}{n}_{i=1}^{X n}\left(m_{1 i T}(c) i-i m_{1}(c)\right)!p_{p} 0 \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{n}_{i=1}^{x}\left(m_{2 i T}(c) i-{ }_{i} m_{2}(c)\right)!{ }_{p} 0 ; \tag{47}
\end{equation*}
$$

uniformly in c:
F irst, by de..nition and the triangle inequality, we have

$=I+I I+I I I+I V+V+V I$; say.

Notice that two terms I and II are independent of C ; and by Lemma 9 of M oon and

 Lemma 9 of Moon and P hillips (1999b), it converges in probability to zero as (n ; T ! 1); and $\mathrm{jc} \mathrm{i} \mathrm{c}_{0} \mathrm{j}$ is a continuous function on the compact parameter set C : Finally, since

 ${ }_{\frac{1}{n}}^{P}{ }_{i=1}^{n} \hat{\alpha}_{i} \alpha_{i}=o_{p}(1)$; and $\sup _{c 2 C}!{ }_{1 T}(c)<K$ for some ..nite K; terms V and VI converges in probability to zero uniformly in c. Therefore, $\frac{1}{n} P_{i=1}\left(m_{1 i T}(c) i-i m_{1}(c)\right)!p$ 0 uniformly in cas ($\mathrm{n} ; \mathrm{T}$! 1):

Next, to prove (47) ; we write by de..nition

$$
\begin{aligned}
& \frac{1}{n}_{i=1}^{X n} m_{2 i T}(c)
\end{aligned}
$$

Since each element in ${ }_{c} g_{p t}$ and $g_{p t ;}{ }_{1} D_{p T}^{i 1}$ satis..es the conditions for $f(x ; c)$ and $g(x ; \rho)$ in
 $\mathrm{o}_{\mathrm{p}}(1)$ and boundedness of, $\mathrm{T}(\mathrm{c})$ over the parameter set C . $¥$

Proof of Lemma 3.

The proof is similar to that of Lemma 2 is omitted. $¥$
Proof of Lemma 4.
Here we give only a sketch of the proof. The details of the cal culation are quite similar to the proof of Lemma 9(b) with a replacement of the standardizing factor $\frac{1}{n}$ by $p \frac{1}{\bar{n}}$ and the proof of T heorem 14 of M oon and Phillips (1999b).

First, using the $B N$ decomposition of ${ }^{i t}$ in (29) and of $y_{i t}$ in (33) ; we write

$$
\begin{align*}
& \frac{p}{\bar{n}}_{i=1}^{X_{n}} m_{1 i T}\left(c_{0}\right) \\
= & f_{\bar{n}}^{i=1} \tag{48}\\
X^{n} & -i\left(Q_{1 i T} i Q_{2 i T}\right)+f_{\bar{n}}^{1}{ }_{i=1}^{X n} R_{1 i T}+o_{p}(1)
\end{align*}
$$

and

$$
\begin{aligned}
& \rho_{\bar{n}}^{1}{ }_{i=1}^{X n} m_{2 i T}\left(c_{0}\right) \\
= & \rho_{\bar{n}}^{1}{ }_{i=1}^{X n}-i\left(Q_{1 i T} i Q_{3 i T} i Q_{4 i T}+Q_{5 i T}\right)+p_{\bar{n}}^{1}{ }_{i=1}^{X n} R_{2 i T}+o_{p}(1) ;
\end{aligned}
$$

where $\mathrm{R}_{1 \mathrm{it}}$ and $\mathrm{R}_{2 \mathrm{it}}$ are relevant remainder terms generated by the BN decompositions $y_{i t_{i}} 1$ and "it: The $o_{p}(1)$ terms above hold because it is assumed that

$$
\hat{p}_{\bar{n}}^{1}{ }_{i=1}^{x^{n}} \hat{-A}_{i} \hat{-i}_{i}^{\prime} ; p_{\bar{n}}^{\bar{n}}{ }_{i=1}^{x^{n}} \hat{x}_{i i} x_{i}^{\prime}=o_{p}(1):
$$

Using similar arguments to those in the proof of Theorem 14 of Moon and Phillips (1999b), it is possible to show that

$$
\begin{equation*}
\rho_{\bar{n}}^{1}{ }_{i=1}^{\chi} R_{1 i T}=O_{p} \frac{n}{T}^{\prime}=o_{p}(1) ; \tag{49}
\end{equation*}
$$

and by applying arguments similar to those in the proof of (42) and (43) ; it is also possible to show that

$$
\rho_{\bar{n}}^{1}{ }_{i=1}^{X n} R_{2 i T}=O_{p}{ }^{3} \frac{n^{\prime}}{T}=o_{p}(1):
$$

Then, it follows that

Finally, applying Lemma 4 with $c_{n 0}=c_{0}$ (i:e:; • = 0), we obtain the desired result. \neq

Proof of Lemma 5.

Part (a).
By de..nition and by the Cauchy-Schwarz inequality,

By Lemma 4 and Assumption $7,2 \mathrm{kB} \mathrm{nT} \mathrm{M}_{\mathrm{nT}}\left(\mathrm{c}_{0}\right) \mathrm{k}^{\circ} \stackrel{\circ}{\mathrm{W}}^{\circ}{ }^{\circ}=\mathrm{O}_{\mathrm{p}}(1)$: Thus, to complete the
 de..nition and the triangle inequality that

$$
\begin{aligned}
& \stackrel{\circ}{\circ} \stackrel{1}{n}^{x^{n}}\left(\mathrm{dm}_{i T}(c) i \operatorname{dm}_{i T}\left(c_{0}\right)\right)_{\circ}^{\circ}
\end{aligned}
$$

Then, the ..rst and the second terms in (50) are $o_{p}(1)$ by Lemma 3 and the last term in (50) is also $o_{p}(1)$ because $d p(c)$ is continuøus in c and $\frac{1}{n}{ }_{i=1}^{n}$ i has a ..nite limit. Therefore sup ${ }_{c 2} c_{: j} c_{i} c_{0 j}$. ${ }^{\circ}{ }_{n T}{ }^{\circ} \frac{1}{n}{ }_{i=1}^{n} r_{i T}\left(c_{;} c_{0}\right)^{\circ}=o_{p}(1)$; as required. Part (b).

The proof of Part (b) is similar to that of P art (a) and is omitted. $¥$
Proof of Theorem 2.
The proof is similar to the proof of T heorem 1 of Andrews (1999). De..ne $\hat{n}_{\mathrm{n} T}=$ $B_{n t}\left(e_{i} c_{0}\right): T$ hen,

$$
\begin{aligned}
o_{p}(1) \cdot & B_{n T}^{2}\left(Z_{n T}\left(c_{0}\right) i Z_{n T}(e)\right) \\
= & i H_{n T} \wedge_{n T}^{2}+2 H_{n T}\left(B_{n T} S_{n T}\right) \hat{n}_{n T} \\
& i \hat{n}_{n T} B_{n T} R_{1 n T}\left(e, c_{0}\right) i \hat{n}_{n T}^{2} R_{2 n T}\left(e, c_{0}\right):
\end{aligned}
$$

>From Lemmas 3 and 4 and Assumption 7, we have $\mathrm{H}_{n T} ; \mathrm{H}_{\mathrm{nT}}^{i 1}=\mathrm{O}_{\mathrm{p}}(1)$ and positive with probability one and $B_{n T} S_{n T}=O_{p}(1)$: Also, by Lemma 5, $B_{n T} R_{1 n T}\left(e, c_{0}\right)=o_{p}(1)$ and $R_{2 n T}\left(e, c_{0}\right)=o_{p}(1): T$ hen,

$$
o_{p}(1) \cdot i j \hat{n}_{n T} j^{2}+2 O_{p}(1) j \wedge_{n T} j+j \wedge \wedge_{n T} j o_{p}(1)+j \wedge_{n T} j^{2} o_{p}(1) ;
$$

which is rearranged as

$$
j \wedge_{n T} j^{2} \cdot 2 O_{p}(1) j \wedge_{n T} j+o_{p}(1):
$$

Then, the required result

$$
\hat{n}_{n T}=O_{p}(1)
$$

follows by relation (7.4) in Andrews (1999), page 1377. $¥$
Proof of Theorem 3.
To complete the proof, it is enough to show (a) $B_{n T}\left(\epsilon_{i} c_{0}\right)=B_{n T}\left(\epsilon_{q} i C_{0}\right)+o_{p}(1)$ and (b) $B_{n T}\left(\epsilon_{q} C_{0}\right)=\hat{\rho_{n T}}+o_{p}(1)$:

Part (a). Recall that $\frac{B_{n T} S_{n T}}{H_{n T} T}=O_{p}(1)$ by Lemmas 3 and 4 and A ssumption 7. Then, it follows by the de..nition of $\mathrm{B}_{n T}\left(e_{q} i c_{0}\right)$ that

$$
\mu_{B_{n T}\left(e_{q i} C_{0}\right) ;}^{{\frac{B_{n T} S_{n T}}{H_{n T}}}^{\boldsymbol{q}_{2}} \cdot{\frac{B_{n T} S_{n T}}{H_{n T}}}^{\mathbf{q}_{2}}=O_{p}(1) ;}
$$

which leads to

$$
B_{n T}\left(e_{q} i c_{0}\right)=\frac{B_{n T} S_{n T}}{H_{n T}}+O_{p}(1)=O_{p}(1):
$$

So, we ..nd that C_{q} is also $B_{n T}\left(={ }^{\mathrm{P}} \overline{\mathrm{n}}\right)_{i}$ consistent. T hen, by de..nition, we have

$$
\begin{aligned}
& \begin{aligned}
o_{p}(1) & \cdot B_{n T}^{B_{n T} Z_{n T}\left(e_{q}\right) i B_{n T}^{2} Z_{n T}(e)} \\
= & B_{n T}\left(e_{q} i c_{0}\right) i{\frac{B_{n T} S_{n T}}{\boldsymbol{q}_{n T}} \quad \mu}^{H_{n T}} \quad B_{n T}\left(e_{i} c_{0}\right) i \frac{B_{n T} S_{n T}}{H_{n T}}{ }^{\boldsymbol{q}_{2}}+o_{p}(1)
\end{aligned} \\
& \text { - } \mathrm{o}_{\mathrm{p}}(1) \text {; }
\end{aligned}
$$

where the $o_{p}(1)$ in the second line holds because $B_{n T}\left(\hat{C}_{q} i c_{0}\right) ; B_{n T}\left(\hat{c}_{i} c_{0}\right)=O_{p}(1)$: So,

$$
\begin{equation*}
\mathrm{B}_{n T}\left(\varepsilon_{q} i c_{0}\right) i{\frac{B_{n T} S_{n T}}{H_{n T}}}^{\boldsymbol{q}_{2}} \quad \mu \quad B_{n T}\left(e_{i} c_{0}\right) i \frac{B_{n T} S_{n T}}{H_{n T}} \stackrel{\vdots}{\overline{q_{n}}}=o_{p}(1): \tag{51}
\end{equation*}
$$

Now, for given $\pm>0$; set ${ }_{3}= \pm^{2}$: Then, since $B_{n T}\left(e_{q i} c_{0}\right)$ achieves the minimum of the quadratic function $f()=,, i \frac{B_{n T} S_{n T}}{H_{n T}}$ on the closed interval $f,: B_{n T}\left(\bar{c} i c_{0}\right) \cdot, B_{n T} C_{0} g$; it follows that $j B_{n T}\left(e_{i} c_{0}\right)$ i $B_{n T}\left(\varepsilon_{q} C_{0}\right) j> \pm$ implies

Therefore

$$
\begin{aligned}
& \text { ! 0; }
\end{aligned}
$$

where the last convergence holds by (51) ; and we have completed the proof of Part (a).
P art (b). First we consider the case $\mathrm{c}_{0} 2 \mathrm{C}_{0}=\mathrm{f} 0 \mathrm{~g}$: For any $\pm>0$;

$$
\begin{aligned}
& P \frac{1 / 2}{B_{n T} S_{n T}} H_{n T}<B_{n T}\left(f_{i} c_{0}\right)^{3 / 4}+P^{1 / 2} \frac{B_{n T} S_{n T}}{H_{n T}}>i B_{n T} c_{0}^{3 / 4}:
\end{aligned}
$$

Since $\frac{B_{n T} S_{n T}}{H_{n T}}=O_{p}(1)$; for given " >0; we can choose K and ($n_{0} ; T_{0}$) such that
and therefore,
as required. $¥$

7.4 A ppendix D: P roofs of Section 5

Proof of Lemma 6

Part (a).
Part (a) holds by Lemma 4 with $\mathrm{c}_{0}=0$ and by considering the marginal limiting distribution distribution of $\overline{\mathrm{n}} \mathrm{M}_{1 \mathrm{nT}}(0) . \neq$
Part (b).
The proof of Part (b) is similar to the proof of Lemma 4, and we give only a sketch of the proof. By de..nition and by Assumption 6,

because of A ssumption 6. Using the BN -decomposition of "it; we can decompose

$$
\begin{aligned}
& =-{ }_{i} \mathrm{Q}_{6 \mathrm{iT}}+\mathrm{R}_{\mathrm{iT}} \text {; }
\end{aligned}
$$

where $x_{i t}={ }_{P}^{t}{ }_{s=1} u_{i s}$ with $x_{i 0}=0$;

$$
\begin{aligned}
Q_{6 i T}= & \frac{1}{T^{2}}{ }_{t=1}^{X^{\top}} x_{i t_{i} 1}^{2} i{\frac{1}{T^{3}}}^{X^{\top} X=1 s=1} x_{i t_{i} 1} x_{i s_{i} 1} \hbar_{1 T}(t ; s) \\
& i{\frac{1}{T^{2}}}_{t=1 s=1}^{X^{\top} X^{\mu} \frac{(t \wedge s) i 1}{}_{T}^{q} \kappa_{1 T}(t ; s) ;}
\end{aligned}
$$

and $R_{i T}$ is the remainder term. The speci..c forms of $R_{1 i T}$ can be found in the proof of Lemma 9 in Moon and Phillips (1999b). Then, by modifying the proof of Lemma 9 in M oon and Phillips (1999b) with the results in A ppendix B2, it is possible to show that

$$
\stackrel{p}{\bar{n}}_{i=1}^{X^{n}} R_{1 i T}=O_{p}^{\mu r} \frac{\bar{n}}{\frac{\mathrm{n}}{T}}=o_{p}(1) ;
$$

since $\frac{n}{T}!0$: Also, it is not dic cult to prove that $\operatorname{Var}\left(Q_{6 i T}\right)!\frac{11}{6300}$ as $(n ; T)!1$ for all i: Therefore, Part (b) holds. $¥$
Part (c)
Notice that

From
we have

Also, a direct calculation shows that

$$
Z_{1} Z_{r}(r ; s)^{2} \hbar(r ; s) d s d r=0:
$$

Therefore, since it is assumed that $\frac{n}{T}!0$ and $\frac{1}{n} P_{i=1}^{n} \hat{i}_{i}!p-;$

$$
\mathrm{p}_{\overline{\mathrm{n}}} \mathrm{i}_{\mathrm{d}^{2} M_{1 \mathrm{nT}}(0)^{\Phi}!_{\mathrm{p}} 0 ; ~}
$$

which is required. \neq
Part (d).
By de..nition,

Notice that $d^{3} M_{1 n T}$ (c) is continuous on the compact parameter set. Since

$$
\begin{aligned}
& \text { ! } d^{3} M_{1}(c ; 0)=Z_{0} Z_{1} Z_{r} e^{c(r ; s)}(r ; s)^{3} \hbar(r ; s) d s d r
\end{aligned}
$$

and $\frac{1}{n} P_{i=1}^{n} \hat{i}_{i} p_{p-;}$

$$
d^{3} M_{1 n T}(c)!p-d^{3} M_{1}(c ; 0)
$$

uniformly in c 2 C ; and we have the required result. $¥$
B efore we prove Lemmap7, we introduce the following lemma which is helpful in de

Lemma 11 Suppose that assumptions in Lemmas 6 and 7 hold. Then; as ($\mathrm{n} ; \mathrm{T}$! 1) with $\frac{n}{T}!0$;
where $x / z^{2}+$ is de..ned in (16) :
Proof of Lemma 11
By de..nition,
 and

$$
\frac{1}{n}_{i=1}^{X^{n}}{\frac{1}{T^{2}}}^{X^{\top}{ }^{\top}{ }^{\mu} \underset{\sim}{y}{\underset{\sim}{i ; i} 1}^{\|_{2}}=O_{p}(1)>0: ~}
$$

Using Lemma 9(a) and (c), it is possible to show that

$$
\begin{equation*}
\frac{1}{n}_{i=1}^{X^{n}}{\frac{1}{T^{2}}}_{t=1}^{X^{\top}} \stackrel{\mu}{\sim i ; i} 1_{y}^{y}!_{p}!_{2}-!_{2}(0)=\frac{-}{15} \tag{52}
\end{equation*}
$$

as $(\mathrm{n} ; \mathrm{T}!1):$ Next, notice that as $(\mathrm{n} ; \mathrm{T}!1)$ with $\frac{\mathrm{n}}{\mathrm{T}}!0$;

$$
\begin{align*}
& =\rho_{\bar{n}}^{1}{ }_{i=1}^{X} \frac{1}{T}^{X^{\top}}{ }^{n}{ }^{n}{ }_{i t} y_{i t t_{i}} 1 i \alpha_{i} \\
& { }_{i} \stackrel{1}{\bar{n}}_{i=1}^{i=1}{ }^{X^{n}}{\frac{1}{T^{2}}}_{t=1 s=1}^{t=1} X^{\top} X_{i t} y_{i s_{i} 1} K_{1 T}(t ; s)+-_{i}!{ }_{1 T}(0) \\
& =\rho_{\bar{n}}^{1}{ }_{i=1}^{X^{n}}-{ }_{i}\left(Q_{\text {lint }} i Q_{2 i n T}\right)+o_{p}(1) ; \tag{53}
\end{align*}
$$

where the last equality holds by (48) and (49) with $c_{0}=0$ and $p=1$; and $Q_{1 i n T}$ and $\mathrm{Q}_{\text {2int }}$ are the same in (44): In view of the proof of Lemma 10 , the following holds

$$
\begin{equation*}
\limsup _{n ; T} E \tilde{\rho}_{\bar{n}}^{1}{ }_{i=1}^{1}-i\left(Q_{1 i n T} i Q_{2 i n T}\right)_{2}^{!^{n}}<1 \tag{54}
\end{equation*}
$$

Therefore, from (52), (53) ; and (54) the desired result follows. $¥$
Proof of Lemma 7
Part (a).

By de..nition, we can write
$>$ From the de..nitions of $\hat{-}_{i}$ and \hat{x}_{i}; the last two terms in (55) are

Noticing that
and

$$
\hat{P}_{\bar{T}}^{1=1}{ }^{X}{ }_{i t}=\frac{y_{i T}}{\bar{T}} i \frac{y_{i 0}}{\bar{T}} ;
$$

the other terms in (55) equal

Putting (56) and (57) together, we have

$$
\begin{aligned}
& \mathrm{p}_{\overline{\mathrm{n}} \mathrm{M}_{2 \mathrm{nT}}(0)}
\end{aligned}
$$

$$
\begin{aligned}
& ={\frac{1}{2^{\rho}} \bar{n}_{i=1}^{X^{n}}}_{\frac{1}{T}}^{t=1}{ }^{X^{\top}} i_{i t}{ }_{i t}{ }_{i t}^{4}{ }^{\Phi}+o_{p}(1):
\end{aligned}
$$

To show
we write

By de..nition of ${ }_{i t}$;

Notice by de..nition that
and using Lemma 9(d), it is possible to show that $\frac{1}{n} P_{i=1}^{n}{ }^{\frac{1}{T}} P_{t=1}^{T} P_{s=1}^{\top}{ }_{i j t}{ }_{i s} \hbar_{1 T}(t ; s)=$ $\mathrm{O}_{\mathrm{p}}(1)$: So, since $\frac{\mathrm{n}}{\mathrm{T}}$! 0 ;
and
and we have desired result. \nexists
Next, we sketch proofs for Parts (b) - (d). The details of the proofs for Part (b), (c), and (d) are similar to those of Part (b) of Lemma 6, Part (a) above, and Lemma 2, respectively, and we omit the details.
Part (b).
Taking the ..rst derivative of $\mathrm{M}_{2 \mathrm{nT}}$ (c) with respect to the parameter c ; considering A ssumption 6, and rear ranging terms using the relations
and

$$
\begin{equation*}
P_{\bar{T}}^{t=1}{ }^{X} "_{i t}=\frac{y_{i T}}{\bar{T}} i \frac{y_{i 0}}{\bar{T}} ; \tag{59}
\end{equation*}
$$

it is possible to ..nd that

Using the BN decomposition of yiti_{1} and the results in Appendix B 2 with $\mathrm{c}_{0}=0$; it is possible to show that

$$
\begin{aligned}
& \mathrm{p}_{\overline{\mathrm{n} d M_{22^{\top}}}} \text { (c) }
\end{aligned}
$$

$$
\begin{aligned}
& =\stackrel{\rho}{\bar{n}}_{i=1}^{X_{n}^{n}} Q_{7 i T}+o_{p}(1) ;
\end{aligned}
$$

where $\mathrm{x}_{\mathrm{it}}=\mathrm{x}_{\mathrm{iti}_{\mathrm{i}} 1}+\mathrm{u}_{\mathrm{it}}$ with $\mathrm{x}_{\mathrm{io}}=0$: Then, direct calculations show that $\mathrm{E} \mathrm{Q}_{7 \mathrm{it}}=0$ and $\operatorname{Var}\left(\mathrm{Q}_{7 \text { iт }}\right)!\frac{1}{45}$: Therefore

$$
\mathrm{P}_{\overline{\mathrm{n}}}^{\mathrm{dM}} \mathrm{M}_{2 \mathrm{nT}}(\mathrm{c})=\mathrm{O}_{\mathrm{p}}(1) ;
$$

as required. $¥$
Part (c) and Part (d).
The proof of P art (c) is similar to that of P art (b). Taking the second order derivative of $\mathrm{M}_{2 \mathrm{nT}}$ (c) with respect to the parameter c ; considering Assumption 6, and rearranging terms using the relations of (58) and (59) ; it is possible to show that

$$
p_{\bar{n} d^{2} M_{2 n T}(c)}=O_{p} \frac{\mu r}{} \frac{\bar{n}^{q}}{\bar{T}}=o_{p}(1):
$$

The proof of Part (d) is similar to the proof of Lemma 2. A fter taking the third order derivative of $M_{2 n T}$ (c) with respect to c and using the results in Lemma 9 , it is possible to show the required result. \neq

Proof of Theorem 4

De.ne $\hat{\wedge}_{n T}=n^{1=6} C$. First, we consider the case where $f j \hat{\wedge}_{n T} j>1 g$: $B y$ the de..nition of the GMM estimator, we have

$$
\begin{aligned}
& o_{p}(1) \cdot n\left(Z_{n T}(0) ; Z_{n T}(e)\right)
\end{aligned}
$$

In view of (17) i (24) and from A ssumption 7, $\hat{\mathrm{n}}_{\mathrm{nt}}$ satis..es
$o_{p}(1) \cdot i j \wedge_{n T} j^{6}+j \wedge_{n T} j^{5} o_{p}(1)+j \wedge_{n T} j^{4} o_{p}(1)+2 O_{p}(1) j \wedge_{n T} j^{3}+j \wedge_{n T} j^{2} o_{p}(1)+j \wedge_{n T} j o_{p}(1):$

Since, $\mathrm{j}^{\wedge}{ }_{\mathrm{nT}} \mathrm{j}>1$;
The right hand side of (60)

$$
\mathrm{i} \mathrm{j}_{\wedge_{n T}} \mathrm{j}^{6}\left(1+\mathrm{o}_{\mathrm{p}}(1)\right)+2 \mathrm{O}_{\mathrm{p}}(1) \mathrm{j} \wedge_{\mathrm{nT}} \mathrm{j}^{3}:
$$

Then,

$$
j^{\wedge}{ }_{n T} j^{6} \cdot \quad 2 O_{p}(1) j \wedge_{n T} j^{3}+o_{p}(1):
$$

Following by relation (7.4) in A ndrews (1999), page 1377, we can deduce that

$$
\mathrm{j}^{\wedge}{ }_{\mathrm{n} T} \mathrm{j}^{3} \cdot O_{p}(1)+o_{p}(1):
$$

Therefore, when $\mathrm{fj} \wedge_{\mathrm{n} T} \mathrm{j}>1 \mathrm{~g}$;

$$
\begin{equation*}
\mathrm{j}^{\wedge} \wedge_{\mathrm{n} T} \mathrm{j} \cdot \mathrm{O}_{\mathrm{p}}(1): \tag{61}
\end{equation*}
$$

Finally, let the $O_{p}(1)$ random variable in (61) be $>_{n_{T}}$: Then,

$$
\begin{aligned}
\mathrm{j} \wedge_{n T} \mathrm{j} & =\mathrm{j} \wedge_{n T} \mathrm{j} 1 \mathrm{fj} \wedge_{n T} \mathrm{j} \cdot 1 \mathrm{~g}+\mathrm{j} \wedge_{n T} \mathrm{j} 1 \mathrm{fj} \wedge_{n T} \mathrm{j}>1 \mathrm{~g} \\
& \cdot \mathrm{j} \wedge_{n T} \mathrm{j} 1 \mathrm{fj} \wedge_{n T} j \cdot 1 \mathrm{j}+>_{n T} \\
& \cdot 1+>_{n T}=O_{p}(1): \neq
\end{aligned}
$$

P roof of Theorem 5
The proof of the theorem is similar to that of T heorem 3 and is omitted. $¥$

7.5 A ppendix F: Numerical Validation of the Identi..cation Condition of $m(c){ }^{6}$

In this section we provide a numerical validation that the uniform limit of the moment conditions, $\mathrm{m}(\mathrm{c})=\left(\mathrm{m}_{1}(\mathrm{c}) ; \mathrm{m}_{2}(\mathrm{c})\right)^{0}$ has a root only at the true parameter $\mathrm{c}=\mathrm{c}_{0}$: We restrict the parameter set to $C=[i 10 ; 0]$: The choice of the lower limit $\varepsilon=; 10$ is made for computational convenience, and the results hold for all ..nite values of $\varepsilon<0$. All the numerical analysis in this section is done with M athematica and with M aple using Scienti..c Workplace Version 3.0.

7.5.1 W hen $g_{1 t}=t$

The procedure we apply is to ..nd all the roots of $m_{2}(c)$ and verify whether these roots are also the roots of $m_{1}(c)$: We ..rst notice that for given c_{0}; the function $m_{2}(c)$ is simply the ratio of two polynomials - the denominator and the numerator of $m_{2}(c)$; say $m_{d 2}(c)$ and $\mathrm{m}_{\mathrm{n} 2}(\mathrm{c})$; respectively, are a fourth degree polynomial and a ..fth degree polynomial in c; respectively.

Case A: W hen $c_{0} \in 0$
Step 1: Numerical Calculation of the roots of $m_{2}(c)$:
$B y$ a direct çalculation, we ..nd that the denominator of $m_{2}(c) ; m_{d 2}(c)$; equals to $4 c_{0}^{5} c^{2}$ i $3 c+3^{G_{2}}$ when $c_{0} G 0$: Since $c^{2} i \quad 3 c+3={ }^{i} c_{i} \frac{3}{2}^{q_{2}}+\frac{3}{4}>0$; the denominator of $m_{2}(c)$ has no real roots for all $c_{0} G 0$: Thus, if we concerned with the roots of $m_{2}(c)$; it suф ces to consider only the numerator of $m_{2}(c), m_{n 2}(c)$: By de.nition of $m_{2}(c)$, we ..nd that the true value $c=c_{0}$ is always a root of $m_{n 2}(c)$. Also, by inspection, we ..nd that $\mathrm{c}=0$ is always a root of $\mathrm{m}_{\mathrm{n} 2}(\mathrm{c}):$ Thus, we can write

$$
\mathrm{m}_{\mathrm{n} 2}(\mathrm{c})=\mathrm{c}\left(\mathrm{c} ; \mathrm{c}_{0}\right) \mathrm{m}_{\mathrm{n} 2}(\mathrm{c}) ;
$$

[^5]where $m_{n 2}(c)$ is a third degree polynomial. Using M athematica, we solve the third degree polynomial $\mathrm{m}_{\mathrm{n} 2}(\mathrm{c})$ and ..nd three roots of $\mathrm{m}_{\mathrm{n} 2}(\mathrm{c})$ as a function of the true parameter c_{0} : For the numerical calculation we choose $\varepsilon=; 10$; and so we assume that the parameter set $C=[i \quad 10 ; 0]$: The Figures A. 1 and A. 2 plot the graphs of these roots on C only when the roots are real numbers. As we see through the graphs, for $c_{0}<0$; the roots of $m_{n 2}$ (c) are all positive, and so $\mathrm{m}_{\mathrm{n} 2}(\mathrm{c})$ does not have a root in the parameter set C :

Step 2: Plug the bad root $\mathrm{c}=0$ of $\mathrm{m}_{2}(\mathrm{c})$ to $\mathrm{m}_{1}(\mathrm{c})$
We now investigate, for given $c_{0} 2 C=f 0 g$; whether $m_{1}(c)=0$ when $c=0$: By matching the given true parameter c_{0} with $\mathrm{m}_{1}(0)$; we can de..ne the function $\mathrm{m}_{1} \mathrm{Z}_{0} 0\left(\mathrm{c}_{0}\right)$ of c_{0} : Using Maple, we calculate

$$
m_{1-} 0\left(c_{0}\right)=\frac{1}{4 c^{4}} \begin{gathered}
i c^{3}+48 e^{c} ; 8 e^{c} c^{2} ; 8 c^{2} ; 24 \\
+c^{3} e^{2 c} ; 8 e^{2 c} c^{2}+24 c e^{2 c} ; 24 e^{2 c} ; 24 c
\end{gathered}
$$

and plot the graph of $m_{1 _} 0\left(c_{0}\right): F$ igure A. 3 plots $m_{1 _} 0\left(c_{0}\right)$ on the range of $c_{0} 2[i 10 ; 0: 4]$ and F igure $A .4$ plots the same function on the range of $c_{0} 2[0: 4 ; 0]$: T hrough these graphs, we can verify that $m_{1_{-}} 0\left(c_{0}\right)$ is positive but very close to zero when the true value c_{0} is close to zero.

Figure A. 3 Graph of $m_{1_{-}} 0\left(c_{0}\right)$
Figure A. 4 G raph of $\mathrm{m}_{1-} 0\left(\mathrm{c}_{0}\right)$
To investigate further the behavior of $\mathrm{m}_{1 _} 0\left(\mathrm{c}_{0}\right)$ around $\mathrm{c}_{0}=0$; in Figure A. 5 we plot the graphs of the ..rst derivatives of numerator of $m_{1} 0\left(c_{0}\right)$ on the range $c_{0} 2[i 0: 05 ; 0]$:

Figure A.5. Graph of the ..rst derivative of the Numerator of $m_{1 _} 0\left(c_{0}\right)$
The graph shows that the ..rst derivative of the numerat or of $m_{1_{1}} 0\left(c_{0}\right)$ is negative around zero, and so $\mathrm{m}_{1} 0$ (c_{0}) is strictly decreasing. Therefore, we conclude that $m_{1-} 0\left(c_{0}\right)$ is not zero for all $c_{0} 2 C_{0}$:

Case B: When $\mathrm{c}_{0}=0$:
Using Maple, we cal culate $m_{2}(c)$ when $c_{0}=0$; and plot the graph in Figures A. 6 and A.7. From these ..gures, it is apparent that $m_{2}(c)=0$ only when $c=c_{0}=0$:

Figure A. 6 Graph of $m_{2}(c)$ when $c_{0}=0$ Figure A. 7 Graph of $m_{2}(c)$ when $c_{0}=0$

7.5.2 W hen $g_{2 t}=i t ; t^{d}$

Although the expressions involved in $\mathrm{m}_{2}(\mathrm{c})$ in this case are far more complex, the analysis is simpler. Like the case of $g_{1 t}=t$; we ..nd that the denominator of $m_{2}(c)$ does not change sign over $C=[i 10 ; 0]$; and so we focus on the numerator of $m_{2}(c)$: Similar to the case of $g_{1 t}=t$; we numerically calculate the real roots of the numer ator of $m_{2}(c)$ for $c_{0} 2 C=[i 10 ; 0]$; and we ..nd that there exists only one root in the range of c_{0}; which implies that $\mathrm{m}_{2}(\mathrm{c})=0$ only at the true c_{0}. Therefore, when $\mathrm{g}_{2 \mathrm{t}}={ }^{1} \mathrm{t} ; \mathrm{t}^{2+}$; the limit of moment condition $\mathrm{m}(\mathrm{c})$ identi..es the true parameter c_{0} in C :

R eferences

[1] A ndews, D.W.K. (1999) : Estimation W hen a Parameter Is on a B oundary, Econometrica, 67, 1341-1384.
[2] Billingsley, P. (1968): C onvergence of Probability M easures, New Y ork, W iley.
[3] Bhattacharyya, A. (1946) : On Some A nalogues of the A mount Information and Their Uses in Statistical Estimation, Sankhya, 8, 1-14, 201-218, 315-328.
[4] Bernard, A. and C. J ones (1996) : Productivity A cross Industries and Countries: Time Series Theory and Evidence, Review of Economics and Statistics, 78, 135-146.
[5] Binder, M., C. Hsiao, and H. Pesaran (1999) : Likelihood B ased Inference for Panel Vect or Autoregressions: Testing for Unit Roots and Cointegration in Short Panels, Mimeo.
[6] Canjels, E. and M. W atson (1997) : E stimating Deterministic Trends in Presence of Serially Correlated Errors, Review of Economics and Statistics, 79, 184-200.
[7] Choi, I. (1999) : Unit R oot Tests for Panel Data, forthcoming in J ournal of International M oney and Finance.
[8] Coakely, J., F. K ulasi, and R. Smith (1996) : C urrent A ccount Solvencyand the Feldstein-Horika Puzzle, E conomic J ournal, 106, 620-627.
[9] Davidson, J. (1994) : Stochastic Limit Theory, Oxford University Press.
[10] Hahn, J. (1998) : A symptotically Unbiased Inference of Dynamic Panel M odel with Fixed Exects W hen Both n and T are L arge, M imeo.
[11] Im, K., H. Pesaran, and Y. Shin (1996) : Testing for Unit Roots Heterogeneous Panels, M imeo.
[12] Lancaster, T. (1998) : The Incidental P ar ameter P roblem Since 1948, Mimeo.
[13] Levin, A. and C. Lin (1993) : Unit R oot Tests in Pane Data: New Results, UCSD Working Paper.
[14] M acD onald, R. (1996) : Panel Unit R oot Tests and R eal Exchange R ates, E conomics Letters, 50, 7-11.
[15] M addala, G.S. and S. Wu (1999) : A Comparative Study of Unit R oot Tests with Panel Data and a New Simple Test, Oxford Bulletin of E conomics and Statistics, 61, 631-652.
[16] M agnus, J. and H. Neudecker (1988) : M atrix Diœerential Calculus, N ew Y ork, W iley.
[17] M oon, H.R. and P.C.B. Phillips (1998) : A Reinterpretation of the Feldstein-Horioka Regressions from a Nonstationary Veiwpoint, Mimeo.
[18] M oon, H.R. and P.C.B. Phillips (1999a) : M aximum Likelihood Estimation in Panels with Incidental Trends, Oxford Bulletin of E conomics and Statistics, 61, 771-748.
[19] M oon, H.R. and P.C.B. Phillips (1999b) : Estimation of A utoregressive R oots near Unity using Panel D ata, forthcoming in Econometric T heory.
[20] Moon, H.R. and P.C.B. Phillips (2000) : GM M Estimation of Autoregressive Roots Near Unity with Panel Data, M imeo.
[21] Newey, W. and D. McFadden (1994) : Large Sample Estimation and Hypothesis Testing, in Engle R.F. and D. McFadden ed. Handbook of E conometri cs Vol 4., N orthHolland, A msterdam, 2111-2245.
[22] Neyman, J. and E.L. Scott (1948) : Consistent Estimates B ased on P artially Consistent O bservations, E conometrica, 16, 1-32.
[23] Nickell, S. (1981) : Biases in Dynamic M odels with F ixed Exects, E conometrica, 49, 1417-1426.
[24] Oh, K. Y. (1996) : Purchasing Power Parity and the Unit R oot Tests Using Panel Data, J ournal of International M oney and Finance, 15, 405-418.
[25] Park, J. and P.C.B. Phillips (1988) : Statistical Infencence in Regressions with Integrated Processes, P art I, E conometric T heory, 4, 468-497.
[26] Pedroni, P. (1996) : Fully Modi..ed OLS for Heterogeneous Cointegrated Panels and the Case of Purchasing Power Parity, Indiana University Working Papers in Economics, No. 96-20.
[27] Pedroni, P. (1999) : Critical Values for C ointegration Tests in Heterogeneous Panels with Multiple Regressors, Oxford Bulletin of Economics and Statistics, 61, 653-670.
[28] Pesaran, H. and R. Smith (1995) : Estimating Long-R un R elationshipsfrom Dynamic Heterogeneous P anels, J ournal of E conometrics, 68, 79-113.
[29] Phillips, P. C. B. (1987) : Towards a Uni..ed A symptotic Theory for A utoregression, Biometrica, 74, 535-547.
[30] Phillips, P. C. B. (1993) : Hyper-Consistent Estimation of a U nit R oot in Time Series Regression. C owles Foundation D iscussion P aper \# 1040.
[31] Phillips, P. C. B. (1995) : Full M odi..ed Least Squares and Vector Autoregression. E conometrica, 63, 1023-1078.
[32] Phillips, P.C.B. and C. Lee (1996) : E \ddagger ciency Gains from Quasi-Dimerencing under Nonstationarity, in P.M. Robinson and M. Rosenblatt (eds.), Athens Conference of A pplied Probability and Time Series: Volume II Time Series Analysis in Memory of E.J. Hannan, New York, Springer-Verlag.
[33] Phillips, P.C.B. and H.R. M oon (1999) : Linear Regression Limit Theory for Nonstationary P anel Data, E conometrica, 67, 1057-1111.
[34] Phillips, P.C.B. and V. Solo (1992) : A symptotics for Linear Processes, Annals of Statistics, 20, 971-1001.
[35] Quah, D. (1994) : Exploiting Cross-Section Variations for Unit R oot Inference in Dynamic Data, Economic Letters, 44, 9-19.
[36] Waterman, R. and B. Lindsay (1996) : Projected Score M ethods for A pproximating Conditional Scores, Biometrika, 83, 1-13.
[37] Waterman, R. and B. Lindsay (1998) : Projected Score M ethods for Nuisance Parameters: A symptotics and Neyman-Scott Problems, Mimeo.
[38] Wu, S. (1997) : Purching Power Parity Under the Currency Float: New Evidence from P anel Data Unit R oot Tests, Mimeo.
[39] Wu, Y. (1996) : A re Real Exchange R ates Nonstationary? Evidence from A Panel Data Test, J ournal of Money, Credit, and B anking, 28, 54-63.

Figure A.1. Graph of Roots of $\mathrm{m}_{\mathrm{n} 2}$ (c)

Figure A.2. Graph of R oots of $\mathrm{man}_{\mathrm{n}}$ (c)

[^0]: ${ }^{\text {a }}$ The authors thank J. O wens for excellent research assistance, J. Hahn for helpful discussions, and R. Waterman for sharing with us his recent joint papers with B. Lindsay. Moon thanks the Academic R esearch Committee of UCSB for research support and Phillips thanks the NSF for research support under N SF Grant No. SBR 97-30295.

[^1]: ${ }^{1}$ Lancaster(1998) provides a recent general survey of theincident al parameter problem in econometrics.

[^2]: ${ }^{2}$ Usually, the lag truncation parameter K in (2) and 3 tends to in..nity as $n ; T$ increase to in..nity together, under a certain regularity condition. For example, Moon and Phillips (1999b) impose the condition that $\frac{n K}{T}!0$ as ($n ; T!1$) with $\frac{n}{T}!0$: This regularity condition is required for the asymptotics underlying Assumption 6.

[^3]: ${ }^{3}$ Notice that the second and the third derivatives of $M_{1 n T}$ (c) are deterministic.

[^4]: ${ }^{5}$ That is,

 $$
 \sup _{T} E k Q_{i T} k f k Q_{i T} k>M g!0
 $$

[^5]: ${ }^{6}$ We are in debt to J ohn O wens for the numerical analysis in this section.

