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Abstract

This paper presents new instrumental variables estimators for nonparametric models with

discrete endogenous regressors. The model speci�cation is su�ciently general to include struc-

tural models, triangular simultaneous equations and certain models of measurement error. Re-

stricting the analysis to discrete endogenous regressors is an integral component of the analysis

since a similar model with continuously distributed endogenous regressors is ill-posed and cannot

be identi�ed. The central contribution of this paper is a consistent two-step nonparametric in-

strumental variables estimator of the model. Large sample results, including global convergence

rates and asmptotic normality are also provided.

Discreteness of the regressors is shown to produce an additive representation of the model

which leads to a simple veri�able condition for identi�cation, and a restriction that is imposed

in estimation. The proposed nonparametric two-step IV estimator is based on series estimation

which is particularly amenable to additive models, and yields e�ciency gains in imposing addi-

tivity. The �rst step constitutes nonparametric estimation of the instrument, while the second

step constructs the IV estimator from a linear combination of an instrument matrix and a matrix

of the regression covariates. Linear functionals of the estimator are shown to be asymptotically

normal, including

p
n-consistent when certain regularity conditions hold.

Key words: Nonparametric Estimation, Instrumental variables estimation, Series Estimators
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1 INTRODUCTION

This paper presents new instrumental variables (IV) estimators for nonparametric models with

a univariate discrete endogenous regressor. The focus is on binary endogenous regressors, al-

though an extension to non-binary endogenous regressors with �nite support is also analyzed.

In the speci�cation, the error terms are not independent of the instruments, but satisfy a weaker

conditional mean restriction. The model is su�ciently general to encompass structural models,

triangular simultaneous equations systems, and certain nonparametric models with measure-

ment error. A particular motivation for the speci�cation is program evaluation models which

frequently arise in economics applications.

Celebrated results for the identi�cation and estimation of structural models such as Koop-

mans (1949) and Fisher (1966) depend strongly on linear parametrizations that are not part of

prior knowledge of the structure. For the nonparametric model considered here, any parametriza-

tions invoked to derive identi�cation results will in general yield incorrect inferences about the

identi�ability of the model. Similarly, parametrizations for the purpose of estimation will re-

sult in inconsistent estimators of the unknown function. We illustrate both identi�ability and

estimability of the nonparametric model in the absence of any parametric restrictions.

A two-step instrumental variables estimator with an appropriately de�ned matrix of instru-

ments is shown to be a consistent estimator of the model. The instruments are estimated

nonparametrically as conditional means in the �rst step via series estimation. Nonparametric

estimation of the instruments permits bypassing the speci�cation of conditional distributions

as in Newey (1990), but is heuristic and the subsequent large sample results for the IV esti-

mator are not dependent on nonparametric estimation in the �rst step. The second step is a

nonparametric generalization of the linear IV estimator, employing a matrix of the instruments

and a matrix of the regression covariates to construct the nonparametric instrumental variables

estimator.

Semiparametric and nonparametric instrumental variables estimators have been previously

considered. E�cient IV estimation of linear models in which the instruments are estimated

nonparametrically was proposed by Robinson (1976) and Newey (1990). A generalization of

these models to semiparametric regression functions linear in the endogenous variables was con-

sidered in Newey (1985b) and Robinson (1988). Roehrig (1988) provided a general treatment

of identi�cation in nonparametric models where the errors are independent of the instruments.

Estimation of nonparametric structural models was �rst studied by Newey and Powell (1989),

who developed a nonparametric two-stage least squares estimator. However, there is no distri-

bution theory for the proposed estimator, due to an inherent ill-posed nature of the problem.

A slightly restrictive version of this model is studied in Newey, Powell and Vella (1999), who

derive a two-step nonparametric IV estimator for triangular simultaneous equations models.
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This paper extends the aforementioned body of work in a few ways. We consider a general

class of models that nests linear and nonlinear speci�cations, including nonparametric triangu-

lar models and systems of equations. Some measurement error models are also shown to be a

special case of the model. Motivated by dual considerations, however, this generality is limited

by restricting the endogenous regressors to be discrete. First and more importantly, a problem

which is evidently general in nonparametric systems of equations with continuously distributed

endogenous regressors is a discontinuous mapping from the structural to the reduced form, rais-

ing an immediate problem for identi�cation of the in�nite-dimensional function (see Newey and

Powell, 1989). Although some results may be obtained by restricting the domain of the data,

such restrictions preclude estimation of functions with higher-order derivatives and appear to

be problem-speci�c. Results may also be obtained by limiting the analysis to a sub-class of

models, as is done in Newey et al (1999). Alternatively, this paper illustrates that restricting

the endogenous regressors to be discrete su�ces in addressing the problem, without sacri�cing

the generality of the model in other respects. Second, discrete data, which include a wide variety

of qualitative and dummy variables, appear to form a large proportion of the available microe-

conometrics data, suggesting limited drawbacks from analyzing models in which endogeneity

stems strictly from discrete regressors.

The key results of this paper rest on the existence of a transform which converts the in�nite-

dimensional problem to a �nite-dimensional one, and is critical in deriving a one-to-one map

between the structure and the reduced form, i:e, for identi�cation. The transform parametrizes

the endogenous component by extracting the discrete regressor from the unknown function,

which is subsequently evaluated at each of the discrete variable's support points. This idea is

illustrated by a simple binary regressor example below. Let d denote the binary regressor, and

x represent a vector of continuously distributed variables. Then,

y = m(x; d) + "

� �m(x)d+ ~m(x)(1� d) + "

= ~m(x) + [ �m(x)� ~m(x)]d+ "

= �(x) + �(x)d+ " (1)

where " denotes an error term and m(�) represents the nonparametric relation between y and

(x; d). Equation (1) shows that an equivalent representation of the model is a speci�cation

in which m(�) is a linear combination of two additively separable functions �(�) and �(�)d: In
Section 3, the above transform is utilized in deriving identi�cation of the model. Although the

speci�cation is not ex ante additive, this representation of the model motivates the application

of series estimators, which yield e�ciency gains from imposing additivity.

The remainder of the paper is organized as follows. Section 2 introduces the model, motivat-

ing the speci�cation with a number of examples. Section 3 discusses identi�cation, deriving a
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simple necessary condition that is veri�able from the data. Section 4 develops the two-step non-

parametric IV estimator and illustrates that it is asymptotically well-de�ned. Mean square error

(MSE) and uniform convergence rates are presented in Section 5: Section 6 derives asymptotic

normality of linear functionals of the estimator, and discusses the construction of a consistent

estimator of the asymptotic variance. Three extensions of the model are considered in Section

7. The �rst is to non-binary discrete endogenous variables with �nite support, the second is to a

semiparametric speci�cation and the third extension is to a model with no exogenous covariates.

Conclusions follow. All proofs are presented in an appendix to the paper.

2 THE CONDITIONAL MEAN MODEL

The model studied in this paper is summarized in the following way:

y = mo(x1; d) + "

E[�o(v;mo)jx] = 0 (2)

where v � (y; x; d) denotes the data, d is a univariate dummy endogenous variable
1
, x is a

sx � 1 vector of instrumental variables which includes x1 as a s1 � 1 subvector, mo is the

in�nite-dimensional object of estimation, and �o(v;mo) is a residual term which may coincide

with " in speci�c applications.

Using the transform described in equation (1), an equivalent representation of the regression

model is

y = mo(x1; d) + "

= �o(x1) + �o(x1)d+ ": (3)

This model is a generalization of the limited information simultaneous equations model and

focuses on the estimation of a single equation that may be part of a system of equations. The

speci�cation covers as special cases the standard linear and nonlinear simultaneous equation

systems. For these cases, the conditional mean restriction in (2) is stronger than the typical

zero covariance of the residual and instrument restriction necessary for consistent estimation.

The generality of the above model is illustrated through several examples.

2.1 Example 1: Structural Estimation

Consider a nonparametric structural model, for example the classical model of supply and de-

mand, where y and d respectively denote equilibrium prices and (discrete) quantities, and y and

d are jointly determined in equilibrium as follows:

1For the remainder of the analysis, to simplify the exposition, d will denote a dummy variable. The extension

to non-binary discrete variables will be considered in Section 7.
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y = mo(x1; d) + "; E["jx1; x2] = 0 (4)

d = ho(x2; y) + !; E[�jx1; x2] = 0: (5)

Here, x1 and x2 represent exogenous variables such as weather and income respectively and "

and ! are unobservable error terms.

This model may be thought of as the nonparametric generalization of dummy endogenous

variable models studied previously (Heckman, 1978). Suppose the inverse demand functionmo is

the object of estimation.
2
For instance, an estimate of mo would be required as an intermediary

step in the computation of the deadweight loss associated with the imposition of a tax (e:g;

Hausman and Newey, 1995).

Equation (4) is a special case of (2) with x = (x1; x2); v = (y; x; d) and �o(v;mo) = y �
mo(x1; d). Parallel methods to those described in the body of this paper for the estimation of

mo may be utilized to estimate ho only if y is a discrete variable with �nite support. Where

y is continuously distributed, the mapping from the structural to the reduced form of ho is

discontinuous and prevents the construction of a consistent nonparametric estimator of ho.
3

2.2 Example 2: Triangular Simultaneous Equations Model

A second example of our generalized model is a nonparametric triangular simultaneous equations

system, a model which commonly arises in program evaluation studies (e:g; Mo�tt and Wolfe,

1992; Poterba, Venti and Wise, 1996; Heckman, 1997). For x = (x1; x2), let

y = mo(x1; d) + "; E["j�; x] = E["j�]; E["] = 0

d = �o(x) + �; � independent of x (6)

where the object of estimation is mo, and the second equation is is the reduced form for d. One

well-known example of this model is Angrist (1990) where y denotes the post-war wage, d denotes

the endogenously determined decision to draft in the Vietnam war, and x are conditioning

variables. An implication of the stochastic restrictions is that E["jx] = 0.
4

2For the remainder of the paper we will adopt the following convention: to represent the entire function, we

will suppress the argument, e:g, mo, while mo(x1; d) will denote the value of the function at a point.
3The structural and reduced forms are related by the equation E(djx) =

R
ho(x2; y)f(x2; yjx)dy, where f(�)

is a conditional density. Since both E(djx) and f(�) may be consistently estimated from the data, they can be

treated as known components. Identi�cation of the equation therefore rests on solving this linear integral equation

to obtain a unique solution for ho: A problem arises because this is an example of a linear integral equations of

the �rst kind, for which it is di�cult to establish a continuous map from ho to E(djx) (see Newey and Powell

(1989) for more details).

4This follows since E("jx) = E(E("j�; x)jx) = E(E("j�)jx) = E(E("j�)) = E(") = 0
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This model is an example of (2) with v = (y; x; d), and �o(v;mo) = y �mo(x1; d). Conditions

under which it is identi�ed, and a consistent procedure to estimate it, will be discussed in the

following sections. Estimation of a similar model (without the assumption that E["] = 0 and

with E[�jx] = 0 in lieu of the independence assumption) is considered in Newey et al (1999);

our results are complementary to those.

2.3 Example 3: Misclassi�cation of a Dummy Regressor

A third example illustrates the signi�cance of specifying a general residual term �o. This is an

example of nonparametric errors-in-variables, in which endogeneity is induced by misclassi�ca-

tion of the dummy regressor. For example, miscoding d = 1 when the true value is zero. Let

x = (x1; x2), and

y = mo(x1; d
�
) + "; E["jx] = 0

d = d� � �; E[�j"; x] = 0

d� = �o(x) + �; � distributed independently of x (7)

where d� is the true unobserved response that is misclassi�ed with some probability  ; (0 �
 < 1), d denotes the misclassi�ed response, � is misclassi�cation error and the third equation

depicts a causal relation between the unobserved variable d� and the instrumental variables, x.

Note that using equations (1) and (7),

y = mo(x1; d
�
) + "

� �o(x1) + �o(x1)d+ �o(x1)� + ": (8)

For v = (y; x; d), this model �ts equation (2) since �o(v;mo) = y � �o(x1) � �o(x1)d is

mean zero conditional on x given the assumed restrictions on the error terms. A simple and

consistent method of estimating this model is presented below. The result is complementary to

those suggested for polynomial errors in variables model (e:g; Hausman et: al;1985, Hausman

et: al;1989), but considers a slightly more general speci�cation and is simpler to implement.

The above examples illustrate the generality of the model. Below, we present a two-step

nonparametric IV estimator of this model. Analogous to the parametric IV estimator, the �rst

step consists of constructing the instrument �o(x) � E[djx] via a nonparametric regression

of d on x. The second step does not involve nonparametric regression, but instead employs

a matrix of the functions of the instrumental variables along with a conformable (for matrix

multiplication) matrix of (x1; d) to generate an estimate of the structural function mo(x1; d).

In this form, the proposed estimator di�ers from nonparametric two-step estimators previously

considered in the literature (e:g, Ahn 1995, Das, Newey and Vella 1999, Newey et al 1999).
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3 IDENTIFICATION

This section develops theorems for the identi�cation of the function of interest, mo. The con-

ditions and theorems presented are nonparametric in the sense that they pertain to the iden-

ti�cation of a functional relationship, and not of parameters. The results presented here build

on the early work of Koopmans (1949), Fisher (1966) and Brown (1983) for parametric models,

and include them as special cases.

The �rst result is a nonparametric generalization of the rank condition that is su�cient for

the identi�cation of mo. Partition x as x = (x1; x2). Let v = (y; x; d) as de�ned before, and

de�ne ! = d� �o(x): Let dy denote dim(y), f = [f1; f2]
0
= [y� mo(x1; d) �"; d� �o(x)� !]0

f� = [f�1 ; f
�
2 ] = y �m�

(x1; d) � ", d � ��(x) � !]0where m�
represents any other function that

satis�es (2) and let � = [@f1=@v, @f�=@v]0.

Theorem 3.1 For the model in (2), if mo(x1; d) is di�erentiable, rank (�) < dy + 1 and

rank(x2) =1 everywhere on R, then mo(x1; d) and m
�
(x1; d) are observationally equivalent, and

mo(x1; d) is identi�ed up to an additive constant.

Proof : Appendix.

Theorem 3.1 is the standard rank condition that, in the linear simultaneous equation model,

is both necessary and su�cient for identi�cation (see Koopmans 1949, p.168-169). This result

is closely related to Theorem 5.1 of Roehrig (1988), but does not require independence of the

error term. While the stated rank condition is su�cient, it is not necessary for identi�cation

in a nonlinear model where the absence of any excluded exogenous variables, i:e; rank(x2) < 1,

can su�ce for identi�cation. For illustration, consider a simultaneous equation system, with no

excluded exogenous variables:

y = mo(x1; d) + "1; E["1jx1] = 0

d = ho(x1; y) + "2; E["2jx1] = 0: (9)

For mo and ho linear in the variables, this structural form is not identi�able. However,

identi�cation of this model can be obtained through nonlinearities in mo and ho. Consider

identi�cation of the �rst equation. By Theorem 3.1, the rank condition for identi�cation of

mo(x1; d) is satis�ed if

j�j = 0 where� =

2
64 @f1=@y @f1=@d @f1=@x1
@f�1 =@y @f�1 =@d @f�1 =@x1
@f�2 =@y @f�2 =@d @f�2 =@x1

3
75 : (10)
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It follows that so long as @f�2 =@y or @f�2 =@x1 depend on y, the unique solution to (10) is

@mo=@d = @m�=@d and @mo=@x1 = @m�=@x1, which implies that mo(x1; d) is identi�ed, up to

an additive constant.
5

Identi�cation of the model can also be linked to some of the results in the program evaluation

literature. By (1) and (2)

E[yjx] = E[mo(x1; d)jx]
= �o(x1) + �o(x1)�o(x) (11)

= go(x):

Since the function of interest is the sum of the two additive components �o and �o�o, iden-

ti�cation of mo rests on the identi�cation of each of these components. Note that conditional

expectations are unique with probability one, implying that go(x) and �o(x) are identi�ed and

may be thought of as known in analyzing the identi�cation of mo.

Without loss of generality, assume x2 2 (0; 1).

Lemma 3.1 If 0 < V ar(�o(x)jx1) <1, then �o(x1) is identi�ed.

Proof Since

E[yjx1; x2 = 0] = �o(x1) + �o(x1)E[djx1; x2 = 0]

E[yjx1; x2 = 1] = �o(x1) + �o(x1)E[djx1; x2 = 1];

it follows that

E[yjx1; x2 = 0]�E[yjx1; x2 = 1]

E[djx1; x2 = 0]�E[djx1; x2 = 1]

= �o(x1): (12)

The Wald representation in equation (12) is an explicit expression for the component �o(x1)

in terms of the identi�ed conditional expectations E[yjx1; x2 = i] and E[djx1; x2 = i], i = 0; 1.

Therefore, the key condition underlying the identi�cation of �o(x1) is that the denominator

in (12) be bounded away from zero. This requires that there be su�cient variation in the

conditional expectation �o(x) for di�erent realizations of x2, or V ar( �o(x)jx1) > 0:

Althoughmo is the stated object of estimation, frequently �o(x1) is of interest as this compo-

nent represents the incremental e�ect on the conditional mean of y for the subset of observations

where d = 1 (the \treated" group). For example, in Angrist (1990) this component measures

5Where f and f� are not continuously di�erentiable, assume that the discrete generalizations hold, e:g, �mo =

mo(x1;d+�d)=�d
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the earnings loss to Vietnam-era veterans relative to their civilian counterparts. In other pro-

gram evaluation studies, �o(x1) might measure the e�ects of Medicaid on labor supply (e:g;

Mo�tt and Wolfe, 1992) or wage e�ects of participation in the JTPA program (e:g; Heckman

and Smith,1997). In an application where d is not endogenous, �o(x1) represents the abnormal

share price response to a �rm that undertakes a leveraged buyout (eg; Chevalier 1994).

Contrary to a parametric speci�cation, the above formulation allows the incremental e�ect

on the \treated" population to di�er by observation. A useful metric is an average of �o over

x1, which is a functional we study in Section 6. Note that the condition in equation (12), which

is a necessary condition for identi�cation, is easily veri�ed from the data. Based on Lemma 1,

we have the following theorem for the identi�cation of mo(x1; d).

Theorem 3.2 If Lemma 3.1 is satis�ed, then mo(x1; d) is identi�ed up to an additive

constant.

Proof By Lemma 3.1, �o(x1) is identi�ed. Since ho(x) and �o(x) are identi�ed by the

uniqueness of conditional expectations, then �o(x1) = go(x)��o(x1)�o(x) is identi�ed, implying
that each of the additive components ofmo(x1; d) is identi�ed. From this it follows thatmo(x1; d)

is identi�ed up to an additive constant.

4 ESTIMATION

Estimation of (2) di�ers from regular nonparametric regression in two ways. First, estimation of

mo(x1; d) is not equivalent to the estimation of a conditional mean due to the correlation of d with

the residual. Second, estimation ofmo does not correspond to a nonparametric generalization of

two-stage least squares estimation, i:e, direct nonparametric estimation ofmo by replacing (x1; d)

with (x1; �(x)). As is well known, the latter is invalid since replacing nonlinear functions of the

endogenous regressors with nonlinear functions of their predicted values results in inconsistent

estimation of mo. Rather, in the estimation scheme outlined below, we present a generalization

to the linear IV estimator, incorporating the restriction that mo(x1; d) is additively separable

as �o(x1) + �o(x1)d.

A two-step IV procedure is proposed for the estimation of the model. As outlined above, the

�rst step consists of a nonparametric regression of d on the instruments x to yield an estimate

of the instrument �̂(xi) = Ê[dijxi], (i = 1; :::; n); the estimated �̂(xi) are used in forming the

instrument matrix. The second step is the construction of an IV estimator using the instrument

matrix and a matrix of functions of (x1; d), to generate an estimator of mo(x1; d). This estimator

is shown to be additive, consisting of a component that approximates �o(x1), and a component

that approximates �o(x1)d.
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All results are presented for series estimators which provide a convenient method of imposing

the additive form present in (1). Alternative nonparametric estimators (e:g; kernel or nearest-

neighbour estimation) could be applied as well. However, the additive structure is especially

suitable to series estimation, where imposing additivity is computationally simple, and known

to lead to higher e�ciency and convergence rates of the estimator (Stone 1985, Andrews and

Whang 1991).

In principle, �rst step estimation of the conditional expectation �(x) could be carried out

without nonparametric methods, for example, by least squares. A well-known result is the

consistency of the IV estimator for arbitrary non-zero correlation asymptotically between the

endogenous regressor and instrument (Newey, 1990). For example, if d = 1(x0
 � � > 0) where

1(A) is the indicator function for A, and � is known to be a normally distributed error term,

maximum likelihood estimation of the model could generate the instrument �(x0b
). For other
models, however, estimation of �(x) could require knowledge of the conditional distribution of d

given x, and construction of the conditional expectation could require cumbersome computation.

By employing nonparametric methods to estimate �; we avoid di�cult computation or the

reliance on distributional assumptions.

Consider the �rst step. For an integer L > 0; de�ne an L � 1 vector of approximating

functions rL(x) = (r1L(x); ::::; rLL(x))
0
. The vector rL(x) will be used to approximate �, with

the property that for large L; the approximation to � gets arbitrarily close in the Euclidean norm.

As further discussed below, the approximating sequence in this paper will consist primarily of

polynomials (e:g, power series), although some additional results will be provided for regression

splines. Let n denote the number of observations. For i = 1; ::::n, the �rst step series estimateb�i = b�(xi) is obtained as

b�i = rL(xi)
0b
; b
 = (R0R)�R0d; R = [r1;:::; rn]

0
(13)

where d = (d1;::::; dn); b
 is the least squares estimator from regressing d on rL(x), and (R0R)�

represents a generalized inverse. This constitutes the �rst step of estimation.

For the second step, de�ne a K � 1 (K > 0) vector of approximating functions �pK(x1; d) =

(pK(x1); p
K
(x1; d))

0
, where pK(x1) and p

K
(x1; d) are each (K=2 � 1)subvectors of the approxi-

mating sequence. Let the �rst element of pK(x1) be the unit vector. To re
ect the underlying

additively separable form of the model, let the next (K � 1)=2 functions in pK(x1) depend only

on x1, and the (K=2) functions in pK(x1; d), comprise of interactions of each of the (K � 1)=2

functions in pK(x1) with d: Let k index the elements of the subvectors p
K
(x1) and p

K
(x1; d): It

should be emphasized that in this formulation there are an equal number of elements in pK(x1)

and pK(x1; d), and in particular, pKk (x1; d) = pKk (x1)d; (k = 1; :::;K=2):

To specify the instrument matrix, we de�ne an additional K � 1 vector of approximating

functions �qK(x1; �(x)) = (qK(x1); q
K
(x1; �(x)))

0
. The elements of the instrument matrix will be
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isomorphic to �pK(x1; d), with the instrument �(x) replacing d, wherever it appears in �pK . Set

the subvector qK(x1) to be equal to p
K
(x1). Next, let the subvector q

K
(x1; �(x)) constitute the

product of each of the elements of q(x1) with �(x), implying that q
K
k (x1; �(x)) = qKk (x1)�(x) =

pKk (x1)�(x), (k = 1; :::;K=2).

As the predicted value from the �rst step is an estimated probability, it is useful to bound

the values of �̂(x). Further, since polynomial series estimation yield poor approximations in the

presence of outliers, restricting the domain of x1 may also be important.
6
Let w = (x1; d; �(x)):

Let �(w) be a trimming function, de�ned as

�(w) =
sxQ
j=1

1(aj � x1j � bj)1(asx+1 � �j � bsx+1)1(asx+1 � dj � bsx+1) where aj and bj

are either pre-speci�ed constants or are themselves estimated, and 0 < asx+1 < bsx+1 < 1. For

i indexing the observations, let �̂i = �̂(x1i; di; b�i), q̂i = �qK(x1i; �̂i(x)), and pi = �pK(x1i; di): The

instrumental variables estimator for mo(x1; d) is de�ned by

m̂(x1; d) = �pK(x1; d)
0^�; ^� = (Q̂0P̂ )�Q̂0y (14)

where y=[y1; ::::; yn]
0 P̂ = [�̂1p1; :::; �̂npn]

0
=

2
64
�̂1p

K
(x11); �̂1p

K
(x11)d1

.

.

.

.

.

.

�̂np
K
(x1n); �̂np

K
(x1n)dn

3
75

Q̂ = [�̂1q̂1; :::; �̂nq̂n]
0
=

2
64
�̂1p

K
(x11); �̂1p

K
(x11)�̂1

.

.

.

.

.

.

�̂np
K
(x1n); �̂np

K
(x1n)�̂n

3
75 :

The estimator ^� can be used to form estimators of either �o(x1) or �o(x1) by extracting the

subvector of �pK(x1; d) that depends on only x1 or the subvector that depends on both x1 and

d; respectively. Partition � as ^� = (^�0�;
^�0�)

0
where ^�� corresponds to the �rst K=2 elements of ^�,

and ^�� corresponds to the remaining terms. Then,

�̂(x1) = pK(x1)
0^��; ^�(x1) = pK(x1)d

0^��: (15)

The constant term is identi�ed, and its estimator is the �rst element of ^��, which corresponds

to the unit vector in pK(x1). Note that a constant is not estimated in ^�(x1), since �(x1)

represents the incremental e�ect on y for the subset of observations where d = 1.

For the proposed IV estimator to be asymptotically well-de�ned, a requisite condition is

that the second moment matrix of approximating functions Q̂0P̂ be uniformly bounded away

6Although d = f0; 1g, we include it in the trimming function to be general. This generality is useful when the

de�nition of d is extended to the case of discrete d with �nite support.
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from singularity. We show below that a necessary condition for this matrix to be non-singular

is V ar(�(x)jx1) > 0. Note that V ar(�(x)jx1) > 0 is veri�able, and a necessary condition for

identi�cation as given in Lemma 3.1, so that once mo(x1; d) is identi�ed, the proposed estimator

will be well-de�ned.

LetG = E[Q0P ]. ByG = E[E[Gjx]]; G=
"

E[pK(x1)
0pK(x1)] E[pK(x1)

0pK(x1)]E[djx]
E[pK(x1)

0pK(x1)�(x)] E[pK(x1)
0pK(x1)�(x)]E[djx]

#

=E

""
1 �(x)

�(x) �2(x)

#

 pK(x1)

0pK(x1)

#
= E

h
� 
 pK(x1)

0pK(x1)
i

=E[E

h
� 
 pK(x1)

0pK(x1)
i
jx1] = E[[�jx1]
 pK(x1)

0pK(x1)]:

Under standard regularity conditions given below, E[pK(x1)
0pK(x1)] will have full column

rank, so that the non-singularity of G depends strictly on bounding the smallest eigenvalue of

�jx1 (denoted �min(�jx1)); below by zero. Evaluating the determinant of �jx1, we have

jE[�jx1]j = E[�2(x)jx1]�E[�(x)jx1]2 = V ar(�(x)jx1) > 0 (16)

since by Lemma 3.1 (necessary for identi�cation), 9 �; (0 < � <1) such that V ar(�(x)jx1) � �.

However, equation (16) is insu�cient to show that �min(�jx1) is strictly positive (as required

by positive de�niteness of G). Represent the vectors of eigenvalues of �jx1 as �1(�) and �2(�).
Since the trace of (�jx1) is the sum of its eigenvalues,

�1(�) + �2(�) = 1 + [�2(x)jx1] > 0: (17)

Further, by implication of equation (16),

�1(�)
0�2(�) = jE[�jx1]j >0: (18)

Equations (17) and (18) jointly imply that �1(�) > 0; �2(�) > 0, from which it follows that

�min(�jx1) > 0. Hence, the proposed IV estimator is well-de�ned asymptotically.

The two series estimators we consider are power series and smooth piecewise polynomials,

or splines, with evenly spaced break-points. Such estimators have been considered previously

in the literature (Porter 1996, Newey et al 1999). Power series are known to provide good

approximations to smooth functions and are simple to compute, although they may be adversely

a�ected by outliers in the data. Consider the �rst stage approximating sequence, rL(x). A power

series approximation is typically modeled as increasing powers of a single function, for example,

rlL = f(x)l�1: l = 1; : : : ; L; L = 1; 2; : : : (19)

12



for some function f that is chosen according to the context of the model. A convenient choice

for our �rst stage is f with bounded range (as similarly suggested in the nonparametric selection

model by Das, Newey and Vella, 1999),

rlL = F(x)l�1 (20)

where F(x) =
h
�(��1(x)

�

i
, �(�) is the standard normal density and �(�) represents the standard

normal distribution function. Comprehensive discussions of these and alternative(e:g; orthonor-

mal polynomials) power series estimators are presented in Andrews (1991) and Newey (1997).

We also provide results for spline estimation. Splines are smooth piecewise polynomials

with �xed joining points (or knots) for the polynomial. An advantage of splines relative to

power series are the better approximations when either the underlying function is assumed to be

discontinuous, or outliers are present. The knots may be placed at points where the underlying

function is changing rapidly, or they may simply be placed equidistant. A typical mth
degree

spline for univariate x, with J known knot points, j1; : : : ; jJ , may be expressed as

�jJ = xj�1; 1 � j � m+ 11(x � ji)(x� ji)
m; 1 � i � J (21)

For multivariate x, the approximating functions are products of the functions in the single

variable case. We restrict ourselves to evenly spaced knots in the support of x whose range is

therefore treated as known. For exposition consider the case where the support of x is on the

interval [�1; 1]. Denote for a scalar c; (c)+ = 1(c > 0)c: An mth
degree spline with J � 1 knots

is de�ned to be a linear combination of

�jJ = xj�1; 1 � j � m+ 1([x+ 1� 2(j �m� 1)=J ])m+ ; m+ 2 � j � m+ J (22)

For sX � dim(x), let � =(� 1...�1X) denote a (1 x sX) vector of non-negative integers, and

let �(l)1l=1 denote a sequence of such vectors. Then, for a set of vectors �(l) with the restriction

that �j(l) � (m+ J) for each j and each l, the approximating series can be expressed as

rlL =

sXY
j=1

��j(L);J(j)(xj); k = 1; : : : K (23)

where Jj represents the number of knots for the j
th
component of x. Similarly, in the second

step, spline approximations can be applied by imposing additivity by considering terms that

depend only on x1 or (x1; �), but no combinations of the two.

13



5 CONVERGENCE RATES

The integrated mean-square error and uniform convergence rates of the estimator m̂(x1; d) are

derived in this section. These results are complementary to, and share several features of,

rates previously derived in Stone (1982), Andrews (1991) and Newey (1995, 1997). However,

important di�erences arise here as well. In particular, we illustrate that the rate at which the

�rst step is estimated is irrelevant for the second step MSE convergence rate, yielding the same

result for the second step irrespective of the rate at which �(x) is esimated. However, the

estimator does not attain Stone's (1982) optimal rates, in contrast to alternative nonparametric

two-step series estimators (e:g, Das et: al:; 1999, Newey et: al;1999).These results are discussed

below.

To derive the results, some regularity conditions are imposed on the model. For a random

matrix A, let kAkv = E[kAkv ]1=v 8v < 1; and let kAk1 denote the in�mum of constants C,

such that Pr( kAkv < C) = 1. For a matrix D let kDk = [tracE[D0D)]1=2: Let X = (x1; d), X
denote the support of X and W=fw : �(w) = 1g. Our �rst assumption is a standard bounded

conditional variance assumption.

Assumption 1: The triple f(y1; x1; d1g; ::::(yn; xn; dn)g (i = 1; ::::; n) is i.i.d, and V ar(yjw)
and V ar(djx) are bounded.

The next assumption bounds each of the approximating sequences �pK and �qK away from

singularity, also limiting the rate at which the supremum norms of the approximating func-

tions grow. This condition is required, in conjunction with equations (17)-(18), to ensure non-

singularity of the second moment matrix of approximating functions.

Assumption 2: For every K there are nonsingular matrices BP and BQ such that for
�PK(x1; d) = �pK(x1; d)BP and �QK(x1; �(x)) = �qK(x1; �(x))BQ : (i) the smallest eigenvalues of

E[ �PK(x1; d) �P
K
(x1; d)

0
] and E[ �QK(x1; d) �Q

K
(x1; d)

0
] are bounded away from zero uniformly in

K, and (ii) for every � � 0, there are the sequence of constants ��(K) and ��(K) satisfying

maxjgj�� supX2X jj@g �PK(x; d)jj � ��(K), and maxjgj�� supX2X jj@g �QK(x; d)jj � ��(K):

Recall that dim(x1) = s1. Our next assumption regulates the bias of the estimator and

its derivatives by specifying the rate at which the uniform approximation error to mo and its

derivatives falls as K grows. This rate is controlled by both the smoothness of the function and

its dimensionality, �s = s1 + 1:

Assumption 3: mo(x1; d) is continuously di�erentiable of order � on X ; and there exists �,

 ; (�K) such that maxjgj�� supX2X j@g(mo � �pK(x; d)0�K)j� = O(K� 
) as K !1.
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For the case where � = 0, it follows from Newey (1997; p. 157) that  = �=�s. Let Fo(w)

denote the cumulative distribution function of w, and W1 denote the coordinate projection of

W on (x1; d).

Theorem 5.1

If Assumptions 1-3 are satis�ed, � = 0 and �o(K)
2K=n! 0, thenZ

�(w)[m̂(x1; d) �mo(x1; d)]
2dFo(w) = Op(K=n+K1�2 

)

and for q = 0:5 for splines, and q = 1 for power series

sup

X2W1

jm̂(x1; d)�mo(x1; d)j = Op(K
q
[

q
K=n+K1� 

])

Proof: Appendix

The �rst result of Theorem 5.1 illustrates that the MSE rate has a structure similar to the

optimal rate derived in Stone (1982), although it is the presence of the larger bias term here which

prevents the estimator from reaching the optimal rate. In particular, if we consider choosing

K = n1=2 (at which the variance and bias components approach zero at the same rate), then

the convergence rate of the estimator is n(1�2 )= . For � = 0; and  = �=�s from Assumption 3,

this rate is n(�s�2�)=2� , which is disparate from Stone's (1982) optimal rate, n�2�=(�s+2�).

Although the proposed estimator is not asymptotically optimal, we can analyze its rate

relative to an optimal one. For 0 < c < �s=�, the estimator is strictly slower than the optimal

rate, and approaches the optimal one from below only as �s=� ! 0. This occurs because, as is well-

known, convergence rates approach zero faster as the function gets arbitrarily smooth (relative

to its dimensionality). In the current context, it is apparent that as �s=� ! 0;the bias term of this

estimator, K1�2 ; approaches the bias term of an estimator that has the best rate. To illustrate

the relative improvement from using an estimator that achieves the optimal rate, consider an

illustrative example where �s = 6; � = 4, and n = 1000: Then, n�2�=(�s+2�)=n(�s�2�)=2� = 0:109,

suggesting a 10:9% improvement in the convergence rate.

There is a simple intuition for why the derived convergence rate is slower (and the bias term

larger) than the optimal one. We know that if d were not endogenous, ordinary least squares

estimation with the sequence �pK(x1; d) would su�ce for series estimation of this model and

the optimal rate of convergence would be attainable (see Newey 1997). Since the rate of the

estimator where d has to be predicted must be slower than when d does not have to be predicted,
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the rate of the nonparametric IV estimator must be slower than the corresponding estimator

when d is exogenous. Further, since the best convergence rate of either estimator is attained

when both the variance and bias terms go to zero at the same rate, and since the variance terms

are identical under both d endogenous and d exogenous, the bias term in the IV estimator must

be larger, in order for this estimator to have a lower convergence rate.

A special feature of the derived rate is the absence of the number of �rst-step approximating

functions, L, in the rate formulas. This lies in contrast to alternate two step estimators (e:g,

Das et al, 1999; Newey et al 1999), where the rates depend on both K and L.7 This result is

isomorphic to the parametric IV case, where it is well- known that if estimates of the instruments

converge \reasonably fast" to the unknown conditional mean, estimation of the instrument does

not a�ect the limiting distribution of the IV estimator. Correspondingly, Theorem 5.1 re
ects

that the rate at which the instruments are estimated are irrelevant for the second step rate. In

particular, this result illustrates that the second-step rate would be no di�erent for an ordinar-

ily least squares estimator of the instrument which converged at n1=2, or a nonparametrically

estimated instrument which converged at nr; 0 < r < 1=2.

The second result of Theorem 5.1 relates to the uniform convergence rate of the estimator.

Results are given for both power series and regression splines. The derived uniform rate has a

form similar to other series estimators and, like those, does not attain Stone's (1982) bound. In

addition, however, these uniform rates are slower than alternate two-step series estimators (e:g,

Das et: al: 1999) due to the presence of the larger bias term K1� 
.

6 ASYMPTOTIC NORMALITY OF LINEAR FUNCTIONALS

In economics applications, the structural function mo(x1; d) is not often the object of inference

and the purpose of estimation lies in some numerical characteristic of mo. For example, if

mo(x1; d) represents log of annual hours worked, x1 denotes non-wage income and d is the

endogenously determined decision to participate in the AFDC program, then a public policy

issue of interest is !o = @mo(x1)=@x1, or the estimated labor supply elasticity (e:g, Mo�tt,

1983). In this section we consider such functionals of mo, which include point estimates of

mo(x1; d), the components �o(x1) and �o(x1), and the function mo itself.

Let �o = a(mo) represent a function of the functionmo, i.e, a functional. We restrict our focus

to linear functionals of mo. Below, we present asymptotic normality results for an estimator

^� = a(m̂) of �o, and derive the asymptotic standard errors of ^� so that we may develop large

7Although the rates derived in both Das et al (1999) and Newey et al (1999) depend on both K and L, by

choosing K and L in particular ways, it is possible to make the rates derived therein to depend only on K if

certain smoothness and dimensionality considerations of the second step vis-a-vis the �rst step hold.
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sample (pointwise) con�dence intervals for
^�. These results are important and necessary for

doing inference.

Several interesting functionals may be studied in the context of the dummy endogenous

regressor model. Both �o(x1) and �o(x1; d) are functionals with economic content. In equation

(12) we considered the functional �o(x1) derived from mo by evaluating the model at each of

the support points of x2. This functional is important as it identi�es the wage gap (for example,

veterans versus non-veterans in Angrist (1990)). A useful measure would be the weighted average

of this function, for example, with f(x1) denoting the density function of x1;

�� =

Z
^�(x1)f(x1)dx1 =

Z �
�m̂(X)

�d

�
f(x1)dx1: (24)

Although (24) is not an example of Newey's (1994) partial means estimator of m, it may be

considered a partial means estimator of �m=�d. A related functional that is of interest is the

weighted average derivative estimator (see Stoker 1986). This functional represents a summary

of the average change in y over some range of X, e:g,

a(m̂) =

Z
v(X)

�
@m̂(X)

@X

�
dX (25)

where v(X) is a weighting function. Under the conditions given below, this functional will

be

p
n-consistent, while the average incremental e�ect in (24) will not.

Below we state the conditions needed to derive the asymptotic behavior of the linear func-

tionals ^� and show that the functionals are asymptotically normal. The utility of studying the

asymptotics is that with a consistent estimate of the asymptotic variance we may do inference on

the estimated functionals. We show that

p
n
̂

�1=2
K (^���o)d�!N(0; I), where 
̂K is the variance

estimate of ^� so that in large samples inference on ^� using the variance estimate 
̂K=n is valid.

Because the analysis is restricted to linear functionals, A = [a(pK(x1)); a(p
K
(x1; d))] and

^� = A^�. Our notation is as follows:

Ĵ = Q̂0Q̂=n; Ĝ = Q̂0P̂ =n

�̂K =

nX
i=1

�̂i(ŵi)q̂iq̂i
0
[yi � m̂(x1; d)]

2=n (26)

The variance of ^� is A fV ar(m̂)gA0;or
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̂K = A

"
nX
i=1

�(ŵi)q̂ip
0
i=n

#�1
�̂K

"
nX
i=1

�(ŵi)q̂ipi
0=n

#�1
A0

= AĜ�1
�̂KĜ

�10A0:

The regularity conditions below are required to state the asymptotic normality theorem. The

�rst condition strengthens Assumption 1 from a restriction on the second conditional moment

of the error term to a restriction on the fourth conditional moment.

Assumption 4 : E[jjyi�m(x1i; di)jj4jw] is bounded and the smallest eigenvalue of V ar(yijwi)
is bounded away from zero.

The next assumption requires the functional to be continuous in the uniform norm j:j, but not
in the mean square norm jj:jj. This distinction will be important for illustrating

p
n-consistency

of the functionals, since MSE convergence implies the convergence of second moments (required

for

p
n-consistency), which is not implied by the uniform norm.

Assumption 6: a(mo) is a scalar linear functional such that ja(mo)j < jmoj� and there exists
�K such that for K !1, (i) mK = pK0�K is bounded away from zero but (ii) E[�(x1; d)fmKg2]!
0:

Theorem 6.1 (Asymptotic Normality)

If Assumptions 1-6 are satis�ed,
p
nK� ! 0 and �o(K)

2K=n! 0,

p
n


�1=2
K (� � �)d!N(0; 1);

p
n
̂

�1=2
K (� � �)d!N(0; 1):

Proof: Appendix

The result in Theorem 6.1 gives asymptotic normality of linear functionals of mo, which

permits the construction of large sample con�dence intervals for inference. The theorem is

su�ciently broad to cover asymptotic normality of functionals such as point estimates and �o,

but excludes results for the weighted average derivative or partial means examples, for which

an additional condition must hold. The additional condition pertains to mean-square continuity

of the functionals (which is not implied by Assumption 6), and is shown to be su�cient forp
n-consistency if it is satis�ed.

Assumption 7: There exists b(x) and ~�K such that E[�(x)b(x)b(x)0] < 1; a(mo) =

E[�(x)b(x)mo(x1; d)], and E[�(w)jjb(x) � ~�K �qK(x1; �)jj2]! 0 as K !1:
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Assumption 7 requires the existence of a function b(x) 2 }, where } denotes the set of

functions approximable in mean square by �qK(x1; �) as K ! 1. Importantly, Assumption 7

requires the function b(x) to satisfy the condition that

a(mo) = E[�(x)b(x)mo(x1; d)] (27)

8 mo(x1; d) 2 }. The representation of the functional as the product of the functions b(x)

and mo(x1; d) in (27) is equivalent to the requirement that a(mo) be mean-square continuous.

When Assumption 7 holds (either in lieu of, or in addition to, Assumption 6), the asymptotic

distribution of

p
n(^� � �) will be normal, with variance �
, where

�
 = E[�(x)bK(x; d)bK(x; d)
0var(yjw)] (28)

with bK(x; d) = A�qK(x1; �) and A = E[b(x)�pK(x1; d)
0
]G�1:

Theorem 6.2 (

p
n-consistency)

If Assumptions 1-6 are satis�ed,
p
nK� ! 0 and �o(K)

2K=n! 0,

p
n(� � �)d!N(0; �
); 
̂K ! �
:

Proof: Appendix

7 Extensions

7.1 Discrete Endogenous Regressors

The dichotomous nature of the endogenous regressor is an integral component of the analysis

above. While binary regressors are su�cient to convert the ill-posed problem into a tractable

one, it is shown next that the results extend easily to non-binary discrete endogenous regressors

with �nite support. Essentially, the problem consists of utilizing a transform that extracts the

discrete variable and evaluates the modi�ed function at each point in the support of the discrete

variable.

Let d denote a discrete variable with �nite support 2 fs1; sjg, js1j; jsj j <1, then

y = mo(x1; d) + "

= m1(x1)1fd=s1g + :::::+mj(x1)1fd=sjg + " (29)
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where 1(�) is the indicator function, and suppfdg consists of J observations. Equation (29)

yields,

E[yjx] = m1(x1) Pr(d = s1jx) + ::::+mj(x1) Pr(d = sJ jx) + " (30)

where each �j(x) = E[1fd=sjgjx] = Pr(d = sj jx); (j = 1; ::::; J); can be estimated as a series

of binary dependent variables models. It is obvious that the dummy variable model is a special

case of this more general speci�cation, with j = 2; s1 = 0; s2 = 1:

Estimation of this model is carried out by specifying a K � 1 approximating sequence which

consists of functions of x1 interacted with dj = 1fd=sig; (j = 1; :::; J), each of the J dummy

variables created from d, and an additional K � 1 approximating sequence of the instrumental

variables consisting of x1 interacted with �j(x), 8j = 1; ::::; J: For example,

�pK(x1; d) = [1; �p1K(x1); ::::; �pKK(x1)]
0; �qK(x1; d) = [1; �q1K(x1); ::::; �qKK(x1)]

0
(31)

and, for k = 1; ::::;K;

�pkK(x1) = [pkK(x1)d1; :::::; pkK(x1)dJ ]; �qkK(x1) = [pkK(x1)�1; :::::; pkK(x1)�J ] (32)

The regularity conditions presented in Sections 5 and 6 are su�ciently general to cover the

discrete endogenous regressors case. Therefore, asymptotic normality of the estimator will follow

from the conditions and theorems stated in Section 6.

7.2 Semiparametric Estimation

A second extension is to a semiparametric formulation. Partition x = (x10; x11); an example

of a semiparametric model is y = mo(x1; d) + " = m1o(x10; d)+ x11�� + ": These models are an

attractive alternative to fully nonparametric models as they reduce the deleterious e�ects of the

curse of dimensionality when the analyst has a priori information about the linear e�ects of

some subset of the covariates on y.

Consider estimation of the example above. To re
ect its partially linear form, the approxi-

mating series �pK(x; d) will consist of the (linear) components of x11, with the remaining terms

resembling the series for the fully nonparametric model, replacing x with x10 where it appeared

previously. Similarly, the elements of �qK(x; �) will be equated to the elements of �pK(x; d), with

�(x) replacing d. Let K = K0 +K1 + 1; K0 denote dim(x10) and K1 denote dim(x11): Then,

the approximating series can be de�ned as

�pK(x1; d) = [1; x11;p1Ko(x10); ::::; pK0K0
(x10)]

0; �qK(x1; d) = [1; x11;q1K0
(x11); ::::; qK0K0

(x11)]
0:

The assumptions of the previous section will yield asymptotic normality of the nonparametric

IV estimator of mo, and also for estimators of the functional
��. In addition, this functionals can

be shown to satisfy the condition in (46), so that its estimator will be

p
n-consistent under the

conditions of Theorem 6.1.

20



7.3 No Exogenous Covariates

Consider a model with no exogenous covariates, and a single endogenous regressor, d: Analysis

of this model is a trivial exercise, and reduces to a parametric speci�cation. Since information

for each i; i(= 1; ::::; n); is derived purely from whether the indicator takes on the value 1 or

0; the incremental e�ect is constant across observations, and cannot vary for di�erent values of

covariates. Thus, this model is

y = c+ d
 + " (33)

where 
 represents the incremental e�ect for those observations in which d = 1. It follows

that 
 corresponds to the function �o(x1), and identi�cation of 
 follows from (12).
8

An

estimator of 
 here is the e�cient I.V estimator with a nonparametric �rst step such as Newey

(1990), and

p
n-consistency follows from conditions given therein.

8 Conclusion

This paper develops instrumental variables estimators for nonparametric models with discrete

endogenous regressors. Restricting the analysis to discrete endogenous regressors is an integral

component of this work and the primary motivation for studying this class of models comes

from the intractability of similar models with continuously distributed endogenous regressors.

An additional motivation is the enormous empirical literature on program evaluation, which is a

special case of the speci�cation. The analysis focuses on the binary endogenous regressor case;

the main results are shown to extend to discrete regressors more generally in an extension.

Discreteness of the regressors is shown to produce an additive representation of the model

which leads to a simple veri�able condition for identi�cation, and a restriction that is imposed

in estimation. The proposed nonparametric two-step IV estimator is based on series estimation

which is particularly amenable to additive models, and yields e�ciency gains in imposing addi-

tivity. The �rst step constitutes nonparametric estimation of the instrument, while the second

step constructs the IV estimator from a linear combination of an instrument matrix and a matrix

of the regression covariates. Linear functionals of the estimator are shown to be asymptotically

normal, including

p
n-consistent when certain regularity conditions hold. A logical extension of

the current work is to e�cient instrumental variables estimation of the model. This, and related

research, is currently underway by the author.

Columbia University, Department of Economics, 420 West 118th Street, New York, NY

10027.

8Consider, without loss of generality, a binary instrument x. Then, since conditional expectations are uniquely

identi�ed with probability one,
E[yjx=1]�E[yjx=0]

E[djx=1]�E[djx=0]
= 
:
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9 Appendix

Proof of Theorem 3.1

Let f = [f1 f2]
0
= [y�mo(x1; d)� "; d��o(x)� �]0, and f� = [f�1 f

�
2 ]
0
= [y�m�

(x1; d)� ", d�
��(x)��]0 for any other function f� that satis�es (2). Assume that f; f�are suitably di�erentiable
(where they are not continuously di�erentiable, assume that the discrete generalizations of the

partial derivatives exist), and let v = (x1; d; y; x2) and � be de�ned as before. Partition v =

(v1; v2), with v1 = (x1; d), v2 = (y; x2): Let

�
�
=

"
@(fo � f�)=@v

@f�=@v

#
=

"
@(fo � f�)=@v1 0

@f�=@v1 @f�=@v2

#

where the rank of @f�=@v2 is dy+1 since rank(x2) = 1: Since the rank of ��
is the same as the

rank of �; note that rank(��
) < dy+1 implies that @fo=@v1 = @f�=@v1, which proves that mo is

identi�ed, up to an additive constant.

In the proofs that follow, C will be the generic notation for a constant that may take di�erent

values in di�erent steps. Since our estimator m̂ is invariant to nonsingular linear transforms of

�pK and �qK , we make simplifying choices for the matrices BP and BQ from Assumption A2, and

for J = E(�qK(x)�qK(x)0). We assume BP = I , and BQ = I, so that �PK(x1; d) = �pK(x1; d),
�QK (x1; �) = �qK(x1; �) and we choose J = I, since for the symmetric square root J�1=2 of J�1,

J�1=2�qK(x) is a nonsingular linear transform of �qK(x1; �) that satis�es Assumption 2 with

��(K) = max

jgj��
sup

X2X
jj@gJ�1=2�qK(x; d)jj � C��(K) (34)

Therefore, for the remainder of the analysis it will be assumed without loss of generality that

J = I.

As de�ned in the body of the paper, let Q̂ = [�̂1q1; :::; �̂nqn]
0; P̂ = [�̂1p1; :::; �̂npn]

0
, (Q̂0Q=n) =

Ĵ , Ĝ = (Q̂0P̂ =n), G = E(QiP
0
i ); J = E(QiQ

0
i), and m̂(x; d) = �pK(x; d)0 ^�IV ; ^�IV =

(Q̂0P̂ )�1Q̂0y: Note that

E[kĜ�Gk2] �
KX
k=1

JX
j=1

E[p2kKq
2
jK]=n = E[

KX
k=1

p2kK

JX
j=1

q2jK]=n

� n�1�o(K)
2E[

JX
j=1

q2kK] = n�1�o(K)
2tr(J) = n�1�o(K)

2K ! 0;

so that

kĜ�Gk = Op(�o(K)K1=2=
p
n) = op(1): (35)

Similarly,
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E[kĴ � Ik2] =

KX
k=1

JX
j=1

E[q2kKq
2
jK=n� Ijk] �

KX
k=1

JX
j=1

E[q2kKq
2
jK=n]

= E[
KX
k=1

q2kK

JX
j=1

q2jK]=n � n�1�o(K)
2E[

KX
k=1

q2kK ]

= n�1�o(K)
2tr(I) = n�1�o(K)

2K ! 0

giving

kĴ � Ik = Op(�o(K)K1=2=
p
n) = op(1): (36)

Proof of Theorem 5.1

For M = (mo(x1; d1); : : : ;mo(xn; dn)) and � = Y �M , the assumption of bounded V ar(yjw)
and independence of the observations together imply E(""0) � CI: Therefore,

EkQ̂0�=nk2 = E[E[kQ̂�=nk2jX]]

= E[
nX
i=1

q̂0iq̂iE[��
0jX]=n2]

� CE[q̂0iq̂i=n] = C tr(J)=n = CK=n:

Then, by the Markov inequality, kQ̂0�=nk2 = Op(K=n). Notice that conditioning the matrix G

on X yields, in expectation, the matrix of instruments J . Therefore,

E[kĜ�1Q̂0=
p
nk2] = E[Ĝ�1ĴĜ�1

]

= E[E[Ĝ�1ĴĜ�1jX]]

= E[E[Ĝ�1jX]E[Ĵ ]E[Ĝ�1jX]]

= E[J�1JJ�1]

= E[q0iqi] = tr(J) = K

yielding kĜ�1Q̂0=
p
nk2 = Op(K). Notice that sinceE[Ĝ�1jX] = Ĵ , kĜ�1Q0=

p
nk2 is also Op(K).

It follows that

EkĜ�1Q̂0�=nk2 = E[E[Ĝ�1Q̂0��0Q̂Ĝ�1=n2jX]]

= E[E[Ĝ�1jX]

nX
i=1

q̂0iq̂iV ar(yjX)E[Ĝ�1jX]=n2]
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� CE[J�1
nX
i=1

q̂0iq̂iJ
�1=n2]

= Ctr(J)=n = CK=n: (37)

Therefore, kĜ�1Q̂0�=nk2 = Op(K=n), and

kĜ�1Q0�k2 � kG�1Q̂0�=nk2 + k[Ĝ�1 �G�1
]Q̂0�=nk2

= Op(K=n) + op(1)Op(K=n) = Op(K=n) + op(1) = Op(K=n):

Let � satisfy supX jmo(x; d)� �pK�j = O(K� 
) as given in A3. Then, by the comment following

(),

kĜ�1Q̂0
(M � P�)=nk2 � kĜ�1Q̂0=

p
nk2k(M � P�)=

p
nk2

= [Ĝ�1ĴĜ�1
][(M � P�)(M � P�)=n]

= Op(K)O(K�2 
)

= Op(K
1�2 

):

Therefore, by ( ^�IV � �) = Ĝ�1Q̂0�+ Ĝ�1Q̂0
(M � P�), the MSE of ^�IV is given by

k^�IV � �k2 � kĜ�1Q̂0�k2 + k+ Ĝ�1Q̂0
(M � P�)k2

= Op(K=n+K1�2 
): (38)

Our �rst conclusion follows from the triangle inequality,Z
(m̂(x; d)�mo(x; d))

2
=

Z
�pK(x; d)0( ^�IV � �) + �pK(x; d)0� �mo(x; d))

2dF (w)

� k^�IV � �k2 +
Z
(�pK(x; d)�mo(x; d))

2

= Op(K=n +K1�2 
) +O(K�2 

)

= Op(K=n +K1�2 
): (39)

For the second conclusion, note that

jm̂(x; d) �mo(x; d)jo � j�pK(^� � �)jo + �pK� �moj
� �o(K)jj^� � �jj+O(K1� 

)

= Op(�o(K)[

q
K=n+K1� 

]) (40)

Explicit formulas have been derived for �o(K) by Andrews (1991) and Newey (1997), based

on the principle that the estimators are invariant to location and scale shifts in the approximating

functions. Tranform X to have support [-1,1]
�s
and replacing the components of the series in �pK
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to be orthonormal w.r.t the uniform distribution (for the case of polynomials) and to B-splines in

the case of splines, which are described in the body of the paper. Then it follows from Andrews

(1991) and Newey (1997) that �d(K) = CK1+2d
for polynomials, �d(K) = CK0:5+d

for splines,

completing the proof of Theorem 5.1. Q:E:D:

Proof of Theorem 6.1

Let 

�1=2
K = (A0G�1

�G�1A)�1=2 denote a symmetric square root of 

�1
K . Deduce that

� � CI by Var(yjw) bounded from Assumption1. Then, 
K = A0G�1
�G�1A � CkA0G�1k2.

Further, E[kGk] = E[EkGkjX] = E[kJk] = tr(J)1=2 = K1=2
, yielding kGk = Op(K

1=2
): It

follows that

k
�1=2K Ak2 = k
�1=2K AG�1Gk2

� k
�1=2K AG�1k2kGk2

= tr(

�1=2
K AG�1G�10A

0



�1=2
K )kGk2

� tr(C

�1=2
K 


�1
K 


�1=2
K )Op(K)

= COp(K) = Op(K) (41)

Note that

p
n


�1=2
K (^� � �) can be decomposed into the sum of terms, of which all but one

converge in probability to zero, and one converges in distribution to N(0; 1),

p
n


�1=2
K (^� � �o) =

p
n


�1=2
K (a(�pK 0 ^�IV )� a(mo))

=

p
n


�1=2
K (�pK 0

[Ĝ�1Q0
(M + �)=n]�mo

= 

�1=2
K A0[Ĝ�1Q0�=n+ Ĝ�1Q0M=

p
n�

p
nĜ�1Ĝ�K +

p
n�K ]�

p
n


�1=2
K Mo

= 

�1=2
K A0Ĝ�1Q0�=

p
n) +

p
n


�1=2
K A0Ĝ�1Q0

(M � P�K=n

+

p
n


�1=2
K (MK �Mo): (42)

By equation (42)and the Cauchy-Schwartz inequality,

k
p
n


�1=2
K A0Ĝ�1Q0

(M � P�K)=nk �
p
nk
�1=2K A0kkĜ�1Q0=

p
nkk(M � P�K)=

p
nk

=

p
nOp(K

1=2
) tr(Ĝ�1Q0QĜ�1=n)1=2[(M � P�K)(M � P�K)]

1=2

=

p
nOp(K

1=2
)Op(K

1=2
)O(K 

)

= Op(
p
nK1� 

)! 0:
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By the assumption in Theorem 6.1, jpn
�1=2K (Mo � P�K)j = Op(K
1=2

)

p
nj(Mo � P�K)j =

Op(K
1=2

)

p
nK� ! 0: Next, let Zin = 


�1=2
K A0Ĝ�1qi"i=

p
n, yielding E(Zin) = 0. Note that

each Zin (i = 1; :::; n) is i.i.d,

P
i Zin = 


�1=2
K A0Ĝ�1Q0"=

p
n,
P
iE(Z

2
in) = 1, and for some

constant 


nE[1(jZinj > 
)Z2
in] = n
2E[1(jZin=
j > 1)(Zin=
)

2
] � n
2E[(Zin=
)

4
]

= n
2E[kZ4
ink]=
4 = nE[k
�1=2K A0Q0�=

p
nk4=
2 � nk
�1=2K A0k4E[Q0QE(��0jX)]

2=n2
2

= n
�2) � Ck
�1=2K A0k4�o(K)
2E(kQk2)=n2 = COp(K

2
)�o(K)

2K=n! 0

Therefore, due to the Lindberg-Feller central limit theorem,

P
i Zind!N(0; I), which implies

that

p
n


�1=2
K (^� � �o)d!N(0; 1). This gives the �rst conclusion of Theorem 6.1.

Next, consider the last conclusion of Theorem 6.1. De�ne ^h = Ĝ�1Â

�1=2
K ; and h = A


�1=2
K :

Then, by jj^hjj = [Ĝ�1Â

�1=2
K 


�1=2
K Â0Ĝ�1

]
1=2

= tr(

�1=2
K AG�1G�10A

0



�1=2
K ) � tr(C


�1=2
K 


�1
K 


�1=2
K ) =

Op(1); and

jj^h� hjj = jj
�1=2K (Ĝ�1Â�GA)jj � jj
�1=2K jj jjĜ�1
(Â�A)jj+ jjA(Ĝ�G)jj

= Op(1)(op(1) + op(1))p!0: (43)

By � � CI, the largest eigenvalue of � is bounded from above. Let ~� =

P
i q̂iq̂

0
i(yi �

mo(x1i; di)). Then, by the fourth conditional moment bounded in Assumption 4, it follows that

jj~�� �jjp!0, and jj^h0 ~�^h� ^h0�^hjjp!0.

De�ne �i = mo(x1i; di) � m̂(x1i; di): Since �o(K)[

p
K=n + K1� 

] = [�o(K)
2K=n]1=2 (1 +p

nK� 
)! 0; by Theorem 5.1, maxi�n j�ij � jm̂�mojop!0. Let Ŝ = n�1

P
i q̂iq̂

0
ijyi�m(x1i; di)j

and S = E[q̂iq̂
0
ijyi �m(x1i; di)j] = E[q̂iq̂

0
iE[jyi �m(x1i; di)jw] � CI. Similar to the argument

that jjĴ � J jjp!0 in (36), and by V ar(yjw) bounded in Assumption 1, jjŜ � Sjjp!0: Then,

it follows from Newey (1997; p. 166 A.10) that j
�1=2K 
̂K

�1=2
K � ^h0 ~�^hjp!0. Further, by the

triangle inequality, jj^h0 ~�^h� ^h0�^hjjp!0 and (43), j
�1=2K 
̂K

�1=2
K � 1jp!0, implying

(

�1=2
K )

2

̂Kp!1;

p
n
̂

�1=2
K (� � �) =

p
n


�1=2
K (� � �)=(
�1K 
̂K)

1=2d!N(0; 1) (44)

giving the second conclusion. Q:E:D:

Proof of Theorem 6.2
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Without loss of generality, the theorem is proved for scalar a(mo), since for any vector c with

jjcjj = 1, c0
p
n(� � �)d!N(0; c0 �V c) by the Cramer-Wold device, and Assumption 7 holds with

c0b(x) replacing b(x). Write �qK(x) for �qK(x1; �). Let bK(x; d) = A�qK(x) = E(�(x)b(x)�pK (x1; d)
0
)G�1

�qK(x).

Note thatE[bK(x) var(yjw)bK(x)0] = E[�(x)b(x)�pK(x1; d)
0 G�1

�qK(x)var(yjw)�qK(x)0G�10
�pK(x1; d)b(x)

0
]

= E[b(x)mo(x1; d)]
2
= 
K by Assumption 7 and (27). Suppress the arguments so that b = b(x);

bK = bK(x; d).

Since b is approximable by �qK(x) in mean square, E[(b�bK)2] = E[((b�bK)2jx] � E[fb�~�K
�qK(x)g]p!0. Next, by Cauchy-Schwartz,

j
K � �
j � E[jb2K � b2j] � E[(bK � b)2] + 2E[jbjjbK � bj]
� o(1) + 2(E[b2])1=2(E[(b � bK)

2
])
1=2 ! 0; (45)

implying that 
Kp!�
: Also, by the proof of Theorem 6.1, 

�1=2
K 
̂

1=2
K p!1;which gives 
̂K

p!�
 by squaring. Since var(yjw) and bK are bounded away from zero, �
 is bounded away from

zero. The critical di�erence from Theorem 6.1 now follows as the convergence rate of � is has

a sharp bound, i:e, 

�1=2
K p!1=

p
�
. Then, by the conclusion of Theorem 6.1,

p
n(^� � �o) = 


1=2
K

p
n


�1=2
K (^� � �o) = N(0; �
) (46)

Q:E:D:
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