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Abstract

This paper develops an adaptive learning scheme for a standard version of
the overlapping generations model with pure exchange using the notion of an
error function. Trajectories generated by this scheme converge globally to the
monetary steady state for arbitrary consumers’ savings behavior. The resulting
learning dynamics is therefore globally asymptotically stable. This shows that
with the efficient use of structural knowledge on the market mechanism, learn-
ing schemes which generate complex dynamics with non-vanishing forecast errors
such as ordinary least squares can be avoided. This finding holds for all possi-
ble parameterizations guaranteeing the existence of a monetary steady state and
generalizes to all one-dimensional models of the Cobweb type.
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1 Introduction

The recent economic literature has used the notion of an adaptive learning scheme to
justify the rational expectations hypothesis as a long-run concept where agents have
eliminated all systematic forecast errors. This idea was first supported by authors, e.g.
see Bray (1982), Fourgeaud, Gourieroux & Pradel (1986) or Marcet & Sargent (1989a),
who succeeded in providing conditions under which adaptive learning schemes converge
to an equilibrium under rational expectations. Unfortunately, however, in economies
whose evolution is driven by non-linear maps, the question what learnings schemes
generate forecasts which converge to such rational expectations equilibria remains to a
large extent unresolved. This seems to hold equally true for all adaptive schemes such as
Bayesian learning, where agents update beliefs according to Bayes’s rule (cf. the recent
survey article by Blume & Easley (1998) and references therein) or the ordinary least
squares scheme (OLS) used by many theorists in the field (cf. Evans & Honkapohja
(1998)).

For the standard OLG model of pure exchange, Bullard (1994), and Schénhofer (1999a,
b) showed that ordinary least squares learning may generate forecasts which do not
converge to perfect-foresight orbits of the system. Moreover, the long-run behavior of
the system may be irregular and chaotic and for this reason may differ substantially
from the dynamics under perfect foresight. However, as shown in Schénhofer (1999a),
the forecast errors associated with such attractors, also called learning equilibria, may
have vanishing sample mean and vanishing autocorrelation coefficients. Hommes &
Sorger (1998) and Hommes (1998) call such learning schemes consistent. They argue
that agents with limited statistical tools do not identify systematic forecast errors in
these equilibria. Hence, agents would see no reason to revise their learning scheme.

This paper argues that the conclusions from these results are misleading. The criti-
cism is twofold. Apart from the problem of existence of perfect foresight in a particular
environment, it is commonplace that the quality of forecasts hinges essentially on the
‘rationality’ of an economic agent, that is, on both his or her theoretical knowledge of
possible economic scenarios and on available statistical tools. On the one hand, it seems
not to be surprising that economic agents in deterministic non-linear models may fail
in finding orbits with perfect foresight when relying on techniques originally designed
for linear stochastic models such as OLS. They simply do not use the appropriate sta-
tistical tools. On the other hand, the notion of consistency is rather coarse, because
the structural information which is available from observing a particular market is used
inefficiently. For example, it is well-known that the market mechanism determining
the actual inflation factors in a stationary OLG model under market clearing is of the
Cobweb type, that is, actual interest factors of the economy depend on expected infla-
tion factors only and not on previous interest factors, cf. Bohm & Wenzelburger (1997).
Hence, in the absence of exogenous noise, the dynamics in an OLG exchange economy
stems exclusively from the expectations formation. As a consequence, an agent who



knows or suspects that he or she lives in a Cobweb environment should replace any
scheme which generates complex dynamics with non-vanishing forecast errors.

In contrast to the findings of Bullard (1994), Schénhofer (1999b) or Marcet & Sargent
(1989b), the present paper supports the original intention of the learning literature (see
e.g. Blume & Easley (1982)) in showing that a forecasting agency in a stationary OLG
exchange economy may indeed find the perfect foresight steady state of the economy.
This implies in particular that an agent endowed with appropriate tools can generate
forecasts which are more precise than consistent expectations equilibria, as forecast
errors become pointwise arbitrarily small. The forecasting agency modeled in the present
paper is boundedly rational in the usual sense. It uses well-known theoretical results
and, in addition, is aware of the basic market mechanism underlying an OLG exchange
economy without knowing consumers’ savings behavior. It is shown that this structural
knowledge, comprised in the notion of an error function, is enough to generate forecasts
which converge to the monetary steady state for all initial conditions. This concept arises
naturally when carefully distinguishing between an economic law describing the basic
market mechanism of an economy and a forecasting rule, Bohm & Wenzelburger (1997,
1999). The result holds for all possible parameterizations guaranteeing the existence of
a monetary steady state and hence for all monetary policies. It can be generalized to
all one-dimensional models of the Cobweb type. Contrary to earlier results, the induced
learning dynamics is therefore globally stable with forecast errors which vanish in the
long run.

The paper is organized as follows. Section 2 briefly reviews the stationary OLG exchange
model. The notion of an error function is introduced in Section 3. Section 4 provides
a discussion of the learning dynamics with a particular emphasis of the ordinary least
squares scheme. In Sections 5 and 6 we introduce and investigate our adaptive learning
scheme. Conclusions are given in Section 7. An appendix includes extensions and
refinements of the approach presented in the main text.

2 The Model

Consider a standard version of the overlapping generations model with one non-storable
commodity per period and fiat money as the only store of value between periods. There
will be neither growth of the population nor production. Given the usual assumption of
price taking behavior of all generations, young agents need to transfer purchasing power
from the first to the second period of their lifes. To avoid the problem of heterogenous
beliefs, let 07, , denote the common expected gross inflation rate for period ¢ + 1 on
which all members of the young generation in ¢ base their decisions. We assume that
a forecasting agency is in charge of issuing these forecasts and that this agency knows
the basic market mechanism of the economy but not the savings behavior of consumers.
Under the standard two-period optimizing behavior of a consumer A born in period ¢, her



optimal consumption plan given an initial endowment of goods w? and w#, respectively
is defined by a savings function s" : Ry — Ry. s"(ff,,) is the amount saved (and
supplied to the market) in period ¢ and w} + s"(6¢,.,)/05,, is the amount expected to
be consumed in period t + 1.

A government is infinitely lived and consumes g; at time ¢. At time ¢t = 1 the government
owns M; > 0 units of currency, and agents save by holding currency, since fiat money is
the only store of value. Given a nonnegative price level p;, the government finances its
consumption by creating additional currency given by the process M; = yM; |, where
~v > 1 is the gross rate of currency growth. The government’s budget constraint is given
by My — M;_1 = gyp;. The policy rule « is chosen by the monetary authorities such that
the government expenditures g; become endogenous.

Market clearing on the goods market in any period ¢ requires that the real savings of
young consumers, which defines the amount supplied, has to be equal to the demand of
the old generation and the government, which is equal to the real purchasing power of
the money acquired in the previous period. In other words, aggregate savings S has to
be equal to real money balances
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for all times t. The actual inflation rate 6, = p;/p;_1 is then determined by
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as long as the expected inflation factors are such that aggregate savings is different
from zero. Let 0 < v < #,,, where we assume that the autarky factor 6,,;, given by
S(Baut) = 0, is uniquely determined. Thus the monetary steady state -y exists. Observe
that from a sequential view point, the forecast 6 , for the inflation rate 6y, has to
be picked before the actual trading takes place and thus prior to the realization of 6;.
Moreover, M, denotes the final money balance of generation ¢ after trading. The map
F :R: — R, given in (1) includes a two-step-ahead forecast and for this reason defines
an economic law with an expectational lead, see Bchm & Wenzelburger (1997). Since
only expected inflation factors enter F' as an argument, the economic law (1) has the
structure of a cobweb model. The goods price of period ¢ generated by (1) is given by

vS(67)
= - t . 2
P s N )

The market mechanism (1) or equivalently (2) has been used previously to demonstrate
that the least squares learning scheme may generate chaotic trajectories, see Schonhofer
(1999b), Bullard (1994), and Marcet & Sargent (1989b). The purpose of this paper is
to devise an adaptive learning scheme which converges to the monetary steady state for
all reasonable parameterizations of (1).

(1)




3 Perfect Prediction

In order to address the question which forecasting rules generate perfect foresight along
orbits of the economy, we first consider the error function associated with the economic
law (1). For an arbitrary period let 6, and 67, denote the forecasts of the old and the
young generation, respectively. The forecast error for the old generation is then given

by the error function

e e 78(02 ) e
€ . Rﬁ— — R, ( old> you) — S(eg(jo;d) - aold' (3)

The function er describes all possible forecast errors, independently of which forecasting
rule or learning scheme has been used to obtain the forecasts. Geometrically, the graph
of er is a surface over the 6,,—07,, plane. The zero-contour of ep describes the loci of
all forecasts with vanishing forecast errors. It follows from S(y) > 0 that ep(y,7v) =0
which means that the monetary steady state (7,~y) belongs to the zero contour of ep.
In order to obtain perfect foresight for any previously determined forecast 65, a new
forecast 0, has to be chosen such that the forecast error er (05, 05,,) vanishes. This
implies in particular that only forecasting rules, also called predictors, of the form

Tﬁ : R—I— — R—H Hgou = w( gld) (4)

have a chance of generating perfect foresight along orbits of the system. According to
Bohm & Wenzelburger (1997), predictors of the form (4) which satisfy er(6°,1(0°)) = 0
for all #° in an open subset U of R, are called locally perfect. If U = R, then % is
called globally perfect. The following proposition shows that locally perfect predictors
for the OLG exchange model always exist, whereas globally perfect predictors exist only
under very restrictive assumptions.

Proposition 3.1 Let 0 < S(vy) < wy, where wy := Zle wh is aggregate endowment
of the young generation, and S'(y) # 0. Then there exists an open neighborhood U of
and a predictor 1, given by

U(0°) = STH(yS(0°)/6%), 6°€U (5)

which is locally perfect on U. If in addition, S is monotonically increasing in 0° and
vS(6°)/0° < wy for all B¢ € R, , then 1, is globally perfect on R, .

Proof. As noticed above ep(7,v) = 0. Since S’(y) # 0, we have dser(7,7y) # 0 and
the equation er (05, 0y,,) = 0 satisfies the conditions of the implicit function theorem.
This shows that 1, given in (5) is well-defined in a neighborhood U of . If, in addition,
S is monotonically increasing and S (6¢)/6¢ < w, for all 8¢ € R, , then 1, is globally
defined on R, .

Q.E.D.



Corollary 3.2 ¢, >0 (=0) on U if and only if ' <0 (=0) on U.

If youthful and old-age consumption are normal goods or if the aggregate savings func-
tion is non-increasing, then the term S(0¢)/6¢ will become unbounded for sufficiently
small 6°. In these cases globally perfect predictors will not exist. Most preferences
with intertemporal substitution properties usually assumed in the OLG literature will
therefore not allow for global perfect foresight, see Bbhm & Wenzelburger (1997).

Proposition 3.1 states that perfect predictors depend exclusively on previous forecast
and not on observed states of the economy. Geometrically, the graph of a locally perfect
predictor v, is contained in the zero contour of the error function. The error function
of an OLG exchange model has some general features which are stated in the next
proposition. For doing so, let Eg(0) := S'(0)0/S(0) denote the elasticity of the savings
function.

Proposition 3.3 The error function er of an OLG exchange model has the following
properties:

(i) e is linear along the 45°-degree line.

er(0°,0°) =y —0° forall 6°€Ry with S(6°) > 0.

(ii) Its gradient along the zero contour satisfies

5 (0y) 05

e e = E e -1 you o
grad eF(aold’ 9you)|eF =0 ( 5( old) ) ’YS(HSM) ) ’
where Eg(05,;) <1 for 05, # Ouut.

(iii) The zero contour intersects the 45°-degree line of Ri transversally or, equivalently,

gradep(y,7) # A(1,—1) forall X€eR

Proof. The first statement is obvious from the definition of er. The second statement
follows from the definition of a gradient and the fact that vS(6¢,) = 05,S(0¢,,) along

you
the zero contour. The Slutsky matrix for a individual savings function s" is negative
semi-definite if and only if
sh(ee) o Shl(ee)ee > Sh(ee)Z.
Therefore

S(ge) _ 51(06)96 > ZH:Sh(He)2
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and the first component of the gradient in (ii) is negative as long as 6° # 0y The
third statement follows directly from (ii). Q.E.D.

It follows from Proposition 3.3 that the zero contour of the error function has a unique
intersection point with the diagonal of the 65, — 67, plane which is the monetary steady
state. The surface has a singularity at a possible autarky inflation factor where aggregate
savings is zero. The gradient of the zero contour shows in the direction of increasingly
positive forecast errors. Vice versa, the negative gradient shows in the direction of
increasingly negative forecast errors. The second statement in Proposition 3.3 states
that the gradient of the zero contour always points in the direction of the 67, —axis. To
illustrate the concept of an error function, we discuss three examples which are slight
generalizations of examples taken from Bullard (1994) and Schonhofer (1999b).

Example 3.1 The Cobb-Douglas case. Let each consumer be characterized by the
same Cobb-Douglas utility function

u(ci,c2) =Ine; +6lney, 0<d <1,
and the same endowments wl = wl, i = 1,2 for all h,h' € H. The savings function is

s"(0°) = min {0, 2 14s [ow? — 0°wh]}, 6° € R,.

The common autarky inflation factor of all households is 0., = i;”—éb, such that aggregate
2

savings becomes
1 e ; e
e\ __ g['bUl -0 wZ] ZfH € [Oveaut)
5(0°) = { 0 else

with wy and we denoting aggregate endowments when young and when old, respectively.
Let v < Oqyt as before. In this case there exists a locally perfect predictor 1y, defined by

eaut Y
* ‘) = aut — -1 ¢ T . Vaut| -
0y == [ 1] o e [ )

Y, s uniquely determined and the domain of definition in (6) is mazimal. This case is

tllustrated in Fig. 1.

Example 3.2 The CES case. Let each consumer be characterized by a CES wutility
function of the form

u(cr, ) =[] + (562)’)]%, 0<6<1, p<l, p#0.

Then aggregate savings becomes

’UJ1+’U)20€
S(6°) = w; — ¢ € R,,
( ) 1 1—{—(5_106)#’_1 R+
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Figure 1: Zero contour for the Cobb-Douglas case.
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Figure 2: Zero contour for the CES case, p < 0 (left) and p > 0 (right).

where wy and wo denotes aggregate endowment when young and when old, respectively.
Suppose wy = 0. Then there exists a locally perfect predictor 1., defined by

p—1

B fyeﬁ £ . N
0 (0) = (5;%%9;%[9_7]) e (6.00). )

where 0 is defined by 5751017 +6— v = 0. 9, is uniquely determined and the interval
(0, 00) is its mazimal domain. Therefore, a global perfect predictor does not exist. This
case is illustrated in Fig. 2 (left) for p < 0 and in Fig. 2 (right) for p > 0.

Example 3.3 An ‘irreqular’ savings function, see Bullard (1994, p. 480). Consider

-1
S(0°) = exp {cos [Lﬁ] } , #°eRy.

14(6¢)
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In this case multiple locally perfect predictors exist, as the zero contour of the correspond-
ing error function folds back. In Fig. 4 points in the 05,,-0;,, plane which lie in the same
error range are colored according to the adjacent color code. The contour lines of the
corresponding error function are given by the boundaries between to colored regions. The
contour lines could, in principle, be computed analytically.

4 Learning dynamics

To discuss the dynamics of the inflation factors under a particular learning scheme,
consider for a moment predictors ¢ of the simple form (4). The evolution of the economy
is then governed by the two-dimensional map

Fy:RL — R, (0,05,) — (F(054,v(054)), ¥(054))-

Notice that the evolution of the system is exclusively driven by the predictor ¢y and
that the dynamics of the economy are one-dimensional. More precisely, the dynamics
governed by Fy is clearly topological conjugate to the dynamics of the predictor alone
which is given by

YRy — Ry, 05— 9(05)-

The (global) perfect foresight dynamics, if it exists, is given by
Fy, :RE — R, (0,0° — (6°,4.(69). (8)

It is straightforward to see that the unique positive fixed point of F, with the perfect
foresight property is the monetary steady state (6, 60¢) = (v,~). Clearly, under perfect
foresight 6, , = 6,11 for all times ¢ and the dynamics of (8) is equivalent to the dynamics
generated by the perfect predictor i, alone. Since perfect predictors are completely
determined by the economic fundamentals, so is the prefect foresight dynamics.

Similar observations remain valid for any more complex forecasting rule and any learning
scheme which may depend on whatever variable the agent (or the modeler) may believe
in. Bullard (1994) and Schonhofer (1999b) have made use of the fact that the recur-
sive formula of the least squares learning scheme (OLS) can be viewed as a predictor
which depends in a well-specified manner on current states and certain other auxiliary
variables, see e.g. Chen & Guo (1991). In the case of an OLG exchange economy, their
OLS-based forecasts are defined by the maps

1!’ : Ri X [0: 1] — R+a ?/)(97:71, ef,gtfl) = 0: + gtfl[etfl - 05]

gt—16t2—1 (9)
(Y20 R_|_ 0,1 — (0,1 (%2 0, _ =
X [ Y ] [ Y ]7 ( t 17gt 1) 1 . 10? 17



such that 0f , = ¥(0:—1,0f, g,—1) is the forecast for 6,1, and g, = ¢(0;—1,g:—1) the
auxiliary variable!. The evolution of the inflation factors is then governed by the map
Fyo:RE x[0,1] — R% x [0, 1], given by

(etfla ef) gtfl) — (F(ef, w(etfla Hfa gtfl))a w(etfla efa gtfl)a 90(97:71, gtfl))-

Replacing 6;_, by F(0_,,0¢), the dynamics of Fy; , is essentially induced by the pair of
maps (¢, ¢) and hence by the OLS scheme alone. The dynamics can be analyzed in the

o1 — O50u, Plane as has been done in Bullard (1994) and Schonhofer (1999a). Figs. 5 and
6 show two complex attractors® in the 6, — ¢, plane generated by the OLS scheme
(9) in the CES case and the case of an irregular savings function, respectively. Points
(67,05, 1) on the two attractors which lie in the same error range are colored according to
the adjacent color code. As is apparent from the figures, the contour lines and hence the
shape of the error function becomes to a large extent revealed through the course of time,
if the learning dynamics is complex®. In particular, the location of the zero contour in
these figures is disclosed, giving a clear indication of the location of the monetary steady
state. In other words, Figs. 5 and 6 provide a clear incentive to abandon the employed
OLS scheme. It therefore seems to be worthwhile to construct learning schemes which
make a more efficient use of information on the market mechanism of the particular
economy.

5 An adaptive learning scheme

In this section we introduce an adaptive learning scheme for stationary OLG exchange
economies. Since the perfect foresight dynamics may most likely fail to exist globally
and may have unfavorable properties such as convergence to the non-monetary steady
state, we concentrate on schemes which find the perfect foresight monetary steady state.

Consider a forecasting agency which is in charge of forecasting the future evolution of
the economy and hence has to decide on #°. We assume here that all young consumers
in period ¢ share the belief in 67, ; issued by the forecasting agency prior to their savings
decisions. This excludes heterogenous beliefs and strategic behavior of consumers. If the
number of households is large, the effect of strategic behavior of a single consumer can
be neglected. Furthermore, we assume that the forecasting agency itself has no strategic
interest other than issuing good forecasts in order to be credible for households.

!The forecast 8¢, , given by (9) seems to be counterintuitive from the econometric point of view. In
the expression for ¢ there seem to appear the wrong differences, namely 6;_1 — 6 instead of ; —6f. This
is so because the regression is done on prices rather than on inflation factors. We argue in Appendix
A that OLS-based forecasts for inflation factors should differ from (9).

20bserve that the system is three-dimensional and that Figs. 5 and 6 actually show projections of
attractors onto the 67, — 67, plane.

3 All simulations were carried out using the program package MCRODYN , cf. Bohm & Schenk-Hoppé
(1998). We used similar parameterizations to those in Bullard (1994) and Schénhofer (1999a).
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In period 7 the agency has observed past prices and therefore knows all past real rates
of return {#,}7~, and all corresponding forecasts {#¢}7_, including the forecast for the
current period. Recall that 6; is not available prior to the decision on 67 ;. Let the
agency be aware of the basic market mechanism of the economy, that is, the basic
structure of the economic law given by (1) but not the specific parameterization of (1).
Hence, neither the preferences nor the savings behavior of young consumers are known to
the agency. In other words, the forecasting agency has the concept of the error function
without a concrete functional specification and for this reason is bounded rational in
the sense of Sargent (1993).

The key idea now is that the geometric shape of the error function becomes disclosed
through the course of time. This allows an agency, in principle, to improve estimates
of the zero contour and hence to improve the quality of the forecasts. If ¢, = 6; — 607
denotes the forecast error made in period ¢, then the point (67,65, ,,€) belongs to the
graph of the error function

graph eF = {(egld’ ;ou’e) € R?}— x R | 6F(0§ld’ ;Zou) = 6}'

At the beginning of an arbitrary period, say 7, the sequence of points {(65, 67, , €) s

have been observed and may be visualized as points on the unknown graph of the error
function. These points reveal information on the shape of the error function and thus
on the location of its zero contour. In the case of the OLS scheme this was visualized
in Figs. 5 and 6.

To construct an adaptive learning scheme which makes use of the notion of an error
function, let us summarize and fix the assumptions on the structural knowledge of the
forecasting agency.

Assumption 5.1 The information of the forecasting agency comprises the following:

(i) the relevant variables of the economy are (65,,6 and the market mechanism is

of the form (054, 0;,,) — ﬁ’(@e € )

old> Yyou

yjou )

(ii) there erists a monetary steady state which lies in some uncertainty interval [, 6],
and

(iii) the errors at the boundaries 0,0 satisfy ex(0,0) > 0 and ex(0,0) < 0.

Proposition 3.3 (i) guarantees the existence of § and # with the given properties. One
may think of the errors er (6, ) and er (6, ) at the boundaries of the uncertainty interval
as known or being previously observed. The lower bound # could be equal or close to
zero and 6 may, for instance, be assumed to be less than the autarky inflation factor 6,
a known quantity to the agency. A learning scheme which searches for the monetary
steady state will have to search close to the diagonal of the 6, — 07, plane. The

e
you
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following algorithm implements this idea using Assumption 5.1. It can be started at
any time ¢y > 0, so we might as well assume ¢, = 0. Then ¢, and 6 denote the
expected inflation factors of the last and the second last generation, respectively which
are assumed to lie in the uncertainty interval.

Algorithm 5.1 Let 6°,,05 € [0,0], 6¢, # 05 be arbitrary.

1. If ep(0%4,65) > 0, then define € = E—kag with some positive integer k > 2.

(a) Set 0 = 05 +te, t > 0 until ep(05_1,05) <0 ort=k—1. Let 7 denote the
first time for which this condition is satisfied.
(b) Set 6¢,, = 0°. If ep(05,0°,,) < 0, then set ' = 0 and g =0°,. If

ep(02,0° 1) > 0, then set ' = 6., and 0 =0. If ep(65, 0c.1) = 0, then
0f =07, forallt >7+1.

2. If ep(0°,,05) <O, then let e = ng_g with some positive integer k > 2.

(a) Set 0 = 05 — te, t > 0 until ep (05 1,08) > 0 ort =k —1. Let 7 denote the
first time for which this condition is satisfied.

(b) Set 65, = 0°. If ep(0,6°,,) < 0, then set 0' = 0 and 0 = 0°,,. If

ep(05,05,,) > 0, then set ' = 65, and 6 =9. If er(02,0¢,,) = 0, then
0f =07, forallt>7+1.

Fig. 3 conveys the economic intuition for this learning scheme. As long as there are
positive (negative) forecast errors, increase (reduce) the current forecast by some quan-
tity e. A positive (negative) forecast error means that the expected inflation factor of
the old generation was too low (high). As soon as a negative (positive) forecast error
is obtained, check how close the current forecast is to the monetary steady state. It is
clear that any pair of forecasts (054, 0,,) lying on the diagonal reduces the uncertainty
interval. Clearly er(6¢,60¢) = 0 if and only if #¢ is the monetary steady state 7. Ge-
ometrically, the resulting learning dynamics takes place along straight lines which are
parallel to the 45°-degree line.

Assumption 5.1 can easily be relaxed to the case where no initial uncertainty interval is
known. A forecasting agency needs to know only the qualitative properties of the error
surface graph er given in Proposition 3.3. Roughly speaking, once it is known that the
left hand side of the zero-contour line is on a positive level and the right hand side on a
negative level, it is clear in which direction to search for the monetary steady state. We
note in passing that Algorithm 5.1 can be rephrased as a (time-independent) predictor
in the above sense. Moreover, it is applicable for any one-dimensional economic law of
the Cobweb type with an expectational lead.

12
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Figure 3: Adaptive learning scheme.

6 Global Convergence of adaptive learning schemes

We show first that the adaptive learning scheme introduced in the previous section
converges in the sense that it generates forecasts which converge to the monetary steady
state when repeatedly applied.

Proposition 6.1  For arbitrary initial forecasts 6¢,65 € [0, ], Algorithm 5.1 ends
in at most k time steps and reduces the initial uncertainty interval [0, 0] to a smaller
uncertainty interval [0',0] whose length @ — @' is less than 10 -0).

Proof. By construction, the algorithm 5.1 picks a least one additional point on the
diagonal whose coordinates lie in (6, 8). This yields a new uncertainty interval [¢', 6]
which is contained in [f, §]. Now clearly 90— < %(5— 0) which yields the proposition.
Q.E.D.

Proposition 6.1 shows that Algorithm 5.1 reduces the uncertainty interval by a factor
which is at most (k — 1)/k. Since this factor is less than unity, the following theorem is
obvious.

Theorem 6.2  Under Assumption 5.1, repeated application of Algorithm 5.1 yields
a sequence of forecasts {0 }ien which converges to the monetary steady state +y.

Observe that by Theorem 6.2 Algorithm 5.1 converges for all initial conditions and

hence globally on [0, ]. It stabilizes the monetary steady state in particular for cases,
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where the perfect foresight dynamics is complicated as in Grandmont (1985). Algorithm
5.1 is inspired by a minimization scheme introduced by Berman (1966) and applies for
practically all one-dimensional models of the Cobweb type (see Appendix C for the
case of one-step-ahead forecasts). In principle, any numerical method to compute zeros
of a function such as Newton’s method (see e.g. Ortega & Rheinboldt (1970)) can be
employed to find the monetary steady state. In Appendix B we show that the monetary
steady state of an OLG exchange economy can be reached in 5 time steps using Newton’s
method. This is possible because the error function is linear along the 45°-degree line.
In the general case, however, it is well known that Newton’s method may not converge
and even lead to chaotic behavior if the initial guesses are not sufficiently close to the
solution of the problem. For this reason methods which work globally are needed. In
the case of the standard OLG model, one simple global method is Algorithm 5.1. More
advanced numerical continuation methods such as presented in Allgower & Georg (1990)
seem to be applicable as well.

In the case of the exchange economy described above, one feature of a learning scheme
seems to be sufficient to guarantee convergence to the monetary steady state. Consider
a scheme which generates a Cauchy sequence of forecasts {6¢}:cn such that there exists
some 0 with 0 — ¢ as ¢ tends to infinity. The following proposition gives an easy
criterion which ensures that the learning scheme converges to the monetary steady state

Y-

Proposition 6.3  Let {0f}1en be a Cauchy sequence of forecasts generated by some
learning scheme. Assume that there exists a strictly monotonic sequence of positive
integers {t;}jen with ep (07,07, (1) > 0 and er (07, .05, , 1) <O0. If {07 }ren does not
converge to @4y, then 0 — v as t tends to infinity.

Proof. Since {6f};cn is a Cauchy sequence there exists a limit point 6S. Let 65 # 6,41
and suppose ¢ # . Then either ep(6¢,05) < 0 or ep(6¢,62) > 0. Consider the first
case. Since the forecasts 0 converge to 6 and ep is continuous, there exists ¢, such that

er(05,07,) <0 forall t>t,.

This contradicts the assumption on {#;};en. An analogous argument applies for the
second case. It follows that ep(6¢,60¢) = 0 and hence 6¢ = ~. Q.E.D.

7 Conclusions

The analysis of adaptive learning in a standard OLG economy showed that convergence
of an employed scheme required a forecasting agency to use the correct structural infor-
mation about the market mechanism. For the OLG economy it was the fact that only
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the previous and the current expected inflation factors matter. This structural infor-
mation is encoded in the error function associated with the economy. By definition, an
error function gives all forecast errors as a function of all possible states of the economy
and all possible forecasts, independently of the employed learning scheme. It depends
exclusively on the economic fundamentals encoded in the economic law and captures the
nature of the true expectations feedback. The graph of the error function is the essential
time-invariant object about which information is to be obtained along the evolution of
the system. A successful learning scheme must therefore locate the zero contour of the
error function by successive approximations.

It was shown that along an orbit of the system, a forecasting agency receives more
and more information about the shape of the error function and the location of its zero
contour. In the case of the OLG economy, this was exploited to generate forecasts which
converge to the monetary steady state. The learning scheme proposed in the present
paper was based on a simple geometric intuition and converges globally for all initial
conditions and all parameterizations which guarantee the existence of a monetary steady
state. It is equally well applicable and successful for all one-dimensional models of the
Cobweb type. Thus, learning schemes which induce diverging or complex behavior in
these types of models ignore their correct structural features. This may lead to their
ultimate failure to predict perfectly.
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A The OLS scheme and expectational leads

In this section we comment on the recursive OLS scheme for prices in relation to the
economic law (1) which has been employed by Bullard (1994) and Schonhofer (1999b).
Assume that a forecasting agency makes forecasts based on a ‘perceived law of motion’
given by an AR(1) process

pe = Bpi—1 + &, (10)

where the parameter [ is unknown and {&}n is a sequence of unobservable i.i.d.
random variables with zero mean. The least squares estimator for S based on the times
series {p;}\Z; is given by

X t—1 -1 /1
Bi-1 = (pr_l) (ZPi—le’) . (11)
i=1 i=1

According to Chen & Guo (1991, p. 91), the recursion formula for B, 1 is

5 5 Ci_opi—2 A
Bi—1 = 575—2;‘ 1+ Crap?, [pt—1 — Br—2pi—2]
c, , = — =2

-l 1 + Ct_ng_Q

Setting g; := Cyp? |, this recursion formula in terms of inflation factors 6, | = p; 1/p; o
reads ) . .
Bi-1 = Bia+ gi-1[0i—1 — Bi-s]
9#19?_1 . (12)

g = _—
t 1 + gtfle-?fl

The forecasts pf and pf,; for prices p; and p;;1 on the basis of the estimator Bt—l are

e

Dy = K, (Bt—lpt—l +&) = Bt—lpt—la
Pig = By (Btfl[Btflptfl + &) + &) = 53_11%71-

Therefore, 07 := B,_1 and 07 == Bf_l are the forecasts for inflation factors 6; and 6,4
based on the same estimator 3;_; and which are consistent with the perceived law (10).

Now, according to the actual price process (2) associated with the economic law (1), 67,

has to be determined prior to #; and hence prior to p;. As pointed out in Sec. 2, this is
due to the fact that (1) contains an expectational lead. It implies that the information
set at time ¢ cannot contain p;. An OLS-based forecast for #;,, at time ¢ as required
by (1) should therefore be 67, , = 2, instead of 07,1 = B,_1 as done by Bullard (1994)
and Schonhofer (1999b). However, their recursion scheme (9) does not differ from (12).

16



B Newton’s method as an adaptive learning scheme

This appendix is to show that the so-called Newton’s discrete method can be incorpo-
rated in an adaptive learning scheme for the case of an OLG exchange economy described
in Sec. 1. In this case it is shown that the monetary steady state (v, ) is in fact reached
within 5 steps. We make explicit use of the fact that the monetary steady state lies on
the 45°—degree line of the 607,,-67,, plane.

Consider a forecasting agency which applies Newton’s method to the map 6¢ — E(#¢) :=
er(0°,6°), where as before the error function e is unknown. Observe that the derivative
E' of F is also unknown such that E’ has to be replaced by a suitable approximation.
This is done by Newton’s discrete method which formally is given by the successive
iterates

E(il?t_l) - F

Ti_1 — Tt

-1
Tiy1 = NEW(.Tt, xt—l) =Ty — |: (xt)} E(.’L‘t), teN

(see Ortega & Rheinboldt (1970)). As it is assumed that all forecasts are known and
forecast errors are observable, this formula can be integrated into the following adaptive
learning scheme. The only remaining difficulty is that no scheme can move on the
45°—degree line directly.

Algorithm B.1 Let (6¢,,05) € R% be arbitrary.

1. Set 65 = 65.
Choose some small number v and such that 05 = 07 +v > 0.
Set 05 = 05.

Apply a Newton step by setting 05 = NEW (605, 6%).

AT N

Set 05 = 05.
Now since F is linear by Proposition 3.3, a routine calculation shows that Step 4 already

yields the monetary steady state, i.e., 85 = v which finally is reached in Step 5. Notice
that the initial state (6¢,, 65) was arbitrary.

C The Cobweb case without leads

We show that Algorithm 5.1 has a simple modification which is applicable to one-
dimensional models of the Cobweb type without leads, that is, when only one-step-ahead
forecast matter. The algorithm presented in this appendix will converge to the perfect
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foresight steady state, if it exists. Let F' : R, — R, and consider an economic law of
the Cobweb type, given by
075 = F(OS),

where 07 is the forecast for 6; based on information available at date ¢ — 1. The corre-
sponding error function is defined by ep(0°) := F'(0°) — 0°. Assume that there exists
a perfect foresight steady state v = F(y) > 0 of F known to lie in some interval [6, 6]

with er(f) > 0 and ep() < 0. Then the following algorithm applies.

Algorithm C.1 Let 05 € [0,0] be arbitrary.

1. If ep(65) > 0, then define € = 0_:8 with some positive integer k > 2.

(a) Set 0f = 05+ te, t > 0 until ep(05) < 0. Let T denote the first time for which
this condition is satisfied.

b) If er(0°) =0, then 0¢ = 6° for all t > 7; otherwise set set §' = 0 and 0 =6°.
T t T T

2. If erp(05) < 0, then let e = agk—g with some positive integer k > 2.

(a) Set 0f = 05 —te, t > 0 until ep(05) > 0. Let T denote the first time for which
this condition is satisfied.

b) If er(0°) =0, then 0¢ = 6° for all t > T; otherwise set set §' = 0¢ and g =9.
T t T T

By a reasoning similar to that of Sec. 6, Algorithm C.1 reduces the initial uncertainty
interval [f, 8] and repeated application yields a sequence of forecasts which converge to
the perfect foresight steady state.
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Figure 4: Error levels of an ‘irregular’ error function with v = 2.7, p = 0.5.
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6, = 0.75, go = 0.5.

21



th?% 4 error [=5,000,5,000]
_ W L4417 infl
m [5.524,4,4120
m [2,235,3,824(
2,647 . 3,2300
7.54 [2,0589,2,647[
[1,471,2,069(
[0,882,1.4710
[0,294,0,882(
[0,294,0,2940
-0, 882, -0, 294[
-1,471,-0,082[
[-2,063,-1,4710
-2 647 ,-2,05830
-3,230,-2,647(
-3,824 -3, 2360
-4.412 -3, 824
Linf.—4.4120

2.5

”
EEEEEEENEE
1

theo
T
o] 2.5 5 7.5 10
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