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Abstract. This paper disseminates the survivor function of inter-trade du-

rations as a key feature of the intraday trading process. It sheds light on the

time varying trading intensity and, thus, liquidity of a traded asset and the

information channels which propagate price signals among asymmetrically in-

formed market participants. To obtain a consistent estimate of the baseline

survivor function and capture well-known serial dependency in the trade inten-

sity process as well we use a semiparametric proportional hazard model wich is

augmented by an ARMA structure very similar to the obiquous ACD model.

Based on transaction data from the DTB, Frankfurt, we �nd evidence that

past sequences of prices and volumes have a signi�cant impact on the trading

intensity in accordance with theoretical models on the basis of rational expec-

tations equilibria. However, we cannot �nd any evidence in favour of strategic

behaviour with respect to the chosen transaction volume by informed traders.

From an inspection of conditional failure probabilities we �nd weak evidence

for the use of non-trading intervals as an indication for the absence of price

information among market participants. However, this information content

seems to be diluted by a high liquidity base level, particularly with respect to

large in
ow of traders of the U.S. market.

1. Introduction

The survivor function plays a key role to model trade frequency and thus

the liquidity of �nancial markets. Recently, this was demonstrated e.g. by the

analysis of Gourieroux, Jasiak, and LeFol (1999). We use a hazard-rate model

for the inter-trade duration process which permits us to model the conditional

probability to observe the next transaction as a function of the elapsed time

since the last trade occurred, conditional on explanatory variables capturing the
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state of the market. The temporal shape of this conditional probability provides

a characterization of the underlying stochastic duration process and gives us

insights in the duration dependence. This duration dependence allows us to

assess in which way traders infer information from no-trade-time-intervals, i.e. the

elapsed time since the last transaction and shed some light on the dynamics of

market activities.

In market microstructure theory the timing of trades plays an important role

in the learning mechanism of market participants who draw inferences from the

trading process. In this context inter-trade durations are regarded as means to

aggregate information on price signals available to individual traders in an asym-

metric information environment, complementary to other information channels

like the sequence of price changes and traded volumes.

Empirical studies on the transaction intensity under the light of market mi-

crostructure hypotheses rest on the crucial assumption that the arrival rate of

non informed traders is constant while informed traders only enter the market

if information is present, see the seminal contribution by Easley and O`Hara

(1992). In this framework the timing of trades depends only on the occurrence

of information events.

The goal of our study is to get more insights into the market microstructure

and the behaviour of market participants by explicitly modelling these inter-

trade durations. We want whether certain behaviour of informed and uninformed

market participants can be identi�ed by investigating the impact of present and

past volumes and price changes on the expected waiting time until the next

trade 1.

Our study is based on the central results of noisy expectation equilibrium

models (see e.g. Hellwig (1982)) that market participants learn from past market

sequences. A key assumption in our setting is that inter-trade durations re
ect

the decisions of market agents which depend on the state of the market. We

want to investigate whether traders which learn from past market activities tend

1A study with a related focus has been done by Grammig and Wellner (1999) who in-

vestigated similar economic questions by analyzing interdependencies between durations and

volatility.
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to exploit this informational advantage by increasing the trading intensity and,

thus, the liquidity. If not only the informational content of past inter-trade

durations but also of past sequences of prices and volumes is re
ected in the

present waiting time then one would expect that the inclusion of such variables

might improve the prediction of these inter-trade durations.

A further scope of our paper is to analyze strategic behaviour of market partic-

ipants. Kyle (1985) shows that informed traders have preferences to camou
age

their information. Barclay and Warner (1993) �nd evidence that informed tend

to trade medium trading-sizes. We investigate whether such strategic behaviour

is re
ected in inter-trade durations.

Furthermore, we want to shed some light on the in
uence of the heterogeneity

of information on the trading intensities. In this context we compare survivor

functions based on market phases before and after the opening of the Ameri-

can trading. The resulting survivor functions indicate whether an increasing of

the heterogeneity of information is re
ected in market dynamics and temporal

dependence.

A speci�c feature of inter-trade durations is the occurrence of clustering. In

econometric literature exist two central approaches accounting for clustered dura-

tion data: Engle and Russel (1995) introduce the Autoregressive Conditional Du-

ration (ACD) model for intertemporally correlated inter-trade durations, which

is based on a parametric autoregressive speci�cation for the conditional mean of

the duration and is the counterpart of the GARCH model for price processes.

Ghysels, Gourieroux, and Jasiak (1998) propose a class of two factor models for

duration data, where the �rst factor accommodates dynamics in the conditional

mean and the second factor in the conditional variance. Because of its strong rela-

tion to stochastic volatility models they call it the Stochastic Volatility Duration

(SVD) model. They show that the SVD model captures interactive dynamics of

the conditional mean and variance and models clustering and persistence e�ects

in both conditional moments.

A drawback of both types of models is the requirement of parametric speci�ca-

tions for the assumed distribution of the durations. Grammig and Maurer (1999)
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provide Monte Carlo studies and investigate therewith whether the estimations

of the parameters in the ACD framework are a�ected by a misspeci�cation in

the conditional hazard function. They show that the ML estimators of the ba-

sic ACD model tend to be biased and ineÆcient when the true data generating

process requires non-monotonic hazards. For this reason Bauwens and Veredas

(1999) introduce the Stochastic Conditional Duration (SCD) model where the

durations are generated by a latent stochastic factor allowing an autoregressive

process. The main innovation of this class of models is to allow for a wider range

of shapes of hazard functions.

In order to account on the one hand for non-monotonic distributions of the

inter-trade durations of an unknown form and on the other hand for serial de-

pendencies in the duration process we use the proportional hazards ARMA model

proposed by Gerhard and Hautsch (2000) that extends the traditional semipara-

metric proportional hazard model by allowing for serial dependencies in the du-

rations. The advantage of this type of duration model is on the one hand that it

does not require to assume a parametric speci�cation of the durations but pro-

vides a nonparametric estimation of the baseline hazard while it allows on the

other hand to estimate ARMA-structures in the inter-trade duration process. Ex-

planatory variables can be included dynamically, corresponding to an ARMAX

speci�cation, but also statically, i.e. without any lag structure.

By analyzing Bund Future transaction data of the Deutsche Terminb�orse (DTB)

in Frankfurt we show that the PHARMA model does a good job capturing the

serial dependencies in the inter-trade duration process while it allows to semi-

parametrically asses the shape of the baseline survivor function. By using past

absolute price changes and volumes per transaction as explanatory variables we

can show that these variables have a signi�cant impact on the expected wait-

ing time until the next transaction, con�rming our hypotheses. By obtaining a

nonlinear relationship between the contemporaneous volume and the expected

waiting time until the next transaction we �nd evidence for the informational

content of certain volume sizes that might be caused by strategic behaviour of
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informed traders. Furthermore we show that liquidity e�ects caused by the open-

ing of American trading have a signi�cant impact on the duration dependence

indicated by survivor functions and conditional failure probabilities.

The outline of the paper is as follows: In section 2 testable hypothesis are

discussed originating in market microstructure models. The econometric model

is described in section 3. Section 4 gives a description of the data set, while

Section 5 presents the empirical results. Section 6 concludes.

2. Market Microstructure

The theoretical background for an empirical study on the determinants of

inter-trade durations is based on Diamond and Verrecchia (1987) and Easley and

O`Hara (1992) which explicitly account for the time between particular trades.

In the Diamond and Verrecchia (1987) setting, at any point in time either good

or bad news do exist. Because traders are short-sale constrained no-trading in-

tervals, i.e. long inter-trade durations are associated with bad news.

In the Easley and O`Hara (1992) framework time is correlated with any factor

related to the value of the asset that can arise from properties of the information

structure in the market. Easley and O`Hara (1992) demonstrate that market

participants learn from both trades and the lack of trades at any point in time,

thus, from the length of inter-trade waiting times. The key element in this frame-

work is that the information content of the inter-trade durations arises by their

correlation with di�erent aspects of information.

A central assumption in our study is that the timing of trades is not only

driven by the occurrence of information but also re
ects the individuals decisions

of traders. This implies that an agents learning from past sequences of market

activities is also re
ected in the expected waiting times until the next transaction.

The assumption of the informativeness of past price sequences is based on the

noisy rational expectation equilibrium models of Hellwig (1982) and Diamond

and Verrecchia (1981) which analyze rational expectation equilibria in a market

where investors learn from past prices. If a traders' preference for immediacy of

transactions increases if past market activities provide information to him then
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past price sequences have also an impact on the expected inter-trade duration.

By assuming that the information content of a price process is correlated with

its volatility leads to the following testable hypothesis

Hypothesis H1a: Large absolute price changes in the past imply a decreased

expected waiting time until the next trade.

Blume, Easly, and O`Hara (1994) extend this theoretical framework and analyze

the informational role of volume. They resolve how the statistical properties of

volume relate to the behaviour of market prices and show that traders can also

learn from sequences of volume. The crucial result is that volume provides in-

formation that cannot be deduced from the price statistic. In our framework we

want to investigate whether this informational content of trading volumes is also

re
ected in inter-trade durations. Based on this theoretical setting we formulate

the hypothesis H1b:

Hypothesis H1b: Past sequences of volumes are informative for expected inter-

trade durations even if past price sequences are accounted for.

Furthermore, we want to get insights into the impact of the heterogeneity of in-

formation on the trade-to-trade waiting times. Lang, Litzenberger, and Madrigal

(1992) show that the dispersion of private information across the agents in
u-

ences the trading volume, but not the price 2. This divergence of beliefs arising

from asymmetric information plays an important role in generating activity. Ac-

cording to this theoretical literature one would expect that an increase of the

heterogeneity of information has a signi�cant impact on the speed of market ac-

tivities. The in
uence of this dispersion of private information on the inter-trade

durations can be empirically tested by analyzing the trade intensity at the DTB

before and after the beginning of the American trading. We base this investiga-

tion on the conditional survivor functions and the conditional hazard function,

given past and present market activities, that indicate changes in the temporal

dependence of the timing of trades. Based on this framework we formulate the

2They illustrate that this result is completely consistent with the noisy rational expectation

hypothesis and that prices depend only on aggregate and fundamental questions.
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following testable hypothesis:

Hypothesis H2: The in
ow of additional market participants form the U.S. causes

changes in the temporal dependence of inter-trade durations.

The last hypothesis we want to check concerns strategic behaviour of market par-

ticipants. The theoretical literature analyzing the strategic behaviour of agents

is heavily in
uenced by Kyle (1985). He shows that pro�t-maximizing informed

investors attempt to camou
age their information, e.g. by spreading trades over

time. Admati and P
eiderer (1988) assume two types of uninformed traders,

"discretionary" liquidity traders, who have some choice over the time at which

they transact, and "nondiscretionary" liquidity traders whose orders are assumed

to arrive in a random fashion. They show that it is optimal for liquidity traders

and also for insiders to trade together leading to concentrations of trading in

particular time periods. While both studies ignore the choice of the trade size

Barclay and Warner (1993) examine the proportion of cumulative price changes

that occur in certain volume categories. Based on an empirical study they �nd

evidence that most of the cumulative price change is due to medium-size trades.

This result is consistent with the hypothesis that informed traders tend to use

medium volume sizes 3. The empirical framework for testing the evidence of such

implications consist in analyzing the impact of the contemporaneous volume per

transaction on the expected waiting time until the next trade. If informed in-

vestors trade medium sizes and want to exploit their informational advantage by

executing a transaction as soon as possible then one would expect a nonlinear re-

lationship between inter-trade durations and the present trading volume. These

implications are summarized in the following hypothesis:

Hypothesis H3: A nonlinear relationship can be observed between the contem-

poraneous volume and the expected time between trades.

3A paper with a related focus is Kempf and Korn (1999) who empirically analyze the relation

between unexpected net order 
ow and price changes and �nd highly nonlinear relationships.
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3. The Proportional Hazard ARMA model

We use an extended semiparametric proportional hazard model with a dis-

cretized dependent variable. This particular quantal response model introduced

by Han and Hausman (1990) has two salient features worth discussing in the con-

text of inter-trade duration analysis. First, it allows the direct semiparametric

estimation of the hazard rate which is a key feature in the analysis of conditional

trade frequency, i.e. liquidity. Second, in some 
oor markets, the discretization

of the dependent variable can compensate for some irregularities in
icted on the

time series by the fact that it is collected by price reporters. The model is aug-

mented by ARMA structures to account for clustering e�ects in the durations

(see Gerhard and Hautsch (2000)). This kind of model is related to the ACD

model and can be seen as a combination of ACD type models and hazard rate

models.

Consider the sequence of arrival times t0; t2; : : : ; tn with t0 < t1 < : : : < tn

as a stochastic process. Associated with this process for the arrival times is a

process for the waiting times between the trades, �i = ti � ti�1; i = 1; : : : ; n, the

inter-trade durations.

By assuming an ARMA(p; q) process for the durations we can express them by

�t =

pX
j=1

�j�t�j �

qX
j=1

�j�t�j + �t;(1)

where �t follows an unknown distribution.

The ACD model proposed by Engle and Russel (1995) can also be formulated

as an ARMA(p; q) model (see Engle and Russel (1998)

�t =

max(p;q)X
j=1

(�j + �j)�t�j �

qX
j=1

�j�t�j + �t;(2)

where �t = �t �  t and  t = E[�tj��t�1] denotes the conditional mean of �t given

��t�1 = [�t�1; �t�2; : : : ; �1], the sequence of past durations.

Engle and Russel provide strong evidence for duration clustering for IBM stock

(Engle and Russel (1995) and Engle and Russel (1998)) and foreign exchange

market data (Engle and Russel (1997)). They show that this class of duration
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models does a good job of capturing the dynamics of the data. They proofed

that the quasi maximum likelihood estimators for GARCH(1,1) models devel-

oped by Lee and Hansen (1994) can actually be applied to EACD(1,1) models 4.

Hence their model provides consistent estimations of the parameters even when

the underlying distribution for the duration process is misspeci�ed. However,

several empirical studies (Engle and Russel (1995), Engle and Russel (1997), En-

gle and Russel (1998), Grammig and Maurer (1999)) provide evidence that the

assumption of exponential distributed inter-trade durations is not appropriate.

Grammig and Maurer introduced a more 
exible ACD model by assuming a

Burr-distribution for the standardized durations5 and provide evidence in form

of Monte Carlo simulations in favour to this ML estimator.

Furthermore, in the ACD framework a nonparametric baseline hazard rate

cannot be estimated directly. Viewing the EACD as a QMLE a baseline hazard

can only be computed in a further step based on the empirical distribution of the

standardized residuals.

In order to provide a nonparametric baseline hazard rate and to account for

clustering structures in the inter-trade duration process we use the semiparamet-

ric proportional hazard model proposed by Cox (1972) as a starting point

�(�tjmt) = �0(�t)exp(�mt); t = 1; : : : ; n;(3)

where �0(�t) is an unspeci�ed baseline hazard and mt = m(xt; �) a mean function

depending on a vector of covariates xt and a vector of coeÆcients �.

Originally, the proportional hazard model admits an interpretation as a linear

regression model. This relationship is obtained by parameterizingm(xt; �) = x0
t
�

and using the fact that

~�t = m(x0
t
�) + �t;(4)

4The EACD (Exponential Autoregressive Duration) model corresponds to the ACD model

where the standardized durations follow an exponential distribution.
5The Burr-ACD (BACD) nests the standard Exponential-ACD and Weibull-ACD models as

special cases.
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where ~�t � �ln
�tR
0

�0(s)ds, mt = E[~�tjxt] its conditional expectation, and �t is

an extreme value distributed error term 6. (See e.g. Kiefer (1988) or Han and

Hausman (1990)).

We employ the model suggested by Gerhard and Hautsch (2000) based on

the work of Gerhard (2000) where an ARMA structure is included in the mean

function in order to account for serial dependence in the duration process. In

this context

~�t = x0
t
� + � + et;(5)

where

et =

pX
j=1

�jet�j +

qX
j=0

�j�t�j + w0

t

:(6)

The random variable �t is de�ned by �t = �t � c where c = E[�t] is the mean

of the extreme value distributed error term �. The substitution of et by �t is

necessary to obtain an error term with zero mean in the ARMA speci�cation and

is compensated by the inclusion of the term

 
� � c

qP
j=0

�j

!
=

 
1�

pP
j=1

�j

!
7.

A vector of explanatory variables wt is included in the dynamic structure with


 as the corresponding vector of coeÆcients.

Using the state space form, the model can be rewritten as

~�t = H � �t + x0
t
� + �(7)

�t = F � �t�1 + w0

t

 + e1�t;(8)

where H =
�
1 �1 : : : �q

�
, F =

�
�1 : : : �p
Ip�1 0

�
and e1 =

�
1 0 : : : 0

�
.

By including this dynamic speci�cation the mean function mt takes the form

mt = E[~�tj��t�1].

The discretization of �t 2 R
+ which is used to estimate a semiparametric base-

line hazard yields a count variable � �
t
2 f1; 2; : : : ; Kg depending on the category

6The model can be extended by accounting for unobserved heterogeneity. Such e�ects are

included by specifying a compounder ! acting multiplicatively with the hazard function. By

analyzing LIFFE Bund Future data, Hautsch (1999) shows that unobservable e�ects captured

by the compounder are only very weak. For this reason we ignore the impact of such e�ects.
7Note that resolving this substitution leads to an ARMA model with an extreme value

distributed error term, hence the constant � is identi�ed.
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in which the observable, continuous �t falls, using �k, k = 1; 2; : : : ; K � 1 as the

thresholds between the categories. We use the estimation procedure proposed by

Gerhard and Hautsch (2000) by considering eq. (5) as a latent process.

We observe the inter-trade duration category � �
t
= k if the latent variable

~�t lies between the two thresholds (~�k; ~�k�1], i.e. the conditional probability for

observing � �
t
= k is

Pr(� �
t
= kjxt; ��t�1) =

~�k�1�mtZ
~�k�mt

f�(s)ds(9)

where f�(s) denotes the density function of �.

A novel feature of this model is that it accounts for clustering e�ects in the data

but also provides a nonparametric baseline survivor function which is obtained

directly by the estimated thresholds. It can be calculated at the k discrete points

by

S0(�k) = exp(�exp(~�k)); k = 1; : : : ; K � 1:(10)

Because the dynamic structure is based on the unobservable underlying variable

~�t, we calculate it by using the concept of generalized residuals proposed by

Gourieroux, Monfort, and Trognon (1985). If � �
t
= k, the conditional expectation

of the residual �t is given by

E[�tj�
�

t
= k] =

1

F�(~�k �mt)� F�(~�k�1 �mt)
�

~�k�mtZ
~�k�1�mt

sf�(s)ds;(11)

where F�(:) denote the distribution function of �. For the mean function a recur-

sion is proposed in Gerhard (2000) based on the state space form given in eq. (7).

The recursion takes the following form 8:

E[�tj��t�1] = F (E[�t�1j��t�1] + E[�t�1j��t�1]) :(12)

From this, mt is directly evaluated as

mt = E[~�tj��t�1] = H 0E[�tj��t�1]:(13)

8For ease of notation the regressors xt and wt are omitted.
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The recursion is initialized with the unconditional expectation of the latent vari-

able

E[�1j��0] = E[�t] = 0:(14)

The log likelihood function takes the usual form

l(�; 
; �; �; �) =

NX
t=1

KX
k=1

ytk ln

~�k�1�mtZ
~�k�mt

f�(s)ds;(15)

where the indicator variable ytk is de�ned by

ytk =

�
1 ; if � �

t
= k

0 ; else:

Under the usual regularity conditions we can show consistency and asymptotic

normality for this maximum likelihood estimator (for more details see in the

appendix).

4. The data

The sample contains intra-day transaction data of the Bund Future trading at

the screen based trading system of the Deutsche Terminb�orse (DTB), Frankfurt,

from 01/30/95 to 02/24/95, corresponding to 20 trading days. Within this period

the Bund-Future was one of the most liquid futures in Europe and corresponded

to a 6% German government bond of DEM 250.000 face value. The Bund Future

had a maturity of 8.5 years and four contract maturities per year, March, June,

September and December. Prices were denoted in basis points of face value, thus,

one tick was equivalent to a value of DEM 25.

The dataset contains time stamped prices and volumes and consists of 44810

observations, where the overnight durations are omitted. Furthermore, we do not

use the �rst 10 minutes of a trading day to avoid the opening phase that shows

erratic price changes within the �rst trading minutes which are due to the price

�nding process at the market opening based on the occurrence of information

overnight. Because these erratic price changes even out after a few transactions

we eliminate these observations from the dataset.

To use the estimation procedure of the proportional hazard ARMA model

we have to categorize the trade-to-trade durations. We use a categorization



DETERMINANTS OF INTER-TRADE-DURATIONS 13

that ensures, on the one hand, satisfactory frequencies of the observations in the

categories but allows us, on the other hand, to derive the temporal dependence

of the inter-trade durations for longer time intervals. Because the distribution of

the waiting times is extremely skewed to the right (see table 1) we use smaller

categories for the lower durations and a larger categorization (30 second intervals)

for higher waiting times. This categorization based on 30 second intervals is

reasonable because we want to asses in which way agents learn from no-trade-

intervals, e.g. the last 30 seconds.

Several empirical studies (Wood, McInish, and Ord (1985), Engle and Russel

(1995), Engle and Russel (1997), Guillaume, Dacorogna, Dave, M�uller, Olsen,

and Pictet (1996) or Dacorogna, Morgenegg, M�uller, Olsen, Pictet, and Schwarz

(1990)) found evidence for highly signi�cant seasonality patterns. Thus, con-

sistent estimations of the impact of covariates and temporal dependencies on

inter-trade durations require the inclusion of seasonality e�ects. To account for

intraday seasonalities we use the 
exible Fourier form proposed by Andersen and

Bollerslev (1998) based on Gallant (1981) which is given by

s(Æ; t�; P ) = Æ1 � t
� +

PX
p=1

(Æc;p cos(t
�

� 2�p) + Æs;p sin(t
�

� 2�p)) ;(16)

where p is identical with the order of the term, t� 2 [0; 1] de�ned by

t�1 =
seconds since 8:40

seconds between 8:40 and 17:15
(17)

and Æc;p, Æs;p and Æ denote the corresponding coeÆcients.

To check hypothesis H2, concerning the impact of an increase of information

heterogeneity, we de�ne two dummy variables indicating trading after 14:30, the

opening of U.S. trading and the 02/20/95, the 'President's Day', American hol-

iday. To investigate the further market microstructure hypotheses we include

log-volume and absolute price changes as explanatory variables.
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5. Empirical Results

5.1. Persistence and Intraday-Seasonalities. The proportional hazard ARMA

model is proposed to model both the underlying baseline hazard rate and the clus-

tering structures in the inter-trade durations. To investigate the autoregressive

structures in the data we start our analysis by calculating the autocorrelation

(acf) and partial autocorrelation functions (pacf) in the trade-to-trade waiting

times. Table 2 shows the acf and pacf which indicate highly signi�cant autocor-

relations. They show the typical slow rate of decay of a long memory process, a

feature of this data which is well documented in the recent literature 9.

To simplify the model selection we, �rst, run several ARMA models on the

raw and also seasonally adjusted inter-trade durations. Table 3 shows the results

of four ARMA speci�cations based on the raw data. The high values of the

ARMA parameters indicate a high persistence of the duration-process and are

comparable to the results found by Engle and Russel (1998) who investigated price

intensities by running ACD models. Table 4 presents the corresponding results

based on seasonal adjusted durations 10. The ARMA parameters are nearly

una�ected which indicates that the persistence is not captured by the inclusion

of seasonality parameters. On the other hand, table 2 (column B) shows that the

autocorrelation and partial autocorrelations in the data are signi�cantly reduced

by accounting for seasonality patterns. Hence, the strength of the intertemporal

correlations is weakened while the degree of the persistence is nearly una�ected.

The model selection is based on the Bayesian information criterion (BIC) lead-

ing to an ARMA(2,2) for the raw durations respectively an ARMA(1,2) for the

seasonal adjusted waiting times as the best speci�cation. We used these results as

a starting point for the model selection in the class of proportional hazard ARMA

(PHARMA) models and also obtained a PHARMA(1,2) as the best speci�cation.

9See e.g. Jasiak (1999) who accounts for this high persistence by modelling a fractional

integrated ACD-model.
10In this context we regress the durations on the variables of an 
exible Fourier form of order

4, inclusive two dummies indicating the opening of American trading at 14:30 and the American

'President's Day' at 02/20/95, by OLS. Based on these consistent (but ineÆcient) estimates of

the covariates we calculate the residuals and use these as seasonal adjusted durations.
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Table 5 shows the estimation results of three regressions based on the

PHARMA(1,2) model 11. Column A presents the results of a regression without

any explanatory variables, based only on the thresholds and the ARMA coeÆ-

cients, while columns B and C contain the corresponding results with included

seasonal covariates 12. The similarity of the ARMA parameters to the simple

ARMA(1,2) regressions on the raw respectively the seasonal adjusted durations

(see tables 3 and 4) indicate the robustness of the results. Furthermore, by run-

ning several regressions with di�erent categorizations of the durations we �nd

evidence that the estimations of the ARMA parameters and also the coeÆcients

of the covariates are not a�ected by the choice of the categories. This result is in

accordance with the property of the semiparametric proportional hazard model

that it allows consistent estimations of the coeÆcients of the explanatory variables

even when the form of the baseline hazard is unknown (see Meyer (1990)).

To investigate the impact of intraday-seasonalities we calculate the impact of

these variables of the latent variable ~�t. Figure 1 shows the typical intradaily

seasonality pattern with high market activities in the morning, a signi�cant dip

at the lunch time and the shortest inter-trade durations after the opening of

the American trading at 14:30. It is an interesting result that the inclusion of

the two dummies indicating trading after 14:30 and the American 'President's

Day' at 02/20/95 (see Column C) decrease the signi�cance of the most of the

trigonometric terms. Hence, the main impact of the estimated intraday season-

alities seem to be captured by the 14:30-dummy. The high signi�cance of this

dummy indicates that the opening of the American trading has a strong impact

on the speed of market activities and increases the liquidity according to lower

trade-to-trade waiting times.

Figure 2 shows the estimated baseline survivor functions conditional on trad-

ing before and after 14:30 and at the American holiday day 13. The graphs show

11The maximum likelihood estimation of the model is performed using the BFGS algorithm

with numerical derivatives in GAUSS.
12We also run regressions by including dummy variables that accounted for day-of-the-weak-

e�ects but didn't �nd any signi�cance concerning such e�ects.
13The functions are conditioned on mean values for the explanatory and the dynamic

variables.
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that the pattern of the baseline survivor functions change signi�cantly indicat-

ing that the American trading plays an important role for the market dynamics.

While the probability for observing inter-trade time intervals longer than 30 sec-

onds is approximatively 0.37 at U.S. holiday, this probability is approximatively

0.09 at 'normal' days before 14:30 and nearly zero after 14:30. These signi�cant

changes of the patterns of the survivor function and, thus, the underlying dura-

tion distribution 14, may economically be attributed to an increased heterogeneity

in traders' price signals caused by a major in
ow of potential traders from the

U.S. market that would con�rm hypothesis H2. An interesting feature in this

context is the fact that, while the mean inter-trade duration is at the U.S. holi-

day three times as large as at 'normal days' (see table 1), the transaction volume

is nearly una�ected. Hence, liquidity e�ects are only caused by the increase of

the trading intensity, not by trading volumes.

Figure 3 illustrates the conditional probability for the end of a spell in the next

duration category given the time it lasted already, given by

~�0(�k) =
S0(�k)� S0(�k+1)

S0(�k)
; k = 1; : : : ; K � 1:(18)

These conditional failure probabilities allow us to characterize the duration de-

pendence for longer time intervals that gives us insights in which way traders infer

information from no-trade-time intervals. By virtue of the chosen categorisation

it is straightforward to interpret the conditional failure probabilities depicted in

�gure 3. There we observe the conditional probabilities for a transaction to occurr

within the next 30 seconds, given that we have just observed the last transaction

and given that the last transaction happened before 30, 60, 90, 120, and 150 sec-

onds. We note that the conditional failure probability is decreasing slowly. The

fact that no trading took place would support the uninformed trader who infers

that there is indeed no information in the market and thus it is quite plausible in

the light of Easley and O`Hara (1992) that the conditional probability to observe

a transaction decreases. From the fact that the conditional probability decreases

slowly, with an almost linear pattern, one could conclude that the non-trading

14This feature is also re
ected in the descriptive statistics (see table 1).
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is indeed informative but has not a very weak impact on the decisions of market

participants. One reason might be seen in the high base level of liquidity, i.e. in

the abundance of market participants with exogeneous motives, usually termed

noise traders in the theoretical literature. If one is willing to accept this hypoth-

esis one could argue that the in
ow of additional traders from the U.S. has a

particularly high share in noise traders as the decrease in the conditional proba-

bility increases from 7 to 11 to 14 percentage points comparing the sample after

14:30 to the sample before 14:30 and to the U.S. holiday.

5.2. Testing the market microstructure hypotheses. In order to check the

empirical evidence of the further market microstructure hypotheses proposed in

section 2, we run two regressions with included market microstructure covariates

(see table 6). Because we showed that the main part of the impact of deterministic

intraday seasonalities is captured by the 14:30-dummy we omit the trigonomet-

ric seasonality terms. Regression D (table 6) presents a regression based on a

nonlinear function of the actual log-volume. While the linear term (lvol) is in-

signi�cant the signi�cance of the quadratic (lvol2) and the cubic term (lvol3)

indicate a highly nonlinear impact of the actual volume on the expected waiting

time until the next transaction. To illustrate this result we plot the aggregated

impact of these volume-covariates on the latent variable (see �gure 5). The graph

depicts a non-monotonic function with a global minimum at a traded volume of

approximatively 100. By considering the descriptive statitics (see table 1) we

note, however, that transactions of this size are not very common. As a matter

of fact in the volume range observed in 75% of all cases, i.e. smaller than 20

shares per transaction, the marginal in
uence of volume on the latent variable is

well approximated by a linear function. Thus, we �nd no empirical evidence for

a strategic behaviour of informed traders given the modelling strategy we used.

In order to test our hypothesis H1 we run a regession where we include the �rst

lags of the log volume and the absolute price change dynamically (see regression

E, table 6). For both variables we �nd highly signi�cant negative coeÆcients.

Hence, the higher past volumes and the more volatile the past price sequence
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the lower the expected trading intensity which con�rmes hypotheses 1a and 1b.

The calculation of the explicit in
uence of past volumes and past absolute price

changes on the present trade frequency depends not only on the coeÆcient of

the regressor but obviously also on the ARMA parameters. It yields a slowly

decaying lag structure with the median lag at 13 for both regressors. Taking also

into account that the mean time between transactions is about 14 seconds (see

table 1), we can - cum grano salis - invoke the intuition that the weighted volume

and the weighted absolute price changes of the last 3 minutes before a transaction

make up about 50% of this regressors impact. The coeÆcients of the lag structure

are all negative. Thus, these results can be interpreted as empirical evidence for

the fact that investors seem to increase their preference for immediacy of further

transactions if past market activities provide information to them.

6. Conclusions

In this sudy we use the proportional hazard ARMAmodel proposed by Gerhard

and Hautsch (2000) to estimate inter-trade durations of the Bund-Future trading

at the DTB, Frankfurt. The advantage of this class of models is that it accounts

for clustering e�ects in inter-trade durations but also provides a nonparametric

shape of the underlying baseline hazard rate. Futhermore, covariates can be

included statically and dynamically.

The goal of this paper is to get more insights into the market microstructure

by modelling the waiting times between particular transactions. We investigate

whether the timing of trades re
ects the decisions of traders which learn from

past market activities.

By including past volumes and absolute price changes as dynamic covariates

we �nd evidence for the fact that these variables have a signi�cantly negative

impact on the expected trading intensity. These results are in accordance with

market microstructure hypotheses which imply that the informativeness of past

sequences of market activities is re
ected in a traders' preference for immediacy

of transactions, i.e. in lower inter-trade durations. We �nd that past sequences
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of volume and absolute price changes yield a slowly decaying lag structure with

a median lag at 13 for both regressors.

Furthermore, we investigate the impact of an increase of the heterogeneity of

information on the trading intensity by estimating survivor and hazard functions

based on market phases before and after the opening of the American trading and

at a U.S. bank holiday. We obtain signi�cant changes in market dynamics indi-

cated by di�erences in the estimated survivor functions, and, thus the duration

distribution.

The last hypothesis which is tested empirically concerns strategic behaviour of

market participants. By including a nonlinear function of the contemporaneous

trading volume we �nd a nonlinear relationship between present volume and

trading intensity. As a linear approximation for the in
uence of traded volume

per transaction on the latent variable seems appropriate over a sensible range we

cannot �nd evidence for a camou
aging behaviour of informed traders.

The estimated ARMA paramaters indicate a high persistence of the duration-

process which is a wellknown property of this kind of data. The obtained coeÆ-

cients are comparable to the results already found by Engle and Russel (1998) on

the basis of ACD models. Furthermore, we �nd a high robustness of all estimated

paramaters, especially against the choice of the categories.
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7. Appendix

7.1. Asymptotic Properties of the Proportional Hazard ARMA model.

The following assumptions will be needed for consistency of the estimator and its

asymptotic normality

Assumption (0): The DGP is of the form (5) and (6).

Assumption (1): The f�tg are i.i.d. with E�t = 0 and E�2t = �
2.

Assumption (2): Stationarity of the AR component, the roots of the characteristic

equation of �(L) are outside the unit circle.

Assumption (3): Invertibility of the MA component, the roots of the characteristic

equation of �(L) are outside the unit circle.

Assumption (4): The characteristic polynomials of �(L) and �(L) have no roots in

common and �p 6= 0 �q 6= 0

Assumption (5): �0 is in the interior of �, a compact subset of Rm. For ease of

exposition we assume that we have a reasonably sized compact subset within the

stationary and invertible region of our process.15

Assumption (6): The conditional mean function mt has no additive components,

which are constant over t, i.e. mt(�) 6= mt(�
0)+ c for all t and � 6= �

0, and c 6= 0.16

Assumption (7): The strict inequality �1 < �1 < �2 < : : : < �K�1 <1 holds for

the thresholds of the quantal response model.

The asymptotic properties of an ARMA process are somewhat lengthy and tedious

to derive but nevertheless well documented in literature, see e.g. Deistler (1985). The

assumption (5), which is stronger than the usual assumptions (2) and (3) in the fore-

mentioned literature allows us to concentrate on the pecularities of the relationship

between the observable and the latent model and its implications for the asymptotic

properties, so that we can raise the following

Proposition: Under assumptions (0), (1), and (4)-(7) the estimator derived from

(15) is

1. consistent and

2. asymptotically normal.

Proof: It is possible to invoke generic theorems on consistency and asymptotic nor-

mality, e.g. theorems 5.1 and 5.2 of Wooldridge (1994) to assess this problem, inspite

of the ARMA nature of the latent process because of assumption (5), which allows a

simpli�ed analysis. See e.g. the discussion in P�otscher and Prucha (1997, chapter 4.5).

Given assumption (5) or (2) and (3), the DGP is stationary and ergodic. From the

identi�ability assumption (4) follows that mt(�) 6= mt(�
0) for � 6= �

0. Then we have also

F�(�k �mt(�)) 6= F�(�
0

k
�mt(�

0)) from �k 6= �
0

k
and assumption (6). Furthermore it

is true that F�(�k �mt(�))�F�(�k�1�mt(�)) 6= F�(�
0

k
�mt(�

0))�F�(�
0

k�1�mt(�
0))

in conjunction with assumption (7).

15For an AR(1) we would thus impose that � 2 [l; u] � (�1; 1).
16This amounts to the usual identifying assumption on the level of the latent variable. The

scale of the latent variable is identi�ed through the constant variance of the extreme value

distribuion.
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The conditional expectation mt can be seen as a one-period ahead forecast based

on past observations, or more concisely mt =
P

1

j=1  j�t�j where the  j are a func-

tion of the autocovariances of �t. The restriction of the parameter space imposed by

assumption (5) translates to restrictions on the autocovariances and thus on the  j so

that it is possible to give two sequences of constants cj and dj so that bl < mt < bu

with bl =
P

1

j=1 dj�t�j and bu =
P

1

j=1 cj�t�j for which it is true that Ejblj < 1 and

Ejbuj < 1. From assumption (1) and the information inequality, see e.g. Newey and

McFadden (1994), lemma 2.2, we can deduce a unique maximum of the likelihood.

Note that under assumption (5) the likelihood of the latent process and its second

derivative satisfy the uniform weak law of large numbers, as well as the score at the

true parameters sati�es the central limit theorem. Invoking lemmata 1, 4, and 3 from

Gourieroux, Monfort, Renault, and Trognon (1987) which are not limited to the linear

exponential family completes the proof.

7.2. Empirical Results.

7.2.1. Descriptive Statistics.

Table 1. Descriptive Statistics of inter-trade durations and vol-

ume per transaction. Based on BUND futures trading at DTB,

Frankfurt, from 01/30/95 to 02/24/95. 44810 observations.

A: After 14:30, no U.S. holiday.

B: Before 14:30, no U.S. holiday.

C: U.S. bank holiday, (President's Day (02/20/95)).

D: Over all observations.

A B C D

Inter-trade durations

0.25-quantile 1 3 5 2

0.5-quantile 5 7 17 6

0.75-quantile 12 20 57 16

Mean 10:22 17:68 49:52 14:16

Std. Dev. 17:74 32:07 84:29 26:56

Volume per transaction

0.25-quantile 5 4 3 5

0.5-quantile 11 10 10 10

0.75-quantile 23 20 20 21

Mean 19:77 18:67 16:07 19:19

Std. Dev 25:49 25:85 24:25 25:68
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Table 2. acf and pacf functions of intra-trade durations. Based

on BUND futures trading at DTB, Frankfurt, from 01/30/95 to

02/24/95. 44810 observations.

Column A: Raw durations.

Column B: Seasonal adjusted durations (based on FFF of order

p = 4, 14:30- and holiday-dummies).

A B

acf pacf acf pacf

lag1 0.2171 0.2171 0.1539 0.1539

lag2 0.2013 0.1617 0.1368 0.1159

lag3 0.1859 0.1230 0.1203 0.0870

lag4 0.1874 0.1122 0.1216 0.0824

lag5 0.1967 0.1113 0.1317 0.0870

lag6 0.1896 0.0915 0.1240 0.0711

lag7 0.1745 0.0670 0.1076 0.0492

lag8 0.1867 0.0785 0.1209 0.0630

lag9 0.1735 0.0571 0.1065 0.0433

lag10 0.1722 0.0532 0.1052 0.0408

lag11 0.1522 0.0286 0.0836 0.0169

lag12 0.1584 0.0385 0.0904 0.0276

lag13 0.1672 0.0480 0.0999 0.0378

lag14 0.1621 0.0391 0.0944 0.0298

lag15 0.1684 0.0461 0.1016 0.0379

Table 3. Estimation of ARMA models for raw inter-trade du-

rations. Based on BUND futures trading at DTB, Frankfurt, from

01/30/95 to 02/24/95. 44810 observations. P-values based on as-

ymptotic t-statistics.

ARMA(1,1) ARMA(1,2) ARMA(2,2) ARMA(3,3)

Variable Coe�. p-value Coe�. p-value Coe�. p-value Coe�. p-value

AR1 0:9860 0:0000 0:9873 0:0000 1:9066 0:0000 0:9114 0:0000

AR2 �0:9072 0:0000 �0:5307 0:0036

AR3 0:5975 0:0000

MA1 0:9180 0:0000 0:8978 0:0000 1:8289 0:0000 0:8244 0:0000

MA2 0:0249 0:0000 �0:8335 0:0000 �0:5248 0:0021

MA3 0:5691 0:0000

Mean 14:1803 0:0000 14:1820 0:0000 14:1861 0:0000 14:18168 0:0000

BIC 414183 414167 414158 414184

AR and MA Roots

AR1 1:0141 1:0128 1:0938 1:2852

AR2 1:0076 1:2852

AR3 1:0131

MA1 1:0892 37:0964 1:1586 1:2738

MA2 1:0813 1:0354 1:2738

MA3 1:0829
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Table 4. Estimation of ARMA models for seasonal adjusted

inter-trade durations. Based on BUND futures trading at DTB,

Frankfurt, from 01/30/95 to 02/24/95. 44810 observations. P-

values based on asymptotic t-statistics.

ARMA(1,1) ARMA(1,2) ARMA(2,2) ARMA(3,3)

Variable Coe�. p-value Coe�. p-value Coe�. p-value Coe�. p-value

AR1 0:9742 0:0000 0:9767 0:0000 1:3219 0:000 0:9251 0:0000

AR2 �0:3363 0:0448 �0:5914 0:0007

AR3 0:6261 0:0000

MA1 0:9084 0:0000 0:8920 0:0000 1:2368 0:0000 0:8421 0:0000

MA2 0:02226 0:0000 �0:2906 0:0661 �0:5835 0:0003

MA3 0:5948 0:0000

Mean 0:0104 0:9797 0:0081 0:9846 0:0106 0:9803 0:0087 0:9834

BIC 413961 413951 413958 413967

AR and MA Roots

AR1 1:0237 1:0128 2:9077 1:2486

AR2 1:0224 1:2486

AR3 1:0242

MA1 1:1008 40:5258 3:1712 1:2402

MA2 1:0813 1:0851 1:2402

MA3 1:0929
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7.2.2. Regression Results.

Table 5. Estimation of Proportional Hazard ARMA(1,2) models

for grouped durations. Based on BUND futures trading at DTB,

Frankfurt, from 01/30/95 to 02/24/95. 44810 observations. P-

values based on asymptotic t-statistics.

A B C

Variable Coe�. p-value Coe�. p-value Coe�. p-value

Thresholds

�1 (�t = 1) �4:0915 0:0000 �3:2266 0:0000 �2:8096 0:0000

�2 (�t = 5 �3:0255 0:0000 �2:1591 0:0000 �1:7407 0:0000

�3 (�t = 10) �2:5136 0:0000 �1:6472 0:0000 �1:2282 0:0000

�4 (�t = 30) �1:7431 0:0000 �0:8769 0:0000 �0:4571 0:0001

�5 (�t = 60) �1:2342 0:0000 �0:3671 0:0016 0:0538 0:3346

�6 (�t = 90) �0:9456 0:0000 �0:0772 0:2678 0:3455 0:0030

�7 (�t = 120) �0:7634 0:0000 0:1062 0:1969 0:5308 0:0000

�8 (�t = 150) �0:6038 0:0003 0:2669 0:0160 0:6940 0:0000

�9 (�t = 180) �0:4948 0:0025 0:3766 0:0012 0:8061 0:0000

Intraday Seasonalities

Æ1 0:2228 0:0000 1:0286 0:0000

Æs;1 0:1946 0:0000 0:0314 0:2759

Æs;2 0:0785 0:0045 0:0348 0:1387

Æs;3 �0:1099 0:0000 �0:0328 0:1035

Æs;4 0:0744 0:0009 0:0275 0:1584

Æc;1 �0:2183 0:0000 �0:0140 0:3886

Æc;2 0:1811 0:0000 0:0676 0:0169

Æc;3 �0:0724 0:0018 �0:0542 0:0081

Æc;4 0:0310 0:0988 0:0767 0:0003

14:30h and Bank Dummy

After 14:30 �0:8264 0:0000

Bank Holiday 0:8684 0:0000

ARMA Parameters

AR1 0:9877 0:0000 0:9815 0:0000 0:9779 0:0000

MA1 0:8879 0:0000 0:8836 0:0000 0:8815 0:0000

MA2 0:0443 0:0000 0:0411 0:0000 0:0402 0:0000

BIC and Mean Log Likelihood

Mean Log Likelihood �1:6229 �1:6225 �1:62093

BIC �72742:3563 �72721:1864 �72649:9385
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Table 6. Estimation of Proportional Hazard ARMA(1,2) models

for grouped durations and BIC. Based on BUND futures trading at

DTB, Frankfurt, from 01/30/95 to 02/24/95. 44810 observations.

P-values based on asymptotic t-statistics.

D E

Variable Coe�. p-value Coe�. p-value

Thresholds

�1 (�t = 1) �2:9277 0:0000 �3:9468 0:0000

�2 (�t = 5 �1:8577 0:0000 �2:8766 0:0000

�3 (�t = 10) �1:3441 0:0000 �2:3629 0:0000

�4 (�t = 30) �0:5710 0:0000 �1:5899 0:0000

�5 (�t = 60) �0:0589 0:2397 �1:0776 0:0000

�6 (�t = 90) 0:2332 0:0025 �0:7850 0:0000

�7 (�t = 120) 0:4188 0:0000 �0:5993 0:0000

�8 (�t = 150) 0:5827 0:0000 �0:4360 0:0028

�9 (�t = 180) 0:6958 0:0000 �0:3239 0:0238

Static Covariates

lvol 0:0241 0:1647

lvol
2

�0:3863 0:0009

lvol
3 0:5034 0:0021

Dynamic Covariates

lvol lag1 �0:0126 0:000

dp lag1 �0:0214 0:0284

14:30h and Bank Dummy

After 14:30 �0:8858 0:0000 �0:8113 0:0000

Bank Holiday 0:8530 0:0000 0:7578 0:0000

ARMA Parameters

AR1 0:9781 0:0000 0:9729 0:0000

MA1 0:8820 0:0000 0:8770 0:0000

MA2 0:0373 0:0000 0:0383 0:0000

BIC and Mean Log Likelihood

Mean Log Likelihood �1:6191 �1:62011

BIC �72569:2805 �72613:1943



28 F. GERHARD AND N. HAUTSCH

7.3. Figures.
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