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Abstract

This paper considers tests for a unit root when the innovations follow a near-integrated GARCH

process. We compare the asymptotic properties of the likelihood ratio statistic with that of the least-

squares based Dickey-Fuller statistic. We first use asymptotics where the GARCH variance process

is stationary with fixed parameters, and then consider parameter sequences such that the GARCH

process converges to a diffusion process. In the fixed-parameter case, the asymptotic local power

gain of the likelihood ratio test is only marginal for realistic parameter values. However, under

near-integrated parameter sequences the difference in power is more pronounced.

1 Introduction

A well-known property of financial time series is that their conditional variance displays variation over

time, such that persistent periods of high variation are followed by low-volatility periods. This phe-

nomenon, known asvolatility clustering, is modelled in the econometrics literature either by GARCH

(generalized autoregressive-conditional heteroskedaticity) type models (see Bollerslevet al., 1994, for

an overview) or by stochastic volatility models, see e.g. Shephard (1996). When applied to daily finan-

cial returns data, both classes of models display a high degree of persistence, and hence a low degree

of mean-reversion in the volatility process. Such processes are referred to asnear-integrated, since

their characteristic polynomial has a root close to but not necessarily equal to unity. Boswijk (1999)

considers (quasi-) likelihood based tests for a unit root in the volatility process in exponential GARCH

(EGARCH) models and stochastic volatility models.

In the present paper we study the effect of such near-integrated volatility processes on testing for

an autoregressive unit root in the level of the process itself (instead of its volatility). This problem

is relevant in finance, for example when models for the term structure of interest rates depend on the

presence and degree of mean-reversion in the short rate. A typical model for the short rate is the one by

Vasicek (1977), which is essentially a first-order autoregression with constant volatility. When applied
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to daily or weekly interest rates, the hypothesis of a unit root (i.e., no mean-reversion) often cannot

be rejected, and a possible explanation of this is that least-squares-based tests are not powerful enough

to discover the (weak) mean-reversion. Since interest rates clearly do not have a constant volatility,

a likelihood-based testing procedure which takes this phenomenon into account might be expected to

yield more efficient estimates and hence more powerful tests.

Previous work in this area is by Ling and Lee (1997, 1998) and Rahbek (1999), who consider tests

for a unit autoregressive root in models with GARCH errors. They find that the maximum likelihood

estimator of the mean-reversion parameter has a limiting distribution that is a weighted average of

a Dickey-Fuller-type distribution and a normal distribution. They consider GARCH processes with

fixed parameters in the stationarity region, whereas in this paper we study the case where the volatility

parameters approach the unit root bound. Therefore, we consider parameter sequences such that the

autoregressive root in the volatility process approaches unity as the sample size increases. This allows

us to use the results of Nelson (1990) on continuous-time diffusion limits of GARCH processes. The

present paper is also closely related to Hansen (1992b, 1995), who considers ordinary least-squares,

generalized least-squares and adaptive estimation of regressions with non-stationary volatility.

The outline of the remainder of the paper is as follows. In Section 2, we define the model and

hypothesis, and the parameter sequences that will be used in the asymptotic analysis. Section 3 anal-

yses the likelihood function, the score and the information, and their asymptotic distribution under the

relevant probability measures. We study the asymptotic distributions of the Dickey-Fuller test statistic,

based on least-squares estimation, and the likelihood ratio test statistic, both under the null hypothesis

and under local alternatives. Section 4 provides numerical evidence on the local power of these tests,

and Section 5 concludes.

2 The Model

Consider a univariate first-order autoregessive process with GARCH(1,1) innovations:

�Xt = (Xt�1 � �) + "t; t = 1; : : : ; n; (1)

"t = �t�t; (2)

�2t = ! + �"2t�1 + ��2t�1; (3)

�t � i:i:d: N(0; 1); (4)

where�Xt = (Xt �Xt�1), and whereX0, "0 and�20 are fixed.

The parameter describes the degree of mean-reversion. If�2 <  < 0, thenXt reverts back

to its mean�. The null hypothesis that we wish to test is the unit root hypothesis, or equivalently the

no-mean-reversion hypothesis

H0 :  = 0; (5)

which is tested against the alternative < 0. The model (1) has a restricted constant term, such that

under the null hypothesis the process does not contain a drift. Other specifications of the deterministic
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component inXt can be considered, including a restricted linear trend term (to test a random walk with

drift against a trend-reverting autoregression), but this is not considered explicitly here. Similarly, the

model can be extended to allow for more lags in (1).

The (non-negative) parameters!, � and� characterize the dynamics of the volatility process. If

j�+�j < 1, then the variance reverts back to its mean�2 = !=(1����), and if(�+�) = 1 then the

variance follows a random walk (with drift if! 6= 0). The asymptotic distribution of the test statistics

considered in the next section will depend on what we assume about the parameter of interest, but also

on assumptions about the volatility parameters(!; �; �). We consider two alternative assumptions (in

all cases(!; �; �) � 0):

Assumption 1 For all n � 1, n = �=n and j�+ �j < 1, with (�; �; !; �; �) fixed.

Assumption 2 For all n � 1, n = �=n, (�n + �n) = 1 + �=n, !n = $=n and�n = �=
p
2n, with

(�; �;$; �; �) fixed.

Under Assumption 1, the processXt is near-integrated with stationary volatility. The null hypothesis

requires� = 0, and values� 6= 0 define the local alternatives. Under Assumption 2, the variance

process is also near-integrated. One possible motivation for these parameter sequences is that the model

(1)–(4) is viewed as a discrete-time approximation, for varyingn but over a fixed time interval, of the

continuous-time diffusion process defined below in Lemma 2, see Nelson (1990).

We conclude this section with two lemmas that describe the limiting behaviour ofXt under each of

the two possible assumptions.

Lemma 1 Under Assumption 1, and asn!1,0
@ 1

�
p
n

bsncX
t=1

"t;
1p
n
Xbsnc

1
A L�! (W (s); U(s)) ; (6)

whereW (s) a standard Brownian motion process on[0; 1] andU(s) is an Ornstein-Uhlenbeck process

on [0; 1]:

dU(s) = �[U(s)� �]ds+ �dW (s); (7)

withU(0) = 0 and�2 = !=(1� �� �).

The proof of this lemma is given in Ling and Li (1998, Theorem 3.3) for� = 0, in which case

the processU(s) reduces to�W (s), a Brownian motion with variance�2. This is extended to the case

� 6= 0 by writingXbsnc as a continuous functional of the partial sum of"t.

Lemma 2 Under Assumption 2, and asn!1,0
@ 1p

n

bsncX
t=1

�t;
1p
2n

bsncX
t=1

(�2t � 1);
1p
n
Xbsnc; �

2
bsnc

1
A L�! (W1(s);W2(s); Y (s); V (s)) ; (8)
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where(W1(s);W2(s)) is a standard bivariate Brownian motion process on[0; 1], and(Y (s); V (s)) is

the solution to the system of stochastic differential equations

dY (s) = �[Y (s)� �]ds+ V (s)1=2dW1(s); (9)

dV (s) = [�V (s) +$]ds+ �V (s)dW2(s); (10)

with Y (0) = 0 andV (0) = �20.

The proof of this lemma follows from Nelson (1990, Theorem 2.2 and Section 2.3). The difference

again is that Nelson considers the case� = 0, but the extension of his proof to the present case is

straightforward. If the processY (s) is discretely sampled at timess = t=n, and we defineXt =
p
nY (t=n); t = 0; 1; : : : ; n, then the actual process generatingXt may be approximated by (1)–(4)

under Assumption 2; the approximation error will vanish asn!1, see Nelson (1990). An alternative

(Euler) approximation would lead to a discrete-time stochastic volatility-type model, but we choose to

work with the GARCH model because it has a closed-form expression for the likelihood function, which

simplifies the construction of likelihood-based test statistics considered in the next section.

3 Likelihood Analysis

The statistical analysis of model (1)–(4) is given in Ling and Li (1997, 1998) and Rahbek (1999), but

will be briefly repeated here.

It will be convenient to introduce the parameter vector� = (;��)0 andZt = (Xt�1; 1)
0, such

that (1) becomes�Xt = �0Zt + "t, and the null hypothesis isH0 : � = 0. The full parameter vector is

� = (�0; !; �; �)0, and the log-likelihood function is

logL(�) =
nX
t=1

logLt(�) =
nX

t=1

�1

2

�
log 2� + log �t(�)

2 +
"t(�)

2

�t(�)2

�
; (11)

where"t(�) = �Xt��0Zt, and where it should be noted that�t(�) depends on the volatility parameters

(!; �; �), but also, via"2t�1, on the regression parameters�. The log-likelihood is conditional on�0 and

"0, which are not observed. In practice, they may be replaced by suitable estimates (we will assume that

this has an asymptotically negligible effect).

The unrestricted parameter space for� is� = R
2�R+�R+�R+ , and the restricted parameter space

defined by the null hypothesis is�0 = (0; 0) � R
+ � R

+ � R
+ . Define�̂ = argmax�2� logL(�) and

~� = argmax�2�0
logL(�), the unrestricted and restricted maximum likelihood estimators, respectively.

The likelihood ratio statistic for the null hypothesis is

LR = �2
�
logL(~�)� logL(�̂)

�
: (12)

We will compare the performance of this test with that of Dickey and Fuller’s (1981)F -statistic:

�1 =
n� 2

2

Pn
t=1�XtZ

0
t (
Pn

t=1 ZtZ
0
t)
�1Pn

t=1 Zt�XtPn
t=1(�Xt � �̂

0
LSZt)2

; (13)
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with �̂LS = (
Pn

t=1 ZtZ
0
t)
�1Pn

t=1 Zt�Xt; this is a monotonic transformation of the likelihood ratio

statistic forH0 under the restriction� = � = 0 (i.e., homoskedastic innovations).

Define the score vectorS(�) = @ logL(�)=@� and the observed information matrixJ(�) =

�@2 logL(�)=@�@�0. We will make use of the conventional Taylor series expansions which result in

LR =
�
n�1�0 + S(�0)

0J(�0)
�1E1

� �
E0
1J(�0)

�1E1

��1 �
E0
1J(�0)

�1S(�0) + n�1�
�
+ oP (1); (14)

where�0 is the true value (which is a sequence under Assumption 1 or 2),E1 = [I2 : 0]
0 is a selection

matrix such that� = E0
1� and� is the normalized distance between the true and hypothesized value of

�:

� = n

  
�=n

���=n

!
�
 

0

0

!!
= �

 
1

��

!
: (15)

Therefore, we need to find an expression forS(�) andJ(�), and evaluate their joint asymptotic behaviour

under either Assumption 1 or 2.

Let � = (!; �; �), the GARCH parameters, and letwt(�) = (1; "t�1(�)
2; �t�1(�)

2)0. It will be

convenient to define:

@ logLt(�)

@�t(�)2
=

1

2�t(�)2

�
"t(�)

2

�t(�)2
� 1

�
=

1

2�t(�)2
�
�t(�)

2 � 1
�
; (16)

@�t(�)
2

@�
= �

@�t�1(�)
2

@�
� 2�"t�1(�)Zt�1 = �2�

t�1X
i=1

�i�1"t�i(�)Zt�i; (17)

@�t(�)
2

@�
= �

@�t�1(�)
2

@�
+wt(�) =

t�1X
i=0

�iwt�i(�): (18)

where�t(�) = "t(�)=�t(�). Here we use the fact that a fixed startup value for�20 implies@�20=@� = 0

and@�20=@� = 0. Thus we find

S�(�) =
@ logL(�)

@�
=

nX
t=1

 
Zt

"t(�)

�t(�)2
� �

�t(�)2
�
�t(�)

2 � 1
� t�1X
i=1

�i�1"t�i(�)Zt�i

!
; (19)

S�(�) =
@ logL(�)

@�
=

nX
t=1

 
1

2�t(�)2
�
�t(�)

2 � 1
� t�1X
i=0

�iwt�i(�)

!
: (20)

Expressions for the blocksJ��, J�� andJ�� of the information matrix can be derived from this. We shall

not give explicit expressions here, but only provide their limiting behaviour in the next lemma, see Ling

and Li (1998).

Lemma 3 Under Assumption 1, and asn!1,

1p
n

bsncX
t=1

 
"t
�2t

� �

�2t

�
�2t � 1

� t�1X
i=1

�i�1"t�i

!
L�! �B(s); (21)

jointly with Lemma 1, where

�2 = E

"
1

�2t
+ 2�2

1X
i=1

�2(i�1)
"2t�i
�4t

#
; (22)
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and (W (s); B(s)) is a bivariate vector Brownian motion process withvar(W (1)) = var(B(1)) = 1

andcov(W (1); B(1)) = � =
1

��
. LettingDn = diag(n�1; n�1=2),

DnS�
L�! �

Z 1

0
F (s)dB(s); (23)

DnJ��Dn
L�! �2

Z 1

0
F (s)F (s)0ds; (24)

whereF (s) = (U(s); 1)0. Furthermore,

n�1=2S�
L�! N(0;�); n�1J��

P�! �; n�1=2DnJ��
P�! 0; (25)

where� is a positive definite matrix.

These results leads to the following theorem, which is obtained as a combination of the results of

Ling and Li (1998) and Rahbek (1999):

Theorem 1 Under Assumption 1, and asn!1,

LR
L�!

�Z 1

0
F (s)[dB(s) + �F (s)0�ds]

�0 �Z 1

0
F (s)F (s)0ds

��1

�
�Z 1

0
F (s)[dB(s) + �F (s)0�ds]

�
; (26)

2�1
L�!

�Z 1

0
F (s)[dW (s) + ��1F (s)0�ds]

�0 �Z 1

0
F (s)F (s)0ds

��1

�
�Z 1

0
F (s)[dW (s) + ��1F (s)0�ds]

�
: (27)

The limiting distribution ofLR under the null hypothesis (� = 0) depends on the nuisance parameter

�. In practice this nuisance parameter can be estimated consistently, and used to obtain an asymptotic

p-value, either by Monte Carlo simulation or by the Gamma approximation proposed by Boswijk and

Doornik (1999). The power function depends, in addition to�, only on�=� (it is invariant to� and�).

In the next section, we compare the power functions of the two statistics for various values of�.

Consider now the asymptotic behaviour of the score vector and information matrix under Assump-

tion 2:

Lemma 4 Under Assumption 2, with�=�2 < 1 and$ > 0, and asn!1,

1p
n

bsncX
t=1

 
"t
�2t

� �

�2t

�
�2t � 1

� t�1X
i=1

�i�1"t�i

!
L�!
Z s

0
V (u)�1=2dW1(u); (28)

jointly with Lemma 2. LettingDn = diag(n�1; n�1=2),

DnS�
L�!

Z 1

0
G(s)V (s)�1=2dW1(s); (29)

DnJ��Dn
L�!

Z 1

0
G(s)G(s)0V (s)�1ds; (30)

whereG(s) = (Y (s); 1)0. Furthermore,

n�1S� = OP (1); n�2J�� = OP (1); n�1DnJ��
P�! 0: (31)
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A proof is given in the Appendix. Note that the limiting Riemann integral in (30) is the quadratic

variation of the stochastic integral in (29). The suitably normalized information matrix is block-diagonal

in the limit, because the cross-variation between the two parts of the score vector is zero in the limit.

These results imply:

Theorem 2 Under Assumption 2, with�=�2 < 1 and$ > 0, and asn!1,

LR
L�!

�Z 1

0
G(s)V (s)�1=2[dW1(s) + V (s)�1=2G(s)0�ds]

�0 �Z 1

0
G(s)G(s)0V (s)�1ds

��1

�
�Z 1

0
G(s)V (s)�1=2[dW1(s) + V (s)�1=2G(s)0�ds]

�
; (32)

2�1
L�!

�Z 1

0
G(s)[V (s)1=2dW1(s) +G(s)0�ds]

�0 �Z 1

0
G(s)G(s)0ds

Z 1

0
V (s)ds

��1

�
�Z 1

0
G(s)[V (s)1=2dW1(s) +G(s)0�ds]

�
: (33)

The theorem is proved in the Appendix. The results are closely related to those obtained by Hansen

(1992b, 1995), who considers ordinary least-squares, generalized least-squares and adaptive estima-

tion of regressions with non-stationary volatility. Note that the likelihood ratio statistic is asymptoti-

cally equivalent to a Wald statistic based on weighted least-squares with knownf�2t g. Hansen shows

that when the process generating the non-stationary volatility is unkown, it may be estimated non-

parametrically, without loss of efficiency relative to a parametric likelihood analysis.

Both distributions in Theorem 2 depend on nuisance parameters, even under the null hypothesis (� =

0). In principle they are affected by all volatility parameters($;�; �), although parameter variations

that only affect the scale ofV (s) will leave the distributions in (32) and (33) unaffected. From Nelson

(1990), it appear that the function�=�2 is most relevant, since it determines the stationary distribution of

the volatility process. Unfortunately these parameters are not consistently estimable. Further research

will have to indicate the degree of dependence on the volatility parameters, and the possibility of finding

a bounding distribution that would enable one to control the asymptotic size of the tests. In the next

section we evaluate the power of the two tests, taking the volatility parameters as known.

4 Local Power

In this section we provide some numerical evidence on the local power of the two alternative test statis-

tics. First, we consider the case of stationary volatility (Assumption 1). We consider two sets of GARCH

parameters:

� � = 0:05, � = 0:9 and�2 = !=(1 � � � �) = 1, which implies� = 0:93 (the value of� is

obtained by Monte Carlo simulation). This corresponds to a relatively smooth GARCH process

with strong persistence, as typically found in empirical data sets of daily returns. The high value

of the correlation coefficient suggests that the power difference between theLR and�1 test will

be relatively small in this case.
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� � = 0:35, � = 0:6 and�2 = 1, which implies� = 0:32. Again this leads to a rather slowly

mean-reverting GARCH process, but now the higher value of� leads to more short-run variation

in the volatility. The low value of� leads us to expect more power gains for theLR test in this

case.

Table 1 displays the local power function of the�1 test, which is the same for both parameter

combinations, and that of theLR statistic for each data-generating process. All results are obtained by

Monte Carlo simulation, using a discretization of the processes and integrals. As expected, the power

gain of theLR test relative to the least-squares-based�1 is very small when� = 0:93. This suggests

that for GARCH processes, one might as well use the conventional test. For the second parameter

combination, the power gain is substantial for low values of��. As the mean-reversion increases, we

see that the power functions seem to converge to each other; it even seems that for high values of��,

the power of�1 exceedsthat ofLR.

Table 1: Local power of�1 andLR with stationary volatility.

� �5 �10 �15 �20 �25 �30
�1 0:079 0:214 0:451 0:716 0:893 0:973

LR (� = 0:93) 0:082 0:227 0:474 0:698 0:873 0:954

LR (� = 0:32) 0:212 0:437 0:624 0:769 0:865 0:923

Next, we consider the local power function when the volatility process is near-integrated. Again we

consider two parameter configurations:

� � = �100, � = 3:162 and�2 = !n=(1 � �n � �n) = 0:01. This corresponds to the first case

considered above ((�; �) = (0:05; 0:9)), with n = 2000; the expected variance has been chosen

smaller here, but the results in Table 1 are invariant to�2, so it is fully comparable.

� � = �40, � = 5:060 and�2 = 0:01. Forn = 2000, this corresponds to(�; �) = (0:08; 0:9),

which leads to a smoother and more persistent volatility process.

Critical values and local power results for the two test statistics for each parameter combination have

been obtained by Monte Carlo simulation, and are given in Table 2.

Table 2: Local power of�1 andLR with near-integrated volatility.

� �5 �10 �15 �20 �25 �30
�1 (� = �100; � = 3:16) 0:076 0:224 0:469 0:754 0:919 0:984

LR (� = �100; � = 3:16) 0:087 0:258 0:528 0:805 0:942 0:989

�1 (� = �40; � = 5:06) 0:084 0:222 0:466 0:736 0:900 0:974

LR (� = �40; � = 5:06) 0:112 0:340 0:657 0:876 0:965 0:994
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We observe that the power differences are more pronounced now, especially with the second param-

eter combination. Note that the local power function ofLR in the� = �100 case is substantially higher

than the corresponding case in Table 1. Further Monte Carlo analysis would have to indicate which of

the two asymptotic approximations are more accurate in finite samples.

5 Conclusion

In this paper we have investigated likelihood ratio testing for a unit root when the innovations follow a

near-integrated GARCH process. With fixed GARCH parameters, the asymptotic local power function

indicates that for parameter combinations that appear to be relevant in empirical finance, the possible

power gain of the likelihood ratio statistic over the conventional Dickey-Fuller test is only marginal.

However, when we consider near-integrated parameter sequences for the GARCH process, then the

power advantages of the likelihood ratio test become more substantial. This suggests that the likelihood

ratio statistic would be an attractive alternative to the usual Dickey-Fuller test in series with smooth

and persistent volatility. At this point however, the test is not yet operational since its asymptotic null

distribution depends on nuisance parameters that are not consistently estimable (note, however, that

the same applies to the least-squares based test). Further research will have to indicate how severe

this problem is, and whether replacing the unknown diffusion parameters by their maximum likelihood

estimates would yield a possible practical solution.
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Appendix

Proof of Lemma 4

Write the first term of (28) as

1p
n

bsncX
t=1

�t
�t

=

Z s

0
��1buncdW1n(u); (A.1)

whereW1n(s) = n�1=2
Pbsnc

t=1 �t. From Lemma 2,(W1n(s); �
2
bsnc) converges weakly to(W1(s);

V (s)). Nelson (1990, Theorem 2.3) shows thatV (s) is stationary if�=�2 < 1 and$ > 0, and that under

those conditions��2bsnc converges weakly toV (s)�2 (and hence��1bsnc
L! V (s)�1=2). Sincef�tg are

i:i:d: N(0; 1), the conditions of Hansen (1992a) apply, and
R s
0 �

�1
buncdW1n(u)

L! R s
0 V (u)�1=2dW1(u).

Write the remainder of (28) asn1=2
Pbsnc

i=1 �t=�t, where�t is a martingale difference sequence with

variance2�2n
P1

i=1 �
2(i�1)
n E("2t�i=�

2
t ). Using "2t�i=�

2
t = �2t�i(�

2
t�i=�

2
t ), and substitution of2�2n =

�2=n and�2n = (1 � �=
p
2n+ �=n)2 = 1 � 2�=

p
2n+ o(n�1=2), it follows that the variance of�t is

O(n�1=2), so thatn1=2
Pbsnc

i=1 �t=�t
P! 0. This proves (28).

The results (29) and (30) follow from (28), together with(n1=2DnZbsnc; �
�1
bsnc)

L! (G(s);

V (s)�1=2), and the fact that(�t + �t) has bounded variance, so that again the conditions of Hansen

(1992a) for weak convergence to a stochastic integral apply.

For the results on the score and information for�, we note thatwt = OP (1), which implies thatPt�1
i=0 �

i
nwt�i = OP (n

�1=2), because�n = 1� �=
p
2n+ o(n�1=2). This explains whyS� andJ�� are

OP (n) andOP (n
2), respectively. The block-diagonality follows from this, together with the fact that

the two parts of the score vector are uncorrelated becauseE[�t(�
2
t � 1)] = 0.

Proof of Theorem 2

The result (32) follows from Lemma 4 and (14). Previous derivations show that

Dn

nX
t=1

Zt�Xt = Dn

nX
t=1

Zt�t�t +Dn

nX
t=1

ZtZ
0
t�=n

L!
Z 1

0
G(s)V (s)1=2dW1(s) +

Z 1

0
G(s)G(s)0�ds; (A.2)

and similarly

Dn

nX
t=1

ZtZ
0
tDn

L!
Z 1

0
G(s)G(s)0ds: (A.3)

Finally,

1

n

nX
t=1

(�Xt � �̂
0
LSZt)

2 =
1

n

nX
t=1

"2t + oP (1)

=
1

n

nX
t=1

�2t +
1

n

nX
t=1

�2t (�
2
t � 1) + oP (1)

L!
Z 1

0
V (s)ds: (A.4)
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