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Abstract

Orthogeodesic models admit marginal local cuts and therefore separate inference on
subparametersis asymptotically justified. Doubly-flat orthogeodesic models admit local cuts
marginally and conditionally. Two important empirical models for panel data are used to
illustrate this property and demonstrate its usefulness. The relation to local ancillarity and local
sufficiency isexplored. An alternative characterization of local cutsin terms of curvatureis

given and shown to beintrinsic. Applications to semiparametric estimation are considered.



1. Introduction

Orthogeodesic models were introduced by Barndorff-Nielsen and Blaesild (1993) as a
class of statistical models characterized by purely geometric properties. Christensen and Kiefer
(1994) introduced local cuts to allow justification of separate inference - conditionally and
marginally - in awide class of statistical models. In this paper we consider two important classes
of panel data models and show that they are in the orthogeodesic (OG) family and that separate
inference on subparametersis justified by the theory of local cuts. This property holds generally:

OG models admit marginal local cuts.

2. Panel Data Models

In many practical applications of formal statistical models, observations are organized in
panels with both atime dimension and a cross-sectional dimension. We consider leading cases
of economic applications.
Example 2.1. Gaussian Panel

In this example we consider an empirical model from many areas of applied economic
analysis. For eachindividual i, i = 1,...,I, we have data y;; across a number of time periodsj =
1,...,J, and we wish to relate these to observed regressors z;. Here we focus on a well-known

life-cycle labor supply model. The consumer is assumed to maximize alifetime utility function

.
inthe form Z B'u(c,,?,) where B isadiscount factor, uisautility function increasing in its
t=0

arguments consumption ¢ and leisure (. The maximization is subject to the budget constraint

that the value of consumption over the life cycle is equal to the value of 1abor income plus the

value of inital assets. The resulting consumption and labor supply functions are in each period



functions of that period’s prices and a time-independent, unobservable variable A (the marginal
utility of wealth) that incorporates the effects of initial assets and pricesin all other periods.
With suitable further assumptions the model fits in the framework
Yij = 05 + Bzjj + u, (2.1)
where u;; is a zero-mean error term. Often, a Gaussian distribution is adopted for the errors. The
interest parameter is the slope B, but unobserved heterogeneity and enters through the
coefficients o;. We areinterested in broad panels Y;={y;,z;: 1=1,...,1,] =1,...,J}, and
asymptoticsfor | — o, including in the case where Jisfixed, and in this situation thereis no
hope of estimating o precisely.
Example 2.2 Inverse Gaussian Panel
In this example we consider an empirical model from financial economics. Our key

interest isin asymmetry of information, and this provides alink to banking and macroeconomics
(Greenwald et a., 1984, Gertler, 1988). At each timet, abank has assets A; and liabilities L,
and the net worth (equity) isN; = A; — L. The assetsfollow the Ito process

dA; = ndt + LdW,, (2.2)
where { W} isastandard Wiener process. Since the liabilities represent deposits that are fixed in
value we specify L= L > 0, so that net worth evolves according to dN; = dA;, initiated at N, = Ao
— L >0. The bank becomesinsolvent at the first timet when assets A; drop below liabilitiesL.
In the data, banks are separated into different initial size categories, say Nio, | = 1,...,I, and
quantities are measured in units of initial net worth, e.g. ni; = Ni/Nio and o; = {j/Nj,.. We assume

that 6; = Bz, where z; is observed.



In this setting, z; is ameasure of the degree of information asymmetry between banks and
customers. Since banks have different asset portfolio compositions we have to allow for
different ROEs (returnsto equity). Aswe arelooking in particular at banks at risk of failing
ROE n; < 0, and upon normalization we consider the parameter o; = —m;i/Nio > 0. If we have J
banksin size category i, the )’ th bank follows

dnije = BzidWij — oydit (2.3
withnjo=1,j =1,...,J. Panel dataonthetimesto bank failureare T\; = {tj,z;: i =1,...,1,) =1,..,
J} where t;; denotes the first hitting time for the set { ni;; = 0}.

For fixed t > 0, we have so the density at the absorbing barrier

njr=01s

1
1 ey

p(ny, = 00,,B) = me ' , (24)

i.e. the well-known Gaussian, whereas the density of tj; isin the associated inverse Gaussian form

1 —Flzzt((xit—l)z
p(t; =to;,B) = m ' (2.5)

closely resembling (2.4) (see Cox and Oakes (1984, p. 22)) and correspondingly denoted
N_l(OLi,BZi).

Suppressing terms not depending on parameters, the log likelihood for the panel data T;

J o of
P ERE (2.6)
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wheret, = Xt /JandT, = Z;t;'/J arethe ordinary and inverse harmonic sample means. The

scorefor o is



J Jo;t,
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so &, = t*, yielding the log profile likelihood

T@) = - 1Jlogp — —= 5 2.9)

g ZBZ i ZIZ *

where v, = T, — ;" is positive since the inverse operation is convex and so by Jensen’s
inequality the average inverse exceeds the inverse average. The profile scoreis

- 1J J V.

S = - — + — 3 —+ 29

®B=-F*Fiyp (29

and the profile likelihood equation S(3) = O produces

/?{%E%J . (2.10)

The problem is that the profile likelihood is not as well-behaved as we would like. Thereis not
even any guarantee of consistency of B as| — o. Toseethis, it isuseful to review some results
from Barndorff-Nielsen (1988), who considered the model without regressors, i.e. zi= 1. First,
the full panel {t;;};; may be reduced by B-sufficiency to {(t,t )}, andsince(t,, ) isin one-to-one
correspondence with (£,v), we may equally consider {{,v)}. Furthermore, t, and v, are
independent, J, ~ N"*(a;,Bz,), and v, ~p?z%¢2,. Itfollowsthat E(v/z)=*(1-1/J), and s0 B
Is biased and inconsistent as | — < for Jfixed, in particular ﬁ — B(1-1J)Y2

In agiven practical situation, if the analysis has been carried to this stage, remedies of the

problems arising in situations such as those illustrated in Examples 2.1 and 2.2 obviously exist.

However, the key point is that maximum likelihood cannot be pursued without further analysis.



Our quest isfor an inference principle that allows choosing the appropriate objective based on

conditions that can be read directly from the likelihood function.

3. Local Cuts

In this section we consider separate inference on individual subparameters, with
particular reference to proper cuts (Barndorff-Nielsen (1978)) and the local generalization due to
Christensen and Kiefer (1994).

Let the model function be p(x;6), and suppose the parameter 6 € ® may be decomposed
as 0 = (¢,y) € @ x ¥ such that at each point x € X we have

p(x;6) = p(x;9ls)p(s;v) (3.1)
for asuitable statistics. Then sis S-sufficient for y and S-ancillary for ¢ (Barndorff-Nielsen
(2978, p. 50)). Thisrestriction isthe essential feature of a proper cut. Separate inference on ¢
and y isindicated, based on the pseudo-likelihoods p(x;|s) and p(s;-), respectively.

Inferential separation is crucial in graphical interaction models (Frydenberg (1990)),
many normal theory models (Bellhouse (1990)), models that possess nuisance parameters
(Kalbfleisch and Sprott (1970)), partial likelihood situations (Cox (1975)), and in numerous other
cases, and may sometimes be justified based on other sufficiency criterions, including M-
sufficiency and G-sufficiency (Barndorff-Nielsen (1978)) and L-sufficiency (Barndorff-Nielsen
(1988)).

To motivate the localization procedure, note that in many practical situations separate
inference is appropriate as long as the factorization (3.1) is satisfied to sufficient order of

approximation. The exact cut condition is usually unnecessarily stringent in applications.



Examples are given below where the new generalization allows natural inferential separation
even when the standard condition is violated.

To definealocal cut s, consider shifting ¢ in a neighborhood that shrinks with sample
size. We areinterested in conditions such that the asymptotic consequences of the shift for the
marginal distribution p(s;0) are less than when instead v is shifted. Similarly, the conditional
p(x;6|s) should be less sensitive to y-shifts than to ¢-shifts. Proportional errorsin (3.1)
correspond to additive errors in the logarithmic representation given as

log p(x;o+n%e, y) — log p(x;0,y) = [log p(x;¢+n~?e,yls) - log px;0,yIs)] +

[log p(sip+n%e,) - log p(s0,w)], (32
where € # 0 isavector conformable with ¢ and n isthe sasmple size. Using avector 6 # 0
conformable with v, the consequences of shifting this subparameter are defined by symmetry.

Suppose the orders s.(9), fe(v), sn(y) and fm(0) are such that

log p(x; ¢ +n"e,y|9) — log p(x;¢,y|s) = O,(n"""), (3.39)
log p(x; o,y +n28]9) — log p(x; 0, yl9) = O,(n~""?), (3.3b)
log p(s; 9,y +n28) — log p(s;9, ) = O,(n"=M"?), (3.30)
log p(s;¢ +n"?e,y) — logp(s;¢,y) = O,(n""?). (3.3d)

Then the e-shift in ¢ is asymptotically of less consequence for p(s;0) than the &-shift in y if and
only if fm(0) > sm(y). Inthe same sense, p(x;0]s) depends less on y than on ¢ if and only if
fe(v) > s(¢). Thus, f indicates the “fast” and sthe “slow” orders, and subscripts ¢ and m indicate
the conditional and marginal models, respectively.

The two terms in square brackets in (3.2) are of order s.(¢) and f(¢), respectively, and

the total model function dependence on ¢ could be largely through p(s;0) unless fm(d) > s:(¢).



Similar considerations on the 3-shift in y lead to the requirement fo(y) > sn(y). In summary, sis
alocal cut if
fm(9) > sm(W), fe(W) > S(9), fm(9) 2 5:(9), fe(W) 2 sm(y) (34)
(for details and a characterization in terms of approximately separated Edgeworth expansions,
see Christensen and Kiefer (1994)). In applications it turns out to be important to havein
addition the notion of amarginal local cut, relaxing the second strict inequality to aweak, i.e. a
marginal local cut is defined by the requirements
fm(9) > sm(W), fe(W) 2 5(0), fm(9) 2 5:(9), fe(y) 2 Sm(W). (3.5
In special cases where either y or ¢ is not present, the concepts of local ancillarity (Cox (1980))
or local sufficiency (McCullagh (1984)) lead to principles for conditional inference on ¢,
respectively marginal inference on v, if the relevant differences in asymptotic orders are at |east
one (for afirst order theory) or two (for a second order theory). Similarly, to quantify the nature
of the local property in our case, we say that alocal cut is of order q if
fm(9) — sm(w) 2, fe(y) — s(0) 2 g (3.6)
in (3.4), and if
fm(9) — sm(w) 2 q, (3.7)
we have an order g marginal local cut in (3.5). We are now led to the associated strong inference
principle that in amodel which admits alocal cut of order at least one (two for the second order
theory), separate inference on ¢ and y from the conditional respectively the marginal distribution

Isindicated. Thisnotionisnow explored further and illustrated.

4. Maximum Marginal Likelihood



In statistical theory, much interest is focussed on the maximum likelihood estimator
(MLE) 6= arg maxg p(x;0), where p(-;-) isthe model function. With the introduction of the
notion of amarginal local cut, we are led to consider an associated strong principle for marginal
inference. In particular, suppose that 6 = (¢,y) and that the parameter of interest isy. If the
model admits amarginal local cut s of order one or higher, inference on y in the marginal
distribution of sisindicated, and we consider the maximum marginal likelihood estimator
(MMLE) y = arg max,, p(s;0,y). In some cases, this depends on ¢, but it is not highly critical
which value is used for ¢, since by the properties of the marginal local cut the dependence
asymptotically wears off relatively fast. In other cases, y does not depend on ¢ at all.

Example 4.1 Marginal Local Cut in Gaussian Panel

Consider again Example 2.1 and define the time series (group) averages
Vi = Zy;/3i = 1.1, and similarly for . The model (2.1) in deviations from group meansis
then

y, = Bz, + T, 4.1

wherey, = y; —y;, andsimilary for Z,. Itisnatural to draw inference on 3, the parameter of
interest, in thisreduced model. Thus, lety, = (Y,...,Y,), ahd similarly for Z and u,. If u; are
i.i.d. draws from the J-dimensional multivariate normal NJ(O,GZIJ) where |;isthe IxJ identity
matrix and 62 > 0 then the marginal distribution for s= {V.}, iseasily obtained by noting that Y,
areindependent acrossindividualsi and §, ~N,(ZB,6°M), where M = |, — 11,/J. Here, 1,
isaJ-vector of ones. Thus, if 6* does not depend on o, the distribution of s does not involve .,
either. Of course, ¥, ~ N(o, +ZB,0°/J), independently acrossi. In the notation of Section 3,

wewould like the interpretation ¢ = o, = (B,67). Indeed, the conditional distribution p(x;0|s)



of the panel x =Y ; given smay be identified with the marginal distributionof y ={Yy}; sincey
and s are independent. This distribution depends on both ¢ and v so sis not a proper cut.
Nonetheless, it may be proved that under wide conditions sisamarginal local cut, and marginal
inference on y isindicated thus providing a principled basis for a separate inference procedure
common in practical applications; further details on this example may be found in Christensen
and Kiefer (1994).
Example 4.2 Marginal Local Cut in Inverse Gaussian Panel

Consider again Example 2.2. In analogy with Example 4.1 above, we wish to draw
Separate inference on y = 3, and to this end consider ¢ = o as an infinite-dimensional nuisance
parameter. Thus, we specify s= Vv ={V};, and we must verify that sisamarginal local cut.
Again, the conditional distribution p(x;0|s) of the panel x = T,; may be identified with the
marginal distributionof t ={t,}i sincet and V are independent. This distribution depends on
both ¢ and y so sis not aproper cut. Wefirst derive the orders fo(y) = f(B) and s(¢) = se(cx)
from p(t ;0|s) = p(t ;0), 6 = (o, B) (see (3.3)). We have
[ J o of

J i i
2—[322i ? - 2—[322| _2.2 ) (42)

J o,
logp(t;6) = — IlogP + ?Zi =
and to calculate f(B) wefirst note that to appropriate order log(B+n~Y28) — log p =

log(1+n28/B) = n"Y25/B and (B+n"28) > — B = [(B+nVZB)B] 2 [B*~(B+n25)7] =

—B[2n25p+n"187, so that

n*]J28
log p(t;.,B+n"?8) — logp(t;op) = - o
3 2n*1/25ﬁ'i‘ ns? (Zi t _Zai ia ocit';l J 43)
23 z z



Since T ~ NY(a;,pz/3Y?), it is well-known (see e.g. Johnson and Kotz (1970, p. 140)) that

Et™" = o, +p°Z°/Jand ET; = Voy. Upon combining the first term on the right hand side with
the first term in parenthesis, and ignoring terms of order n* and less, (4.3) has been expressed as
the sum of | independent zero-mean random variables. The samplesizeisn=1J,andas| —
for Jfixed we get easily from a central limit theorem (CLT) that the total expression is Oy(1). It
follows from (3.3b) that f(3) = 0. Similarly, when perturbing o = { oi}; by € = { &} we have

(oi+n 2 g)? — a2 = 20,n "%, +n7'e?, so that

n? e J o t(20,n"%e, +n7'e?)
B 22

log p(t;o+n"?%e,B) — log p(t;o.,B) = . (49

to order n"* asum of | independent zero-mean terms (Et ; = 1/0;;), and the CLT yields f(o) = 0.
Turning next to the candidate marginal local cut, we have Jv, / B*z> ~ T'((J-1)/2,1/2),

the gamma distribution, so that

J V.
| v:0) = — 1(J-1 | - 3 45
og p(V;0) (J-1) log B 7 (4.9)
and obvioudly f(o) = . Much like before we get
-2 -1/2 -1g2 —
log p(V;o.,B+Nn"Y25) — log p(V:ou,B) ~ — I(3-1) ”B5 . 320 52%:’” 0 zig, (4.6)

and since EV, = (1-1/J)p*z’, we have sn(B) =0 by the CLT. Clearly, by (3.5) s=V isa
marginal local cut, and inference on 3 in the margina distribution of sisindicated.

To obtain the MMLE, differentiation yields the marginal score

0=, 5V (4.7)

B B° oz

and the marginal likelihood equation 5,(B) = O produces

10



- _ J 1 \_/I 1/2
B= (ﬁl—z?j : (4.8)

Clearly, WhiletheMLEisinconsistent,i.e.fs — B(1-1/J)¥* < B (see Section 2), the MMLE

corrects this deficiency, i.e. E(8%) = B and B — B.

5. Orthogeodesic Models

An important new class of parametric statistical models, termed the orthogeodesic family,
has recently been introduced by Barndorff-Nielsen and Blaesild (1993). Assuming the statistical
model M ={p(x,0), 6 € B}isadifferentiable manifold, the orthogeodesic property is geometric
and may be characterized in genera differential geometric terms. The conditions are essentially
that (1) M isaproduct manifold, M = ® x ¥, (2) the factorization is orthogonal with respect to
the Fisher information metric, (3) when writing M = {M,: ¢ € @} therestriction of the metric to
M, does not depend on ¢, (4) in the sense of Amari (1985), M, is expected o-geodesic for some
o # 0, and (5) M, is expected 1-flat.

In parametric terms, an orthogeodesic model (OGM) may be defined by the requirement
that there exists a reparametrization 6 = (¢,y) such that this decomposition of 6 correspondsto a
geometric factorization as just outlined, and in this case 6 is said to be an ortho-affine parameter.
Barndorff-Nielsen and Blaesild (1993) show that with ¢ the location and ¢ the scale, the Student
t and Cauchy models are orthogeodesic with v in the ortho-affine parameter given by 6™ and
log o, respectively. Here, ¢ = 2(df-1)/(df+5), with df denoting the degrees of freedom. Clearly,

many other transformation and exponential models of importance in applications are OGMs.

11



Introducing generic coordinates a,b,c ... for 6; k, , mfor ¢ andr, s, t for y, M can be

considered a Riemannian manifold with metric the expected information i(0) (elementwise i a;
elements of the inverse matrix arei®). Thetangent space at 6 is spanned by 9.f(6) for any
smooth f: ® — R; affine connections V on the associated tangent bundle may be characterized in
local coordinates by V;adp = I'y,d, defining the upper Christoffel symbols, or using the lower
Christoffel symbols and the expected information by

Tape = Tl (5.1)
Of particular interest is the coordinate system defined by the loglikelihood derivatives (5,... . The
expected 0-connection (the Riemannian connection) is given by

0 1 .. . .

I ae :§{8b|m+aalbc—aclab} (5.2
and the corresponding a-connections (see Amari 1985) by

o 0 o
rabc = Fabc - E Tabc (53)

with Tae = E(Calblc) the expected skewness. A manifold is o-flat if there existsa

parametrization with lg‘abc = 0. Barndorff-Nielsen and Blaesild (1993) show that conditions 1, 2,

0 o
and 3 in the characterization of the OGM imply I'w« = 0; (1-4) imply I'« = O0for all ocand Tis =

0 (theorems 4.1 and 4.2). Write

P(0, W19, w,a) = p(ol¥r, 0, v,a) p(¥lo,v,a) (5.4)

with Edgeworth expansions for each factor

PO, 0, w,8) = N(D,i 0 (0, ) (1+Q,,) (5.5)

12



PO¥19, w,8) = N(y, i, (¥))(1+Q,) (5.6)
where ais ancillary or approximately ancillary and we have used (2) and (3) in specifying the

leading normal term. The adjustment terms are

Quy = =35 (k%N (B.17) — 1 (§,131)) (57)

61/2

Q, = K™h (9.i,) (5.8)

6n'z
The covariant Hermite polynomials hay are given in Barndorff-Nielsen and Cox (1989, sec. 5.7),
who also show that the indicated approximations are valid to order n™. We are principally
concerned with the coefficients

K = E(6* -0%)(8° - 6°)(6° - 0°). (5.9)
With this machinery at hand we have

Theorem 1: OG models admit second-order marginal local cuts through .

Proof: Clearly the leading normal term in the marginal distribution of \y does not depend on ¢.

Turning to the coefficients ', use the linear relationships §" — y' =i (s + Oy(n™) (see

Barndorff-Nielsen and Cox (1994)) to write

K=Y Y Tow (5.10)

1
Condition (5) impliesthat T'« = 0 and hence by (5.3) Tyw = 9,1, + 9, i, — 9,

u’ vw

wlu » @function

only of y. Since ¢ does not appear in hyg (Vi (\u)) W isasecond-order (n™) local cut.

Corollary 1. Models satisfying only (1)-(3) admit a (first-order) local cut through .

Proof: Examine the leading normal term.

13



Thus, invoking the strong inference principle from Section 4, with s=\y, separate
inference on y in OGMsisindicated. With additional conditions, \y becomesalocal cut

(conditionally as well as marginally). We define the doubly-flat orthogeodesic family as
satisfying (1)-(5), (6) My, isgeodesic and (7) M, is 1-flat. Then we have

Theorem 2. OGM models satisfying also (6) T',, =0 (submanifolds M,, are geodesic) and (7)

1

ry, =0 (M, are 1-flat), admit second order local cuts through Vy .
Proof: Since  isasecond-order marginal local cut by Theorem 1, it remains to be shown that

the conditional distribution of q3 does not depend on  to order n*. From Barndorff-Nielsen &
Blaesild (1993, Theorem. 4.1) T, =0 impliesiy(0,y) = ik (¢) so the leading normal term does

not depend on y. Turning to the adjustment factor, note that (2) allows elimination of like terms
and reduction to

1

oz U i (0150) + 3y (B,17) + 3y, (6,1 ™)}

Q¢|\u =
with

Kk[m — ikn i[o imp Tnop

Kk[r — ikn i[o irt Tnot

K

krs _ :kn :rt -su
=101 Thwe

Conditions 1-4 imply T, and hence ' = 0; the additional condition (6) implies T, and hence

1
" = 0. Condition (7) implies Tium =0 and hence Tnop = doinp(®) + i op(6) - Apino(9), & function

14



only of ¢. The coefficients " etc. refer only to the I90(¢) block of i and do not involve y either.
Hence \y isasecond order local cut.
Corollary 2: Models satisfying (1)-(3) and (6) admit a (first-order) local cut through .
Proof: Examine the leading normal terms.

Examining the proof of Theorem 2 we can obtain the further result that for OG models
(without conditions (6) and (7)) the adjustment term implied by the Edgeworth expansion (5.5) in

krs _

the conditional distributionislinear in \y. Thisis obtained by noting that > = 0 and hence

appears only in the polynomials hy,r, which contain only linear termsin .

It may be conjectured from the above that the OGM family generalizes the class of
models possessing proper cuts, as do the classes of models that admit local cuts and marginal
local cuts. Within the exponential family, thisisin fact the case. Barndorff-Nielsen and Blaesild
(1983) introduce two subfamilies of the exponentia family with 6-parallel or t-paralel
foliations, both of which are OGMs, and the 6-parallel models coincide with the exponential
models permitting proper cuts. Of course, 1-parallel models admit second-order marginal local
cuts. Finaly, the class of doubly-flat OG models admits full local cuts (marginal and
conditional), providing a useful insight into the geometry of local cuts. The class of doubly-flat
OGMsisastrict generalization of the class of models admitting proper cuts. This can be easily
seen by noting that higher order terms that could be added to the Edgeworth expansions (5.5) and
(5.6) involve fourth and higher order cross cumulants that are not restricted by our requirements
on the second and third order cumulants.

Example 5.1 Gaussian Panel as OGM

Considering the normal distribution as the limit of Student t distributions as df — <o,

15



N(6,6%) isan OGM with v in the ortho-affine parameter given by y = 1/6°. Thisisthe
distribution employed in the Gaussian panel of Examples 2.1, 4.1, and in many empirical
applications to life-time labor supply. In fact, other orthogeodesic specifications are useful in
economic applications, too, including the Student t with df < - as the distribution of stock
returns (which are observed to be more fat-tailed than in the Gaussian case), and panel data
models with OGM errors are natural tools for their analysis.

Example 5.2 Inverse Gaussian Panel as OGM

The inverse Gaussian distribution N™*(c.,B) possesses a t-paralle foliation and soisan

OGM. In this case the ortho-affine parameter is (¢,y) = (0", and even though the scores Ly
and (,, are not independent, (, isindependent of the residual from the quadratic regression of ¢,

on (, to order Op(n'l) (Barndorff-Nielsen and Blaesild (1992)). By Theorem 1, the MLE v of v

Is asecond order marginal local cut, and separate inference of v in the marginal distribution of s
= isindicated. By the invariance of maximum likelihood, = [3‘2, and we may equally
consider marginal inference on [ in the distribution of ﬁ In the inverse Gaussian panel of

Examples 2.2 and 4.2 v, / (8°2%) ~ T((3-1)/2,1/2), so the marginal log likelihood based on 3

IS
" 1J -

log p(B;B) = —1(I-Dlog P - 287 B”. (5.11)
The resulting marginal scoreis

- 13- . 1J 4,

B = - + — B, (5.12)

s’n B BS

thus producing the MMLE

16



B = (1-1/J)™?p. (5.13)
Thus, the desirable inference procedure from Example 4.2, based on the MMLE from the
marginal distribution of s={ v};, again results. Thisisimportant since 3 isthe risk-shifting
parameter in the asymmetric information banking model of Example 2.2. The procedure may in
addition be justified based on modified profile likelihood (Barndorff-Nielsen (1988)), but the
main point isthat it obtains simply by treating the MLE of  in the ortho-affine parametrization
as a second order marginal local cut.

The analysis reveal s important relationships between local cuts and orthogeodesic
models. In particular, orthogeodesic models always alow separate inference via the theory of
local cuts. Of course, not all models admitting local cuts are OGMs. Further, unlike ortho-affine
parametrizations, local cuts are invariant to smooth reparametrizations of the form (¢,y) —
(x(d),o(y)). On the other hand, an OGM is characterized by the criterion that an ortho-affine

parameter exists, while other parametrizations of course may be of interest, too.

6. Conclusion

Separate inference on parameters of OG modelsisjustified on the basis of the theory of
local cuts. Our analysis demonstrates the close connection between geometric and inferential
aspects of statistical models. The practical relevance of the resultsisillustrated in two important

empirical models for panel data.
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