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Abstract

Orthogeodesic models admit marginal local cuts and therefore separate inference on

subparameters is asymptotically justified. Doubly-flat orthogeodesic models admit local cuts

marginally and conditionally. Two important empirical models for panel data are used to

illustrate this property and demonstrate its usefulness. The relation to local ancillarity and local

sufficiency is explored. An alternative characterization of local cuts in terms of curvature is

given and shown to be intrinsic. Applications to semiparametric estimation are considered.
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1. Introduction

Orthogeodesic models were introduced by Barndorff-Nielsen and Blaesild (1993) as a

class of statistical models characterized by purely geometric properties. Christensen and Kiefer

(1994) introduced local cuts to allow justification of separate inference - conditionally and

marginally - in a wide class of statistical models. In this paper we consider two important classes

of panel data models and show that they are in the orthogeodesic (OG) family and that separate

inference on subparameters is justified by the theory of local cuts. This property holds generally:

OG models admit marginal local cuts.

2. Panel Data Models

In many practical applications of formal statistical models, observations are organized in

panels with both a time dimension and a cross-sectional dimension. We consider leading cases

of economic applications.

Example 2.1. Gaussian Panel

In this example we consider an empirical model from many areas of applied economic

analysis. For each individual i, i = 1,...,I, we have data yij across a number of time periods j =

1,...,J, and we wish to relate these to observed regressors zij. Here we focus on a well-known

life-cycle labor supply model. The consumer is assumed to maximize a lifetime utility function

in the form β t
t t

t

T

u c( , )�

=
�

0

where β is a discount factor, u is a utility function increasing in its

arguments consumption c and leisure �. The maximization is subject to the budget constraint

that the value of consumption over the life cycle is equal to the value of labor income plus the

value of inital assets. The resulting consumption and labor supply functions are in each period
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functions of that period’s prices and a time-independent, unobservable variable λ (the marginal

utility of wealth) that incorporates the effects of initial assets and prices in all other periods.

With suitable further assumptions the model fits in the framework

yij = αi + βzij + uij, (2.1)

where uij is a zero-mean error term. Often, a Gaussian distribution is adopted for the errors. The

interest parameter is the slope β, but unobserved heterogeneity and enters through the

coefficients αi. We are interested in broad panels YIJ = {yij,zij: i = 1,...,I, j = 1,...,J}, and

asymptotics for I → ∞, including in the case where J is fixed, and in this situation there is no

hope of estimating α precisely.

Example 2.2 Inverse Gaussian Panel

In this example we consider an empirical model from financial economics. Our key

interest is in asymmetry of information, and this provides a link to banking and macroeconomics

(Greenwald et al., 1984, Gertler, 1988). At each time t, a bank has assets At and liabilities Lt,

and the net worth (equity) is Nt = At − Lt. The assets follow the Ito process

dAt = ηdt + ζdWt, (2.2)

where {Wt} is a standard Wiener process. Since the liabilities represent deposits that are fixed in

value we specify Lt ≡ L > 0, so that net worth evolves according to dNt = dAt, initiated at No = Ao

− L > 0. The bank becomes insolvent at the first time t when assets At drop below liabilities L.

In the data, banks are separated into different initial size categories, say Nio, i = 1,...,I, and

quantities are measured in units of initial net worth, e.g. nit = Nit/Nio and σi = ζi/Nio. We assume

that σi = βzi, where zi is observed.
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In this setting, zi is a measure of the degree of information asymmetry between banks and

customers. Since banks have different asset portfolio compositions we have to allow for

different ROEs (returns to equity). As we are looking in particular at banks at risk of failing

ROE ηi ≤ 0, and upon normalization we consider the parameter αi = −ηi/Nio ≥ 0. If we have J

banks in size category i, the j’th bank follows

dnijt = βzidWijt − αidt (2.3)

with nijo = 1, j = 1,...,J. Panel data on the times to bank failure are TIJ = {tij,zij: i = 1,...,I, j = 1,...,

J} where tij denotes the first hitting time for the set {nijt = 0}.

For fixed t > 0, we have so the density at the absorbing barrier

nijt = 0 is

p n
z

eijt i

i

z t
t

i
i

( ; , ) ,
( )

=
− −

0

1

2
1

2 2
2

α β
π β

β
α

=
1

(2 t)1/2
(2.4)

i.e. the well-known Gaussian, whereas the density of tij is in the associated inverse Gaussian form

p t t
z

eit i

i

z t
t

i
i

( ; , ) ,
( )

=
− −

α β
π β

β
α

=
1

(2 t )3 1/2

1

2
1

2 2
2

(2.5)

closely resembling (2.4) (see Cox and Oakes (1984, p. 22)) and correspondingly denoted

N−1(αi,βzi).

Suppressing terms not depending on parameters, the log likelihood for the panel data TIJ

is

�( , ) ,α β β
β

α
β β

α
= +

J J

2

u

z2 2
i

i
2− − −IJ log

z

J t

zi
i

i
i i

i i

i

Σ Σ Σ2 2

2

22
(2.6)

where t t J and t Ji ij ij= u =j i jΣ Σ/ /−1 are the ordinary and inverse harmonic sample means. The

score for αi is
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s
z

t

zi
i

i

i

=
J J
2

i

β
α
β2 2 2

− , (2.7)

so � ,α i = t i
−1 yielding the log profile likelihood

~
( )� β β

β
= IJ log

J

2 2 i− − Σ v

z
i

i
2

(2.8)

where vi = u ti i− −1 is positive since the inverse operation is convex and so by Jensen’s

inequality the average inverse exceeds the inverse average. The profile score is

~( )s β
β β

=
IJ

+
J v

z3 i
i

i
2− Σ (2.9)

and the profile likelihood equation ~( )s β = 0 produces

.
I

1
=ˆ

2/1

2 ��
�

�
��
�

�
Σ

i

i
i
z

vβ (2.10)

The problem is that the profile likelihood is not as well-behaved as we would like. There is not

even any guarantee of consistency of �β as I → ∞. To see this, it is useful to review some results

from Barndorff-Nielsen (1988), who considered the model without regressors, i.e. zi ≡ 1. First,

the full panel {tij}ij may be reduced by B-sufficiency to ( ){ } ( )iiii uut ,tsinceand,, i is in one-to-one

correspondence with ( ),, ii vt we may equally consider ( ){ }.,
iii vt Furthermore, t i and vi are

independent, Jt N zi i i~ ( , ),−1 α β and Jvi ~ .β χ2 2
1

2zi J− It follows that ( ) ),/11(=/ 22 JzvE ii −β and so �β

is biased and inconsistent as I → ∞ for J fixed, in particular �β → β(1−1/J)1/2.

In a given practical situation, if the analysis has been carried to this stage, remedies of the

problems arising in situations such as those illustrated in Examples 2.1 and 2.2 obviously exist.

However, the key point is that maximum likelihood cannot be pursued without further analysis.
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Our quest is for an inference principle that allows choosing the appropriate objective based on

conditions that can be read directly from the likelihood function.

3. Local Cuts

In this section we consider separate inference on individual subparameters, with

particular reference to proper cuts (Barndorff-Nielsen (1978)) and the local generalization due to

Christensen and Kiefer (1994).

Let the model function be p(x;θ), and suppose the parameter θ ∈ Θ may be decomposed

as θ = (φ,ψ) ∈ Φ × Ψ such that at each point x ∈ X we have

p(x;θ) = p(x;φ|s)p(s;ψ) (3.1)

for a suitable statistic s. Then s is S-sufficient for ψ and S-ancillary for φ (Barndorff-Nielsen

(1978, p. 50)). This restriction is the essential feature of a proper cut. Separate inference on φ

and ψ is indicated, based on the pseudo-likelihoods p x s( ; | )⋅ ⋅and p(s; ), respectively.

Inferential separation is crucial in graphical interaction models (Frydenberg (1990)),

many normal theory models (Bellhouse (1990)), models that possess nuisance parameters

(Kalbfleisch and Sprott (1970)), partial likelihood situations (Cox (1975)), and in numerous other

cases, and may sometimes be justified based on other sufficiency criterions, including M-

sufficiency and G-sufficiency (Barndorff-Nielsen (1978)) and L-sufficiency (Barndorff-Nielsen

(1988)).

To motivate the localization procedure, note that in many practical situations separate

inference is appropriate as long as the factorization (3.1) is satisfied to sufficient order of

approximation. The exact cut condition is usually unnecessarily stringent in applications.
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Examples are given below where the new generalization allows natural inferential separation

even when the standard condition is violated.

To define a local cut s, consider shifting φ in a neighborhood that shrinks with sample

size. We are interested in conditions such that the asymptotic consequences of the shift for the

marginal distribution p(s;θ) are less than when instead ψ is shifted. Similarly, the conditional

p(x;θ|s) should be less sensitive to ψ-shifts than to φ-shifts. Proportional errors in (3.1)

correspond to additive errors in the logarithmic representation given as

log p(x;φ+n−1/2ε, ψ) − log p(x;φ,ψ) = [log p(x;φ+n−1/2ε,ψ|s) − log p(x;φ,ψ|s)] +

[log p(s;φ+n−1/2ε,ψ) − log p(s;φ,ψ)], (3.2)

where ε ≠ 0 is a vector conformable with φ and n is the sample size. Using a vector δ ≠ 0

conformable with ψ, the consequences of shifting this subparameter are defined by symmetry.

Suppose the orders sc(φ), fc(ψ), sm(ψ) and fm(φ) are such that

log , | ) | ( ),( )/p(x; + n log p(x; , ) = O1/2
pφ ε ψ φ ψ φ− −−s s n sc 2 (3.3a)

log , | ) | ( ),( )/p(x; + n log p(x; , ) = O1/2
pφ ψ δ φ ψ ψ− −−s s n fc 2 (3.3b)

log , ) ( ),( )/p(s; + n log p(s; , ) = O1/2
pφ ψ δ φ ψ ψ− −− n sm 2 (3.3c)

log , ) ( ).( )/p(s; + n log p(s; , ) = O1/2
pφ ε ψ φ ψ φ− −− n fm 2 (3.3d)

Then the ε-shift in φ is asymptotically of less consequence for p(s;θ) than the δ-shift in ψ if and

only if fm(φ) > sm(ψ). In the same sense, p(x;θ|s) depends less on ψ than on φ if and only if

fc(ψ) > sc(φ). Thus, f indicates the “fast” and s the “slow” orders, and subscripts c and m indicate

the conditional and marginal models, respectively.

The two terms in square brackets in (3.2) are of order sc(φ) and fm(φ), respectively, and

the total model function dependence on φ could be largely through p(s;θ) unless fm(φ) ≥ sc(φ).
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Similar considerations on the δ-shift in ψ lead to the requirement fc(ψ) ≥ sm(ψ). In summary, s is

a local cut if

fm(φ) > sm(ψ), fc(ψ) > sc(φ), fm(φ) ≥ sc(φ), fc(ψ) ≥ sm(ψ) (3.4)

(for details and a characterization in terms of approximately separated Edgeworth expansions,

see Christensen and Kiefer (1994)). In applications it turns out to be important to have in

addition the notion of a marginal local cut, relaxing the second strict inequality to a weak, i.e. a

marginal local cut is defined by the requirements

fm(φ) > sm(ψ), fc(ψ) ≥ sc(φ), fm(φ) ≥ sc(φ), fc(ψ) ≥ sm(ψ). (3.5)

In special cases where either ψ or φ is not present, the concepts of local ancillarity (Cox (1980))

or local sufficiency (McCullagh (1984)) lead to principles for conditional inference on φ,

respectively marginal inference on ψ, if the relevant differences in asymptotic orders are at least

one (for a first order theory) or two (for a second order theory). Similarly, to quantify the nature

of the local property in our case, we say that a local cut is of order q if

fm(φ) − sm(ψ) ≥ q, fc(ψ) − sc(φ) ≥ q (3.6)

in (3.4), and if

fm(φ) − sm(ψ) ≥ q, (3.7)

we have an order q marginal local cut in (3.5). We are now led to the associated strong inference

principle that in a model which admits a local cut of order at least one (two for the second order

theory), separate inference on φ and ψ from the conditional respectively the marginal distribution

is indicated. This notion is now explored further and illustrated.

4. Maximum Marginal Likelihood
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In statistical theory, much interest is focussed on the maximum likelihood estimator

(MLE) �θ = arg maxθ p(x;θ), where p( ; )⋅ ⋅ is the model function. With the introduction of the

notion of a marginal local cut, we are led to consider an associated strong principle for marginal

inference. In particular, suppose that θ = (φ,ψ) and that the parameter of interest is ψ. If the

model admits a marginal local cut s of order one or higher, inference on ψ in the marginal

distribution of s is indicated, and we consider the maximum marginal likelihood estimator

(MMLE) ~ψ = arg maxψ p(s;φ,ψ). In some cases, this depends on φ, but it is not highly critical

which value is used for φ, since by the properties of the marginal local cut the dependence

asymptotically wears off relatively fast. In other cases, ~ψ does not depend on φ at all.

Example 4.1 Marginal Local Cut in Gaussian Panel

Consider again Example 2.1 and define the time series (group) averages

y y Ji ij= i = 1,...,I,jΣ / , and similarly for zi . The model (2.1) in deviations from group means is

then

~ ~ ~ ,yij = z + uij ijβ (4.1)

where ~ ,yij = y yij i− and similary for ~ .zij It is natural to draw inference on β, the parameter of

interest, in this reduced model. Thus, let ~ ~ ,..., ~ ),y yi iJ= (yi1 and similarly for ~ ~ .zi and ui If ui are

i.i.d. draws from the J-dimensional multivariate normal NJ(0,σ2IJ) where IJ is the J×J identity

matrix and σ2 > 0 then the marginal distribution for s = {~ }yi i is easily obtained by noting that ~yi

are independent across individuals i and ~ (~ , ),y z Mi i~ NJ β σ2 where M = I 1J J− ′1J J/ . Here, 1J

is a J-vector of ones. Thus, if σ2 does not depend on α, the distribution of s does not involve α,

either. Of course, y z Ji i~ N( iα β σ+ , / ),2 independently across i. In the notation of Section 3,

we would like the interpretation φ = α, ψ = (β,σ2). Indeed, the conditional distribution p(x;θ|s)
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of the panel x = YIJ given s may be identified with the marginal distribution of y = {y i}i since y

and s are independent. This distribution depends on both φ and ψ so s is not a proper cut.

Nonetheless, it may be proved that under wide conditions s is a marginal local cut, and marginal

inference on ψ is indicated thus providing a principled basis for a separate inference procedure

common in practical applications; further details on this example may be found in Christensen

and Kiefer (1994).

Example 4.2 Marginal Local Cut in Inverse Gaussian Panel

Consider again Example 2.2. In analogy with Example 4.1 above, we wish to draw

separate inference on ψ = β, and to this end consider φ = α as an infinite-dimensional nuisance

parameter. Thus, we specify s = v = {v i}i, and we must verify that s is a marginal local cut.

Again, the conditional distribution p(x;θ|s) of the panel x = TIJ may be identified with the

marginal distribution of t = { t i }i since t and v are independent. This distribution depends on

both φ and ψ so s is not a proper cut. We first derive the orders fc(ψ) = fc(β) and sc(φ) = sc(α)

from p( t ;θ|s) = p( t ;θ), θ = (α, β) (see (3.3)). We have

log p(
z

t

z

t

zi
i

i
i

i

i
i

i i

i

t; ) = I log +
J J

2

J

22 2 2θ β
β

α
β β

α− − −
−

Σ Σ Σ2

1

2

2

2 , (4.2)

and to calculate fc(β) we first note that to appropriate order log(β+n−1/2δ) − log β =

log(1+n−1/2δ/β) ≈ n−1/2δ/β and (β+n−1/2δ)−2 − β−2 = [(β+n−1/2δ)β]−2 [β2−(β+n−1/2δ)2] ≈

−β−4[2n−1/2δβ+n−1δ2], so that

log )/
/

p(t; , + n log p(t; , ) +α β δ α β δ
β

−
−

− ≈ −1 2
1 2

I
n

.+
2

2
2

1
i2

1

4

212/1

��
�

�
��
�

�
Σ−Σ+ −

−−−

i

ii
i

i

ii
i z

t

z

tnn
J

ααα
β

δδβ (4.3)
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Since t i ~ N−1(αi,βzi/J
1/2), it is well-known (see e.g. Johnson and Kotz (1970, p. 140)) that

Et z Ji i
− +1 2 2= iα β / and Et i = 1/αi. Upon combining the first term on the right hand side with

the first term in parenthesis, and ignoring terms of order n−1 and less, (4.3) has been expressed as

the sum of I independent zero-mean random variables. The sample size is n = IJ, and as I → ∞

for J fixed we get easily from a central limit theorem (CLT) that the total expression is Op(1). It

follows from (3.3b) that fc(β) = 0. Similarly, when perturbing α = {αi}i by ε = {εi}i we have

(αi+n−1/2 εi)
2 − α α ε εi i in n2 1 2 1 2= 2 i

− −+/ , so that

log , )
( )

,/
/ /

p(t; + n log p(t; , ) =
Jn J

2i 2α ε β α β
β

ε
β

α ε ε−
− − −

− − +1 2
1 2

2 2

1 2 1 2

2

2Σ Σi

i
i

i i i i

iz

t n n

z
(4.4)

to order n−1 a sum of I independent zero-mean terms (Et i = 1/αi), and the CLT yields fc(α) = 0.

Turning next to the candidate marginal local cut, we have Jv zi i/ ) / , / ),β2 2 1 2 1 2~ ((JΓ −

the gamma distribution, so that

log ) ,p(v; ) = I(J log
J

2 2θ β
β

− − −1 2Σ i
i

i

v

z
(4.5)

and obviously fm(α) = ∞. Much like before we get

log ) )/
/ /

p(v; , + n log p(v; , ) I(J + J
2n

,α β δ α β δ
β

δβ δ
β

−
− − −

− ≈ − − +1 2
1 2 1 2 1 2

4 21
2

n n v

zi
i

i

Σ (4.6)

and since Ev J zi i= (1−1 2 2/ ) ,β we have sm(β) = 0 by the CLT. Clearly, by (3.5) s = v is a

marginal local cut, and inference on β in the marginal distribution of s is indicated.

To obtain the MMLE, differentiation yields the marginal score

~ ( )
)

,s
v

zm i
i

i

β
β β

=
I(J J

3− − +1
2Σ (4.7)

and the marginal likelihood equation ~ ( )sm β = 0 produces
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2/1

2

1

1J

J
=

~
��
�

�
��
�

�
Σ

− i

i
i
z

v

I
β . (4.8)

Clearly, while the MLE is inconsistent, i.e. � / ) /β β β(1 <→ −1 1 2J (see Section 2), the MMLE

corrects this deficiency, i.e. E(
~

)
~β β β β2 = and .2 →

5. Orthogeodesic Models

An important new class of parametric statistical models, termed the orthogeodesic family,

has recently been introduced by Barndorff-Nielsen and Blaesild (1993). Assuming the statistical

model M = {p(x,θ), θ ∈ Θ}is a differentiable manifold, the orthogeodesic property is geometric

and may be characterized in general differential geometric terms. The conditions are essentially

that (1) M is a product manifold, M = Φ × Ψ, (2) the factorization is orthogonal with respect to

the Fisher information metric, (3) when writing M = {Mφ: φ ∈ Φ} the restriction of the metric to

Mφ does not depend on φ, (4) in the sense of Amari (1985), Mφ is expected α-geodesic for some

α ≠ 0, and (5) Mφ is expected 1-flat.

In parametric terms, an orthogeodesic model (OGM) may be defined by the requirement

that there exists a reparametrization θ = (φ,ψ) such that this decomposition of θ corresponds to a

geometric factorization as just outlined, and in this case θ is said to be an ortho-affine parameter.

Barndorff-Nielsen and Blaesild (1993) show that with φ the location and σ the scale, the Student

t and Cauchy models are orthogeodesic with ψ in the ortho-affine parameter given by σ−c and

log σ, respectively. Here, c = 2(df−1)/(df+5), with df denoting the degrees of freedom. Clearly,

many other transformation and exponential models of importance in applications are OGMs.
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Introducing generic coordinates a,b,c ... for θ; k, �, m for φ and r, s, t for ψ, M can be

considered a Riemannian manifold with metric the expected information i(θ) (elementwise iab;

elements of the inverse matrix are iab). The tangent space at θ is spanned by ∂af(θ) for any

smooth f: Θ→ R; affine connections ∇ on the associated tangent bundle may be characterized in

local coordinates by ∇∂a ∂b = Γab
c

c∂ defining the upper Christoffel symbols, or using the lower

Christoffel symbols and the expected information by

Γabc = Γab
d

dci . (5.1)

Of particular interest is the coordinate system defined by the loglikelihood derivatives �a,... . The

expected 0-connection (the Riemannian connection) is given by

Γ
0 1

2
abc b ac a bc c abi i i= + −{ }∂ ∂ ∂ (5.2)

and the corresponding α-connections (see Amari 1985) by

Γ Γ
α α

abc abc abcT= −
0

2
(5.3)

with Tabc = E(�a�b�c) the expected skewness. A manifold is α-flat if there exists a

parametrization with Γ
α

abc = 0. Barndorff-Nielsen and Blaesild (1993) show that conditions 1, 2,

and 3 in the characterization of the OGM imply Γ
0

rsk = 0; (1-4) imply Γ
α

rsk = 0 for all α and Trsk =

0 (theorems 4.1 and 4.2). Write

p a p a p a( � , � | , , ) ( � | � , , , ) ( � | , , )φ ψ φ ψ φ ψ φ ψ ψ φ ψ= (5.4)

with Edgeworth expansions for each factor

p a N i Q( � | � , , , ) ( � , ( , )) ( )|φ ψ φ ψ φ φ ψφφ φ ψ≈ +−1 1 (5.5)
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p a N i Q( � | , , ) ( , ( ))( )ψ φ ψ ψ ψψψ ψ≈ +−1 1 (5.6)

where a is ancillary or approximately ancillary and we have used (2) and (3) in specifying the

leading normal term. The adjustment terms are

Q
n

h i h iabc
abc

rst
rstφ ψ ψψκ θ κ ψ| /

{ ( � , ) ( � , )}= −− −1

6 1 2
1 1 (5.7)

Q
n

h irst
rstψ ψψκ ψ= −1

6 1 2
1

/
( � , ) (5.8)

The covariant Hermite polynomials habc are given in Barndorff-Nielsen and Cox (1989, sec. 5.7),

who also show that the indicated approximations are valid to order n-1. We are principally

concerned with the coefficients

κ θ θ θ θ θ θabc a a b b c cE= − − −( � )( � )( � ). (5.9)

With this machinery at hand we have

Theorem 1: OG models admit second-order marginal local cuts through �ψ .

Proof: Clearly the leading normal term in the marginal distribution of �ψ does not depend on φ.

Turning to the coefficients κrst, use the linear relationships �ψ r − ψr = irs
�s + Op(n

-1) (see

Barndorff-Nielsen and Cox (1994)) to write

κrst = iru isv itw Tuvw (5.10)

Condition (5) implies that Γ
1

0rst = and hence by (5.3) Tuvw = ∂ ∂ ∂v uw u vw w uvi i i+ − , a function

only of ψ. Since φ does not appear in hrst ( � , ( )), �ψ ψ ψψψi−1 is a second-order (n-1) local cut.

Corollary 1. Models satisfying only (1)-(3) admit a (first-order) local cut through � .ψ

Proof: Examine the leading normal term.
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Thus, invoking the strong inference principle from Section 4, with s = � ,ψ separate

inference on ψ in OGMs is indicated. With additional conditions, �ψ becomes a local cut

(conditionally as well as marginally). We define the doubly-flat orthogeodesic family as

satisfying (1)-(5), (6) Mψ is geodesic and (7) Mψ is 1-flat. Then we have

Theorem 2: OGM models satisfying also (6) Γk
r
�

α

= 0 (submanifolds Mψ are geodesic) and (7)

Γ
�m
k

1

0= (Mψ are 1-flat), admit second order local cuts through �ψ .

Proof: Since �ψ is a second-order marginal local cut by Theorem 1, it remains to be shown that

the conditional distribution of �φ does not depend on ψ to order n-1. From Barndorff-Nielsen &

Blaesild (1993, Theorem. 4.1) Γk
r
�

α

= 0 implies ik�(φ,ψ) = ik�(φ) so the leading normal term does

not depend on ψ. Turning to the adjustment factor, note that (2) allows elimination of like terms

and reduction to

Q
n

h i h i h ik m
k m

k r
k r

krs
krsφ ψ φφκ φ κ θ κ θ| /

{ ( � , ) ( � , ) ( � , )}= + +− − −1

6
3 3

1 2
1 1 1�

�

�

�

with

κk�m = ikn i�o imp Tnop

κk�r = ikn i�o irt Tnot

κkrs = ikn irt isu Tntu.

Conditions 1-4 imply Tntu and hence κkrs = 0; the additional condition (6) implies Tnot and hence

κk�r = 0. Condition (7) implies Γ
1

0k m� = and hence Tnop = ∂oinp(φ) + ∂niop(θ) - ∂pino(φ), a function
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only of φ. The coefficients ikn etc. refer only to the iφφ(φ) block of i and do not involve ψ either.

Hence �ψ is a second order local cut.

Corollary 2: Models satisfying (1)-(3) and (6) admit a (first-order) local cut through �ψ .

Proof: Examine the leading normal terms.

Examining the proof of Theorem 2 we can obtain the further result that for OG models

(without conditions (6) and (7)) the adjustment term implied by the Edgeworth expansion (5.5) in

the conditional distribution is linear in �ψ . This is obtained by noting that κkrs = 0 and hence �ψ

appears only in the polynomials hk�r, which contain only linear terms in �ψ .

It may be conjectured from the above that the OGM family generalizes the class of

models possessing proper cuts, as do the classes of models that admit local cuts and marginal

local cuts. Within the exponential family, this is in fact the case. Barndorff-Nielsen and Blaesild

(1983) introduce two subfamilies of the exponential family with θ-parallel or τ-parallel

foliations, both of which are OGMs, and the θ-parallel models coincide with the exponential

models permitting proper cuts. Of course, τ-parallel models admit second-order marginal local

cuts. Finally, the class of doubly-flat OG models admits full local cuts (marginal and

conditional), providing a useful insight into the geometry of local cuts. The class of doubly-flat

OGMs is a strict generalization of the class of models admitting proper cuts. This can be easily

seen by noting that higher order terms that could be added to the Edgeworth expansions (5.5) and

(5.6) involve fourth and higher order cross cumulants that are not restricted by our requirements

on the second and third order cumulants.

Example 5.1 Gaussian Panel as OGM

Considering the normal distribution as the limit of Student t distributions as df → ∞,
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N(φ,σ2) is an OGM with ψ in the ortho-affine parameter given by ψ = 1/σ2. This is the

distribution employed in the Gaussian panel of Examples 2.1, 4.1, and in many empirical

applications to life-time labor supply. In fact, other orthogeodesic specifications are useful in

economic applications, too, including the Student t with df < ∞ as the distribution of stock

returns (which are observed to be more fat-tailed than in the Gaussian case), and panel data

models with OGM errors are natural tools for their analysis.

Example 5.2 Inverse Gaussian Panel as OGM

The inverse Gaussian distribution N−1(α,β) possesses a τ-parallel foliation and so is an

OGM. In this case the ortho-affine parameter is (φ,ψ) = (α−1,β−2) and even though the scores �φ

and �ψ are not independent, �φ is independent of the residual from the quadratic regression of �ψ

on �φ to order Op(n
-1) (Barndorff-Nielsen and Blaesild (1992)). By Theorem 1, the MLE �ψ of ψ

is a second order marginal local cut, and separate inference of ψ in the marginal distribution of s

= �ψ is indicated. By the invariance of maximum likelihood, �ψ = �β −2, and we may equally

consider marginal inference on β in the distribution of �β . In the inverse Gaussian panel of

Examples 2.2 and 4.2 Jv zi i/ ( )β2 2 1) ~ ((J / 2,1/ 2)Γ − , so the marginal log likelihood based on �β

is

log � ( ) log � .p( ; ) =
IJ

2 2
2β β β

β
β− − −I J 1 (5.11)

The resulting marginal score is

~ ( )
) � ,sm β

β β
β=

I(J
+

IJ
3

2− −1
(5.12)

thus producing the MMLE



17

~
/ ) �./β β= (1− −1 1 2J (5.13)

Thus, the desirable inference procedure from Example 4.2, based on the MMLE from the

marginal distribution of s = { v i}i, again results. This is important since β is the risk-shifting

parameter in the asymmetric information banking model of Example 2.2. The procedure may in

addition be justified based on modified profile likelihood (Barndorff-Nielsen (1988)), but the

main point is that it obtains simply by treating the MLE of ψ in the ortho-affine parametrization

as a second order marginal local cut.

The analysis reveals important relationships between local cuts and orthogeodesic

models. In particular, orthogeodesic models always allow separate inference via the theory of

local cuts. Of course, not all models admitting local cuts are OGMs. Further, unlike ortho-affine

parametrizations, local cuts are invariant to smooth reparametrizations of the form (φ,ψ) →

(χ(φ),ω(ψ)). On the other hand, an OGM is characterized by the criterion that an ortho-affine

parameter exists, while other parametrizations of course may be of interest, too.

6. Conclusion

Separate inference on parameters of OG models is justified on the basis of the theory of

local cuts. Our analysis demonstrates the close connection between geometric and inferential

aspects of statistical models. The practical relevance of the results is illustrated in two important

empirical models for panel data.
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