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Abstract

This paper studies the empirical properties of a dynamic representative-agent
model which displays effects of substitution and complementarity of consumption
over time. Specifically, I investigate whether the dynamic model can replicate the
observed mean and the standard deviation of the U.S real returns in the 1889-
1995 period. First, the intertemporal marginal rate of substitution of consumption
implied by the model statistically fits the Hansen and Jagannathan bound. Secondly,
combined effects of substituion and complementarity over consumption nearly solve
the equity premium and the risk-free rate puzzles. Finally, the model does also
resolve the Campbell’s stock market volatility puzzle.
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1 Introduction

This paper is motivated by two empirical issues : the equity premium puzzle and the
risk-free rate puzzle. Mehra and Prescott [1985] show that Von Neumann-Morgenstern
preferences in the capital asset pricing model (CAPM) could not explain high equity
premium, unless agents are extremely risk averse. One response to the equity premium
puzzle is to accept these high values for the coefficients of relative risk aversion. However,
Weil [1989] argues that this leads to a second puzzle. He shows that a low riskless
interest rate is possible only if agents have negative rate of time preference, in a standard
consumption-based asset pricing model. This is the risk-free rate puzzle. One of the
reasons put forward for these puzzles has been the lack of variability of the intertemporal
marginal rate of substitution (IMRS) of consumption, relatively to the high variability
of asset returns, given plausible risk aversion and discount factor values. For number of
authors!, one way to generate variability in the IMRS is to relax the hypothesis of time-
separability of the representative agent’s utility, by introducing habit persistence. They
show that the pure habit persistence model can explain the equity premium puzzle at
a low level of curvature. However, this model also implies an highly volatile IMRS and
so an highly volatile asset returns. Campbell [1999] calls this the stock market volatility
puzzle. They also show that introducing substitution of consumption over time in the
time additive model reduces the volatility of the IMRS and so the volatility of the assets
returns. Therefore a natural way to solve the Campbell’s stock market volatility seems
to introduce substitution effects in the pure habit persistence model. Heaton [1995] has
already introduced the both effects in the time additive model. He found using monthly
data (1959,1-1980,12) that the model can explain either an high volatility in asset returns
or the equity premium mean. Yet, the model reproduces relatively precisely the standard
deviation of the bond return. He proceeded by assuming that dividend stream corresponds
to an aggregate stock return. I choose to reexamine the three puzzles by using annual
data (1889-1995) in the model and by reestablishing the usual link between consumption
and dividend to be as close as possible to the hypotheses of Mehra and Prescott.

A projection method is implemented to solve the model. From these simulations
two complementary experiments are carried out to see if the model could explain the
U.S equity premium in the 1889-1995 period. First, I examine the implications of the
substitution and habit persistence effects and the combination of the both effects over the
volatility of the IMRS. The Hansen and Jagannathan [1991] bound and the Cecchetti,
Lam, and Mark [1994] test are implemented to explain those effects. The expected effects
on the IMRS volatility are found. In addition, I find that increasing the habit persistence

'We could find other analyses of models with internal or external habit persistence in Abel [1990)],
Campbell and Cochrane [1999], Cochrane and Hansen [1992], Constantinides [1990], Hansen and Jagan-
nathan [1991], Sundaresan [1989], for example. See Kocherlakota [1996] for a survey



reduces the volatility of the IMRS, relatively to the volatility of the model where the
habit effects die out after one period. Then, I test if the model’s implications concerning
the volatility of the IMRS are satisfied. I find that the IMRS implied by the model
statistically can fit the Hansen and Jagannathan bound. Second, I study the capacities
of the model of fitting the mean and the standard deviation of the asset returns. This
study is carried out first by the simulations of the means and the standard deviations of
the asset returns implied by the pure habit formation model. If the habit effects die out
after one period, habits increase both the equity premium mean and the volatility of the
asset returns. If an higher degree of habit persistence is considered, the equity premium
mean and the volatility of the asset returns are slightly reduced relatively to the previous
model. However, the volatilities are unreasonably high in the both cases. Consequently,
the substitution effects are introduced in the pure habit formation model and the previous
moments are simulated. I find that substitution effects reduce the means and the standard
deviations of asset returns. Finally, I find that the model, which exhibits substitution and
complementarity effects, can explain the equity premium and the volatility of the two
returns at a low level of curvature.

The plan of the paper is as follows. In the next section, I outline the model and
the asset pricing environment. In section 3, I present the methodology used to solve the
model. Then, the results are presented in section 4, and section 5 concludes the paper
with some remarks about potential extensions.

2 The model

I consider a single-agent economy with frictionless markets and no taxes. The assumption
of a single-agent economy is standard and is made in the spirit of Lucas [1978] and Cox J
and Ross [1985]. The representative agent has preferences over a good Sy, called service,
which are represented by the constant relative risk aversion (CRRA) utility function

oo 1—y 1
U(S):EOZﬁtStlﬁ, v>0,8={S:t=0,1,2,...} (1)
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where [ is the agent’s subjective time discount factor, Fy(.) is the mathematical ex-
pectation operator conditional on information in period zero. S; is modelled using the
specification of Ferson and Constantinides [1991] and Heaton [1995] :

Si=Cf—a(1-0)) #Cl, ;, 0<a<l, 0<6<1, and ) ¢#/=1 (2

j=0 7=0



where C, produce a flow of consumptions C/* given by

C/'=> 6 Ciy, where0<6<land » 6 =1 (3)
7=0 =0
The parameter ¢ measures the degree to which consumption is substitutable over time.
For an high value of ¢, the substitution effect is high. S; is also a function of a weighted
sum of lagged consumption flows, (1-60) > 7, 6'CE ;- It measures the habit stock and ¢
gives the degree of habit persistence. The parameter a gives the proportion of habit stock
that enters into the preferences. Thus, time non-separability in preferences is introduced
over the consumption goods C}, such as the preferences display both :
i) substitution of consumption over time,
ii) habit persistence.

The introduction of habit persistence effects makes consumption complementary over
time. This model is called the complete model. The complete model can be decomposed
in four other models. Thus, if # = 0, then the model is just a one-period habit persis-
tence model, as it was studied by Ferson and Constantinides [1991]. Further, if o = 0,
then utility function is time-separable in consumption flow, and the model reflects only
substitution of consumption over time. It is the infinite durable model. If 6 = 0, then
the model displays only habit effect. It is the infinite habit persistence model. Finally,
if « =6 =6 =0, then the model reduces to the usual case of the time additive model.
Therefore, five models can be studied.
Combining (3) and (2) implies that S; is given by

1— oL
(1-6L)(1—6L)
where ¢ = 0 + a(1 — 0), and L is the lag operator. H(z) is a polynomial such as this

St:

C,=H(L)C,, (4)

model displays substitutability for low z and habit persistence for high z. Thus, if 6 < 6,

and if « is not too large, %

display durability. Then, as far as z will become higher, H(z) will be positive. Thus,

will be positive for low z and so the model will

habit persistence will dominate durability. That is the reason why Heaton presents the
model as a model which exhibits [ocal substitution and long-run habit persistence.

The representative agent trades both in a one-period bond with a risk-free payoff and
a one-period risky equity that delivers a random dividend D, at each period. Let Pr;, P.;
be respectively the bond and the equity prices at period ¢ that yield respectively one unit
of consumption good and (Di4; + P.;+1) units of consumption. Denoting F; and E; be
respectively the amount of bonds and equities that is purchased in period ¢ and held until
period ¢ + 1 by the representative agent and C} his consumption. The budget constraint
is given by

PriiFio1 + Py B + Crpy = (D + Py Ev+ B (5)



The representative agent maximizes his intertemporal utility function subject to (4) and
(5). The agent solves the maximization problem by determining contingent plans for Ci,
St, Eyy1, Friq. The Euler equation governing the equity price is given by

P, + D
Ay = BE; At+1(¥) - (6)
el

The left hand side of (6) is the marginal utility cost of consuming one unit of numeraire
good less at time ¢ ; the right-hand side is the expected marginal utility benefit from

investing the unit in the risky asset at time ¢, selling it at time ¢+ 1 for (Pe’%t[)t“)

units,
and consuming the proceeds. The agent equates marginal cost and marginal Beneﬁt, such
as (6) describes the optimum. If we divide both the left and the right hand sides of (6)

by A;, we get the familiar form

Ae i (Pe,t+1 + Dy
At ‘ Pe,t

1=FE | )} = Ei [MRSi1.Re 1], (7)

where M RS, is IMRS or the stochastic discount factor, and R, 1 is the gross real rate
of equity return. The first-order condition describing the bond price is

1
At = ﬁEt [Atﬂp—] ) (8)
fit

and the interpretation is the same as the Euler equation of the equity.
In this model the marginal utility of consumption, A;, is a function of the marginal
utility and the expected marginal utility of Sy, M;. We get the following Euler equation

Ar = My — BB, [Miy4] (9)

where M;, the marginal utility of S;, is a function of M;,; and M; 5 such as

M, =S, "+ B(6+0) E, [M1] — 5*(6.0) E, [M; 5] . (10)

Market clearing further imposes C; = D, Vt.

Therefore, the economy is described by a vector of two state variables Z; = (S;, Sy 1),
and a variable of an exogenously given shock D;. The stochastic dividend evolves through
time according to

Dt+1 = mt+1Dt

where x; is the gross growth rate of dividend. It is governed by a first-order Markov

process®. The representative agent receives either the high dividend, in which case z is

2This process allows the apparent non-stationarity observed in the per capita consumption stream
over the sample period.



equal to xy, or receives the low dividend in which case x is equal to z;. Following Mehra
and Prescott [1985], the Markov chain is given by

rzp, = 14+v+o, rp=14+v—o0

Thp = Mg =T, Mp="Tp=1-—m

where 7, denotes the transition probability from state a € {l,h} toward o’ € {I,h}.
The transition matrix is assumed to be symmetric. Denoting v be the average real growth
rate of per capita consumption, o be the standard deviation of the real growth rate of
per capita consumption and © = @, where p is the first-order serial correlation of
this growth rate. As in Mehra and Prescott [1985], the dividend growth are chosen to
match the mean, the standard deviation, and the first-order autocorrelation of the US real
growth rate of per capita consumption, in the 1891-1995 period. Appendix B described
the data. The following calibration is obtained : ¥ = 0.001842, ¢ = 0.033, and 7 = 0.43.

To empirically investigate the properties of this model, I must first assess the marginal
utility of Cy. The solution to the equation (11), along with (12), define A; which then can
be used to solve (6) and (8) for asset prices. Unfortunately, I cannot analytically solve
these functional equations. In the next section, the numerical method applied to solve

the model is presented.

3 Solving method

The model presented above is a function of a non-stationary variable D;. The model can
easily be transformed to a system of equations that contains only stationary variables.
To see this, define all non-stationary variables relatively to dividend®. The first order
conditions of the problem can then be written as

A =y — BOE; [x;jl-ﬂt-u} ) (11)
py =15, +B(0+0)E; [m;jlﬁbt-',-l] - ﬁQ (6.0) E; [m;j%btw] ) (12)
A _
Per = BE; l(%:) thﬁlﬂ (pe,t+1 + 1)1 (13)
Pro = BB, | (242 4, 14
1 = BE )\—t Liy1 (14)
3 Analytically, the deflations are such as s; = %, Y = %, Wy = %, A = %, and pe; = %’[3.

From now on, lower case variables are used to denote variables that are growth rates or variables that
are relative to dividend.



where )\; and g, represent the deflated policy variables and p.; the deflated equity price.
The recursive equation of S; is also transformed such as there are only stationary variables
in its expression. Applying the market clearing restriction, the recursive properties of the
good service are governed by the following functions

si1 = (0+ Q)xﬁrlﬁt — (6.0)y(wpam) " — ¢mt_+11 +1
Y1 = St (15)

In this economy, the state variables are s;, s;_1,and z;. Solving the model involves char-
acterizing the marginal utility functions of s and ¢, and the asset price functions, p.,
and Pr;. These variables have to satisfy the Euler equations (11), (12), (13), (14), and
the recursive properties of s. The model is solved relying on the projection method (see
Judd [1998] and Christiano and Fisher [2000]). Appendix A described the algorithm.
To approximate p,, I use the function fi(s,y,x;,), where ¢, is an unknown vector of
parameters and fi(.) is a polynomial chosen from the class of Chebyshev polynomials.
Similarly, T use the function p, (s,y, z;m,) to approximate the deflated equity price.

In the model, the marginal utility of service y, depends on current expectations of
marginal utility of s more than one period ahead, which do make the computational
resolution harder. Given this computational difficulty, the following iteration scheme is
used to find ¢, and n,, :

Step 1. I approximate the marginal utility of s. That is, obtain parameter values for ¢,.

Step 2 Given parameter values of ¢, obtained in the first step, I solve the whole problem.
That is, I both approximate the marginal utilities of s and c, and the asset prices.
So I find parameter values for ¢, and n,.

Given the asset prices, the asset returns can easily be calculated using these equations

Re,:pi = Et+1 |:(th+1. (236 ($t+1’$t,xt;nx))>:| - 1, 1= l, h (16)

Pe (8t7 St—1, Lt ’f’aj)

Rf,wi = Et+1

1
= — —1,i=101nh (17)
Pf (8t+178t7$t;%;)

and the expected returns are

RZ' = 05Rz,ml + 0-5-Ri,mh7 for ¢ = e, f



4 The results

In this section, I carry out two complementary experiments to see wether the previous
model can explain the U.S risk premia in the period 1889-1995. First, I test the model’s
implications in term of volatility of the IMRS. Second, I analyze the time-series properties
of the complete model by decomposing the habit persistence and the substitution effects.
Specifically, I compute the first and the second empirical moments for a particular set of
parameter values, and I compare these moments with their empirical counterpart. Then,
I choose the set of parameter values that better replicate the two observed moments. I
compute the moments with a simulated draw of 10000 observations, discarding the first
500 simulations. In the first part of this section, I present the results concerning the
volatility of the IMRS. In the second part of the section, the time-series properties of the
complete models are reported.

4.1 The Hansen and Jagannathan bound.

According to Constantinides [1990], the equity and the risk-free puzzles occur in the time
additive model because of the lack of variability of the IMRS relatively to the strong
volatility of the asset returns. In this section, I study the effects of durability and habit
on the volatility of the IMRS. The Hansen and Jagannathan [1991] method is carried
out to study these effects. Hansen and Jagannathan [1991] derived a lower bound on the
volatility of the IMRS that correctly prices the assets*. The bound is denoted by HJ.
One advantage of their procedure is that the bound they construct makes no reference
to a particular model. It is solely calculated from asset returns data. To estimate the
bound, equity and bond returns are considered. I use the R, and the R., described
in the data appendix and two additional artificial returns, R.;—1.Ry; , Rf—1.Re; , which
prices are respectively Re; 1, Rpi—1. Tt = (Ret, Ryt s Req—1.774 » Ryi—1.Rey ) is the vector
of asset returns and ¢; = (1,1, Re;—1, Rys—1) is the vector of asset prices. I extend this
visual method by implementing a statistical procedure for judging whether the complete
model of the previous section is able to statistically fit this lower bound. I use here the
methodology of Cecchetti, Lam, and Mark [1994] to perform the statistical inference.
Their statistic measures the vertical distance, labeled A, between a sample pair (p,, o)
and the lower bound HJ o,, where u, and o, respectively represent the empirical mean
and standard error of a particular /M RS. The candidate IMRS is rejected if its sample
pair significantly lies below the bound. In order, to evaluate whether the difference is

4In this paper, the positivity restriction on the IMRS is not imposed to compute the lower bound.



large, they compute the following statistic :

Hy : A0

A [(6,-6,
&A“( EN )

. (oA S IA
o = (), % (@),

where A has asymptotically gaussian distribution with mean 0 and variance %, and ZA](;

is the estimated covariance matrix of the parameter ¢, such as # = (,uq, Ly Ex), . Here, p,
is the mean vector of the four asset prices, and pu,, Y, are respectively the mean vector
and covariance matrix of the 2 x 2 assets payoffs. In practice, I compute é, and 3y by
generalized method of moments using the first two moments of asset returns and the
first moment of asset prices’. The covariance matrix 3 is the Newey and West [1987]
covariance matrix estimator. These complementary methods are implemented for the
complete model and its special cases.

As noted by Hansen and Jagannathan [1991], the time additive model is not able
to generate enough volatility in the IMRS for low level of 4. This also the case here.
The test of the volatility bound restrictions reports that a v as large as 20 cannot fit
statistically the Hansen and Jagannathan bound. When I consider a model in which only
the durability effect is taking into account (o = 6 = 0), the volatility of the IMRS goes
significantly down. For example, when 6 = 0.5, and v = 20, the statistic of the test of
the volatility bound restrictions is equal to -3.943, against only -3.35 for the same value
of v and 6 = 0. Further, as 6 goes up, the volatility fall. These results are consistent with
Cecchetti, Lam, and Mark [1994], Ferson and Constantinides [1991], and Heaton [1995].
Yet, here the drop of volatility of the IMRS is strengthened because the durability effects
do not die out after one period.

An opposite effect can be obtained by considering a model which exhibits only habit
effects ( § = 0). First, suppose that habit effects die out after one period (# = 0). For this
kind of model, a v = 2, and a = 0.1 generate an IMRS sufficiently high to statistically
fit the Hansen and Jagannathan bound. Further, increases in « do significantly goes up
the volatility of the IMRS. For example, when v = 2, and a = 0.1, the volatility of the
IMRS is equal to 2.03%, for o = 0.5, the volatility is equal to 18.28%. The table 1 reports
values of the statistics of the test of the volatility bound restrictions and the P-values of
the tests of the hypothesis that the distance between the second moment of the IMRS and
the Hansen and Jagannathan bound is less than or equal to zero against the alternative

5The moment conditions used in estimation are Elz; —p,) =0,

E g — pg] =0,
E [vec (1,5:1:;) —vec (Xy) + vec (,um,u;)} =0.



that it is positive. The tests are implemented for o ranges from 0.05 to 0.4 in increments
of 0.05. For § =1, § =0, v = 3, a value of a higher than 0.25 is needed to statistically
fit the bound. In addition, as a becomes larger, the volatility is stronger. So imposing
habit formation increases significantly the volatility of the IMRS. This is consistent with
the results of Cecchetti, Lam, and Mark [1994], Cochrane and Hansen [1992], Ferson and
Constantinides [1991], Gallant, Hansen, and Tauchen [1990], and Heaton [1995]. So, a
sufficiently high proportion of habit stock is needed to fit the HJ bound.

When 6 is different from zero (so the habits effects do not die out after one period),
the equations (11), (12), and the dynamic of s; have the following form

Moo= s = Bal = 0)E; [ 1104] (18)
pe = s+ BOE; (1 ] (19)
s = 1—a(l—0)(x,' + 0z 2 Y + 0Px e o + ) (20)

The table 1 reports the statistics of the test of the volatility bound restrictions, and its
corresponding P-value for infinite period habit persistence model. In this table, 6 can
also take two values : 0.1, and 0.7. As for the one-period habit model and for each values
of 6, increasing a tends to increase the volatility of the IMRS. Yet for o constant, as 6
becomes larger, the volatility of the IMRS goes down. For example, when 8 = 0.7, values
of a lower than 0.4 are not able to yield an IMRS that fit the HJ bound. Whereas, when
6 = 0.1, the nul hypothesis is accepted for a value of o = 0.3.

Table 1 : Results of tests of the volatility bound restrictions, 8=1, §=0, v=3.

Test statistic (P — value)  Test statistic (P —value) — Test statistic (P — value)

0.4292) -0.7079

=0 0 =0.1 0 =0.7

0.05 2.074  (0.01907) 2.074 (0.01906) 2.058  (0.01979)
0.1 2017  (0.02186) -2.080 (0.01879) 2.028  (0.02130)
0.15 -1.937  (0.02638) -2.009 (0.02227) 2.026  (0.02138)
0.2 1.821  (0.03432) -1.828 (0.03377) -1.854  (0.03191)
0.25 -1.644  (0.05008) -1.743 (0.04068) “1.842  (0.03277)
0.3 -1.360  (0.08687) -1.495 (0.06747) “1.882  (0.02995)
0.35 -0.878  (0.1900) -1.208 (0.1136) 1724 (0.04237)
0.4 0178 ( (0.2395) 1171 (0.1209)

Notes : 9500 observations of the simulated series are used to calculate the moments of IMRS.

So, increase the habit persistence effect reduce the volatility of the IMRS. This result is
different from the result of Heaton [1995]. Heaton found that larger values of 6 tend to
increase the volatility of the IMRS. To understand how does it occur, considering first
the model where o = 0.5, # = 0.01, and  sets to unity. Notice that for this parameter

10



setting, the previous equations are approximately equal to

A~ s, —0495E; [z, s, h] (21)
P ~ s (22)
s; ~ 1—0.4957," (23)

For this parameter setting, these three equations are very closed to those of the one-
period habit persistence model. In this kind of model, Gallant, Hansen, and Tauchen
[1990] showed that the larger value of «, the higher volatility of IMRS. Here, o(1 — 0)
is always lower than «, (0.495 < 0.5). Therefore, introducing a low degree of habit
persistence upper than one period slightly reduces the volatility of the IMRS relatively to
the one period habit persistence model. Notice also that for a high value of 6, for example
0 = 0.99, the equation (11), and the dynamic of s; are such as

N o= 57— 0.005E; [w,. 0y ] ~ 57, (24)
si = 1—0.005(z;" +0.997; 2 +0.99%2, o 2ty + ) ~ 1 —0.005z;" (25)

Note also that when « is low, the marginal utility of consumption of the one-period habit
persistence model is approximately equals to s; 7, where s, = 1 — aur; *. Therefore, the
two previous equations are very closed to the corresponding equations of the one-period
habit formation model where o = 0.005. So, the higher 6, the lower volatility of IMRS.

Given these previous effects, I ask wether the complete model can yield an IMRS
sufficiently high to fit the HJ bound. Figure 1 plots the Hansen and Jagannathan bound
of the complete model. It is represented by the U-shaped region. The figure represents
the standard deviation bound, std(IMRS), as a function of the mean of the IMRS,
E(IMRS). The figure 1 also plots the simulated mean-standard deviation pairs of the
IMRS, for different values of 3, v, 6, 6, . These moments are computed with a simulated
draw of 10000 observations, discarding the first 500 simulations and with 3 =1, 8 = 0.8,
a = 0.6. The parameter ¢ is allowed to take three values : 0.2, 0.4, 0.6. Further, in
the plot the parameter v ranges from 2 to 4.5 in increments of 0.5. The figure 1 shows
that the volatility of the IM RS increases, but the mean decreases as v increases, for ¢
equals to 0.4, 0.6. Therefore, the triangles (6 = 0.4) and the stars (6 = 0.6) move away
from the admissible region. Whereas, for ¢ equals to 0.2, the plus get nearer to the HJ
bound. Nevertheless, the model for this specification do not generate enough volatility in
the IM RS, to fit the HJ bound.

11



Figure 1: HJ bound and the simulated mean-standard deviation pairs
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Note : These moments are computed with a simulated draw of 10000 observations, discarding the first
500 simulations and with 3, 6 , a respectively equal to 1, 0.8, and 0.6, for § equals to 0.2, 0.4, 0.6

and ranging from 2 to 4.5 in increments of 0.5.

For the same parameter settings, the volatility bound test is implemented. For 6 sets
to 0.4, and 0.6, the model is not able to generate a sufficiently high volatility to fit the
HJ bound. Whereas, when 6 = 0.2, and v = 4, the test statistic is equal to -0.4818 and
its corresponding P-value is 0.3150. Therefore, although the simulated mean-standard
deviation pairs of the IM RS for this latter parameter setting do lie below the HJ bound
in the figure 1, the distance is not significant. So even with substitution effect, the
complete model can fit the HJ bound and so the model can correctly price the assets.
Nevertheless, the substitution effect should be low.

4.2 The equity premium and the risk-free rate puzzles

In this section, I study the capacities of the complete model of fitting the mean and the
standard deviation of the observed assets returns. To understand how the complete model
can explain the equity premium puzzle, I decompose the effects of substitution and habit
persistence. Thus, the infinite durable model, the one-period habit persistence model, and
the infinite period habit persistence model are studied. For each possible set of parameter
values, the two moments of each model are simulated. Then, the set of parameters values
which generates a risk-free return mean lower than 3%, and an equity return mean larger
than 5% are put aside. Furthermore, the parameter values that generates a negative
simulated marginal utility of consumption are rule out.

12



The infinite durable model (« = 0 = 0),
The model cannot fit the observed mean and standard deviation. For example, for ¢ sets
to 0.1 and a value of v lower than 8.1, the model is unable to generate an equity premium
mean upper than 1%. Whereas, the time additive model yields an equity premium of
1.94%, for ~ sets to 8.1. So, durability substantially reduces the equity premium mean.
For larger values of curvature parameter and ¢ still sets to 0.1, the equity premium goes up,
but it is still low. For example, a v = 18 cannot generate an equity premium higher than
2%. And as 6 becomes larger, an higher 7 is needed to generate an equity premium above
1%. For 6 sets to 0.15, the model generate an equity premium above 1%, if 7 is above 14.6.
Therefore, the positive effect of v on the equity premium is outclassed by the negative
effect of the substitution effect. Similar results are found in the one-period durability
model (see Cecchetti, Lam, and Mark [1994], Ferson and Constantinides [1991]). Here,
the negative effect on the equity premium is strengthened by the infinite substitution
effect of consumption over time. Moreover, the introduction of substitution reduces the
volatility of the asset returns. Note that in the time additive model, increasing the relative
risk aversion coefficient makes asset returns more volatile. Here, the effect is weakened
by the substitution effect. For example, for ¢ still sets to 0.1, and v ranging from 8.1
to 18.1, the volatility of the equity and bond returns only increases respectively by 0.83
and 0.78 percentage point, against respectively 5.56 and 4.35 percentage point in the time
additive model. So, as far as vy goes up, the standard deviation of the asset returns stay
relatively constant. So, ¢ slow down the volatility of the asset returns. This is consistent
with the results of Cecchetti, Lam, and Mark [1994], Ferson and Constantinides [1991],
and Heaton [1995].
The one-period habit persistence model (6 =6 = 0)

The model can fit the observed means of the asset returns. However, the one-period
habit persistence model yields an unreasonably high volatility for asset returns. The
table 2 reports these two effects. The introduction of the habit formation in the time-
separable model has two effects. The first one is to increase the simulated mean of the
equity premium. For example, a 7 as little as 0.2 and a o = 0.8 generate a mean of
equity premium above 2%. Further, as the habit parameter becomes larger, the equity
premium increases. For example, when the curvature parameter is set to 3.3, and a equal
to 0.1, 0.2, 0.3, 0.4, 0.5, the model respectively yields equity premium of 0.86%, 1.42%,
2.53%, 5.04%, and 11.78%. The second effect is to dramatically increases the volatility of
the asset returns. Further, increasing the habit effect makes asset returns more volatile.
Cecchetti, Lam, and Mark [1994], Ferson and Constantinides [1991], and Heaton [1995]
found the same result. Campbell [2000] calls this the stock market volatility puzzle. For
example, when v = 3.3, a = 0.4, the model exhibits an equity and a bond returns of
9.06% and 4.01%, but also standard deviations of 38.09% and 24.67% respectively. For
the same curvature level and a = 0.5, the standard deviations of each asset returns
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increases respectively by 10.7 and 5.66 percentage point.

Table 2 : The one-period habit persistence model 6=0=0, g=1, y=3.3.

a 0.1 0.2 0.3 04 05

mean R — R’ 0.86 142 253 504 11.78
std R° 744 1121 17.31 38.09 48.02
std RS 3.62 6.48 10.92 24.67 30.34

The infinite period habit persistence model (6§ = 0)

This model is also a pure habit formation model which displays infinite habit persistence.
The introduction of an higher persistence effect has two effects. The first one is to reduce
the asset returns and so the equity premium. For example, when v, a equal respectively
to 3.3, 0.5, and 6 equals 0.1, the model generates an equity premium of 10.65%, against
11.78 in the one-period habit persistence model. In addition, as # becomes higher, the
equity premium slows down. When the persistence parameter equals to 0.4, 0.5, 0.6, 0.7,
the model respectively generates equity premium of 8.26%, 7.58%, 6.89%, and 6.11%. All
these results are reported in the table 3. The second effect is to reduce the volatility of
the asset returns. In addition as # becomes higher, the volatility becomes lower. However,
the volatility still remains high. For example, when v, o equal respectively to 3.3, 0.5,
the volatilities of the equity and the bond returns are respectively 48.02%, and 30.34%
in the one-period habit model. In the infinite habit formation model, 6 equals 0.4, the
volatilities are 43.10%, and 26.39%. For higher habit persistence effect, 6 equals 0.7, the
volatilities are 24.57%, and 10.50%. Therefore as in the previous subsection, increasing
the habit persistence effect reduces the volatilities of the asset returns relatively to those
of one-period habit persistence model.

Table 3 : The infinite period habit persistence model §=0, =1, y=3.3, a=0.5.

0 04 05 0.6 0.7

mean R — R 826 758 6.89 6.11
std R° 43.10 30.05 27.39 24.57
std RS 26.39 15.01 12.72 10.50

The complete model
The intuition behind this model is to introduce durability in the infinite habit formation
model, in order to reduce the volatilities of the asset returns. However, introducing
durability will also reduces the mean of the equity premium. For example, when v = 3.3,
a = 0.5 and 6 = 0.6, and 6 sets to 0.1, the standard deviations of the equity and the
bond returns are respectively 19.64% and 7.8%, against respectively 27.37%, 12.73% in
the infinite period habit persistence model. Yet, the equity premium is 4.09%, against
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6.8% in the infinite period habit persistence model . So to generate an higher equity
premium, a larger « should be considered and to reduce the rise in volatility implied by
the increase of «, a higher ¢ can be considered. So, for 6 = 0.2, « = 0.6 and the other
parameters remaining constant, the equity premium is 5.58% and the standard deviations
of the equity and the bond returns are respectively 22.74% and 7.81%.

Finally, to increase the equity premium of asset returns, I set 6 to 0.5. So the parameter
setting is such as v, 0, a and 6 are respectively equal to 3.3, 0.2, 0.6 and 0.5, for a discount
factor sets to unity. First, for these parameter values the vertical distance between the
sample pair (E[IMRS],V [IMRS]) and the lower bound is not significant. I obtain a
P-value equals to 0.3488. So, the admissible region is fitted for these parameter values.
Therefore, this consumption-based asset pricing model generates enough volatility in the
IMRS to correctly price the assets. As it was shown in the previous section, a high
proportion of habit stock and a low substitution effect fit the HJ bound. The first two

moments implied by these parameter values are reported in the table 4. In this table, I

respectively denote by r?* and r{™ the observed and the simulated asset i return. The
means and standard deviations of the real returns are reported on annualized basis. The
simulated mean of real returns on equity and bond are coherent compared to those of
the sample means. The model still undervalues the mean of the equity return. But the
simulated mean of the equity return is now comparable to the observed equity return. In
addition, the simulated mean risk-free rate is very close to observed mean bond return.
The third column of table 4 displays the average equity premium, denoted by (r, — r f)obs
for the observed and (r, — r;)*™" for the simulated equity premium. Simulated equity
premium is 6.11% per annum in the model, against 0.39% in the time additive model.
Therefore, combined effects of substitution and complementarity over consumption can
fit the equity premium mean at a low level of curvature. Though, Heaton [1995] finds

that the complete model does not fit the equity premium well.

Table 4 : The moments implied by the following parameter setting : =1, v=3.3, §=0.2, a=0.6, 6=0.5.

T,gbs Tgim T?bs T?im (Te . ’I“f)ObS (Te _ Tf)szm
mean 0.0880 0.0824 0.0238 0.021 0.0642 0.061
std 0.2045 0.245 0.0910 0.102 0.1990 0.280

Note : This table displays the sample and the simulated means and standard deviations of the asset returns and the equity premium.
The simulated moments are obtained for «, §, @ and 6 respectively set to 3.3, 0.2, 0.6 and 0.5, and for a discount factor sets
to unity. 10000 observations of the simulated series are used to calculate the simulated moments of asset returns.

The observed asset returns moments are calculated for the period 1889-1995.

However, despite the negative effect of the substitution effect on the volatilities of the
asset returns, the simulated second order moments are above the observed second order
moments in the both cases. Nevertheless, the standard deviation of the risk-free rate seems
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in line with the data. It is a good result compared to the one-period habit persistence
model. The latter model actually implies extremely volatile stochastic discount factor to
explain the equity premium puzzle. Therefore, it generates a very volatile risk-free rate
(see above). For example, when v = 3.3, a = 0.5, § = 0.6, and 6 = 0, the standard
deviation of the simulated risk-free rate is 30.33%. Increasing ¢ yields a much lower
standard deviation. Yet, it is still above the observed standard deviation. Heaton [1995]
also estimated relatively precisely the second moment of the bond return. Therefore,
the introduction of local substitution substantially improves the model’s ability to fit the
risk-free rate volatility. Introducing substitution effects also reduces the volatilities of the
equity returns. For example, the complete model generates a simulated equity volatility
4.05 percentage point higher than the observed equity volatility, against 9.6 percentage
point in the pure habit formation model. Heaton [1995] is capable of explaining the highly
volatile stock return or the equity premium. This occurs according to Heaton because the
complete model is required to fit the extremely low volatility of the monthly bond return.
Here with this annual data set, the standard deviation of bond is much more higher. So,
the constrain to have a little volatility in the bond does not work here. In addition, the
negative effect of an habit persistence upper than one period on the volatility of the asset
returns, relatively to the one-period habit persistence model, strengthens the negative
effect of the substitution effect. Therefore, these two effects help to fit the standard
deviation of the asset returns. Taking into account the annual data set and these double
negative effect, the complete model can both fit the second moment of the asset returns
and the equity premium.

5 Conclusion

The purpose of this paper was to examine the empirical properties of a non-linear stochas-
tic dynamic model with rational expectations, in which the representative agent is assumed
to display time non separable preferences. Specifically, I carried out two complementary
studies to check the empirical relevance of the model. First, I used the Hansen and
Jagannathan bound to check if the consumption based asset-pricing model with local
substitution and long run habit persistence over consumption correctly prices the assets.
I found that introducing a low degree of habit persistence upper than one period slightly
reduces the volatility of the IMRS relatively to the one period habit persistence model.
In addition, despite the negative effects of the latter effect and the substitution effect, the
IMRS implied by the model statistically can fit the Hansen and Jagannathan bound, if
the degree of substitutability is relatively low and the proportion of habit stock is high.
Secondly, I compared the simulated two first order moments with those observed. I con-
cluded that combined effects of substitution and complementarity over consumption can
explain the equity premium and the risk free rate puzzles at a low level of curvature. In
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addition, I found that the introduction of local substitution substantially improves the
model’s ability to fit the volatility of the asset returns, compared to the pure habit per-
sistence model. Finally, the model does resolve the Campbell’s stock market volatility
puzzle.

Nonetheless, these results may be improved in three ways. First, I studied a par-
tial equilibrium representative-agent model. It would be interesting to consider the same
preferences in a general equilibrium model. Secondly, I also maintain the assumption of
homogeneous agents. One other possibility would be to investigate a non-linear stochastic
dynamic model with heterogeneous agents. Thirdly, I suppose a complete-market econ-
omy. However, the implications of equilibrium incomplete-market economy deserve to be
studied, because agents will be limited in their ability to smooth consumption.
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A Approximating the policy rules with the projec-
tion method

The model is solved relying on the method of weighted residuals (see Judd [1998], and
Christiano and Fisher [2000]), and the approximating functions are chosen from the class
of Chebyshev polynomials. Thus, if we consider the marginal utility of service, the ap-
proximating function is such as

/:L (87 Y, T, cpaz) = /:L(px = Z Z Saij,a:d}ij (87 y) ’ for r = L1, Th (26)

=1 j=1
where ¥, (s,y) = Tica (2((s = 51) / (30 = 51)) = 1) T2 (2((y = 51) / (30 = 51)) = 1), Ta.)
and 75(.) : [-1,1] — [—1,1], are Chebyshev polynomials, and ¢, is a n, x n, vector of

parameters. I use the linear transformation 2 ((s — s;) / (s, — s;)) — 1 in order to take into
account that Chebyshev polynomials are defined in [—1,1]. The approximating function
must satisfy the following residual function :

R (s,y,x;f1, ) =0, for all s,y,x € [s;, ] X [s1, 5] X [1, 24

where the residual function is just defined by the residuals of the Euler equation (12),
such as

R(s,y,2; 01, ) = f1(5,9,250,) =5 = B(6+0)E [z 4 (f (s,9,2,2) 8,25 0,) | 2]
800 BB " (f (1 at) f (sywat) 0o, | ) L), forw =i, a

where I denote the current value of x; by x, the next period’s value by 2’ and x;,5 by
2", and the recursive properties of s are summarized by the function f. The problem
is then to identify the set of parameters ¢,, for each state of the economy, defining the

approximation. This is undertaken using the projection algorithm

Step 1. Compute mg x m, nodes at which the residual function will be evaluated. These
nodes correspond to the roots, 2°, z¥ ,of the Chebyshev polynomials of order msxm,,.
Then form the (ms X m,,ns X n,) matrix given by

Uiy (21, 2() Yo (21, 21) T V(ns+1)(my+1) (21, 27)
¥ (21, 23) Yo (21, 23) T V(ns+1)(my+1) (21, 23)
Yy <Z7i7,57 Z?ny) V1o <Z7§zs> Z%@y) o W)y +1) (Zf;@s; Z%/@y)

Step 2. Given an initial guess of ¢,, compute at each node the residual function. The
following (ms x my, 1) vector of residual function is obtained for the state x

R (Sayaxéﬂ%) = [R (Slaylax;ﬂ%) ) 7R (Slaymyax;,&cpm) ) 7R (Smsaymyax;/lgax)]l
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Step 3. Then form the following projections
X'.R (s,y, z; /l%) =0, forx =z, . (27)
(27) represents/a nonlinear system of 2.ns.n, equations in the 2.n,.n, unknown
0r = [Py P, ] -

Step 4. By iterating over step 2 and 3, find ¢, which sets the 2.ns.n, projections equal to
Z€ros.

This system can be solved using the version of Newton-Raphson method implemented
in the GAUSS routine, NLSY' S.

I use the same algorithm to approximate the equity price dividend ratio, p.;. As
previously, the approximation of p.; is given by

p 5 'Y, T 7nw ZZTI'L], ij 5 y for z =TI, Th (28)
i=1 j=1

Pe (8, y,x;m,) has to satisfy the residual function R, defined by the residuals of (13), such
as

s (87y7 Z; ﬂcpmaﬁemx) = ﬁe (87 Y, T; T’w) -
5 ), 5.0 ]
BE K U (S’y’m’”’s’x”"w)) (@) o (F (5,927, s 25m,) + 1) | x]

where the approximation of the marginal utility of consumption is given by

As,y,3i0.) = i (s,y w5 0,) = BOE (o) i (f s,y ,0) s s,050,) 2] (29)
Then, I solve the system of 4.n,.n, equations in the 4.ns.n, unknowns ¢, and 1,

{ X’.R(s,y,x;,&%)zo
X’ ]

.%(s,y,x;ﬂ%’ﬁemm)zo , for o = x;,

I denote ¢, and 7),, the solutions of the previous system. The resolution is made according
to the iteration scheme described in section 3. Then, the bond price approximation for
the state x is given by

Pf (S7y7$;¢m) = ﬁE

X(f(s,y,x,x'),s,flil;@x) N 30
( A (5,9, 75 (y) )( b ] .
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B Data Appendix

The US annual data, for the period 1891-1995, on equity markets and macroeconomics
variables are the Campbell [1999)’s updated version of the data in Grossman and Shiller
[1982]. The series are described below :

i) Prices and real dividends refer to annual Standard and Poor’s composite Stock. The
price index is divided by the Consumption deflator.

ii) The aggregate nominal per capita consumption of non durables and services and
the consumption deflator refer to the series used by Grossman and Shiller [1982],
and updated using the National Account from CITIBASE.

iii) The annual interest rate series is the return on 6-month commercial paper bought in
January and rolled over July. The Grossman and Shiller [1982] series was updated
using the commercial paper series in CITIBASE (FYCP series).
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