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Univariate Panel Data Models and GMM Estimators:

an Exploration Using Real and Simulated Data

Bronwyn H. Hall and Jacques Mairesse

1 Introduction

This results reported in this paper arose from our exploration of a simple question: could we ¯nd

a simple parsimonious model that was a good description of the time series behavior of the key

observable variables that describe the behavior of individual ¯rms: sales, employment, investment,

R&D, and cash °ow or pro¯ts. The class of models we were interested in were those where the

heterogeneity across ¯rms was summarized by a single ¯xed e®ect or individual-speci¯c intercept. A

complication in this endeavor is that for most of these variables, the within ¯rm behavior in a short

time series can be described approximately either as an autoregressive process with a near-unit root

or as an autoregressive process with an individual speci¯c e®ect and a small positive coe±cient;

either version will be rather di±cult to estimate in a short panel, owing to the importance of initial

conditions to the process.

Our exploration started with a fairly general autoregressive model that included ¯rm-speci¯c

e®ects, but we soon observed behavior in our GMM estimators that suggested the presence of ¯nite

sample bias in our coe±cient estimates, which implied that our testing procedure was biased. We

thus turned to evaluating two separate but related questions:

1. Using very simple stylized processes to generate data (random walk vs. ¯xed e®ect with

no autoregression), what is the magnitude of the ¯nite sample bias when we estimate an

autoregressive model using these data?
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2. Using the same data generating processes, can our tests distinguish between data with a unit

root and data with individual speci¯c e®ects and a root outside the unit circle?

Having learned from these explorations which methods work best, we then proceed to test our

real time series for the presence of a unit root, and to construct the most appropriate autoregressive

models for each. Our conclusion is that the process which describes each of our variables is more

similar across countries than across variables, and that the variables can be clearly ranked by their

long run "persistence": employment, R&D, sales, cash °ow, and investment (whose behavior most

resembles that of a stationary process).

2 A Univariate Autoregressive Model with Firm E®ects

We began by considering the following univariate autoregressive model with ¯xed ¯rm and year

e®ects:1

yit = ®i + ±t +
mX

s=1

¯t;syi;t¡s + "it i = 1; :::; N ¯rms; t = 1; :::; T years (1)

yit is the logarithm of the variable of interest (sales, R&D, investment, employment, or cash °ow).

In our application, the number of years T is 12 and the number of ¯rms N is approximately 200,

so we treat the time e®ect ±t as ¯xed and include a set of year dummies in all estimations. The ®i

are the permanent unobserved di®erences across ¯rms, additive in the logs.

Initially we explored three features of the speci¯cation in equation (1): the presence of (corre-

lated) ¯rm e®ects ®i; the stationarity of the process, and the length of the lag m. In the course

of these explorations, we found evidence that some of our GMM estimates for this process had

considerable small sample bias, and we therefore turned to Monte-Carlo methods to evaluate our

1Equation (1) is similar to the basic model considered by Holtz-Eakin, Newey, and Rosen (1988).
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estimators. We found that distinguishing between a nonstationary process that has no ¯rm ef-

fect ®i and a stationary process that does have ¯rm-speci¯c means is extremely di±cult in these

data. The di®erence between these two processes matters both for estimation and for the economic

interpretation.

It makes a di®erence for the estimation strategy because when the lag coe±cient is unity, or-

dinary least squares on the di®erences is a consistent estimator, whereas the instrumental variable

estimator is not identi¯ed because there are no valid instruments for the di®erenced y. On the other

hand, for a stationary process, ordinary least squares on the di®erences is inconsistent, whereas

instrumental variables is consistent, although possibly biased in samples of our size. From the

economic modeling perspective, the nonstationary case implies that ¯rm data obeys a form of gen-

eralized Gibrat's Law, where growth is independent of current size, whereas a ¯nding of stationarity

means that the sales, employment, etc. for any given ¯rm does tend to regress to that ¯rm's own

mean.

In our simulations we used a version of equation (1) that contains a simple time trend as the

estimating model with data generated by three simpler univariate time series processes:

² Fixed e®ect plus deterministic trend

yit = ai + ±t + "it or ¢yit = ± + "it ¡ "i;t¡1 (2)

² Random walk plus drift

yit = yit¡1 + ± + "it or ¢yit = ± + "it (3)

² AR(1) with ½ = 0:99 plus deterministic trend

yit = ½yit¡1 + ±t + "it: or ¢yit = ½¢yi;t¡1 + ± + "it ¡ "i;t¡1 (4)
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All of these processes are capable of qualitatively reproducing the patterns in our data, but

they have very di®erent medium to long run implications for the way in which our data series

are expected to evolve. Before reporting the results of our simulations using data generated by

the three models, we present some descriptive statistics for our real data series; we will use these

empirical moments to calibrate our data generating models.

3 Data and Descriptive Statistics

Our data is drawn from the three datasets that were constructed for the bivariate causality tests

involving investment, R&D, cash °ow, and sales in Hall, Mairesse, Branstetter, and Crepon (1999).

In that paper our goal was to produce similar samples of high-technology manufacturing ¯rms for

each of our countries: France, the United States, and Japan. However, our sources of data were

quite di®erent and this means that the samples will never be exactly comparable, although they

are quite representative. The table in Appendix A gives the sources of our data, our de°ators, and

some indication of the number of observations available to us, both before and after cleaning.

The primary di®erence in the data sources is between France and the other two countries: in

France, we have access to a Census of Manufactures-type sample with R&D data collected in survey

form by the government for the Ministµere de la Recherche. This means the data tend to be at a

level somewhat lower than that of consolidated accounts (the \group" level), and that it is not

con¯ned to publicly traded ¯rms. For the other two countries, we have data based on the ¯lings of

publicly-traded ¯rms with agencies charged with monitoring the ¯nancial markets. Although the

Japanese data are somewhat less consolidated than those for the United States, in the sense that

they are not at the \group" level, they are consolidated to a level roughly comparable to that in

the United States. Also in the case of Japan, the R&D data has been augmented with data from
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another survey, because the quality of publicly reported R&D data is very uneven.2

The de°ators also di®er somewhat across countries. In all cases, we de°ate R&D, investment,

and cash °ow by a de°ator that is common across all industries.3 On the other hand, we have

attempted to varying degrees to construct real output measures rather than sales by de°ating

our sales ¯gures by at least a 2-digit-level de°ator. In the United States, we are using de°ators

aggregated up to the 2-digit level from the NBER Productivity Database, which is at the 4-digit level

(Bartelsman and Gray 1994). In France, we are using the N40 industry level de°ator (approximately

2-digit), which do not contain very much of the type of hedonic quality adjustment that is used

in the United States. In Japan, we have constructed \¯rm-level" de°ators based on the 4-digit

industry composition of the ¯rm's output.

Our choice of years (1978-1989) re°ects data availability, as well as a desire to have a fairly long

time series available for each variable for use in instrumental variables estimation. Because these

datasets are large, and in some cases fairly dirty, and because we want to focus on the common time

series properties across ¯rms, rather than isolated reorganizations and other speci¯c disturbances,

we apply cleaning rules to all the variables:

1. We require their growth rates to be between -90% and 900%.

2. In order to remove erroneous data values that might produce misleading autoregressive es-

timates, we remove ¯rms that have sequential growth rates that are large and alternate in

sign. For sales and employment, large is de¯ned as below -50% or above 100%; for R&D, it

is -67%, 200%; for investment and cash °ow, it is -80%, 400%.

2See Griliches and Mairesse (1990) for further discussion of this point.
3Thus we are implicitly assuming that the market for capital goods, and the market for R&D are common across

all our ¯rms, so they face the same prices. In fact, even when measured carefully, there is little variation in the
relative price of investment goods across industries, so our procedure is unlikely to produce much bias.
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3. We work with the logarithms of all the variables, in order to minimize heteroskedasticity and

problems with in°uential outliers.

After cleaning, and requiring a full 12 years of data for each ¯rm, we were left with 204 ¯rms

for the United States, 156 for France, and 221 for Japan. Table 2 in the appendisx gives some

indication of the typical size of these ¯rms, and their importance in their national economies.

Each sample is a small but not insigni¯cant portion of its economy, and a larger fraction of that

economy's private R&D activity. The Japanese sample has the largest coverage of both GDP and

BERD (Business Enterprise R&D) and the French sample the smallest. Although the national

R&D intensities are ranked Japan (2.2%), the U.S. (2.0%), and France (1.6%), the typical ¯rm in

these samples is more R&D-intensive in the U.S. (with an R&D to sales ratio of 4.0%), followed

by France (3.6%) , and then Japan (2.8%). This perhaps re°ects the somewhat greater selectivity

of the U.S. and French samples, and the large integrated ¯rm structure typical of Japan. Because

of this vertical integration, we suspect that our Japanese ¯rms are slightly less concentrated in the

high-technology sector than the sample of ¯rms from the other two countries.

Tables 1 and 2 show the means, standard deviations, and autocorrelations for the two of the

series: R&D in the United States, which the most highly autocorrelated series, and investment in

France, which is the least. Table 1 shows the statistics for the levels (in logs) and Table 2 for the

¯rst di®erences (in logs, which is approximately equal to the growth rates). In general the means

and standard deviations of our variables do not change much over time, although those for the

United States do show a slight increase. Figures 1 and 2 show the autocorrelation plots for all

the variables for the United States and France respectively. It is clear from these plots that the

autocorrelations decay very slowly for all variables with the possible exception of investment and

cash °ow in France, which suggests either that the time series process used to describe these data
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Autocorrelation Function for Real Variables
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Figure 1: United States AC Plot

will have a root close to one, or that the series are dominated by the permanent di®erences in the

level of the variables across ¯rms and low variance within. For this reason, we are interested in the

ability of our estimation methods to distinguish the models described earlier.

4 Short Panels and Finite Sample Bias

This section reports the results of a set of simulations that explore the properties of ordinary least

squares (OLS), instrumental variables (IV), and panel Generalized Method of Moments (GMM)

estimation on the three simple univariate time series processes given in equations (2)-(4). All of

these models are highly simpli¯ed versions of the model in (1) and it is well known that data

generated by them can look very similar in short panels (and also that ¯rm level data is often

well-described by such models).
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Autocorrelation Function for Real Variables
France
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Figure 2: France AC Plot

The precise data generation models we used were chosen to mimic the distribution of the U.S.

R&D series in our dataset. The deterministic trend model was the following:

yit = ai + ±t + "it (5)

with ± = 0:085; ai » N(1:93; 2:18) and "it » i:i:d:N(0; 0:1):

This model implies the estimating equation ¢yit = ±+¢"it: But if the researcher does not know the

process and includes lagged di®erences of y in the equation, the ordinary least squares estimates

of their coe±cients will be inconsistent (and typically very negative) because of the presence of

"i;t¡1 in the disturbance. When estimated by instrumental variables or GMM, yi;t¡2 will be an

appropriate instrument for ¢yit¡1 when this latter variable is included in the regression.
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The stochastic trend model was the following:

yit = yit¡1 + ± + "it (6)

with ± = 0:085; yi0 » N(1:93; 2:13) and "it » i:i:d:N(0; 0:33):

For this model the estimating equation is ¢yit = ± + "it and ordinary least squares with lagged

di®erenced y will produce consistent estimates (that is, coe±cients of zero), but using yi;t¡2 as an

instrument for the lagged ¯rst di®erence will not work well because the lagged di®erences of y are

white noise (once the year means are removed). The IV estimator in this case is not identi¯ed.

The autoregressive model was the following:

yit = ½yit¡1 + ±t + "it (7)

with ± = 0:01; yi0 » N(1:93; 2:20) and "it » i:i:d:N(0; 0:186):

As in the case of the ¯xed e®ect model, for this model the estimating equation is ¢yit = ½¢yit¡1 +

± + ¢"it and ordinary least squares estimates will be inconsistent due to the serial correlation in

the error term and the presence of a lagged dependent variable. Instrumental variable or GMM

estimation using yi;t¡2 as an instrument will be consistent. However, note that the estimated

coe±cient of the lagged dependent variable should be close to one, whereas for the ¯xed e®ect

model it will be approximately zero, even though super¯cially the implied level behavior for series

generated by the two models is quite similar.

Note also that the only di®erence between the data generating process in the two di®erenced

models corresponding to equations (5) and (6) is that the error process for the ¯rst is ¯rst order

moving average and that for the second is white noise. In all other respects they are identical.

The results of using OLS, IV, and GMM estimation on data generated by these two processes

are shown in Tables 3 (the ¯xed e®ect model), 4 (the random walk model), and 5 (the autoregressive
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model). In all cases, the model estimated was the following:

¢yit = ± +
5X

s=1

¯s¢yi;t¡s + uit i = 1; :::; N ¯rms; t = 1; :::; T years (8)

The IV and GMM estimates were obtained using the intercept and yit¡2; :::; yit¡6 as instruments.

Two choices of T and N were used: T = 6 or 20 and N = 200 or 2000. The ¯rst set of choices

corresponds roughly to the order of magnitude in our data, but in some cases we found that only the

large sample size yielded good ¯nite sample hehavior for the estimates. The OLS and IV estimates

were obtained by stacking the model to have NT observations; in the case of the IV estimator,

this implies that the projection in the ¯rst stage has the same coe±cients in all the years. The

GMM estimators are obtained with ¯rst stage projections that vary across the years. The estimator

labelled "GMM 1-Step" is the estimator preferred by Blundell and Bond (1998), which is obtained

using a weighting matrix based on the time series covariance predicted assuming white noise "s in

the level ¯xed e®ect model (that is, ¯rst order moving average us). We will discuss the results in

each of the 3 tables in turn.

Tables 3a and 3b contain the results for the model with ¯xed ¯rm e®ects and no lagged de-

pendent variable. The ordinary least squares estimates are biased downward as expected, and by

essentially the same order of magnitude regardless of sample size. Thus even for samples of our

size (T = 6 and N = 200) the results have converged to the asymptotic bias (which is quite large).

In contrast, the IV estimates su®er severely from ¯nite sample bias, which gets somewhat better

as we increase T .4 For samples of our size, the estimated lag coe±cients using IV are similar to

the (very inconsistent) ordinary least squares estimates and only get close to the true values when

4In an earlier version of this paper, we presented results that used all the available instruments rather than simply
5 per year. In this case, the ¯nite sample bias gets worse as T increases rather than better, due to over¯tting at the
¯rst stage. The current version of the paper uses only lags 2-6 as instruments for this reason. Other researchers have
found similar results when estimating dynamic panel data models using GMM (cites? ).
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N = 20; 000, which is 100 times our sample size. At a sample size of N = 2000, they still have

a standard error that is so large that a coe±cient of unity is amost as likely as a coe±cient of

zero. Also noteworthy is the fact that in this case the one-step GMM estimator appears to be

better than the two-step estimator. The ¯nite sample problem here is probably due to the fact

that the e±cient GMM estimator uses a very large number of orthogonality conditions relative to

the amount of information in the instruments.

The conclusion from Table 3 is that for our sample size, no estimator does very well: only IV

gets the right answer within a (very large) standard error and even the one-step GMM estimator

appears to be biased downward. The speci¯cation tests are generally correct: the test for serial

correlation of the disturbances accept the absence of second-order correlation but not of ¯rst, as

would be expected. The omnibus chi-squared (J) test for overidenti¯cation accepts the validity

of the instruments, although note that when the sample size get larger, this test comes close

to rejection. We also include a Sargan test for ¯xed e®ects which is computed by adding the 6

additional orthognality conditions in levels that are implied by the absence of correlated ¯rm e®ects;

this test always rejects, as it should.

Tables 4a and 4b contain the results for the random walk plus drift model. The results show

that, in spite of the lack of identi¯cation of this model, data generated by the random walk with

drift model give reasonable answers using GMM; although the instruments are poor in this case, the

IV and GMM 2-Step estimates were correct (within the very large standard errors). However, the

GMM 1-Step estimates are far from the true values, re°ecting perhaps the fact that the weighting

matrix in this case is inappropriate.5 Of course, OLS is the preferred estimator for data generated

5Recall that the GMM-1 estimator of Arellano and Bond is based on the assumption that the error term in the
equation is MA(1). Another way to rewrite the di®erenced random walk model is the following:

¢yit = ½¢yi;t¡1 + ¢"it with ½ = 1

The above way of writing the model contains a zero drift and a moving average error, but in fact is exactly the same
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by this model and those estimates do indeed appear to be the best, with by far the lowest standard

errors.6 Note that all of the test statistics accept that this is the correct speci¯cation, except that

the Sargan test for ¯xed e®ects rejects, even though there are no ¯xed e®ects in the model. This

is perhaps not surprising empirically, since the level version of the model has a lagged dependent

variable with a coe±cient of unity, but it is puzzling and con¯rms that nonstationarity in panel

data can cause peculiar estimator behavior in the same way it does in ordinary time series.

Tables 5a and 5b contain the results for the autoregressive model with deterministic trend.

Recall that in this case, unlike the preceding, ordinary least squares is inconsistent and IV should

be consistent. This is clearly true in our simulations, although note that the inconsistency declines

slightly as T increases. All of the instrumental variable estimates are pretty good when the sample

size is 2000 or higher. However, for samples of our size, IV is somewhat imprecise, and the one-step

GMM estimator is strongly preferred to the two-step, which appears to be biased downward. In this

case, the Sargan test accepts the absence of ¯xed e®ects, as it should. Clearly the reason is because

the level equation is essentially the same as the ¯rst-di®erenced equation, unlike the random walk

case.

The results in Tables 3, 4, and 5 are quite discouraging, because it appears that there is no

estimator among the set we looked at that is appropriate for all of our (admittedly) extreme

models, at least for our sample size. Where one is consistent and/or unbiased, the other will be

inconsistent or at least biased in ¯nite samples. The preferred estimator is probably the one-step

model as the random walk

¢yit = "it

. Since the GMM-1 estimator assumes an MA(1) error, it is perhaps not surprising that our estimates of the slope
coe±cient are biased upward substantially and our estimate of the drift coe±cient downward toward zero, particularly
when the sample size is large in the T dimension.

6In theory, GMM 2-Step is asymptotically as good as OLS for this model, of course, but we do not expect this
estimator to converge as quickly (if at all) to the true value given the poor instruments.
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GMM estimator, but this estimator is not identi¯ed if the true process is a random walk and su®ers

from ¯nite sample bias in the other cases. This means that if we wish to investigate the univariate

time series process in our data, we probably should not rely too heavily on these instrumental

variable approaches. Two other approaches suggest themselves: estimation directly on the implied

moments of the process without using instrumental variables and models that allow more completely

for the heterogeneity in the data. In the next section we explore another method of distinguishing

a deterministic from a stochastic trend in panel data that allows for some heterogeneity.

5 Testing for Unit Roots - the IPS Method

Recent work by Im, Pesaran, and Shin (1997, hereafter IPS) suggests another approach for distin-

guishing these two data generating processes that allows for more heterogeneity of behavior than

we allowed for in Tables 3 to 5. They assume the following model:

yit = (1 ¡ Ái)¹i + Áiyi;t¡1 + "it; i = 1; :::; N ; t = 1; :::; T (9)

where initial values yi0 are given, and they test for the null hypothesis that Ái is unity for all

observations versus an alternative that some of the Áis are less than one. Under the null, there is

no ¯xed e®ect, while under the alternative, each ¯xed e®ect ®i is equal to (1 ¡ Ái)¹i: They propose

tests based on the average over the individual units of a Lagrange-multiplier test of the hypothesis

that Ái as well as tests based on the average of the (augmented) Dickey-Fuller statistics, which they

¯nd to have somewhat better ¯nite sample properties.

As in Dickey and Fuller's original work, IPS also propose tests based on a model with a deter-

ministic trend:

yit = (1 ¡ Ái)¹i + (1 ¡ Ái)±it + Áiyi;t¡1 + "it; i = 1; :::; N ; t = 1; :::; T (10)
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We will use both these tests for our data, since there is reason to believe that trends do exist in

the series. Note that an important di®erence between these models and the models considered in

the previous section is that both the lag coe±cient and the trend coe±cient are allowed to di®er

across ¯rms under the alternative hypothesis of stationarity.

We applied these tests to our simulated data, with the results shown in Table 6. The statistic

shown is the average of an augmented Dickey-Fuller statistic for the N unit root tests on the

individual series, together with empirical size of the test, based on critical values given in the tables

of the IPS paper. The precise statistic we used is computed as in their equation (5.3), which allows

for the number of augmenting lags to di®er across the individuals. In practice, we found a p of

either 2 or 3 was the preferred value given by the individual unit root tests, even though the data

were in all cases generated from models where p = 0 was appropriate. In the tables, we present

results for a model both with and without a ¯rm-speci¯c time trend; all results are for data with a

single cross-sectional mean removed in each year (that is, a full set of time dummies), as suggested

by IPS. Because our simulated data have a single time trend, we expect that removal of these means

will make the two tests (with and without allowing for a time trend) equivalent.

The results using the simulated data con¯rm that this is the case; in fact, the test without a

trend has more power to discriminate between ¯xed e®ects and a random walk than that with in

this case. Focusing on the results using the second version of the IPS test, with a trend and an

intercept, here we ¯nd that although the empirical size of the test does di®er depending on whether

there is a lagged dependent variable or not, even in the ¯xed e®ect case we will fail to reject the

null hypothesis 32 percent of the time, using the "best" augmenting lag. And there is no hope of

distinguishing a stationary autoregression from one with a unit root if the autoregressive coe±cient

is 0.99 in samples the size of ours: for this model the test statistic is essentially the same as the
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value for the random walk model.

We explored the e®ects of increasing our sample size in the bottom two panels of Table 6.

Larger sample size in the N dimension reveals that our approximation to the IPS distribution for

the short sample and p = 3 is not very good, so we focus on the p = 2 case. Here the results for

discrimination between ¯xed e®ects and random walk are excellent, but there is still no di®erence

between the random walk and AR(1) models. To discriminate between these two models, one needs

much longer time series than we are likely to have available in this type of data (note that increasing

T from 6 to 20 does not help much). .

Our conclusion from this exercise is that in a short panel it will be extremely di±cult to tell

with con¯dence whether the process can be described by an autoregressive process with a unit root

but no permanent di®erence across ¯rms, or by a ¯xed ¯rm e®ect plus perhaps an autoregressive

process with much smaller coe±cients, especially when there is serial correlation in the disturbances

(or a higher order autoregressive process for the series). However, if we restrict the process under

consideration to a low order autoregression, the IPS unit root test appears to be able to distinguish

a model with ¯xed e®ects and no autoregression from one with autoregression, even in a short

panel.

6 Results of Unit Root Tests for Observed Data

[This section still under development]

Turning to the real data (Table 7) and using the Sargan test, only 3 data series are able to

reject the absence of ¯rm e®ects: sales and R&D in the U.S. and R&D in France, although cash

°ow in the U.S. and France nearly rejects. However, the IPS unit root test, which allows the

alternative hypothesis to have both a ¯rm-speci¯c autoregressive coe±cient and a ¯rm-speci¯c
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intercept, accepts nonstationarity (no ¯rm e®ects) for all the series except investment in both the

U.S. and France and cash °ow in France.7 When we allow for a ¯rm-speci¯c trend in addition,

nonstationarity is rejected only for investment and cash °ow in France. We view these results as

somewhat inconclusive, but as suggestive that future modeling for these ¯rms should try to account

for the heterogeneity in slope coe±cients that appears to be causing the di®erences in these results.

............

7 Stationary with Firm E®ects or Nonstationary?

[This section still under development.]

In a general panel data regression model, ®i may or may not be correlated with the regressors.

In the case here, the question of correlation is not really very interesting; if ®i is present, it is

certainly correlated with lagged y. The relevant question is whether the data are well-described by

the same autoregressive model where ¯rms di®er only in their initial condition, or whether there

is a tendency for them to regress toward individual means; that is, whether there are permanent

unobserved di®erences across ¯rms.

To answer this question, we estimated the model given by equation (1) for each of our data

series using the Generalized Method of Moments with two sets of orthogonality conditions. The ¯rst

uses only orthogonality conditions between ¯rst di®erences of the model and levels of the lagged

variables and is consistent even if there are permanent correlated ¯rm e®ects. The second uses

orthogonality conditions between levels of the model and levels of the lagged dependent variable

and is e±cient if there are no ¯rm e®ects, but inconsistent otherwise. We conducted tests for the

validity of the additional restrictions implied by the equations in levels using a lag length (m) of 5.

7All the tests were conducted allowing for augmenting lags in the Dickey-Fuller regression; the order of the lag
was always 2 or 3, and the test was computed as the average of the t-statistics standardized by the appropriate values
from Table 2 of IPS.
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Tables 5 (old) and 6 (old) show the results of this procedure, ¯rst for simulated data and then

for our actual data. In Table 5 (old), we show the results of estimation using data generated by

the following processes (in all cases "it is a white noise process):

yit = yit¡1 + :085 + "it (Random walk with drift) (11)

yit = ®i + :085t + "it (Fixed e®ect with trend) (12)

yit = 0:99 yit¡1 + :011 + "it (AR(1 ) with intercept) (13)

yit = ®i + 0:76 yit¡1 + :012t + "it (AR(1 ) with ¯xed e®ect and trend) (14)

The parameters for these processes were chosen to mimic the empirical behavior of the log R&D

series for the United States, which has a mean that increases from 1.9 to 2.9 between 1978 and 1989,

a variance of approximately 4.6, and ¯rst order serial correlation of about 0.99. The ¯xed e®ect ®i

and the initial conditions were generated from a normal distribution with mean 1.93 and variance

4.4 and 4.75 respectively. The sample size was 200 (the same order of magnitude as our actual

sample size) and the number of time periods used for estimation was 7, with 5 additional time

periods for the lagged instruments, for a total number of years equal to 12. The data generated by

these processes were then ¯t to the model of equation (1) both in level equations (inconsistent in the

presence of ®i) and in ¯rst di®erences, with the length of the lag chosen using conventional F-tests.

In addition, a test for the presence of ¯rm e®ects was conducted by testing for the signi¯cance of

the overidentifying restrictions implied by equation (1) in levels.

The ¯rst 3 columns of Table 5 (old) show estimates of the ¯rst di®erenced model, the next

two columns show estimates of the model in levels, and the ¯nal 2 columns display two tests for

the presence of correlated ¯rm e®ects.8 The ¯rst di®erenced estimates are based on orthogonality

8Because of the evidence in Arellano and Bond (1991) that the e±cient two-step GMM estimates have downward-
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conditions (OCs) between the ¯rst di®erences of the model and level variables, lagged 2 to 5 times

(yielding 6*(4+1) = 30 OCs). FD and level estimates are based on OCs between the model in

levels and level variables lagged 1 to 5 times (yielding 7*(5+1) = 42 OCs). In both cases, the

number of lags shown is the number arrived at under each model by conventional Wald tests at

the one percent level. The sum of the lag coe±cients is the sum of the estimated lag coe±cients

at the maximum number of lags (5) and heteroskedastic-consistent standard errors are shown in

parentheses.

The Sargan test is a test for the validity of the additional orthogonality conditions implied by

the levels model, which are invalid in the presence of correlated e®ects. The Hausman test is a

speci¯cation test for the equality of the coe±cient estimates in the two sets of estimates. A puzzle,

which we do not resolve here, is that even when the Sargan test suggests that the level estimates are

valid, the coe±cient estimates are su±ciently di®erent between the two methods that the Hausman

test rejects. The Sargan test correctly accepts the absence of ¯xed e®ects in the case of the random

walk and the AR(1) model, but it also accepts in the case of the simple ¯xed e®ect model; the

reason is clear when one looks at the level estimate of the lag coe±cients, which sum to nearly

unity. However, an important di®erence between data generated by this model and data generated

by the random walk model is the estimated length of the lag: in the former case, there is an equal

loading of about 0.2 on each of the 5 lags, whereas in the latter, the ¯rst coe±cient is unity (as it

should be) and the rest are zero.

The AR(1) model with no e®ects is very similar to the random walk model, except that in this

case all the lag coe±cients enter when the model is estimated in levels; it is clear that the near

biased standard errors in samples of this size, the coe±cient estimates and the Hausman tests in the table are for
the one-step estimator with the MA(1) covariance of the di®erenced residuals suggested by those authors. However,
the Sargan test is based on the chi-squared from the two-step estimates, since this test requires the use of e±cient
estimates if it is to have the correct distribution under the null.
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non-stationarity of this model creates the same di±culties for estimation as the random walk model,

due to the weakness of the instruments. The AR(1) model with ¯xed e®ects is the best-behaved

of the four, clearly rejecting the absence of ¯rm e®ects using both the Sargan and the Hausman

tests. The (consistent) ¯rst di®erenced estimate of the sum of the lag coe±cients is close to the

true value, but the lag length is wrong (5 instead of 1).9

8 Estimating the AR Process for the Observed Data

[this section to be redone using results of previous sections.]

We performed series of investigations into the functional form of the AR model for the observed

data.10 These tests were performed using the full set of linear moment restrictions implied by the

structure of the model; that is the number of orthogonality conditions used grows as T 2:

With 12 years of data available for each variable from 1978-1989, the maximum number of lags

in the autoregressive process is m = 10; after di®erencing to eliminate the ®i: We choose the length

of the lag m in each case below by ¯nding the longest set of lags (up to m = 10) where the last

10 ¡ (m + 1) enter with a p-value greater than .01, using a Wald or generalized F test. This means

we are using a di®erent number of equations for estimation, depending on the maximum order m.

The models and tests whose estimates are shown in Tables A.1-A.3 are described below:

1. ONEST: Stationary coe±cients.

yit = ®i + ±t +
mX

s=1

¯syi;t¡s + "it (15)

9One reason for these di®erences may be that the data generation processes use drift (in the case of random walk
and AR(1) and trend (in the case of Fixed E®ect and AR(1) with FE) to model the common time series behavior,
whereas the estimation procedures use a model with year dummies. Since in practice, the researcher has no idea
what the time series behavior is, our approach to modeling it seems conservative.

10These investigations were carried out on a somewhat larger sample of ¯rms.
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2. ONEME: Stationary with measurement error. The model is the same as (A.2), but we

need lags from m + 1 to 2m as instruments in this case. This reduces the length of lag that can

be investigated to m = 5. For this model, we test the validity of the additional orthogonality

conditions allowed if there is no measurement error (implying that lags 1 to m can be used as

instruments).

3. ONELAM: Time-varying coe±cients for the ¯xed e®ect, but constant lag coe±cients.

yit = Ãt®i + ±t +
mX

s=1

¯syi;t¡s + "it: (16)

We test whether Ãt = 1 for all t (this reduces A.3 to A.2).

4. ONELAM2: Proportional lag coe±cients, and a constant ¯xed e®ect

yit =t ®i + ±t + ¸t

"
mX

s=1

¯syi;t¡s

#
+ "it: (17)

We test whether ¸t = 1 for all t (this reduces A.4 to A.2).

5. ONENS:Time-varying lag coe±cients, and a constant ¯xed e®ect.

yit = ®i + ±t +
mX

s=1

¯t;syi;t¡s + "it: (18)

The test NS1 tests stationarity of the coe±cients, that is, ¯t;s = ¯s for all t, and the test NS2 tests

proportionality of the ¯'s over time, which is equivalent to the model in equation (A.4):

¯t;s

¯t¡1;s

=
¯t;r

¯t¡1;s

(19)

for all t and for all r and s.
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Except for sales and cash °ow in Japan (where coe±cients were fully nonstationary), we tended

to ¯nd that the data were well ¯t by either a fully stationary model or one with a single propor-

tionality coe±cient across years, that is, by equations (15), (16) or (17). The data are typically

unable to choose between models (16) and (17), which is not surprising given the presence of lagged

endogenous variables on the right hand side. The optimal lag length m ranged from 2 to 8, but

was usually 3 and 5.

9 Conclusions

to be written
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Hall and Mairesse 1/28/00

 Mean St Dev
Year 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1978 1.925 2.195 1.000
1979 2.057 2.174 0.991 1.000
1980 2.175 2.166 0.980 0.993 1.000
1981 2.304 2.120 0.973 0.985 0.994 1.000
1982 2.400 2.135 0.962 0.976 0.988 0.995 1.000
1983 2.505 2.130 0.953 0.966 0.981 0.988 0.994 1.000
1984 2.610 2.116 0.939 0.954 0.971 0.980 0.987 0.993 1.000
1985 2.687 2.107 0.928 0.941 0.960 0.969 0.975 0.981 0.991 1.000
1986 2.740 2.117 0.923 0.935 0.955 0.962 0.969 0.974 0.983 0.991 1.000
1987 2.824 2.142 0.916 0.929 0.950 0.956 0.962 0.969 0.979 0.988 0.995 1.000
1988 2.865 2.138 0.920 0.932 0.949 0.954 0.960 0.964 0.974 0.981 0.990 0.993 1.000
1989 2.861 2.191 0.909 0.924 0.939 0.943 0.947 0.951 0.961 0.970 0.978 0.981 0.991 1.000

 Mean St Dev
Year 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1978 8.951 1.767 1.000
1979 9.011 1.738 0.933 1.000
1980 9.111 1.674 0.908 0.932 1.000
1981 9.027 1.663 0.888 0.897 0.941 1.000
1982 9.022 1.588 0.842 0.848 0.872 0.929 1.000
1983 9.054 1.594 0.842 0.843 0.871 0.895 0.936 1.000
1984 9.273 1.616 0.856 0.877 0.874 0.884 0.879 0.921 1.000
1985 9.370 1.659 0.855 0.853 0.873 0.890 0.877 0.906 0.935 1.000
1986 9.430 1.600 0.850 0.841 0.872 0.871 0.837 0.867 0.889 0.933 1.000
1987 9.439 1.569 0.849 0.856 0.880 0.874 0.838 0.869 0.896 0.908 0.926 1.000
1988 9.520 1.527 0.859 0.844 0.868 0.856 0.815 0.846 0.863 0.868 0.898 0.935 1.000
1989 9.610 1.593 0.832 0.834 0.841 0.824 0.780 0.814 0.835 0.844 0.876 0.903 0.928 1.000

Correlation Matrix

Variable = Real Log (R&D) for United States (N=424)

Table 1
Empirical First and Second Moments

Correlation Matrix

Variable = Real Log (Investment) for France (N=156)
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 Mean St Dev
Year 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1979 0.132 0.293 1.000
1980 0.118 0.261 0.051 1.000
1981 0.129 0.242 0.058 0.038 1.000
1982 0.096 0.212 0.016 0.068 0.058 1.000  
1983 0.105 0.233 0.078 0.016 0.067 0.081 1.000
1984 0.105 0.259 -0.013 0.069 0.039 0.062 0.112 1.000
1985 0.077 0.278 -0.045 -0.015 0.097 0.029 0.086 0.099 1.000
1986 0.053 0.286 -0.012 -0.055 0.010 0.100 0.059 0.092 0.131 1.000  
1987 0.084 0.210 -0.123 0.017 -0.049 0.017 0.098 0.125 0.086 0.146 1.000
1988 0.041 0.259 -0.059 -0.130 0.037 -0.020 0.075 0.113 0.146 0.127 0.153 1.000
1989 -0.004 0.300 0.188 -0.080 0.078 -0.056 -0.064 0.071 0.015 0.104 -0.013 0.212 1.000

 Mean St Dev
Year 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
1979 0.060 0.644 1.000
1980 0.101 0.633 -0.230 1.000
1981 -0.084 0.573 -0.130 -0.226 1.000
1982 -0.004 0.619 -0.020 -0.139 -0.221 1.000  
1983 0.031 0.571 -0.057 -0.026 -0.171 -0.205 1.000
1984 0.220 0.638 0.035 -0.070 -0.020 -0.160 -0.207 1.000
1985 0.096 0.591 -0.024 0.037 -0.069 -0.029 -0.181 -0.181 1.000
1986 0.061 0.600 -0.043 -0.037 0.046 -0.086 -0.036 -0.199 -0.188 1.000  
1987 0.009 0.610 0.026 -0.046 -0.042 0.061 -0.073 -0.026 -0.166 -0.182 1.000
1988 0.081 0.560 -0.134 0.058 -0.049 -0.042 0.151 -0.132 0.009 -0.124 -0.251 1.000
1989 0.090 0.595 0.114 -0.155 0.111 -0.048 -0.173 0.135 -0.042 -0.011 -0.115 -0.321 1.000

Variable = Real Log (Investment) for France (N=156)
Correlation Matrix

Table 2
Empirical First and Second Moments - First Differenced Series

Correlation Matrix
Variable = Real Log (R&D) for United States (N=424)
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# of time periods  6 6 6 6 6 6 6 6 6 6
# of observations True 200 2000 20000 200 2000 20000 200 2000 200 2000
Estimation method Model OLS OLS OLS IV IV IV GMM 1Step GMM 1Step GMM 2Step GMM 2Step

DY (-1) 0 -.838 (.026) -.834 (.010) -.834 (.002) -7.6 (48.9) .073 (.185) -.002 (.062) -.388 (.197) -.133 (.125) -.790 (.289) -.380 (.248)
DY (-2) 0 -.673 (.034) -.669 (.010) -.668 (.004) -5.5 (35.4) .057 (.147) -.001 (.050) -.313 (.158) -.108 (.099) -.632 (.227) -.306 (.197)
DY (-3) 0 -.509 (.036) -.501 (.008) -.500 (.003) -4.3 (27.6) .043 (.108) -.000 (.038) -.236 (.117) -.080 (.074) -.478 (.167) -.229 (.147)
DY (-4) 0 -.334 (.032) -.332 (.009) -.334 (.004) -3.1 (19.8) .030 (.073) -.000 (.025) -.155 (.086) -.053 (.048) -.311 (.120) -.152 (.096)
DY (-5) 0 -.165 (.025) -.167 (.009) -.167 (.003) -1.4 (9.0) .013 (.038) -.001 (.014) -.079 (.044) -.028 (.025) -.156 (.058) -.077 (.047)

Sum of coefficients 0 -2.52 (.12) -2.50 (.03) -2.50 (.01) -21.9 (140.7) .216 (.547) -.006 (.189) -1.17 (.58) -.401 (.367) -2.37 (.85) -1.14 (.73)

Trend 0.085 .298 (.012) .298 (.003) .298 (.001) 1.9 (11.8) .067 (.046) .085 (.016) .190 (.045) .119 (.031) .286 (.072) .182 (.062)

Standard error 0.34 .356 (.007) .358 (.002) .358 (.001) 3.25 (17.65) .489 (.044) .469 (.015)  
R-squared .421 (.016) .417 (.006) .417 (.002) .395 (.056) .373 (.074) .363 (.093)

Chi-squared (DF) 30.0 30.7 (6.5) 34.3 (7.5)
 degrees of freedom 30 30 30

LM (1) Test sig. -10.66 (3.45) -42.5 (2.3) -1.96 (7.01) -32.4 (12.7)
LM (2) Test insig. -0.20 (.80) -0.22 (.68) -1.19 (1.13) -1.24 (1.48)

Sargan Test for FE sig. 27.2 (10.1) 263.4 (31.3)
 degrees of freedom 6 6 6

Table 3a
SIMULATION RESULTS - 50 Draws

Data Generation Model: Fixed Effect plus Linear Trend
Estimation Model: Fixed Effect, Linear Trend, and 5 Lags of Dependent Variable
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# of time periods  20 20 20 20 20 20 20 20 20 20
# of observations True 200 2000 10000 200 2000 10000 200 2000 200 2000
Estimation method Model OLS OLS OLS IV IV IV GMM 1Step GMM 1Step GMM 2Step GMM 2Step

DY (-1) 0 -.833 (.014) -.834 (.005) -.834 (.002) -.039 (.178) .003 (.045) .005 (.022) -.142 (.065) .049 (.147) -.735 (.121) -.148 (.045)
DY (-2) 0 -.667 (.020) -.667 (.006) -.667 (.003) -.034 (.140) .002 (.039) .004 (.019) -.119 (.045) .046 (.128) -.590 (.091) -.118 (.038)
DY (-3) 0 -.497 (.021) -.500 (.006) -.500 (.003) -.021 (.102) .003 (.030) .004 (.022) -.080 (.031) .044 (.110) -.433 (.068) -.089 (.029)
DY (-4) 0 -.330 (.018) -.333 (.006) -.333 (.002) -.015 (.074) .001 (.020) .003 (.009) -.062 (.033) .039 (.090) -.289 (.049) -.060 (.020)
DY (-5) 0 -.168 (.014) -.167 (.015) -.167 (.012) -.012 (.042) .001 (.011) .001 (.004) -.036 (.025) .036 (.070) -.150 (.029) -.029 (.012)

Sum of coefficients 0 -2.49 (.07) -2.50 (.02) -2.50 (.01) -.120 (.525) .011 (.146) .017 (.065) -.438 (.185) .213 (.543) -2.20 (.34) -.444 (.142)

Trend 0.085 .297 (.006) .297 (.002) .298 (.001) .095 (.045) .084 (.012) .084 (.005) .123 (.016) .071 (.040) .273 (.029) .122 (.012)

Standard error 0.34 .358 (.005) .358 (.001) .358 (.001) .462 (.040) .470 (.011) .471 (.005)
R-squared .417 (.009) .417 (.003) .417 (.001) .314 (.133) .321 (.108) .306 (.117)

Chi-squared (DF) 108.0 110.2 (10.8) 121.5 (14.0)
 degrees of freedom 108 108 108

 
LM (1) Test sig. -25.95 (.72) -60.1 (37.6) -6.67 (6.25) -81.4 (1.6)
LM (2) Test insig. .10 (.43) -1.93 (3.29) -1.98 (1.30) -.13 (.49)

Sargan Test for FE sig. 72.3 (11.2) 1484.5 (22.8)
 degrees of freedom 6 6 6

The chi-squared shown is for the Sargan test of overidentification (instrument validity).
In all cases, a Hausman test for uncorrelated effects rejects. 
The number in parentheses are the standard deviation of the estimate over the 50 simulation draws. 
The columns with 10000 or 20000 observations are averages over 20 simulation draws.
Instruments are y(-2)-y(-6).

Table 3b
SIMULATION RESULTS - 50 Draws

Data Generation Model: Fixed Effect plus Linear Trend
Estimation Model: Fixed Effect, Linear Trend, and 5 Lags of Dependent Variable
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# of time periods  6 6 6 6 6 6 6 6 6 6
# of observations True 200 2000 20000 200 2000 20000 200 2000 200 2000
Estimation method Model OLS OLS OLS IV IV IV GMM 1Step GMM 1Step GMM 2Step GMM 2Step

DY (-1) 0 -.002 (.030) -.002 (.010) -.001 (.003) -1.62 (10.1) 2.37 (11.71) .43 (4.02) .383 (.185) .436 (.175) -.046 (.279) .010 (.210)
DY (-2) 0 -.001(.033) -.002 (.010) -.000 (.003) -.047 (.258) -.010 (.080) -.002 (.013) -.003 (.037) -.001 (.012) .001 (.039) -.002 (.010)
DY (-3) 0 -.002 (.028) .000 (.007) -.000 (.003) .015 (.330) -.021 (.159) -.002 (.014) .000 (.028) .001 (.009) -.001 (.029) .000 (.007)
DY (-4) 0 .009 (.025) .001 (.010) -.000 (.003) .004 (.168) -.001 (.060) .000 (.009) .008 (.026) .001 (.010) .013 (.027) -.001 (.010)
DY (-5) 0 .004 (.025) -.002 (.009) -.000 (.003) .034 (.168) -.001 (.082) -.001 (.010) .000 (.026) -.002 (.010) .000 (.029) -.001 (.010)

Sum of coefficients 0 .008 (.071) -.003 (.024) -.001 (.007) -1.61 (10.0) 2.33 (11.53) .42 (4.00) .389 (.187) .436 (.173) -.033 (.280) .008 (.207)

Trend 0.09 .084 (.006) .085 (.002) .085 (.001) .228 (.868) -.114 (.972) .049 (.340) .052 (.015) .048 (.015) .087 (.024) .084 (.018)

Standard error 0.100 .100 (.002) .100 (.001) .100 (.000) .409 (.932) .491 (1.102) .249 (.332)
R-squared 0.000 .004 (.002) .000 (.000) .000 (.000) .001 (.001) .000 (.000) .000 (.000)

Chi-squared (DF) 30 29.6 (7.0) 29.8 (6.7)
 degrees of freedom 30 30 30

LM (1) Test sig. -9.38 (3.16) -32.2 (9.8) 1.14 (6.93) -1.25 (18.49)
LM (2) Test insig. .09 (.60) -.07 (.62) -.10 (.59) -.05 (.58)

Sargan Test for FE sig. 33.3 (10.4) 350.4 (29.9)
 degrees of freedom 6 6 6

Table 4a
SIMULATION RESULTS - 50 Draws

Data Generation Model: Random Walk with Drift
Estimation Model: Fixed Effect, Linear Trend, and 5 Lags of Dependent Variable
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# of time periods  20 20 20 20 20 20 20 20 20 20
# of observations True 200 2000 10000 200 2000 10000 200 2000 200 2000
Estimation method Model OLS OLS OLS IV IV IV GMM 1Step GMM 1Step GMM 2Step GMM 2Step

DY (-1) 0 .001 (.016) -.000 (.005) -.001 (.002) 3.10 (16.50) -.02 (6.30) .11 (3.44) .679 (.190) .753 (.203) .009 (.106) .026 (.150)
DY (-2) 0 .000 (.017) -.001 (.005) -.000 (.002) -.017 (.173) -.008 (.046) -.001 (.007) .001 (.019) .005 (.012) .001 (.022) .001 (.006)
DY (-3) 0 .005 (.017) .001 (.005) -.000 (.002) -.013 (.167) -.001 (.029) .001 (.006) .008 (.017) .007 (.011) .007 (.018) .000 (.006)
DY (-4) 0 .001 (.018) -.000 (.004) .000 (.002) -.035 (.248) -.001 (.016) -.003 (.013) -.002 (.024) .001 (.006) .001 (.023) .000 (.005)
DY (-5) 0 -.003 (.016) -.000 (.005) -.001 (.002) -.023 (.152) .003 (.011) -.000 (.005) -.018 (.038) -.021 (.041) -.001 (.021) .002 (.004)

Sum of coefficients 0 .004 (.045) -.001 (.012) -.002 (.004) 3.02 (15.78) -.03 (6.36) .11 (3.45) .667 (.181) .744 (.105) .017 (.116) .030 (.147)

Trend 0.085 .085 (.004) .085 (.001) .085 (.000) -.17 (1.31) .088 (.544) .076 (.293) .029 (.015) .022 (.015) .084 (.010) .082 (.013)

Standard error 0.100 .100 (.001) .100 (.000) .100 (.000) .406 (1.643) .272 (.575) .243 (.259)
R-squared 0.000 .001 (.001) .000 (.000) .000 (.000) .000 (.000) .000 (.000) .000 (.000)

Chi-squared (DF) 108.0 110.0 (10.1) 107.4 (15.5)
 degrees of freedom 108 108 108

LM (1) Test sig. -20.7 (8.7) -57.3 (36.8) -.53 (5.97) -4.54 (26.60)
LM (2) Test insig. .004 (.685) -.12 (.70) .11 (1.00) 0.04 (0.47)

Sargan Test for FE insig. 67.1 (10.2) 1356.5 (30.2)
 degrees of freedom 6 6 6

The chi-squared shown is for the Sargan test of overidentification (instrument validity).
In all cases, a Hausman test for uncorrelated effects rejects. 
The number in parentheses are the standard deviation of the estimate over the 50 simulation draws. 
The columns with 10000 or 20000 observations are averages over 20 simulation draws.
Instruments are y(-2)-y(-6).

Table 4b
SIMULATION RESULTS - 50 Draws

Data Generation Model: Random Walk with Drift
Estimation Model: Fixed Effect, Linear Trend, and 5 Lags of Dependent Variable
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# of time periods  6 6 6 6 6 6 6 6 6 6
# of observations True 200 2000 20000 200 2000 20000 200 2000 200 2000
Estimation method Model OLS OLS OLS IV IV IV GMM 1Step GMM 1Step GMM 2Step GMM 2Step

DY (-1) 0.99 .008 (.029) .008 (.010) .008 (.003) 1.03 (.27) 1.013 (.054) .989 (.017) .827 (.108) .977 (.033) .520 (.230) .970 (.035)
DY (-2) 0 .009 (.033) .009 (.010) .009 (.003) .001 (.042) -.001 (.015) .001 (.004) .000 (.039) -.001 (.015) .002 (.040) -.000 (.015)
DY (-3) 0 .008 (.028) .011 (.007) .010 (.003) .000 (.036) .002 (.012) .001 (.005) .004 (.033) .002 (.012) .004 (.031) .001 (.012)
DY (-4) 0 .019 (.024) .012 (.010) .010 (.003) .004 (.032) .001 (.012) -.000 (.004) .006 (.027) .001 (.011) .013 (.028) .001 (.011)
DY (-5) 0 .014 (.024) .009 (.009) .010 (.003) -.002 (.035) -.002 (.013) -.000 (.004) .002 (.030) -.001 (.012) .005 (.035) -.001 (.012)

Sum of coefficients 0.99 .058 (.065) .049 (.024) .047 (.007) 1.032 (.251) 1.013 (.048) .990 (.017) .839 (.108) .978 (.032) .544 (.214) .971 (.032)

Trend 0.01 .070 (.005) .071 (.002) .071 (.001) .007 (.017) .009 (.003) .010 (.001) .020 (.007) .011 (.002) .039 (.014) .011 (.002)

Standard error 0.263 .188 (.004) .188 (.001) .188 (.000) .270 (.039) .269 (.007) .263 (.002)
R-squared 0.000 .005 (.002) .001 (.001) .001 (.000) .001 (.001) .000 (.000) .000 (.000)

Chi-squared (DF) 30 38.1 (9.2) 33.3 (8.5)
 degrees of freedom 30 30 30

LM (1) Test sig. -13.9 (0.7) -44.6 (0.5) -10.9 (3.9) -44.6 (0.5)
LM (2) Test insig. 0.17 (0.69) -.07 (.63) 0.07 (0.85) -.10 (0.65)

Sargan Test for FE sig. -0.8 (7.3) 3.2 (5.2)
 degrees of freedom 6 6 6

Table 5a
SIMULATION RESULTS - 50 Draws

Data Generation Model: AR1 with Deterministic Trend
Estimation Model: Fixed Effect, Linear Trend, and 5 Lags of Dependent Variable
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# of time periods  20 20 20 20 20 20 20 20 20 20
# of observations True 200 2000 10000 200 2000 10000 200 2000 200 2000
Estimation method Model OLS OLS OLS IV IV IV GMM 1Step GMM 1Step GMM 2Step GMM 2Step

 
DY (-1) 0.99 .043 (.016) .042 (.006) .042 (.002) 1.148 (.401) .980 (.059) .984 (.028) .795 (.278) .599 (.314) .651 (.107) .947 (.015)
DY (-2) 0 .043 (.016) .042 (.004) .043 (.002) -.009 (.027) .000 (.008) .001 (.004) -.033 (.286) .059 (.253) .007 (.030) .003 (.010)
DY (-3) 0 .048 (.017) .044 (.005) .044 (.003) -.003 (.031) .002 (.007) .000 (.004) .031 (.345) .080 (.436) .014 (.028) .002 (.011)
DY (-4) 0 .045 (.017) .043 (.004) .044 (.002) -.011 (.038) -.001 (.007) .000 (.004) -.024 (.349) .023 (.251) .010 (.028) .003 (.011)
DY (-5) 0 .041 (.015) .044 (.005) .045 (.002) -.012 (.032) .001 (.007) .000 (.003) .187 (.245) .224 (.159) .010 (.029) .004 (.011)

Sum of coefficients 0.99 .220 (.037) .216 (.010) .217 (.005) 1.114 (.319) .982 (.049) .985 (.023) .957 (.053) .985 (.027) .692 (.091) .958 (.013)

Trend 0.01 .199 (.009) .200 (.002) .199 (.001) -.021 (.078) .012 (.012) .011 (.006) .024 (.014) .021 (.011) .084 (.023) .018 (.003)

Standard error 0.263 .191 (.002) .191 (.001) .191 (.000) .288 (.062) .262 (.008) .263 (.004)
R-squared  .013 (.004) .012 (.001) .012 (.001) .003 (.002) .003 (.001) .003 (.000)

Chi-squared (DF) 108.0 128.5 (19.0) 123.4 (13.7)
 degrees of freedom 108 32 114

LM (1) Test sig. -17.1 (6.2) -37.4 (23.9) -17.1 (1.4) -59.8 (0.5)
LM (2) Test insig. -.15 (10.17) -1.4 (36.2) -.12 (.46) 0.13 (0.39)

Sargan Test for FE insig. 87.9 (12.8)  
 degrees of freedom 6 6 6

The chi-squared shown is for the Sargan test of overidentification (instrument validity).
In all cases, a Hausman test for uncorrelated effects rejects. 
The number in parentheses are the standard deviation of the estimate over the 50 simulation draws. 
The columns with 10000 or 20000 observations are averages over 20 simulation draws.
Instruments are y(-2)-y(-6).

Table 5b
SIMULATION RESULTS - 50 Draws

Data Generation Model: AR(1) with Deterministic Trend
Estimation Model: Fixed Effect, Linear Trend, and 5 Lags of Dependent Variable
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Data Generating 
Process (truth)

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

No. of Augmenting 
Lags (p)

Random Walk -0.02 0.88 -2.00 0.48 -0.19 0.90 -0.36 0.78 -0.16 0.94 -0.21 0.92
  (accept) (1.31)  (2.60)  (1.06) (1.57)  (0.97)  (1.11)  
Firm Fixed Effects -5.86 0.00 -5.32 0.02 -4.97 0.00 -2.89 0.20 -1.72 0.46 -2.04 0.32
  (reject) (1.38)  (2.09)  (1.12) (1.29)  (0.79)  (0.92)  
AR(1) 0.06 0.88 -1.96 0.44 -0.13 0.90 -0.36 0.80 -0.16 0.94 -0.21 0.92
  (reject) (1.30)  (1.93)  (1.05) (1.61)  (0.99)  (1.14)  

Data Generating 
Process (truth)

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

No. of Augmenting 
Lags (p)

Random Walk -0.67 0.68 -6.64 0.00 -1.10 0.64 -0.80 0.72 -0.29 0.96 -0.43 0.94
  (accept) (1.57)  (2.83)  (1.28) (1.28)  (0.79)  (0.91)  
Firm Fixed Effects -18.01 0.00 -17.82 0.00 -15.32 0.00 -8.31 0.00 -4.92 0.00 -5.85 0.00
  (reject) (1.22)  (2.29)  (0.99) (1.15)  (0.71)  (0.81)  
AR(1) -0.57 0.76 -6.77 0.00 -1.02 0.66 -0.80 0.68 -0.30 0.96 -0.43 0.96
  (reject) (1.49)  (2.69)  (1.22) (1.24)  (0.76)  (0.88)  

T=12; N=2000
IPS Test; no trend IPS Test with trend

2 3 Best 2 3 Best

3 Best

IPS Test; no trend

2 3 Best 2

TABLE 6
Testing for Nonstationarity
Simulated Data - 50 Draws

IPS Test with trend
T=12; N=200
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Data Generating 
Process (truth)

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

T-bar 
Statistic

Empirical 
Size

No. of Augmenting 
Lags (p)

Random Walk 1.50 1.00 1.53 1.00 1.34 1.00 1.91 1.00 1.54 1.00 1.71 1.00
  (accept) (1.05)  (1.53)  (1.34) (1.17)  (1.35)  (1.12)  
Firm Fixed Effects -10.15 0.00 -7.45 0.00 -10.07 0.00 -5.23 0.00 -2.97 0.15 -5.19 0.00
  (reject) (1.08)  (0.85)  (1.06) (1.12)  (1.07)  (1.09)  
AR(1) 1.37 1.00 1.35 1.00 1.2 1.00 1.90 1.00 1.52 1.00 1.70 1.00
  (reject) (1.16)  (1.22)  (1.13) (1.15)  (1.37)  (1.11)  

The empirical size is the fraction of the time that the null of nonstationarity is rejected at the five percent level. 
The numbers in parentheses are the standard deviation of the test statistics over the 50 draws. 
The number of augmenting lags are the number used when computing the IPS test statistic. "Best" means 2 or 3, depending on what the individual data series prefer.

T=20; N=200;Number of Draws=20
IPS Test; no trend IPS Test with trend

2 3 Best 2 3 Best
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